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Abstract

Scripting languages are immensely popular in many domains. They are char-

acterized by a number of features that make it easy to develop small applications

quickly - flexible data structures, simple syntax and intuitive semantics. However

they are less attractive at scale: scripting languages are harder to debug, difficult to

refactor and suffers performance penalties. Many research projects have tackled the

issue of safety and performance for existing scripting languages with mixed results:

the considerable flexibility offered by their semantics also makes them significantly

harder to analyze and optimize.

Previous research from our lab has led to the design of a typed scripting

language built specifically to be flexible without losing static analyzability. In this

dissertation, we present a framework to exploit this analyzability, with the aim of

producing a more efficient implementation

Our approach centers around the concept of adaptive tags: specialized tags

attached to values that represent how it is used in the current program. Our frame-

work abstractly tracks the flow of deep structural types in the program, and thus can
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ABSTRACT

efficiently tag them at runtime. Adaptive tags allow us to tackle key issues at the

heart of performance problems of scripting languages: the framework is capable of

performing efficient dispatch in the presence of flexible structures.
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Chapter 1

Introduction

The term “scripting language” is not formally defined, but the languages are usu-

ally characterized by a number of features that make it easy to develop small applications

quickly:

• Minimal redundancy: These languages tend to be terse: variable and type decla-

rations are usually not necessary (and often not allowed) while common idioms can

be expressed with minimal syntax. Most scripting languages also aim for an intu-

itive semantics; what you see is usually what you get. Interface declarations are not

required since the languages usually operate by “duck typing” - a piece of code will

work correctly as long as its parameters have the expected “structure”.

• Fluid data: In comparison to traditional languages, scripting languages tend to

allow significant changes to the structure and behavior of their data types at runtime.

For example, languages like Python and Javascript permit dynamic addition and

modification of fields and methods on objects and many languages support handling
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CHAPTER 1. INTRODUCTION

failed method dispatches.

• Flexible Typing: Due to the level of flexibility they offer, scripting languages tend

to be hard to type; such languages are largely dynamically typed. The languages

tend to emphasize unit testing and documentation to ensure correctness in lieu of

type systems or complex static analysis.

With increasing code and team sizes, the advantages of scripting languages are

reduced considerably. Large programs in these languages tend to be harder to extend

and maintain as they offer very limited static guarantees. In languages like Python and

Javascript, where there are no explicit interfaces to program to, type errors resulting from

improper use of interfaces emerge only at runtime. Isolating bugs can therefore be a tedious

process in comparison to large programs written in a statically typed language.

A related issue that arises with the increasing scale is that of performance. Run-

time performance of scripting languages is weaker than their statically typed counterparts

[1]. Much of the issue stems from two sources - the lack of static, context sensitive type

information and the extreme flexibility in the structure of runtime data. The absence of

type information forces expensive runtime checks, while the ad-hoc nature of data types

makes it hard to establish fixed layouts for runtime objects.

Several attempts have been made to establish static type systems over existing

dynamic languages in order to recover some of its benefits [16, 33, 9, 28, 57]. In practice,

however, retrofitting a type system on to an existing dynamic language is very difficult; the

languages have been designed without a type system in mind and often have features and

semantics that are adversarial to type checking.

2



CHAPTER 1. INTRODUCTION

Some scripting languages use a just-in-time (JIT) compiler to to address perfor-

mance issues; the JIT runs side-by-side with the program and performs optimizations when

it appears possible as per its heuristics. The past decade has seen a tremendous amount of

research in JIT technologies for dynamic languages, which in turn, indicates the increasing

importance of performance in this domain. Just-in-time compilation has been a success. For

example, JITs have been instrumental in making modern Javascript viable in the browser

and on the server. However modern JIT compilers are complex beasts: the heuristics are

complicated, performance requirements are stringent and the optimizations brittle.

In practice, only a small set of features in scripting languages such as eval func-

tion, prove to be a fundamental hindrance to static analysis. Indeed most of these features

are not strictly necessary and were added to the language before analysis was a concern. In-

deed, typed scripting languages already exist [28] demonstrating that static analyzability is

not orthogonal to flexibility. A previous dissertation from our lab [39] presented LittleBang,

a small, statically typed scripting language designed from scratch and TinyBang a core cal-

culus for scripting. In this dissertation, we present a framework to exploit the analyzability

of typed scripting languages, with the aim of producing efficient implementations.

1.1 Previous Work

A considerable amount of effort has been devoted, over the years, to making script-

ing languages safe and performant. We briefly discuss this research in order to provide some

context.

3
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1.1.1 Typechecking Existing Languages

Retrofitting a static type system to a language has the advantage of adding value

to an existing language. So it is unsurprising that a number of attempts [16, 33, 28] have

been made in this direction in the past with varying degrees of success.

A major issue when dealing with existing languages is that real code has already

been written for it and they tend to make significant use of the dynamism of the language:

for example, an analysis of Javascript programs [46] found that many rely on polymorphism,

addition/removal of object fields, variadic functions and dynamic operations like eval.

This is a significant constraint on the type system designer and necessitates all manners of

compromise to make the system usable.

DRuby [28] is arguably the most successful attempt at typing an existing scripting

language at the time of this writing. It offers a complex type system based on subtype con-

straint theory and local flow sensitivity that captures the behavior of many Ruby programs;

however the system is neither sound nor complete; the language admits some unsound pro-

grams and rejects some valid ones.

1.1.2 Gradual Typing

Gradual typing [52] is another common approach to add some static guarantees

to otherwise dynamic languages. In this model, typed and untyped code are allowed to

co-exist with runtime checks enforcing the boundary between the two worlds.

For example, Typed Racket supports both typed and untyped modules. Type sig-

natures are required and enforced at the top level for typed modules. When interacting with

4
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untyped code, dynamic checks ensure the type correctness of data crossing the boundary.

TypeScript [21] is essentially a superset of Javascript with gradual typing support.

Unlike Typed Racket, it does not require type annotations. It defines a structural subtyping

relation between objects and then infers the types when possible. TypeScript performance

appears to be on par with Javascript, but their type system is intentionally unsound in

order to support annotations on existing Javascript code. However further work in the area

appears to have produced two variants [45, 47] with sound type systems.

Gradual typing is a viable strategy for existing languages. However its primary

focus is on providing a reasonably safe conduit between typed and untyped code. This

unfortunately restricts us from making a number of optimizations and runtime guarantees

regarding gradually typed code, which is both contrary to our safety goals and is likely to

significantly affect performance. Indeed a recent study [54] seems to indicate that sound

gradual typing may have significant and somewhat unpredictable overhead in systems where

the typed and untyped modules mix.

1.1.3 Scripting and Performance

Scripting languages are slow. A part of the reason is that they are typically

implemented via interpreters: micro-benchmarking1 shows that interpreted languages run

an order of magnitude slower than compiled ones [1]. But there are also other, more

inherent, issues which can be broadly classified under two headings - data layout issues and

dynamic dispatch issues. For example, it is well known that lookup operations in languages

like PHP and Python are slow by default [57]. This is primarily an issue of data layout.
1with all the associated caveats
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The languages are, typically, incapable of statically ascertaining the structure of runtime

data and must perform the lookups at runtime dynamically. Another common source of

inefficiency, and an example of a dispatch issue, is polymorphic code; the implementation

must usually perform expensive runtime checks before dispatching to real operations on the

underlying hardware.

Considerable efforts have been dedicated to speeding up scripting languages [57, 8,

48, 3, 20] . The most common way is to use a Just-in-Time (JIT) compiler. A heroic amount

of effort, both industrial and academic, has gone in to optimizing Javascript virtual machines

using JIT compilation over the last decade, even though the language was never designed to

be JIT-compiled. With Python, at the time of this writing, the most common strategy for

performance sensitive code is to write it in C and interact with that via a foreign function

interface (FFI). But the language also has number of ongoing and defunct JIT compilers at

various stages of completion and performance; e.g. [48]. JIT compilers have made attempts

to solve many of the issues we discussed. For example, modern Javascript JITs cache lookup

operations in a manner similar to [19], though such optimizations sometimes fail [32]. Trace-

based dynamic type specialization [29] can help improve the performance of polymorphic

code.

However, JIT compilers are highly constrained both in execution time and mem-

ory usage; so even though they have access to runtime program traces, which are very

useful for optimization, they are often constrained in how much of the code they can legiti-

mately examine and optimize. Further they are often battling with languages that sport an

optimization-hostile semantics. As such the process is heavily driven by heuristics. These

6
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heuristics are often not well-documented, leaving lay-programmers to guess at performance

bottlenecks. The performance improvements often come at the cost of a more constrained

semantics compared to the original language, forcing programmers to learn that in addition

to the original language. Sharp declines in performance can occur when a JIT compiler fails

to optimize a critical path [32, 2].

