100

CHAPTER 5 SUBSTITUTES FOR C CONSTRUCTS

Item 20: Replace unions with class hierarchies

The C union construct is most frequently used to define structures ?apable of hold-
ing more than one type of data. Such a structure typically cont.aln's at leagt two
fields: a union and a rag. The tag is just an ordinary field used to indicate which of
the possible types is held by the union. The tag is generally (?f sc?mfa enum t}fpe, A
structure containing a union and a tag is sometimes calleda dzscrzmu?ated union.

In the C example below, the shape_t type is a discrimina?ed union that.can be
used to represent either a rectangle or a circle. The area function ‘talfes a‘pomter to
a shape_t structure and returns its area, or -1.0, if the structure is invalid:

/* Discriminated union */
© #include "math.h" .
typedef enum {RECTANGLE, CIRCLE} shapeType_t;

typedef struct {
double length;
double width;

} rectangleDimensions_t;

typedef struct {
double radius;
1 circleDimensions_t;

typedef struct {
shapeType_t tag;

union {
rectangleDimensions_t rectangie;
circleDimensions_t circle;
} dimensions;
} shape_t;

double area(shape_t *shape) {

switch(shape->tag) {
case RECTANGLE: ‘
double length = shape->dimensions. rectangle.length;

double width shape->dimensions. rectangle.width;
return length * width;

e

il

i

}

case CIRCLE: { _ _ o
double r = shape->dimensions.cl rcle.radius;
return M_PT * (r*r);

} * 2
default: return -1.0; /% Invalid tag */

ITEM 20: REPLACE UNIONS WITH CLASS HIERARCHIES

The designers of the Java programming language chose to omit the union
construct because there is a much better mechanism for defining a single data type
capable of representing objects of various types: subtyping. A discriminated union
is really just a pallid imitation of a class hierarchy.

To transform a discriminated union into a class hierarchy, define an abstract
class containing an abstract method for each operation whose behavior depends
on the value of the tag. In the earlier example, there is only one such operation,
area. This abstract class is the root of the class hierarchy. If there are any opera-
tions whose behavior does not depend on the value of the tag, turn these opera-
tions into concrete methods in the root class. Similarly, if there are any data fields
in the discriminated union besides the tag and the union, these fields represent
data common to all types and should be added to the root class. There are no such
type-independent operations or data fields in the example.

Next, define a concrete subclass of the root class for each type that can be rep-
resented by the discriminated union. In the earlier example, the types are circle
and rectangle. Include in each subclass the data fields particular to its type. In the
example, radius is particular to circle, and length and width are particular to rect-
angle. Also include in each subclass the appropriate implementation of each
abstract method in the root class. Here is the class hierarchy corresponding to the
discriminated union example:

abstract class Shape {
abstract double area();
1

class Circle extends Shape {
final double radius;

Circle(double radius) { this.radius = radius: }

double area() { return Math.PI * radius*radius; }

}

class Rectangle extends Shape {
final doubie Tength;
final double width;

Rectangle(double length, double width) {
this.length = length;
this.width = width;

}

double area() { return length * width; }

101



