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Chapter 1

Environment-based Operational
Semantics

1.1 F[ Reviewed

Let us briefly review the grammar and substitution-based operational semantics from the
PL I book [2]. Please see that book for details. We are going to use Xavier’s syntax notation
rather than the PL I capitalized-keywords business, which gets tiring to write after awhile.
The syntax is the same, but let rec has been removed; it is not hard to encode with self-
passing so is not adding a lot.

1.1.1 F[ Syntax

x ::= variable names (strings)

v ::= x variable values
| true | false boolean values
| 0 | 1 | -1 | 2 | -2 | . . . integer values
|λx .e function values

e ::= v value expressions
| (e) parenthesized expressions
| e and e | e or e | not e boolean expressions
| e + e | e - e | e = e | numerical expressions
| e e application expression
| if e then e else e conditional expressions
| let x = e in e let expression

Note that in accordance with the above BNF, we will be using metavariables e , v , and x
to represent expressions, values, and variables respectively.

Notions of bound and free variables and substitution are standard; see the PL I book.
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1.1.2 Subsitution-based Operational Semantics

For reference, here are the F[ operational semantics rules from the PL I book.

(value)
v ⇒ v

(not)
e ⇒ v

not e ⇒ the negation of v

(and)
e1⇒ v1 e2⇒ v2

e1 and e2⇒ the logical and of v1 and v2

(+)
e1⇒ v1, e2⇒ v2 where v1, v2 ∈Z

e1 + e2⇒ the integer sum of v1 and v2

(=)
e1⇒ v1, e2⇒ v2 where v1, v2 ∈Z

e1 = e2⇒ true if v1 and v2 are identical, else false

(if true)
e1⇒ true, e2⇒ v2

if e1 then e2 else e3⇒ v2

(if false)
e1⇒ false, e3⇒ v3

if e1 then e2 else e3⇒ v3

(application)
e1⇒λx .e , e2⇒ v2, e [v2/x ]⇒ v

e1 e2⇒ v

(let)
e1⇒ v1 e2[v1/x ]⇒ v2

let x = e1 in e2⇒ v2

1.2 Environment-based evaluator

Let us now get rid of substitutions, both because they are inefficient to implement in an
interpreter and that we cannot make a program analysis out of an operational semantics
with substitution.

The semantics will include an extra parameter ε, the environment, which map variables
to values. But, for non-local variables in functions we will lose those definitions unless they
are explicitly stashed. So, function values are not just λx .e , they are closures 〈λx .e ,ε〉where
ε is a mapping taking local variables to values.

It is more elegant to fully decouple the value grammar v from the expression grammar
e at this point – closures are computation results so are only parts of values, and regular λ-
expressions λx .e are still the non-value form of a function. Writing out the full grammars
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(note we are overriding the definitions of e and v from the previous section here) we have

v ::= x | true | false | 0 | 1 | -1 | 2 | -2 | . . . non-function values
| 〈λx .e ,ε〉 function closures

ε ::= {x 7→ v, . . . x 7→ v } environments
e ::= x |λx .e | true | false | 0 | 1 | -1 | 2 | -2 | . . .

| e and e | e or e | not e | e + e | e - e | e = e
| e e | if e then e else e | let x = e in e

Environments ε are simple mappings from variables to values. It is a true mapping in
that there is at most one mapping for any variable in any ε. To avoid ambiguity let us write
out the basic operations etc on environments.

Definition 1.1. Basic definitions on environments include

• x ∈ domain(ε) iff ε is of the form {. . . x 7→ v, . . .}, i.e. it has some mapping of x .

• ε(x ) = v where ε = {. . . , x 7→ v, . . .}. Looking up a variable not in the domain is unde-
fined.

• (ε1 ∪ ε2) is the least ε′ such that ε′(x ) = ε2(x ) if x ∈ domain(ε2), and otherwise ε′(x ) =
ε1(x ).

• We say e /ε is closed if all free variables in e are in domain(ε).

• We extend environment lookup notation so that ε(e ) = e [v1/x1, ..., vn/xn ] for ε= {x1 7→
v1, . . . xn 7→ vn}.

• We will let ε; = {} be shorthand for the empty environment.