1.2 Our Approach

We take a different approach and focus on designing and building, from the ground

up, a statically typed scripting language that yields the safety and performance benefits of

a static type system while maintaining the terseness and flexibility of scripting languages.

1.2.1 Typed Scripting

Previous research from our lab [40, 39] has led to the development of TinyBang, a

small, but flexible typed scripting language core. The semantics of TinyBang was carefully

chosen to be statically analyzable, but be sufficiently expressive to encode common script-

ing language idioms; for example, TinyBang does not permit object mutation, but allows

functional extension of objects.

A previous dissertation [39] described the process of designing typed scripting

languages and provides a complete formalization of TinyBang including a proof of soundness

and decidability for its type system. TinyBang is a core calculus. The dissertation also

defines a higher level language, LittleBang, which supports common scripting features and

encodes down to TinyBang. This division has obvious benefits for formalization. But it is

7



CHAPTER 1. INTRODUCTION

also advantageous from the point of view of an implementation: TinyBang is effectively a

typed intermediate language on which implementation and low-level optimization efforts can

be focused. The GHC Haskell compiler [34], takes a similar approach: the top-level language

is first compiled down to Haskell Core, a type annotated intermediate representation, before

optimization and further translations to low-level code.

1.2.2 From Safety to Speed

In the case of compilers for languages like C and C++, types provide a set of

invariants that can be used to determine a gamut of necessary low-level details such as data

representation, alignment and dispatch mechanics. For example, an optimizing compiler

can decide to prefer register allocation for values of specific types. At a slightly higher level,

in C++, the structure of an object’s virtual table (used for method dispatch) is effectively

determined by its type.

Languages like TinyBang encode a significant amount of information in its type

system to ensure safety. However exploiting, or even extracting, that information in the

context of a low-level implementation is non-trivial. Morrisett makes a similar observation

in his thesis on type-directed compilation of ML [38]. However the types in typed scripting

languages are significantly more complex than ML types due to the nature of the underlying

languages. For example, TinyBang’s type system is based on subtype constraints and

capable of encoding union, intersection and recursive types while also being polymorphic

like ML.

Our approach to this problem involves the concept of adaptive tags: specialized

tags attached to values that represent how it is used in the current program. While many

8
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functional language implementations use tagged values, the tag in those cases is usually

based directly on the constructor of the value and therefore independent of the program.

This dissertation proposes a framework for implementing typed scripting languages

based on adaptive tags. The framework addresses the issues discussed in Section 1.1.3. It

is capable of assigning precise types to values, performing efficient type-based dispatch and

lends itself to solving the data layout problem. The core part of our framework is a scheme

for abstractly tracking the flow of deep structural types during analysis and then “replaying”

it at runtime by efficiently encoding it in the form of tags. We expect that the framework is

extensible to other issues, related to the implementation of typed scripting languages, that

can benefit from this information.

In this dissertation, we focus on the specification of this framework which is com-

posed of three related elements:

• An efficient operational semantics based on adaptive tags

• A type checker to collect tag information across the program

• And, an efficient implementation of the tag semantics

We will discuss adaptive tagging and the general framework in more detail in

Chapter 3.

1.3 Outline

The rest of this thesis is organized as follows. Chapter 2 provides an overview of

typed scripting languages with a particular focus on design. Chapter 3 discusses adaptive

9
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tags and our tag framework informally.

The semantics of TinyBang is intuitive, but its type system is complex. Thus

for clarity, we restrict the initial formalization to a simpler language we call TinyBang

Core which omits features largely orthogonal to the adaptive tag semantics. Chapter 4

formalizes the language semantics and type system while Chapter 5 formalizes the adaptive

tag framework including an alternate operational semantics for our language as well as a

scheme for generating adaptive tags. In Chapter 6 we prove the equivalence between the

two semantics. Chapter 7 discusses our proof-of-concept implementation while Chapters 8,

9 and 10 discuss related work, future work and conclusions respectively. In the appendix

we present a formalization of the complete TinyBang language.

10



Chapter 2

Design of Typed Scripting

Languages

In this chapter, we provide a brief overview of the design of typed scripting lan-

guages focusing on features of TinyBang and TinyBang Core. Naturally, this discussion is

heavily influenced by TinyBang [40, 39]. We haven’t yet defined the grammar of the two

languages; so the examples in this chapter are written in a pseudo-ML dialect.

2.1 Duck Typing

Many scripting languages support a style of typing commonly called “duck typing”.

The primary idea is that a structure is identified by the behavior it exhibits. Consider

the code in Listing 2.1 and Listing 2.2. The Java code requires an explicit declaration

of an Animal interface and the implementation of each class must explicitly declare its

conformance to the interface. The Python code is less verbose and will run correctly as long

11
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1 interface Animal {
2 public void walk ()
3 }
4 class Duck implements Animal {
5 public void walk (){
6 System .out. println (" Waddle ");
7 }
8 }
9 class Dog implements Animal {

10 public void walk (){
11 System .out. println ("Run");
12 }
13 }
14 class Mouse implements Animal {
15 public void walk (){
16 System .out. println (" Scurry ");
17 }
18 }
19

20 Animal animal = ...
21 animal .walk ()

Listing 2.1: Java Explicit Interface Declaration

1 class Duck:
2 def walk(self ): print " Waddle "
3 class Dog:
4 def walk(self ): print "Run"
5 class Mouse:
6 def walk(self ): print " Scurry "
7

8 animal = ...
9 animal .walk ()

Listing 2.2: Python: Duck Typing

as the animal variable contains an object with a walk method. The additional paraphernalia

required by Java becomes tedious when the interface is so simple.

In fact, Python makes extensive use of such implicitly defined interfaces, usually

called protocols, in its api, relying on documentation to guide developers into doing the

right thing1. For example, the notion of an iterator is essentially a protocol defined by

the standard library.
1Though there has been a push for using abstract base classes [7] more recently

12
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Statically typing such behavior requires our language to have the ability to infer

the structure of an object from its usage. It also requires some notion of subtyping to

support object polymorphism like in the example above.

The problem has been studied before in literature and a common choice to type

check such scripting constructs is subtype constraint types [11]. Types in this system are

represented as a bag of subtyping constraints. For example, the code in Listing 2.3 produces

the initial constraint set {int <: αx, αx <: αy} where αx and αy are type variables generated

for x and y respectively. The left hand side of a constraint is called a lower bound and the

right hand side is the upper bound. In TinyBang, upper bounds are always type variables

and a lower bound type indicates a potential data flow to a program point. For example,

the constraint int <: αx indicates that an integer value can potentially be assigned to x at

runtime.

Type checking is performed by applying a closure operation on the generated

constraint set. If no inconsistencies are found, types can be “read off” the final constraint

set; for instance, the type of y in the above example has the type αy\{int <: αx, αx <:

αy, int <: αy}; i.e. the type of y is the type variable αy under the constraints {int <:

αx, αx <: αy, int <: αy}.

Subtype constraints offer a great deal of power in terms of their ability to represent

the types for complex language constructs. Consider the code in Listing 2.4. The result

of the function choose is a string or an integer value depending on a runtime condition.

Then the type of the variable r is union of int and string. This can be represented with

subtype constraints as the set {int <: αr, string <: αr}. Informally we say that αr is

13
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1 x = 4
2 y = x

Listing 2.3: Constraint examples - 1

1 def choose ():
2 if randint (0, 1) == 0:
3 return "Hello"
4 else:
5 return 42
6 r = choose ()

Listing 2.4: Constraint examples - 2

the type int ∪ string. TinyBang’s support for inferring such ad-hoc unions and tracking

them across the program in a path sensitive manner is a cornerstone of its ability to model

scripting behavior.

Subtype constraints have been studied extensively in the literature [10, 11, 43,

44, 55] and there is a natural inference algorithm that requires no type annotations. Its

utility in the domain of typed scripting languages has been validated by previous attempts

[28, 33, 16] to add type systems to existing scripting languages.

TinyBang has a number of features that fit well with a subtype constraint type

system. In addition to duck typing, the language includes a specialized form of record

concatenation and complex pattern matching capabilities, both of which have been shown

to be amenable to type checking via a subtype constraint type model [43]. However given

the complexity of TinyBang types, these solutions cannot usually be directly applied.

