the decorator pattern

Pecorating the java.io classes

nent
Weve's oW sbskratt comt?
ere s
1
InputStream gzgéﬁg?}?&%gﬁga@
is an abstvact
L detoralse

FilterinputStream

FilelnpuiStream

/ ‘ DatalnputStream LineNumberinputStream

/o g 7
These InputStreams act as ™ ; /2 f’/

bhe tontrete éam?aaen%;s that N /

e il i covators. s orators.
%:e::ia:f gi%iiiz didn't And Finally, heve are all our eontrete detor
show, like ObjeetinputStream.

StringBufferinputStream

You can see that this isn’t so different from the Starbuzz design. You should
now be in a good position to look over the java.io API docs and compose
decorators on the various mpuf streams.

And you'll see that the output streams have the same design. And you've
probably already found that the Reader/Writer streams {for character-based
data) closely mirror the design of the streams classes (with a few differences
and inconsistencies, but close enough to figure out what’s going on).

But Java I/0 also points out one of the downsides of the Decorator Pattern:
designs using this pattern often result in a large number of small classes

that can be overwhelming to a developer trying to use the Decorator-based
APIL. But now that you know how Decorator works, you can keep things in
perspective and when you're using someone else’s Decorator-heavy APL vou
can work through how their classes are organized so that you can easily use
wrapping to get the behavior you're after.

i gre hero v
you are here v 101


Scott Smith


Scott Smith
1


