state pattern defined

The State Pattern defined

Yes, it’s true, we just implemented the State Pattern! So now, let’s take a look at what it’s all about:

The first part of this description makes a lot of sense, right? Because the pattern encapsulates state into
separate classes and delegates to the object representing the current state, we know that behavior changes
along with the internal state. The Gumball Machine provides a good example: when the gumball machine
is in the NoQuarterState and you insert a quarter, you get different behavior (the machine accepts the
quarter) than if you insert a quarter when it’s in the HasQuarterState (the machine rejects the quarter).

What about the second part of the definition? What does it mean for an object to “appear to change its
class?” Think about it from the perspective of a client: if an object you’re using can completely change its
behavior, then it appears to you that the object is actually instantiated from another class. In reality, however,
you know that we are using composition to give the appearance of a class change by simply referencing

different state objects.

Okay, now it’s time to check out the State Pattern class diagram:

The Conbext is the elass that
pan have @ number of inbernal
shates. fn owe ﬁ%ﬁm?i&; the
GumbaliMathine is the Contert

The Q:%;M;e: interface defines a tommaon

interface for all contrete states; the

states all implement +he same interfate,
so they ave interchangeable.

State

<\ Context

request()

7 Lstate‘handle()

‘WE"&QM@M"(the vequest()
5 made on the Content:

it is delegated £o {h
state to handle. ‘

410 Chapter 10

handle{)

LA V>

ConcreteStateB

ConcreteStateA

handie() handle()

Many tonfrate
& 'ﬁe:s Qire Pmmm@

N

ContvebeStates handle vequests from &f?
Context. Eath ContreteState provides its
lementation for a veauest. In this
the Context thanges state, iks

behavior will thange as well.

own i
was when