However choosing subtype constraints have downsides as well. In many languages,

including object oriented languages like Java and functional languages like Haskell, type

declarations serve two purposes: as a constraint on the type of a value and as a form of

documentation for programmers. In the example in Listing 2.1, the interface Animal not

14
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only provides an interface constraint to the typechecker, but also conveys “out-of-band”

information regarding programmer intention.

Subtype constraints tend to produce very precise types; but they are not always

what we want: for instance, it may deduce that a function requires as input, an iterable,

ordered collection of characters with a replacement operation, when a human programmer

would have considered string as the type of the input. Simplifying the bag-of-constraints

to a human-readable type is a hard problem and attempts to solve it [42, 26] have met with

limited success. However, this is less of a concern in the domain of scripting languages;

scripting programmers do not work with types in the same way functional programmers do

and simply spitting out a type error, even in a simplified form, is unlikely to be well received.

We hope to address this issue by never directly showing types, but instead implementing

an interactive type debugging approach. But that is beyond the scope of this dissertation.

2.2 Flexible data types

Scripting languages are often characterized by the extreme flexibility they allow

in the structure of runtime data. For instance, both Python and Javascript objects allow

adding and replacing fields and methods dynamically. This is a common programming and

metaprogramming tool in these languages. Indeed the Javascript language itself relies on

the ability to add fields dynamically to implement prototype inheritance.

As an example, the code in Listing 2.5 creates an object, calls a method on it, and

then replaces the method with another implementation. This degree of mutation is very

hard to statically type: the type of the object is flow-sensitive; i.e. it differs depending on

15
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1 class Car:
2 def __init__ (self ):
3 self.type = " Mustang ";
4 self.year = 1969;
5 def since(self ):
6 return self.year
7

8 def new_since (self ):
9 return str(self.year + 31)

10

11 obj = Car ()
12 obj.since (); # returns number 1969
13 obj.since = types. MethodType (new_since , obj)
14 obj.since (); # returns string "2000"

Listing 2.5: Object surgery

where you are within the program flow. However, in practice, this functionally is used in a

much more disciplined way. Typically, dynamic structure modification is only used during

the object construction phase to add functionality to an object like Car in the previous

example. This feature can be adequately modeled by allowing functional extensions of

objects.

TinyBang chooses to model this behavior via a novel structure called an “onion”.

Onions, at their core, are type-indexed records [50]. For example the record { 42, "foo" }

contains two elements 42 and "foo" indexed by their type: i.e. it is equivalent to the

record { int = 42, string = "foo" }. Projection is done via the type; { 42, "foo" }. int

evaluates to 42. New types are introduced via labels; { NewInt = 24 } is a single-element

record indexed by the type NewInt.

In fact, everything in TinyBang is an onion: 5 is simply a 1-ary onion indexed by

the integer type. Further onions support concatenation via the & operator: { 42 } & { "foo" }

yields { 42, "foo" }. The Car constructor from Listing 2.5 can be represented as: {} &

{type = "Mustang"} & {year = 1969} & {since = fun self -> self.year}.

16
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The onion operation is asymmetric. When the two onions have overlapping fields,

precedence is granted to the left side of the operator: for example, {foo = 2, bar = 3} &

{bar = True, moo = 5} evaluates to {foo = 2, bar = 3, moo = 5}. The type system will

correctly determine that the concatenation of two records of type {foo:Int, bar:Int} and

{bar:Bool, moo:Int} in sequence produces a record of type {foo:Int, bar:Int, moo:Int}.

This asymmetric concatenation behavior serves as the basis for the encoding of a number of

object-oriented features like overloading and mixins in languages built on top of TinyBang.

2.3 Pattern Matching

In functional languages, pattern matching is a commonly available feature that

allows for concise testing and destructuring of data at runtime. While pattern matching

has started to make its way in to mainstream static programming languages [4], it is notably

less prevalent in the scripting world, even though the intuitive semantics make it a natural

fit for the domain [13, 14].

Consider, for example, Listing 2.6 which is part of the constructor of a fraction

object. The code must deal with different input (types) and is organized as a series of

tedious if-else clauses. Listing 2.7 rewrites the snippet in pseudo-Python using pattern

matching; the latter offers a significant improvement in conciseness and readability.

Aspects of pattern matching such as, destructuring assignments, are part of popu-

lar scripting languages like Python and Ruby and have even made it in to Javascript [6]; but

pattern matching as a core feature has not. Less popular and research-oriented languages

(e.g. Thorn [13] and NewSpeak [31]) have, however, demonstrated the utility of the fea-
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1 class Fraction ( numbers . Rational ):
2 def __new__ (cls , num =0, denom=None , *, _normalize =True ):
3 ....
4 if type(num) is int:
5 self._num = num
6 self. _denom = 1
7 return self
8 elif isinstance (num , numbers . Rational ):
9 self._num = num.num

10 self. _denom = num.denom
11 return self
12 elif isinstance (num , (float , Decimal )):
13 # Exact conversion
14 self._num , self. _denom = num. as_integer_ratio ()
15 return self
16 ....

Listing 2.6: Simplified Python code from fractions.py

1 class Fraction ( numbers . Rational ):
2 def __new__ (cls , num =0, denom=None , *, _normalize =True ):
3 ....
4 self._num , self. _denom = case num of
5 | int -> (num , 1)
6 | Rational (num , denom) -> (num , denom)
7 | float | Decimal -> num. as_integer_ratio ()
8 ....

Listing 2.7: Code rewritten with pattern matching

ture in the domain. Thorn, in particular, offer powerful, well-integrated, pattern matching

facilities that fully embrace the dynamic nature of the language. For example, the Thorn

pattern [x:string,y,$x] matches a 3-element palindromic list whose first element is a

string.

2.3.1 TinyBang and Compound Functions

Many functional languages allow the definition of functions by cases. Consider the

Haskell example in Listing 2.8: the map function is defined as three cases, one each for each

pattern, “glued” together.
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1 last :: [a] -> Maybe a
2 last [] = Nothing
3 last [h] = Just h
4 last (h:t) = last t

Listing 2.8: Haskell function to find the last element of a list

TinyBang extends this notion and makes it first-class: each function has the form

fun p -> e, where p is a pattern and e is the function body, and compound functions are

created by explicitly combining them with the standard onion operator. The last func-

tion will be defined as follows: let last = (fun [] -> Nothing) &(fun [h] -> Just h)

&(fun (x:xs) -> last xs). This scheme is essentially a generalization of first class case

clauses from MLPolyR [15].

When applying a compound function, matching is performed in order starting

from the left-most function. TinyBang’s type checker ensures that at least one of the cases

match; otherwise it results in a compile-time error.

TinyBang is capable of assigning precise types to compound functions which is a

major reason for its ability to model scripting language behavior in a type safe way. Not

only are different cases allowed to return different types, the type system also tracks the

relationship between input and output types.

Consider for example the compound function: let f = fun (x:int) -> x &

fun (y:char) -> y. Standard type systems unify the input and output, resulting in a

loss of “alignment” between the two. In such cases, the type of f would be inferred as:

(int∪char) -> (int∪char). The TinyBang type system (effectively) infers the intersection

type (int -> int) ∩ (char -> char). The function application f ’x’ is ascribed the type

char in TinyBang as opposed to int ∪ char.
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2.4 Call-site Polymorphism

Programming in a scripting language involves a certain amount of context sensitive

reasoning: different invocations of the same function are treated differently depending on

the context. This corresponds to a notion of parametric polymorphism in the domain of

types.

TinyBang uses a call-site polymorphism model as opposed to the more common

let-polymorphism models. With the latter, functions are abstracted when they are bound

to variables and freshly instantiated every time the variable is used. Polymorphic instanti-

ations are limited to the scope of the let statement, which makes it easier to reason about

and compile. However this limits its expressiveness. For example, a function “loses” its

polymorphism when it escapes the scope of the let-binding, which can be confusing to

scripting programmers.

TinyBang’s call-site polymorphism model is inspired by flow analysis [51, 55].

Every function is automatically given a polymorphic type. Polymorphic instantiation is

delayed until the function is called. This offers a number of advantages: for example, func-

tions retain their polymorphism even when being returned out of their scope. In particular,

this allows TinyBang to infer much more precise types for compound functions than it can

with a let-polymorphism model.

2.5 TinyBang Core

While the semantics of TinyBang is fairly simple, ensuring its safety is less so.

Extending the TinyBang type system to support our tag framework and then proving
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equivalence with our tag based semantics is non-trivial. Therefore, we restrict our initial

formalization to a simpler language, TinyBang Core. Unlike TinyBang, which is powerful

enough to serve as a typed intermediate language for scripting, TinyBang Core is much

simpler. It was chiefly designed as a vehicle to demonstrate our approach to scripting

language efficiency and to serve as a stepping stone to the more complex theory of TinyBang

presented in the appendix.