We can now define the operational semantics rules.
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(variable)
ε(x ) = v

ε ` x ⇒ v

(closure)
ε `λx .e ⇒〈λx .e ,ε〉

(value)
v not a variable or a closure

ε ` v ⇒ v

(not)
ε ` e ⇒ v

ε ` not e ⇒ the negation of v

(and)
ε ` e1⇒ v1 ε ` e2⇒ v2

ε ` e1 and e2⇒ the logical and of v1 and v2

(+)
ε ` e1⇒ v1, ε ` e2⇒ v2 where v1, v2 ∈Z
ε ` e1 + e2⇒ the integer sum of v1 and v2

(=)
ε ` e1⇒ v1, ε ` e2⇒ v2 where v1, v2 ∈Z

ε ` e1 = e2⇒ true if v1 and v2 are identical, else false

(if true)
ε ` e1⇒ true, ε ` e2⇒ v2

ε ` if e1 then e2 else e3⇒ v2

(if false)
ε ` e1⇒ false, ε ` e3⇒ v3

ε ` if e1 then e2 else e3⇒ v3

(application)
ε ` e1⇒〈λx .e ,ε′〉 ε ` e2⇒ v2, ε′ ∪{x 7→ v2} ` e ⇒ v

ε ` e1 e2⇒ v

(let)
ε ` e1⇒ v1 ε∪{x 7→ v1} ` e2⇒ v2

ε ` let x = e1 in e2⇒ v2

We can now define the (big step) relation.

Definition 1.2. ε ` e ⇒ v for e /ε closed is the least relation closed under the above rules.

Lemma 1.1. The substitution and environment evaluators are equivalent:

1. For all expressions e and for non-function values v , e ⇒ v in the substitution-based
system iff ε; ` e ⇒ v in the environment-based system.

2. For all expressions e , e ⇒λx .e ′ in the substitution-based system iff ε; ` e ⇒〈λx .e ′′,ε′〉
in the environment-based system, where ε′(λx .e ′′) =λx .e ′.

There is a bit of a mismatch here on the result because function values differ between
the two systems, the former performing substitutions and the latter not. The second clause
puts them back on equal footing by substituting the final environment in.
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1.3 A Store-of-Environments evaluator

We are now going to define a variation on the above where rather than putting environ-
ments ε directly in closures, we put a “reference” r to the environment in the closure and
then we additionally have a store, σ, which like a heap is a mapping from references r to
environments. We want to make sure we make a fresh reference for each new environment,
otherwise we get overlaps. Let us now define this revised evaluator.

v ::= . . . non-function values as before
| 〈λx .e , r 〉 function closures

ε ::= {x 7→ v, . . . x 7→ v } environments as before
e ::= . . . expressions as before
r ::= references, abstract now
σ ::= {r 7→ ε, . . . r 7→ ε} store

Stores σ are maps like environments and we use the same notation for extension and
lookup etc. Their domain of references r are for now abstract nonces, similar to the cells c
of FbS. If you like things concrete think of them as natural numbers. When we make a new
closure we want to make a fresh r 7→ ε to add to the store.

The revised relation is of the form ε ` 〈e ,σ〉⇒ 〈v,σ′〉 - the store is threaded through the
computation in a manner similar to FbS. We can now define the operational semantics rules
as a variation on the previous system. Most of the added “baggage” is because we need to
explicitly thread the store here.
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(var)
ε(x ) = v

ε ` 〈x ,σ〉⇒ 〈v,σ〉

(closure)
σ′ =σ∪{r 7→ ε} r is fresh

ε ` 〈λx .e ,σ〉⇒ 〈〈λx .e , r 〉,σ′〉

(value)
v not a variable or a closure

ε ` 〈v,σ〉⇒ 〈v,σ〉

(not)
ε ` 〈e ,σ〉⇒ 〈v,σ′〉 v ′ is the negation of v

ε ` 〈σ,not e 〉⇒ 〈v ′,σ′〉

(and)
ε ` 〈e1,σ〉⇒ 〈v1,σ′〉 ε ` 〈e2,σ′〉⇒ 〈v2,σ′′〉 v is v1 ∧ v2

ε ` 〈e1 and e2,σ〉⇒ 〈v,σ′′〉

(+)
ε ` 〈e1,σ〉⇒ 〈v1,σ′〉 ε ` 〈e2,σ′〉⇒ 〈v2,σ′′〉where v1, v2,σ′′ ∈Z and v1+ v2 = v

ε ` 〈e1 + e2,σ〉⇒ 〈v,σ′′〉

(=)
ε ` 〈e1,σ〉⇒ 〈v1,σ′〉 ε ` 〈e2,σ′〉⇒ 〈v2,σ′′〉where v1, v2,σ′′ ∈Z, v = (v1 = v2)

