the decorator pattern
The Pecorator Pattern defined

Let’s first take a look at the Decorator Pattern description:

While that describes the rle of the Decorator Pattern, it doesn’t give us a lot
of insight into how we’d apply the pattern to our own implementation. Let’s
take a look at the class diagram, which is a little more revealing (on the next
page we'll look at the same structure applied to the beverage problem).

Each ég}m‘genéh% tan be used on its
own, or wrapped by a detorator.

component

Comp
methodA{}
methodB()

{/ other methods

The Qmwg&ﬁe%?wsai

is the object we've 9oing

to dynamieally add rew 1
behavior Lo. [£ extends
Component.

Each decovrator HAS-A

{wraps) a component, which
means the detorator has an
instance vaviable that holds

ConcreteComponent Decorator 2 vs@si‘em’ie toa iom?emn%
methodA() methodA()
methodB() methodB()

/1 other methods I other methods

L Slement the
\J Detorators implemer 9%

same %ﬁ%ﬁ%“g ate ov

tlass as the éam?‘me;: they
aee ooing Lo detordte
ConcereteDecoratorA ConcereteDecoratorB
//“‘“% Component wrappedObj Component wrappedObj
Object newState -
methodA()
The ContreteDetorator %ss‘a?a method8() methodA(Detorators tan extend the
nstante variable Lor the ”%??% newBehavior() methodB() state of the égm?gﬁgn%.
it detorate (the Component TRE | jiother methods 1 other methods
Detorator wraps):

Detorators tan add new methods; however, new

¢ : (N
behavior is Lypically added by doing computation
before or abter an existing method in the tomponent.