TinyBang Core is a ML-style language with full type inference. It supports duck

typing and ad-hoc unions like in TinyBang. However the language does not support onions

and concatenation. While very useful for programming, the type-indexed nature of onions

do not affect the tag framework significantly and concatenation is essentially a quick way

to build up onion subtypes. Instead the language supports regular ML-style records. The

language also eschews pattern matching functions and compound functions in the style of

TinyBang, opting instead for a standard case statement. This simplifies the type and

tag analysis considerably, but does not model the extensible matching behavior of onions.

However, case branches are still allowed to return different types like in TinyBang and the

type system can infer precise types for the case statement. As we will see in the appendix,

our approach can be adapted to onion dispatch in a straightforward manner.
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Chapter 3

Overview of the Tag Framework

This chapter provides an overview of our adaptive tag framework. We discuss

the standard approaches to pattern match compilation and contrast with our adaptive tags

model. We also informally discuss implementation strategies to make adaptive tags efficient.

A full formalization of the framework can be found in Chapter 5.

3.1 Pattern matching

Pattern matching is usually implemented with the help of tags: runtime data in

the language have a few bits of tag information attached which is then inspected at runtime

to perform matching. In ML-style languages, the tags typically correspond to the value’s

constructor. Further since destruction is also specified in terms of constructors, a shallow

pattern match is simply a matter of comparing the runtime tag to a constructor from the

pattern match. Consider the pattern match in Figure 3.1 written in a hypothetical ML-

style language. The compiler assigns numeric tag values for the three constructors in the
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1 data color = White | Black | Rgb Int Int Int
2 let c = Black in
3 case c of
4 White -> 1
5 Black -> 0
6 Rgb _ _ _ -> -1

Listing 3.1: Shallow pattern matching in an ML-style language

1 data color = White | Black | Rgb Int Int Int
2 data option = Some a | None
3 let copt = Some Black in
4 case copt of
5 Some(White) -> 0
6 Some(Black) -> 1
7 None -> 2
8 _ -> -1

Listing 3.2: Deep pattern matching in an ML-style language

snippet. Patterns share the same constructor names and get the same numeric identifiers.

To compile the pattern match expression, a table of three entries is built where each entry

maps one of the patterns to the entry point of the corresponding code block. For example,

the entry for Black points to the code block that returns 0. The table is then hard-coded

in the generated code. Pattern matching against a data object is implemented at runtime

by extracting the tag from the object, looking up in the table and jumping to the correct

code block.

Patterns can be deeply nested. While this is a powerful feature, matching then

becomes more complex. The example in Listing 3.2 requires multiple tests at runtime in

order to ascertain the matching branch. Further, test ordering matters and naive approaches

can result in performance penalties. The usual approach is to translate the pattern matching

definition in to a “matching automata”, either a backtracking automata [35] or more recently

an optimized decision tree [36], organized around low-level checks.
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It appears possible to extend the matching automata approach to work with lan-

guages that have record subtyping (say, by an approach similar to Clojure’s map patterns

[5]); however, it is unclear whether we can achieve performance similar to the original in the

general case. Further this approach is unwieldy in the presence of ad-hoc unions and deep

record subtyping and it is hard to extend the scheme to handle extensible cases or onion

dispatch. So we consider an alternative approach in the next section.

3.2 Adaptive Tags

Consider the example in Listing 3.3. Let choose be a function that arbitrarily

picks one of x1 or x2 at runtime. If it picked x1, the first case branch of the case statement

fires and we get True as the result; otherwise the second case branch triggers and the result

is False.

We could achieve fast pattern matching like in the previous section if x4 had a

unique tag corresponding to the pattern it could match, for example one of the following

tags: { c:{ a:_ },d:_ } or { c:{ b:_ },d:_ }. However assigning such tags to x4 requires

non-trivial mechanics:

• Tags must be specialized for each case construct; computing the universe of tags

statically requires knowledge of what objects flow to which pattern matches.

• Tags of this kind represent an expectation about the deep structure of a value; so tag

information must be propagated appropriately to other points in the program.

• The tag assigned to x4 depends on the tag assigned to x3 at runtime. Tag assignment
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1 let x1 = {a = 3} in
2 let x2 = {b = 4} in
3 let x3 = choose x1 x2 in
4 let x4 = {c = x3 , d = 1} in
5 case x4 of
6 {c = {a = _}, d = _ } -> True
7 {c = {b = _}, d = _ } -> False

Listing 3.3: Pattern matching with subtyping

is more complex since it is no longer a fixed value determined by the constructor, but

a function on the tags of the constituents.

In this dissertation we explore an adaptive tagging scheme which addresses these

issues. In particular, we will address two questions:

• How do we generate adaptive tags automatically?

• How can we design and implement efficient operational semantics based these tags?

3.2.1 Tag Generation and Semantics

Our tag generation scheme relies on the observation that construction and de-

struction are dual operations; so by observing the process of destruction, it is possible to

“learn” the sequence of construction. To this end, at compile time, we conservatively trace

destruction operations in the program, generating potential tags along the way. At run-

time, our operational semantics ensure that the tags are assigned as appropriate and pattern

matching is a simple lookup similar to our description for Listing 3.1.

Tracing the program requires a static analysis capable of tracking data flows across

the program and it must be capable of handling our language features. Fortunately the

TinyBang Core type system is one such analysis, which can be further extended to generate
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tags.

Once again consider the program in Listing 3.3. The inference assigns a type of

{ a:Int } ∪ { b:Int } to the variable x3 and correspondingly for x4 it infers the type:

{ c:{ a:Int },d:Int } ∪ { c:{ b:Int },d:Int }. To type check the pattern match, the

checker must verify that a match occurs for each “leg” of this union type. This turns

out to be the case since the type { c:{ a:Int },d:Int } matches the first case branch and

the type { c:{ b:Int },d:Int } matches the second case branch. It then generates two po-

tential tags, { c:{ a:_ },d:_ } and { c:{ b:_ },d:_ } for x4. The analysis also assigns x3

two potential tags, { a:_ } and { b:_ } and so on. The system also records internally that

for this case statement, { c:{ a:_ },d:_ } matches the first branch and { c:{ b:_ },d:_ }

matches the second.

At runtime, tags are assigned to values at construction by consulting the set of

potential tags computed at compile time. For example, when x4 is constructed, we assign it

a tag { c:{ a:_ },d:_ } or { c:{ b:_ },d:_ } depending on whether x3 had a tag of { a:_ }

or { b:_ }. Pattern matching is now straightforward: a dispatch table is created and reified

based on the data collected during type checking; to match against x4, its tag is extracted

and used in conjunction with the table to recover the address of a branch’s code block and

jump to that location.

Observe that the tag on x4 is conditioned on the tag on x3. So it is necessary,

at runtime, to inspect the tag on x3, in order to decide on the tag to assign to x4. This

introduces an overhead that does not exist with standard shallow tagging schemes. However,

there are some mitigating circumstances:
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1 let x1 = {a = 3} in
2 let x2 = {b = 4} in
3 let x3 = choose x1 x2 in
4 let x4 = {c = x3 , d = 1} in
5 let x5 = case x4 of
6 {c : {a : _}, d : _ } -> True
7 {c : {b : _}, d : _ } -> False
8 in
9 let x6 = case x4 of

10 {d : int } -> 100
11 {d : { } } -> { }
12 in
13 ...

Listing 3.4: Pattern matching with multiple callsites

• In many programs, data use dominates data construction. Since tags are primarily

assigned during construction, the upfront cost may be amortized over the uses.

• In many cases, only one tag applies to the data being constructed. We can then

directly assign the tag to the value without any extra inspections.

But in the general case, this overhead does exist. Reducing its impact is critical to the

practicality of our adaptive tag framework. We will discuss a number of approaches that

reduce the overhead to manageable levels in Section 3.2.3 of the current chapter as well as

in Chapters 7 and 9.

3.2.2 Scaling the Tag System

So far we have only considered programs with a single pattern match on a given

data item. But regular programs have many data items and multiple match sites. So

conceptually each data value is tagged with a set of tags in our model, each corresponding

to a different pattern match site.

Consider the example in Listing 3.4 where x4 is destructed multiple times. For
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the second case statement, x4 always matches the first branch. Along with the two tags

from the earlier example, the system also generates an extra tag { c:_,d:int } for x4. It

also records (internally) that a tag of the form { c:_,d:int } matches the first branch.