ε ` 〈e1 = e2,σ〉⇒ 〈v,σ′′〉

(if true)
ε ` 〈e1,σ〉⇒ 〈true,σ′〉 ε ` 〈e2,σ′〉⇒ 〈v2,σ′′〉
ε ` 〈σ,if e1 then e2 else e3〉⇒ 〈v2,σ′′〉

(if false)
ε ` 〈e1,σ〉⇒ 〈false,σ′〉 ε ` 〈σ′, e3〉⇒ 〈v3,σ′′〉
ε ` 〈σ,if e1 then e2 else e3〉⇒ 〈v3,σ′′〉

(app)

ε ` 〈e1,σ〉⇒ 〈〈λx .e , r 〉,σ′〉 ε ` 〈e2,σ′〉⇒ 〈v2,σ′′〉
σ′′(r ) = ε′ ε′ ∪{x 7→ v2} ` 〈e ,σ′′〉⇒ 〈v,σ′′′〉

ε ` 〈e1 e2,σ〉⇒ 〈v,σ′′′〉

(let)
ε ` 〈e1,σ〉⇒ 〈v1,σ′〉 ε∪{x 7→ v1} ` 〈e2,σ′〉⇒ 〈v2,σ′′′〉

ε ` 〈let x = e1 in e2,σ〉⇒ 〈v2,σ′′′〉

The closure rule is the main change, notice how we only store a reference r to the envi-
ronment in the closure, and we put the environment itself in the store. Since each time we
make a closure we pick a fresh r there will be no overlap on different environments. Note
that “fresh” is a hack, it is a side effect and we are doing math here. But it is a well-known
and accepted hack. To be more accurate though, we should be passing along the most re-
cent reference name used, and pick a strictly “bigger” one to guarantee it is fresh, then keep
passing along this latest one. The Leroy encoding of state passing style did this.

We can now define the (big step) relation.

Definition 1.3. ε ` 〈e ,σ〉 ⇒ 〈v,σ′〉 for e /ε closed is the least relation closed under the above
rules. An initial computation starts with an empty environment and store: ε; ` 〈e ,σ;〉 ⇒
〈v,σ〉.

We can again easily prove equivalence; this time let us just state equivalence on integer
or boolean results, equivalence on functions is analogous to the previous Lemma.
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Lemma 1.2. The environment and store evaluators are equivalent: For all expressions e and
for non-function values v , ε; ` e ⇒ v in the environment-based system iffε; ` 〈e ,σ;〉⇒ 〈v,σ〉
in the store-based system.

1.4 Call site stacks as references

We want to make one final modification to this operational semantics before we will be ready
to “hobble” it to make a program analysis.

Above the references r were arbitrary entities, now we will make them something more
concrete that we can then make finite so our program analysis will terminate. In particular
we make them stacks (lists in particular) of call sites, which we call contexts, C . We also need
to distinguish different call sites and so tweak the language grammar ever so slightly to add
a tag e t e to each call site where t is distinct for each different call site in the program.

Here are the changed grammar entities.

v ::= . . . non-function values as before
| 〈λx .e , C 〉 function closures

e ::= · · · | e t e expressions nearly as before
t ::= call site tags, think numbers

C ::= [t ; . . . ; t ] references, now call site lists
σ ::= {C 7→ ε, . . . C 7→ ε} store

There is one additional assumption we need to make on source programs: Let bindings
cannot shadow. So for example Let x = 1 in Let x = 2 in x + 1would not be legal
as the inner x binding is shadowing the outer one. This is not a restriction in practice as any
program with let-shadowing can rename the inner variable to avoid shadowing. There is an
even stronger notion of not shadowing termed alphatized which means no bound variable
anywhere in the program repeats; we do not need such a strong notion here.

The rules are nearly identical, but we need to keep track of the current call site list C
since it will be the reference used in the store. Here are the closure and app rules, for the
others just tack a C on front as they are unchanged otherwise.

