abstract factory

Abstract Factory Pattern defined

We're adding yet another factory pattern to our pattern family, one that lets us create families
of products. Let’s check out the official definition for this pattern

The Abstract Factory Pattern provides an interface
for creating families of related or dependent ohjects
without specifying their conerete classes.

We've certainly seen that Abstract Factory allows a client to use an abstract interface to
create a set of related products without knowing (or caring) about the concrete products that
are actually produced. In this way, the client is decoupled from any of the specifics of the
concrete products. Let’s look at the class diagram to see how this all holds together:

The Client is weitten ag&ms% the
abstract factory and then tomposed at
vuntime with an 5:&%& ‘%’afo‘%@!\f

3}
The ?%mwa{%a@w defines the

Client

wkerlate that all Qmsf%"f‘i*" ’%‘&53%” s

m%ﬁi"{; ew?%ﬁmﬁﬂ" whith fonsisis @ﬁ 3 52t
of methods For produting p méw%s. This is the product ; .
1 Lamily. Eath contrete
- i’&i%m'\g Lén ‘{«?V@éw‘iﬂ an
<<interface>> enbive se 4 w mg%‘%ﬁ <<interface>>
AbstractFactory AbstractProductA
CreateProductA() / \Mf"f?
CreateProductB()
s‘
; - .
gf .
o ProductA2 ProductA1
|
!
i
m— ConcreteFactoryl = \ ConcreteFactory2 &‘a&
CreateProductA() ! CreateProductA() %‘x
CreateProductB() LCreateProductB() .

| <<interface>>
AbstractProductB

: N

& I i N
?%ﬂgﬁgj the glient uses one of %%zesg T ALTOVIES,
‘ te

ProductB2 ProductB1

so v never has Te instan i

156