At runtime the system assigns all viable tags from this potential set of tags; x4

always gets { c:_,d:int } and one of { c:{ a:_ },d:_ } or { c:{ b:_ },d:_ } (depending on

the tags assigned to x3). Pattern matching works like before by reifying a dispatch table

and consulting it at runtime.

3.2.3 Implementing Tag Sets

Unfortunately a naive implementation based on reifying a set of tags at runtime

has a significant memory and performance cost. However, our tag framework has a set of

features that we can exploit to design a much better scheme:

• Our analysis is capable of approximating the universe of tags for each variable in a

given program: for example, in Listing 3.4 the tags for x4 are drawn from the set

containing { c:{ a:_ },d:_ }, { c:{ b:_ },d:_ } and { c:_,d:int }. At runtime, the

set of tags associated with the variable is then an element of the power set of this

universe. This makes it possible to represent each potential tag set by a numerical

value.

• A tag represents a specific pattern match’s expectation of the structure of the value

being matched. Tags are assigned to a value during construction only when it meets

this expectation. At runtime, a set of tags associated with a value cannot conflict since

each tag represents some part of the same underlying structure. For example, the set of

28



CHAPTER 3. OVERVIEW OF THE TAG FRAMEWORK

tags associated with x4 cannot contain both { c:{ a:_ },d:_ } and { c:{ b:_ },d:_ }

simultaneously as they conflict. This makes it feasible to extend many properties of

a single tag to sets of non-conflicting tags; specifically this enables extending pre-

computed dispatch tables to sets of tags.

Together this allows us to represent tag operations, i.e. tag assignment and tag

based dispatch, as mappings over integers. Consider the following numerical assignment for

tag sets (corresponding to the code in Listing 3.4):

x3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{ a:_ } = 1

{ b:_ } = 2

x4 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{ { c:{ a:_ }, d:_ }, { c:_, d:int } } = 3

{ { c:{ b:_ }, d:_ }, { c:_, d:int } } = 4

Tag assignment for x4 is then the following mapping from x3: {1 ↦→ 3, 2 ↦→ 4} while

the dispatch table for the first case is the mapping from tag to branch index: {3 ↦→ 0, 4 ↦→ 1}.

The tables can be reified at runtime and lookups implemented via some standard integer

hashing scheme.

However it is often, but not necessarily always, possible to do better for two

reasons: we have control over the numbers assigned to tag sets and the tag assignment

and dispatch mappings (like those above) are essentially functions on integers. It may then

be possible to select a tag set numbering scheme such that the function induced by our

mappings has an efficient-to-compute closed-form solution. For our example above, the tag

assignment function for x4 is simply f(x) = x+2 while the dispatch function is f(x) = x−3

both of which are very efficient at runtime and cost no extra memory.

One way to determine the numerical assignments is to use an SMT solver. We

introduce variables corresponding to each tag set in the system and encode the mapping
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between them as formulae. We also provide a set of known efficient functions (for example,

a collection of generic binary formulas like f(x, n) = x + n, f(x, n) = x xor n etc, where

n is also treated as another variable). If the solver finds a set of numerical assignments

that can be computed via one of the functions we provided, then we use the data from its

generated model to encode tag assignments and dispatch. If not, we fall back to the table

based scheme.

3.3 Porting to TinyBang

We have so far focused on the features of TinyBang Core. But we have also

fully formalized the adaptive tag semantics for TinyBang, even though we do not have an

implementation for it yet. The precise details are presented in the appendix. In this section,

we will briefly discuss the process of adapting the tag system to the full TinyBang language.

3.3.1 Onions and Compound Functions

Like records in TinyBang Core, onions are the primary compound data type in

TinyBang. To track onion structures, we introduce onion tags. An onion tag is a (potentially

incomplete) representation of the deep structure of an onion value.

As discussed in Section 2.3.1, TinyBang also supports compound functions with

an asymmetric dispatch semantics. Building an efficient dispatch scheme for compound

functions is significantly more tricky than for case statements in TinyBang Core.

Consider the code in Listing 3.5. Once again let choose arbitrarily select one of

its inputs. Then, at runtime, the compound function fn is an onion with either f1 or f2
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on its left hand side and either f3 or f4 on the right. The code that executes when fn is

applied to v depends on the choices previously made by choose as well as the structure of

the argument v. In other words, compound function dispatch is, effectively, a dual dispatch

scheme where the dispatch depends on the dynamic types of both the receiving compound

function as well as the argument.

At a high level, the process of generating adaptive tags and collecting dispatch in-

formation is still the same as in TinyBang Core. We conservatively track destructions in the

program, emitting tags along the way, for both the compound function and the argument.

When recording dispatch decisions, we track tags from both sides of the application.

TinyBang offers a richer pattern semantics than TinyBang Core. For example it

supports conjunction patterns and bindings. The former does not affect the adaptive tag

semantics significantly, except for adding to the complexity of the type system. However,

the latter is somewhat challenging due to the nature of compound function dispatch. We

handle bindings in TinyBang by conservatively approximating possible pattern matches in

the program and pre-computing “paths” for each one. A path, in this case, is an abstract

representation of the location of a particular value inside an onion. The details are presented

in the appendix.

3.3.2 Data Layout

Consider TinyBang Core’s projection operator. Generating code to implement it

requires the knowledge of where in the runtime structure the data corresponding to the label

resides. In a language with ad-hoc unions and subtypes like ours, this is not straightforward

since all data types that reach that point have the specific label, but they are not necessarily
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1 let f1 = fun p1 -> . . .
2 let f2 = fun p2 -> . . .
3 let f3 = fun p3 -> . . .
4 let f4 = fun p4 -> . . .
5

6 let x1 = choose f1 f2
7 let x2 = choose f3 f4
8 let fn = x1 & x2
9

10 let v = . . .
11 let res = fn v

Listing 3.5: Compound Function Example

in the same spot. Thus the generated code must deal with potentially different layouts: it

must first detect what the layout of a value is at runtime and then extract the data from

the correct spot.

A key facet of tags is that they are an abstract representation of the structure of a

value. Since runtime tag sets cannot conflict, projection can then be implemented by pre-

computating a table keyed on tag sets that map to the location of a particular label. Now

projection is a simple, shallow operation and can be implemented in many ways; however

the key insight here is that tag sets can be used to detect the layout of data at runtime.

Data layout is not in the scope of the current dissertation. Nonetheless it is a

critical aspect of performance, especially in scripting languages with fluid runtime data

[20]. Within the context of TinyBang, onions bring up a number of data layout questions

which we discuss in Section 9.2.
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Chapter 4

Formalization of TinyBang Core

In this chapter, we formalize the basic semantics of TinyBang Core. While the

language is modeled on TinyBang, we have chosen to trade-off power, for example Onions

and Compound Functions, for clarity and simplicity. The language of TinyBang Core is

thus more ML-like. In section 4.2 we define its grammar. Section 4.4 defines the operational

semantics for the language and Section 4.5 defines the type system for it. We continue our

formalization in Chapter 5 where we define an alternate, tag-based semantics for TinyBang

Core. Finally, in Chapter 6, we present the proof of eqivalence between the two systems.

4.1 Notation

We make use of a number of standard notational devices in our formalization. In

this section, we briefly describe the common ones.

Notation 4.1 (Basic Notation). Using v and k to represent an arbitrary grammar con-

structs, we define the following:
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• The list [v1, . . . , vn] of length n can be shortened as n−⇀v . The length is elided when

unnecessary: −⇀v .

• The operation
−⇀
v′ ∥
−⇀
v′′ indicates the concatenation of the two lists

−⇀
v′ and

−⇀
v′′.

• For convenience, we extend the standard set builder notation to support list compre-

hensions: e.g. [v | v ∈ V ]. The ordering of the resultant list is non-deterministic.

• We also extend the membership operator to lists: we write v ∈ n−⇀v to indicate that a

particular value v is present in the list n−⇀v .

• In rare cases, we use � to indicate index positions: for example
−−−−⇀
v�/v′ is a shorthand

for [v0/v′, . . . , vn/v′].

• Sets {v1, . . . , vn} of cardinality n are shortened as n⨽−−⨼v with n elided if unimportant.

• We usually treat dictionaries {k1 ↦→ v1, . . . , kn ↦→ vn} as a sets of mappings:
n⨽−−−−−−⨼
k� ↦→ v�.

We elide the n and � when they are unnecessary.

• We extend the membership operator to dictionaries. Since dictionaries are treated as

sets, we use k ↦→ v ∈ Q, where Q is a dictionary, to indicate that a particular mapping

exists in the dictionary. We override this notation to test for keys: we write k ∈ Q to

indicate that the key k is present in the dictionary.