(closure)
σ′ =σ∪{C 7→ ε}

ε, C ` 〈λx .e ,σ〉⇒ 〈〈λx .e , C 〉,σ′〉

(app)

ε, C ` 〈e1,σ〉⇒ 〈〈λx .e , C ′〉,σ′〉 ε, C ` 〈e2,σ′〉⇒ 〈v2,σ′′〉
σ′′(C ′) = ε′ ε′ ∪{x 7→ v2}, (t :: C ) ` 〈e ,σ′′〉⇒ 〈v,σ′′′〉

ε, C ` 〈e t
1 e2,σ〉⇒ 〈v,σ′′′〉

The ∪ operation in the closure rule needs to be clarified – in the context of let bindings
the environment may be extended as more let expressions are entered, but the context C
is not changing. The solution is to take ∪ to always replace if the key C is already present,
as that environment will always be an extension. When we get to making an analysis out of
this it is more subtle, the mapping becomes a multi-mapping due to non-determinism.
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Definition 1.4. ε, C ` 〈e ,σ〉 ⇒ 〈v,σ′〉 for e /ε closed is the least relation closed under the
above rules. An initial computation starts with an empty environment, call stack, and store:
ε;, [] ` 〈e ,σ;〉⇒ 〈v,σ〉.

Lemma 1.3. The store-reference and store-call-stack evaluators are equivalent: For all ex-
pressions e and for non-function values ε; ` 〈e ,σ;〉 ⇒ 〈v,σ〉 in the store-reference system iff
ε;, [] ` 〈e ,σ;〉⇒ 〈v,σ〉 in the store-call-stack system.

To establish this result we need to know that the stacks C are “as good as fresh refer-
ences”, in that we will not accidentally give two different environments the same address in
the store. If our language had e.g. while-loops this would in fact not be the case! Going
around the while loop we could repeatedly make the same stack. Fortunately our language
does not have while loops, and when we encode them with recursion they will be putting
a new frame on the call stack each time around the loop. A proof was written by Zach and
appears in [1].



Chapter 2

Program Analysis

In this chapter we will “hobble” the (complete) evaluator ε, C ` 〈e ,σ〉 ⇒ 〈v,σ′〉 defined in
the previous chapter so it can be implemented as a total function. Since a hobbled evaluator
always terminates, it can be used by a compiler to optimize programs and/or to help find
potential run-time errors. Well, the previous sentence is not completely accurate, it must
feasibly terminate – a doubly-exponential algorithm would not be very good! This is in fact
a serious issue as many program analyses are exponential in the worst case.

Our development here is based on “Abstracting Abstract Machines” (AAM for short), a
paper by Might and Van Horn [4]. We could just re-use their development, but their analysis
only works over CPS-converted programs which can make some things more difficult to see,
and I have simplified their approach, getting rid of one parameter in the evaluation relation.

2.1 The Basic Analysis

We start from the store-call-stack evaluator at the end of the previous chapter. All we need
to do is to make the store and value space finite; to make the store finite we will just make
the references finite, by arbitrarily pruning the stack.

Here is the full grammar. Note how we have finitary integers here, only keeping the sign,
and also include unknown-int and unknown-bool values. Unknown-int is needed when we
for example add a positive and a negative number – it is unknown what its sign will be. Other
than these changes to atomic data the language grammar is the same.

The major change is for the store: when we hobble the analysis we may end up re-using
a key C in the store, and we don’t want to overwrite the old value as it could still be needed in
the future – to overwrite the old value would make the analyses un-sound, it should always
return a “superset” of what the actual program does and that property would fail.

So, the solution is that instead of overwriting we just include them all, making it a multi-
map. We will notate this as a map where the key lookup in general returns a set of environ-
ments {ε1, . . . ,εn}.

Note that we will still need to assume that Let variable definitions never shadow each
other; in an implementation we will need to rename any such shadowing cases.

9
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v ::= x | true | false | (-) | (0) | (+) non-function values
| 〈λx .e ,ε〉 function closures

ε ::= {x 7→ v, . . . x 7→ v } environments
E ::= {ε, . . . ,ε} environment sets
e ::= x |λx .e | true | false | {. . .-1,0,1, . . .}

| e and e | e or e | not e | e + e | e - e | e = e
| e t e | if e then e else e | let x = e in e

t ::= call site tags, think numbers
C ::= [t ; . . . ; t ] call site lists aka contexts
σ ::= {C 7→ E , . . . C 7→ E } store

Since stores are now multi-maps we need to re-define store extension and lookup.