4.2 Grammar

Our grammar is defined in an A-normal form for two reasons:
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e ::= −⇀s expressions
s ::= x = r clauses

r ::= v | x | x x | x.l | case x of
−−−−−−⇀
p ; f rhs

v ::= Z | f | { . . . , l=x , . . . } values
f ::= x -> e functions
p ::= int | { . . . , l:p , . . . } patterns
x variables
l field labels

Figure 4.1: TinyBang Core ANF Grammar

• TinyBang Core is based on TinyBang which is essentially a typed intermediate lan-

guage. A-normal form is a good choice for both analysis and code generation at that

level.

• This aligns well with our type theory. Constraints in our type system can be inter-

preted as statements of facts about points in a program. By labeling points explicitly

and representing the program as a flat list of clauses, the form of our program corre-

sponds exactly with the form of the constraints in the type system. We will use this

correspondence between the two systems to prove the soundness of our type system

in Section 4.6

A formal description of the grammar of TinyBang Core is given in Figure 4.1.

4.3 Well-formed Expressions

In order to define our semantics, we need a notion of well-formed expressions over

the TinyBang Core grammar. This is defined as follows:

Definition 4.2 (Well-formed Expressions). An expression e is considered well-formed if it

meets the following criteria:
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E ::= −−−−⇀x = v environment
P +, P − ::= ⨽−−⨼p pattern sets

Figure 4.2: Extensions to the TinyBang Core grammar

• e is closed.

• Each variable is bound in at most one clause.

For the rest of this document we only consider well-formed expressions unless

stated otherwise.

4.4 Operational Semantics

We define the small-step operational semantics of TinyBang Core in this section.

Our semantics is defined over a slightly augmented TinyBang Core grammar. The additional

grammar non-terminals are defined in Figure 4.2.

It is worth noting that the grammar of the environment E is a subset of that of

e. For convenience, we also define a lookup function on well-formed environments:

Definition 4.3 (TinyBang Core Environment Lookup). Let E be a well-formed. Then

E(x) = v if and only if x = v ∈ E.

We must first define a number of auxiliary relations before proceeding to the actual

semantics.

4.4.1 Compatibility

Pattern matching is at the heart of our operational semantics. The compatibility

relation is a formalization of the pattern matching process. The mechanics of pattern
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li ∈ Fields({ . . . , li=xi , . . . })
li ∈ Fields({ . . . , li:pi , . . . })

IsRecord(v) iff v has the form { . . . }
IsRecord(p) iff p has the form { . . . }

{ . . . , l=x , . . . }.l ≜ x

{ . . . , l:p , . . . }.l ≜ p

P.l ≜ {p.l | p ∈ P}
lP ≜ {{ l:p } | p ∈ P}

Figure 4.3: Extended notation for TinyBang Core compatibility

matching is fairly intuitive. But we follow TinyBang’s lead and define the compatibility

relation in a somewhat non-standard way: we use the 4-ary predicate, x\E ∼ P +
P − which is

satisfied when the variable x under environment E simultaneously matches all patterns in

P + and fails to match all patterns in P −. We do this for two reasons:

• It is beneficial to the soundness proofs for the operational semantics to be strictly

aligned with the type system.

• The TinyBang type system must deal with subtle issues related to union alignment [25]

which can be circumvented by a simultaneous matching approach. While TinyBang

Core is not subject to this issue to the same degree in the absence of conjunction

patterns, we would like our formal relations to remain adaptable.

We first define some notation, for convenience, in Figure 4.3. Compatibility is then

defined as follows:

Definition 4.4. We let x\E ∼ P +
P − and v\E ∼ P +

P − to be the mutually defined relations

satisfying the rules in Figure 4.4.
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Leaf

x\E ∼ ∅
∅

Value Selection
x = v ∈ E v\E ∼ P +

P −

x\E ∼ P +

P −

Record
v = { . . . , li=xi , . . . }

∀p ∈ P +. Fields(p) ⊆ Fields(v) ∀i.xi\E ∼ P +.li
P −

i

∀p ∈ P +. IsRecord(p)

v\E ∼ P +⋃
i

liP
−
i

Record - Absent Field
v\E ∼ P +

P − IsRecord(v) l /∈ Fields(v)
v\E ∼ P +

{l:p}∪P −

Record - Extension
v\E ∼ P +

p∪P −

IsRecord(v) p = { . . . , li:pi , . . . } p′ = { . . . , li:pi, . . . , l′′:p′′}

v\E ∼ P +

p′∪P −

Record - Non-Record Pattern
v\E ∼ P +

P − IsRecord(v) ¬IsRecord(p′)
v\E ∼ P +

p′∪P −

Integer
v ∈ Z P + = {int} {int ∈ P −} = ∅

v\E ∼ P +

P −

Figure 4.4: TinyBang Core compatibility relation

The compatibility rules are relatively straightforward. Integer values match integer

patterns as long as they do not appear in the negative pattern set as well. Similarly record

values match record patterns when both agree on the fields and recursively on the field’s

contents.

Handling record patterns in the negative position is slightly more complicated. To

show that a subject value fails to match a record pattern, it suffices for one of the following

to hold:
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• The subject value is not a record.

• The subject value is missing a field compared the the pattern.

• Or finally, the subject value has the same shallow structure as the record pattern, but

recursively fails to match on at least one of its fields.

Compatibility has rules to deal with all of these cases: the first two are handled

directly by rules; for the final case above, the Record Extension rule specifies that as

long as a “shorter” record pattern (i.e. one with fields removed, but never empty) can be

shown to anti-match the subject value, the longer pattern also fails to match; this allows us

to non-deterministically test the pattern fields for a recursive mismatch.

4.4.2 Small-Step Evaluation

We can now define the small step semantics for TinyBang Core: e −→∗ e′. Our

operational semantics is neither precisely environment based or substitution based, but

has aspects of both: variables are looked up in the environment while function bodies are

inlined. We choose this model to align better with our type system.

Since variables are looked up from the environment, we must ensure that the latter

remains well-formed throughout evaluation. In particular, we must freshen function bodies

and case bodies before the clauses are inlined during evaluation. For this purpose, we utilize

a deterministic freshening function α(x, x′) (where x corresponds to a call-site and x′ is a

variable to be renamed).

Definition 4.5 (Freshening Function). We define α(x, x′) to be a function with three prop-

erties: the function is injective, its co-domain is disjoint from the variables in the original

39



CHAPTER 4. FORMALIZATION OF TINYBANG CORE

program and there are no cycles in any variable’s lineage. We also overload α(x, v) to

indicate the freshening of all variables bound in v.

A technical note: the deterministic aspect is not strictly necessary in monomorphic

TinyBang Core as opposed to TinyBang where it is instrumental in aligning fresh variables

with poly-instantiated type variables. But, as before, we try to ensure that the basic

relations have the same “shape” in both systems.

We need another auxiliary definition before the operational semantics. In the small

step relation, we sometimes need to examine the last bound variable in an expression, for

example, to fetch the result of a function application. We define a small function for the

purpose:

Definition 4.6 (Return Variable). We let RV(e) = xn if and only if e = [x1 = r1, . . . , xn = rn]

The small step relation is then defined as follows:

Definition 4.7 (TinyBang Core Small Step Semantics). We let e −→1 e′ be the relationship

satisfying the rules in Figure 4.5.

A partially evaluated expression, in general, has the form: E ∥ e. Small step

evaluation proceeds by acting on the “head” of the unevaluated part, producing a new

expression E′ ∥ e′. For example, if e has the form [x = x′] ∥ e′, the Lookup rule applies,

which replaces the head clause with a fully evaluated clause; with the rest of the expression

remains unchanged.

It is convenient to define the stuck states of this evaluation explicitly:

Definition 4.8. An expression is stuck if and only if it satisfies at least one of the rules in

Figure 4.6.
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Variable Lookup
E(x2) = v

E ∥x1 = x2 ∥ e −→1 E ∥x1 = v ∥ e

Application
E(x2) = x′

4 -> e′
1 E(x3) = v α(x1, x′

4 -> e′
1) = x4 -> e1

E ∥x1 = x2 x3 ∥ e2 −→1 E ∥x4 = v ∥ e1 ∥x1 = RV(e1) ∥ e2

Projection
E(x2) = { . . . , l=x3 , . . . } E(x3) = v

E ∥x1 = x2.l ∥ e −→1 E ∥x1 = v ∥ e

Pattern Match
v = E(x2) i ≤ n v\E ∼ {pi}

{pj |j<i} α(x1, fi) = xi -> ei

E ∥x1 = case x2 of
n−−−−−−⇀
p� ; f� ∥ e −→1 E ∥xi = v ∥ ei ∥x1 = RV(ei) ∥ e

Figure 4.5: TinyBang Core operational semantics

Application Failure
E(x2) = v v is not of the form x -> e′

E ∥x1 = x2 x3 ∥ e2 is stuck

Non-Record Projection
E(x2) = v ¬IsRecord(v)

E ∥x1 = x2.l ∥ e is stuck

Projection Failure
E(x2) = v l /∈ Fields(v)

E ∥x1 = x2.l ∥ e is stuck

Pattern Match Failure
x′\E ∼ ∅

{p1...pn}

E ∥x = case x′ of
n−−−−−⇀
p� -> e� ∥ e is stuck

Figure 4.6: TinyBang Core stuck states

The process of evaluation is simply a sequence of small step evaluations which we

define formally:

Definition 4.9 (Multiple Small Steps). We let e0 −→∗ en if and only if e0 −→1

e1 −→1 . . . −→1 en.

4.5 Type System

Our type system is based on subtype constraints. But our formulation is somewhat

unusual:
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• The standard approach to presenting a type inference system is to give a set of type

checking rules and a separate type inference algorithm. Instead we present a simpler

formalism: type checking in TinyBang Core is performed by first generating an initial

constraint set from the program, computing the fixed point of a constraint closure

relation and then checking whether the final closed constraint set is consistent.

• Proving soundness by the standard approach of “progress and preservation” is complex

for a constraint type system. Instead we exploit the correspondence between TinyBang

Core’s expression and type systems to prove soundness by simulation, an approach

commonly seen in the context of abstract interpretation [37, 49].

We begin our formal presentation in the next section by specifying the type gram-

mar and a set of rules to translate a program expression in to the initial set of constraints.

We then present type system rules for compatibility and constraint closure. A formal defi-

nition of type checking based on a notion of constraint set consistency is presented at the

end.

4.5.1 Type Grammar and Initial Alignment

The grammar for types in TinyBang Core is presented in Figure 4.7. It has a close

correspondence with the expression grammar: τ corresponds to v, program clauses corre-

sponds to type constraints and so forth. Types in the language are effectively abstractions

over values. Patterns have a direct analogue in the type system. A sequence of program

clauses are represented by an unordered set of constraints in the type grammar such that

each constraint is an abstraction of a program clause.
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C ::= ⨽−−⨼c expressions
c ::= b <: α constraints

b ::= τ
⏐⏐Π+

Π− | α | α α | α.l | case α of
−−−−−−⇀
π ; ϕ lower bounds

t ::= α\C constrained types
ϕ ::= α -> t function types
τ ::= int | ϕ | { . . . , l:α , . . . } types

Π+, Π− ::= ⨽−−⨼π pattern sets
π ::= int | { . . . , l:π , . . . } patterns
α type variables
l field labels

Figure 4.7: TinyBang Core type grammar

TinyBang Core’s type system is path sensitive. When type checking a case state-

ment, for each relevant branch, the system refines the type of the input to conform to the

requirements imposed by the preceding pattern match. This allows for a more precise de-

termination of the output type and consequently the whole case statement. TinyBang Core

achieves this by utilizing filtered types, an idea introduced in the TinyBang type system.

A filtered type has the form: τ
⏐⏐Π+

Π− and represents a base type τ restricted to cases where

it matches patterns in Π+ and fails to match those in Π−. Filtered types are introduced

during the type analysis of case branches and occur as lower bounds on type variables.

A note on notation: if both pattern sets are empty, the type is considered unfiltered

and we often elide Π+ and Π−.

We can then define the initial derivation of constraints for a program as follows:

Definition 4.10 (Initial Alignment). Let JxKV be an injective function from variables to

type variables. Then the initial set of constraints for an expression e is given by JeKE where

J−KE is defined in Listing 4.8.

The unordered nature of constraint sets introduces a minor wrinkle: the RV func-
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J
n−⇀s KE = αn\

n⨽−−⨼c where ∀i ≤ n.JsiKE = αi\ci

Jx = vKE = JxKV\ JvKE
⏐⏐∅
∅ <: JxKE

Jx1 = x2KE = Jx1KV\Jx2KV <: Jx1KV

Jx1 = x2 x3KE = Jx1KV\Jx2KV Jx3KV <: Jx1KV

Jx1 = x2.lKE = Jx1KV\Jx2KV.l <: Jx1KV

Jx1 = case x2 of
n−−−−−−⇀
p� -> f�KE = Jx1KV\case Jx2KV of

n⨽−−−−−−−−−−−−−⨼
Jp�KP -> Jf�KE <: Jx1KV

JZKE = int
Jx -> eKE = JxKV -> JeKE

J{ . . . , l=x , . . . }KE = { . . . , l:JxKV , . . . }

JintKP = int
J{ . . . , l:p , . . . }KP = { . . . , l:JpKP , . . . }

Figure 4.8: Initial constraint derivation

tion, used to fetch the last bound variable in an expression, cannot be modeled directly in

the type system; instead we opt to represent the type of e by the constrainted type α\C

where α is the type-theoretic analogue of RV(e).

4.5.2 Type Compatibility

Type compatibility is analogous to the compatibility definition from Section 4.4.1.

For convenience, we define some notation in Figure 4.9. Type compatibility is then defined

in a fashion similar to the compatibility definition for the operational semantics:

Definition 4.11. We let α\C ∼ Π+
Π− and τ\C ∼ Π+

Π− be the mutually defined relations

satisfying the rules in Figure 4.10.

The type compatibility rules are nearly all identical to the compatibility rules in

Figure 4.4 with appropriate syntactic substitutions. The only exception is the Type Selection

rule (which corresponds to the Value Selection rule in the operational semantics).
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li ∈ Fields({ . . . , li=αi , . . . })
li ∈ Fields({ . . . , li:πi , . . . })

IsRecord(τ) iff τ has the form { . . . }
IsRecord(π) iff π has the form { . . . }

{ . . . , l=α , . . . }.l ≜ α

{ . . . , l:π , . . . }.l ≜ π

Π.l ≜ {π.l | π ∈ Π}
lΠ ≜ {{ l:π } | π ∈ Π}

Figure 4.9: Extended notation for TinyBang Core type compatibility

Consider the compatibility proof for α\C ∼ Π+
1

Π−
1

. Unlike values, types, being con-

servative approximations, can have unions; in the constraint system, this implies that a

type variable can have multiple lower bounds. The above rule selects a particular lower

bound and verifies its compatibility. However lower bounds are filtered types of the form:

τ
⏐⏐Π+

Π− ; we must ensure that this restricted type matches Π+
1 and fails to match Π−

1 . The

Type Selection rule solves this by incorporating the patterns in to the induction; i.e. by

checking the compatibility of α\C ∼ Π+
1 ∪Π+

Π−
1 ∪Π− .

4.5.3 Constraint Closure

The constraint closure is responsible for the propogation of constraints via a pro-

cess that abstractly models the execution of the program. The relation itself is analogous

to the small step relation from the operational semantics.

Definition 4.12 (TinyBang Core Constraint Closure). We let C =⇒1 C ′ be the relationship

satisfying the rules in Figure 4.11.

Each constraint closure rule corresponds to a rule in the small step operational
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Leaf

α\C ∼ ∅
∅

Type Selection
τ

⏐⏐Π+
1

Π−
1

<: α ∈ C τ\C ∼ Π+
1 ∪Π+

2
Π−

1 ∪Π−
2

α\C ∼ Π+
2

Π−
2

Record
τ = { . . . , li:αi , . . . }

∀π ∈ Π+. Fields(π) ⊆ Fields(τ) ∀i.αi\C ∼ Π+.li
Π−

i

∀π ∈ Π+. IsRecord(π)

τ\C ∼ Π+⋃
i

liΠ−
i

Record - Absent Field
τ\C ∼ Π+

Π− IsRecord(τ) l /∈ Fields(τ)
τ\C ∼ Π+

{l:π}∪Π−

Record - Extension
τ\C ∼ Π+

π∪Π−

IsRecord(τ) π = { . . . , li:πi , . . . } π′ = { . . . , li:πi, . . . , l′′:π′′}

τ\C ∼ Π+

π′∪Π−

Record - Non-Record Pattern
τ\C ∼ Π+

Π− IsRecord(τ) ¬IsRecord(π′)
τ\C ∼ Π+

π′∪Π−

Integer
Π+ = {int} int /∈ Π−

int \C ∼ Π+

Π−

Figure 4.10: TinyBang Core type compatibility relation

semantics. In fact most are simply renderings of the latter in the type grammar with minor

exceptions:

• The closure rules lacks a type analogue to the freshening function α(x, x′). TinyBang

Core is currently monomorphic; so there is no renaming of type variables.