Definition 2.1. Basic definitions on stores now include

• C ∈ domain(σ) iffσ is of the form {. . . C 7→ E , . . .}, i.e. it has some mapping of C .

• σ(C ) = E where σ = {. . . , C 7→ E , . . .}. Looking up a context not in the domain is unde-
fined. To assert a particular environment is in a store map result we then assertε ∈σ(C ).

• (σ1 ∪σ2) is the leastσ′ such thatσ′(C ) =σ1(C )∪σ2(C ). Observe that we are unioning
up the respective multi-map results here; this is also how we may create multi-maps to
begin with if the stores formerly had only singleton sets of environments mapped.

• We must be careful on how sets of environments are unioned – E1 ∪E2 will union the ε
except in the case where one environment strictly subsumes another; in that case the
smaller environment will be elided. This subtle issue is only needed to address let-
binding since there is no context change in the let rule and environments may interfere
in the store if we are not careful.

• We will letσ; = {} be shorthand for the empty store.

The rules are mostly unchanged from the previous evaluation system. For functions
and function call only the store operations in closure and app and the context append in
app change. The integer rules are different because we have abstracted their values to only
positive, negative, and zero in order to make them finite. The hatted operators below are
over this finite value space; for example, (+) ∈ (+)+̂(-) - adding a positive and a negative
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can produce a positive (it also can produce a negative or a 0. . . ).

(var)
ε(x ) = v

ε, C ` 〈x ,σ〉 Ò⇒〈v,σ〉

(closure)
σ′ =σ∪{C 7→ {ε}}

ε, C ` 〈λx .e ,σ〉 Ò⇒〈〈λx .e , C 〉,σ′〉

(number)
e ∈Z v is the sign of e

ε, C ` 〈e ,σ〉 Ò⇒〈v,σ〉

(boolean)
v is a boolean

ε, C ` 〈v,σ〉 Ò⇒〈v,σ〉

(not)
ε, C ` 〈e ,σ〉 Ò⇒〈v,σ′〉 v ′ is the negation of v

ε, C ` 〈σ,not e 〉 Ò⇒〈v ′,σ′〉

(and)
ε, C ` 〈e1,σ〉 Ò⇒〈v1,σ′〉 ε, C ` 〈e2,σ′〉 Ò⇒〈v2,σ′′〉 v is v1 ∧ v2

ε, C ` 〈e1 and e2,σ〉 Ò⇒〈v,σ′′〉

(+)
ε, C ` 〈e1,σ〉 Ò⇒〈v1,σ′〉 ε, C ` 〈e2,σ′〉 Ò⇒〈v2,σ′′〉where v1, v2 ∈ Ẑ and v ∈ v1+̂v2

ε, C ` 〈e1 + e2,σ〉 Ò⇒〈v,σ′′〉

(=)
ε, C ` 〈e1,σ〉 Ò⇒〈v1,σ′〉 ε, C ` 〈e2,σ′〉 Ò⇒〈v2,σ′′〉where v1, v2 ∈ Ẑ, v ∈ (v1=̂v2)

ε, C ` 〈e1 = e2,σ〉 Ò⇒〈v,σ′′〉

(if true)
ε, C ` 〈e1,σ〉 Ò⇒〈true,σ′〉 ε, C ` 〈e2,σ′〉 Ò⇒〈v2,σ′′〉
ε, C ` 〈if e1 then e2 else e3,σ〉 Ò⇒〈v2,σ′′〉

(if false)
ε, C ` 〈e1,σ〉 Ò⇒〈false,σ′〉 ε, C ` 〈σ′, e3〉 Ò⇒〈v3,σ′′〉
ε, C ` 〈if e1 then e2 else e3,σ〉 Ò⇒〈v3,σ′′〉

(app)

ε, C ` 〈e1,σ〉 Ò⇒〈〈λx .e , C ′〉,σ′〉 ε, C ` 〈e2,σ′〉 Ò⇒〈v2,σ′′〉
ε′ ∈σ′′(C ′) ε′ ∪{x 7→ v2}, (t ::k C ) ` 〈e ,σ′′〉 Ò⇒〈v,σ′′′〉

ε, C ` 〈e t
1 e2,σ〉 Ò⇒〈v,σ′′′〉

(let)
ε, C ` 〈e1,σ〉 Ò⇒〈v1,σ′〉 ε∪{x 7→ v1}, C ` 〈e2,σ′〉 Ò⇒〈v2,σ′′〉

ε, C ` 〈let x = e1 in e2,σ〉 Ò⇒〈v2,σ′′〉

Notice that list cons, ::, has been replaced with k -cons, ::k . This operation conses an
element to the front and prunes any elements past length k off of the end of the list. This is
key to making function calls finitary, eventually they will start re-using environments since
no new keys C will be manufactured. The particular number k is a parameter to the analysis,
this style of analysis is termed k CFA [3]. k is usually something small like 0, 1, or 2 as it in
practice gets very slow for larger k .

Definition 2.2. ε, C ` 〈e ,σ〉 Ò⇒ 〈v,σ′〉 for e /ε closed is the least relation closed under the
above rules. An initial computation starts with an empty environment, call stack, and store:
ε;, C; ` 〈e ,σ;〉 Ò⇒〈v,σ〉.



CHAPTER 2. PROGRAM ANALYSIS 12

Lemma 2.1 (Soundness). The analysis evaluator above is a conservative approximation of
the actual evaluation relation: For all expressions e and for non-function values v , ε;, C; `
〈e ,σ;〉 ⇒ 〈v,σ〉 in the store-reference system implies ε;, C; ` 〈e ,σ;〉 Ò⇒ 〈v ′,σ〉 in the analysis,
where v ∈ v ′ (the “in” here means e.g. 5 ∈ (+)).

Lemma 2.2 (Nondeterminism). The ε;, C; ` 〈e ,σ;〉 Ò⇒ 〈v,σ〉 relation is not a function, there
may be more than one value corresponding to initial expression e .

Lemma 2.3 (Decidability). The ε;, C; ` 〈e ,σ;〉 Ò⇒ 〈v,σ〉 relation is decidable: given an e it is
possible to compute the complete result value set {v1, . . . , vn}, the largest set such that for each
vi , ε;, C; ` 〈e ,σ;〉 Ò⇒〈vi ,σ〉.
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Chapter 3

Symbolic Execution

Here is an initial draft of the symbolic execution system.

x variables
i n ⊆ x ’s, n ∈N+ input variables
v ::= s |λx .e values
s ::= x C | true | false | · · · | {. . .-1,0,1, . . .}

| s and s | s or s | not s | s + s | s - s | s = s symbolic values
φ ::= s with top node one of and/or/not/= | x C 7→ v formulae
Φ ::= φ ∧ · · · ∧φ global formula
e ::= x |λx .e | true | false | {. . .-1,0,1, . . .}

| e and e | e or e | not e | e + e | e - e | e = e
| e t e | if e then e else e | let x = e in e

t ::= call site tags, think numbers
C ::= [t ; . . . ; t ] call site lists aka contexts

We require that all expressions e additionally are “alphatized” – they cannot bind the
same variable in multiple places. This is not a practical restriction as any otherwise iden-
tical variables can be renamed. We will reserve special program variable input to denote
an input effect, it should not be bound and programs are considered closed even if input
is free. The syntax for input will be let x = input in .... This fits into the grammar
above and will require no modifications to the FbDK which is why we are not introducing
new syntax for input – it will let us re-use the same F[ parsers, pretty printers, etc.

Global constraints on inputs are accumulated in a master formula Φ. It can equivalently
be viewed as a big conjunction of φ or as a set of φ, we will pun across the two forms. We
will also be putting variable bindings in Φ by adding x C 7→ v to Φ; this is just an equivalence
as far as the logical interpretation of Φ goes, so think “=” when you see these 7→; we use a
different symbol to make things more readable (also recall the = only works on numbers).
Notation “Φ(x C ) = v ” is shorthand for Φ= · · · ∧ x C 7→ v ∧ . . . . It is an invariant that there will
never be two different such mappings for any variable x C in Φ, so this operation is always
in fact a function.

Variables i n for n ∈ N+ are special variables in Φ which are used to name successive
inputs to the program. The first input statement will return a result equivalent to i 1, the
second i 2, etc. We define a function Φ++ which given a Φ returns the least n > 0 such that
i n does not occur in Φ.

13
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The formulaΦmust always be satisfiable: there must be some assignment of numbers/-
booleans to the variables in Φ such that all of the conjunctsφ j of Φ hold. We write SAT(Φ) as
a predicate asserting this fact. Function SATS(Φ) returns a set of all possible such mappings
of variables to values.

(var)
Φ(x ) = v

C ` 〈x ,Φ〉⇒ 〈v,Φ〉

(value)
C ` 〈v,Φ〉⇒ 〈v,Φ〉

(not)
C ` 〈e ,Φ〉⇒ 〈φ,Φ′〉

C ` 〈not e ,Φ〉⇒ 〈not φ,Φ′〉

(and)
C ` 〈e1,Φ〉⇒ 〈φ1,Φ′〉 C ` 〈e2,Φ′〉⇒ 〈φ2,Φ′′〉

C ` 〈e1 and e2,Φ〉⇒ 〈φ1 and φ2,Φ′′〉

(+)
C ` 〈e1,Φ〉⇒ 〈s1,Φ′〉 C ` 〈e2,Φ′〉⇒ 〈s2,Φ′′〉

C ` 〈e1 + e2,Φ〉⇒ 〈s1 + s2,Φ′′〉

(=)
C ` 〈e1,Φ〉⇒ 〈s1,Φ′〉 C ` 〈e2,Φ′〉⇒ 〈s2,Φ′′〉

C ` 〈e1 = e2,Φ〉⇒ 〈s1 = s2,Φ′′〉

(if true)
C ` 〈e1,Φ〉⇒ 〈φ,Φ′〉 Φ′′ =Φ′ ∧φ C ` 〈e2,Φ′′〉⇒ 〈v2,Φ′′′〉

C ` 〈if e1 then e2 else e3,Φ〉⇒ 〈v2,Φ′′′〉

(if false)
C ` 〈e1,Φ〉⇒ 〈φ,Φ′〉 Φ′′ =Φ′ ∧ (not φ) C ` 〈e2,Φ′′〉⇒ 〈v2,Φ′′′〉

C ` 〈if e1 then e2 else e3,Φ〉⇒ 〈v2,Φ′′′〉

(app)

C ` 〈e1,Φ〉⇒ 〈λx .e ,Φ′〉 C ` 〈e2,Φ′〉⇒ 〈v2,Φ′′〉
t :: C ` 〈e [x t ::C /x ], (Φ′′ ∧ x t ::C 7→ v2)〉⇒ 〈v,Φ′′′〉

C ` 〈e t
1 e2,Φ〉⇒ 〈v,Φ′′′〉

(let)
C ` 〈e1,Φ〉⇒ 〈v1,Φ′〉 C ` 〈e2[x C /x ], (Φ′ ∧ x C 7→ v1)〉⇒ 〈v2,Φ′′〉 e1 6= input

C ` 〈let x = e1 in e2,Φ〉⇒ 〈v2,Φ′′〉

(input)
C ` 〈e2[x C /x ], (Φ∧ x C = iΦ++)〉⇒ 〈v2,Φ′〉
C ` 〈let x = input in e2,Φ〉⇒ 〈v2,Φ′〉

Definition 3.1 (Symbolic evaluation). C ` 〈e ,Φ〉 ⇒ 〈v,Φ′〉 for e closed is the least relation
closed under the above rules for which SAT(Φ′) holds. An initial symbolic computation starts
with an empty context and formula: C; ` 〈e ,Φ;〉⇒ 〈v,Φ〉.

In an implementation of an evaluator, at any point where Φ becomes unsatisfiable that
execution path is no longer possible and it can be aborted, but the above relation will only
check satisfiability at the end of a computation.

Lemma 3.1 (Soundness). For programs with no input, this symbolic evaluator works just like
a regular evaluator: For all input-free expressions e and for non-function values v , e ⇒ v
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in the standard substitution-based F[ operational semantics iff C; ` 〈e ,Φ;〉 ⇒ 〈v,Φ〉 in the
symbolic evaluator.

Lemma 3.2 (Nondeterminism). The C; ` 〈e ,Φ;〉⇒ 〈v,Φ〉 relation is not a function, there may
be more than one value corresponding to initial expression e .

For example the program let x = input in if x = 0 then true else false
could evaluate to either true or false.
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