• The Pattern Match rule in the type system is slightly more complicated than the

one for the operational semantics. Since type lower bounds are filtered types, the

compatibility checks must account for both the existing filters and the new posti-

tive/negative pattern sets similar to the Type Selection rule in 4.5.2. Further

since TinyBang Core is path sensitive, the generated binding constraint must account
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Transitivity
{τ

⏐⏐Π+

Π− <: α1, α1 <: α2} ⊆ C

C =⇒1 C ∪ {τ
⏐⏐Π+

Π− <: α1}

Application
{α1 α2 <: α3, τ1

⏐⏐Π+
1

Π−
1

<: α1, τ2
⏐⏐Π+

2
Π−

2
<: α2} ⊆ C τ1 = α4 -> α′\C ′

C =⇒1 C ∪ C ′ ∪ {τ2
⏐⏐Π+

2
Π−

2
<: α4, α′ <: α3}

Projection
{α1.l <: α2, { . . . , l:α3 , . . . }

⏐⏐Π+
1

Π−
1

<: α1, τ
⏐⏐Π+

2
Π−

2
<: α3} ⊆ C τ\C ∼ Π+

2 ∪Π+
1 .l

Π−
2

C =⇒1 C ∪ {τ
⏐⏐Π+

2 ∪ Π+
1 .l

Π−
2

<: α2}

Pattern Match
{case α′ of

n−−−−−−⇀
π� ; ϕ� <: α, τ

⏐⏐Π+

Π− <: α′} ⊆ C i ≤ n

Π+
1 = Π+ ∪ {πi} Π−

1 = Π− ∪ {πj | j < i} τ\C ∼ Π+
1

Π−
1

ϕi = αi -> α′
i\C ′

i

C =⇒1 C ∪ {τ
⏐⏐Π+

1
Π−

1
<: αi} ∪ C ′

i ∪ {α′
i <: α}

Figure 4.11: TinyBang Core constraint closure

for the additional filters.

• The Projection rule has a similar issue: at the type level, the “source” of a pro-

jection operation is a filtered record type. For precision, this filtering information is

propogated to the projected component.

A prerequisite for our type checking process is to run the constraint closure to a

fixed point. So it is convenient to define a notion of multiple closure steps:

Definition 4.13 (TinyBang Core Multiple Constraint Closure Steps). We let C0 =⇒∗ Cn

if and only if C0 =⇒1 C1 =⇒1 . . . =⇒1 Cn

We now define the notion of an inconsistent constraint set. Informally an inconsis-

tent constraint set is one that contains contradictory or otherwise unsatisfiable constraints.
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Application Failure
{α1 α2 <: α3, τ1

⏐⏐Π+
1

Π−
1

<: α1} ⊆ C τ1 is not a function type

C is inconsistent

Non-Record Projection
{α1.l <: α2, τ

⏐⏐Π+

Π− <: α1} ⊆ C ¬IsRecord(τ)
C is inconsistent

Projection Failure
{α1.l <: α2, τ

⏐⏐Π+

Π− <: α1} ⊆ C l /∈ Fields(τ)
C is inconsistent

Pattern Match Failure
{case α′ of

n−−−−−−⇀
π� -> ϕ� <: α} ⊆ C α′\C ∼ ∅

{π1...πn}

C is inconsistent

Figure 4.12: TinyBang Core inconsistentency

Formally:

Definition 4.14 (Inconsistent Constraint Set). A constraint set C is inconsistent if and

only it satisfies at least one of the rules in Figure 4.12. Otherwise it is consistent.

The rules for inconsistency mirror those of stuck states from the operational se-

mantics. We can finally define a formal notion of type correctness:

Definition 4.15 (Typechecking). A closed expression e typechecks if and only if JeKE = α\C

and for all C =⇒∗ C ′, C ′ is consistent.

4.6 Properties of the Semantics

Our ultimate goal is to prove the equivalence of TinyBang Core and Tagged Tiny-

Bang Core (define in Chapter 5). To this end, we will define in this section, a number of

properties of the former, including the notion of type soundness.
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The standard approach to proving type soundness for a subtyping system is to

show progress and preservation, which involves the demonstration of two properties:

• Stuck expressions are never assigned valid types

• Given e −→1 e′, we must show that the type assigned to e is a super set of that

assigned to e′.

Unfortunately, this approach is somewhat hard to apply to TinyBang Core’s type

system given the way it was defined. Instead we prove our type soundness by simulation,

an approach partially inspired by abstract interpretation. We start by defining a simulation

relation between TinyBang Core expressions and its type system and then showing that the

initial alignment operations establishes this relation. We then demonstrate that the relation

is preserved by the operational semantics and the constraint closure relations. Finally

we demonstrate that stuck expressions are only simulated by inconsistent constraint sets;

therefore if constraint closure only produces consistent sets, the expression is never stuck.

We only provide proof sketches, instead of detailed proofs, for most of the proper-

ties defined here. Our choice is influenced by two factors: type soundness is not our primary

proof goal and our definitions and proofs are essentially simplified versions of TinyBang’s.

The reader is directed to [39] for a more detailed treatment of soundness proofs in this

domain.

4.6.1 The Simulation Relation

We define the simulation relation between TinyBang Core expressions and type

constraints in this section. Simulation is a four-place relation: the third place is the current
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e ≼E M α\C iff RV(e) ≼E M α and e ≼E M C
−⇀s ≼E M

⨽−−⨼c iff ∀1 ≤ i ≤ n. si ≼E M ci

x = r ≼E M b <: α iff x ≼E M α and r ≼E M b

x ≼E M α iff M(x) = α

x = v ≼E M τ
⏐⏐Π+

Π− <: α iff x ≼E M α and v ≼E M τ and
P + ≼E M Π+ and P − ≼E M Π−

and v\E ∼ P +
P −

x = x1 x2 ≼E M α1 α2 <: α iff x ≼E M α and x1 ≼E M α1 and
x2 ≼E M α2

x = x′.l ≼E M α′.l <: α iff x ≼E M α and x′ ≼E M α′

x = case x′ of
n−−−−⇀
p ; f ≼E M case α of

n−−−−−⇀
π ; ϕ <: α iff x ≼E M α and x′ ≼E M α′ and

∀1 ≤ i ≤ n. pi ≼E M πi and
fi ≼E M ϕi

Z ≼E M int
x -> e ≼E M α -> t iff x ≼E M α and e ≼E M t
{ . . . , li=xi , . . . } ≼E M { . . . , li:αi , . . . } iff ∀i. xi ≼E M αi

Figure 4.13: Simulation of expressions and constraints in TinyBang Core

environment and the fourth is a mapping, M , which maps each variable x to a type variable

α. The formal definition is as follows:

Definition 4.16 (Simulation). The simulation relation ≼E M is defined as the least relation

satisfying the rules in Figure 4.13.

The definition of simulation is mostly straightforward with each expression gram-

mar element aligning with the corresponding type grammar element. The alignment be-

tween a value and the corresponding type is slightly different. We must accomodate for

the fact that our types can potentially be filtered. Filtered types gather and retain in-

formation gathered from analyzing pattern matching; so any value simulated by a filtered

type must agree with it on the restrictions to the type. We achieve this by incorporating a

compatibility proof obligation in to the simulation result.

Lemma 4.17 (Initial Alignment). If e is well-formed, then e ≼E M JeKE.
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Lemma 4.18 (Compatibility). Suppose E ≼E M C, P + ≼E M Π+ and P − ≼E M Π−, then

x\E ∼ P +
P − and x ≼E M α together imply α\C ∼ Π+

Π− . Further v\E ∼ P +
P − and v ≼E M τ

together imply τ\C ∼ Π+
Π− .

Lemma 4.19 (Combining Compatibility). Suppose x\E ∼ P +
1

P −
1

and x\E ∼ P +
2

P −
2

. Then

x\E ∼ P +
1 ∪P +

2
P −

1 ∪P −
2

.

Lemma 4.20 (Simulation Preservation). Suppose E0 ∥ e0 −→1 E1 ∥ e1 and E0 ∥ e0 ≼E0 M0

C0, then there exists C1 and M1 such that C0 =⇒1 C1 and E1 ∥ e1 ≼E1 M1
C1.

Lemma 4.21 (Whole Program Simulation). Given a program e, if e −→∗ e′, then C =⇒∗ C ′

where C = JeKE and e′ ≼E M C ′.

Lemma 4.22 (Simulation of Stuck States). If e ≼E M C and e is stuck then C is inconsistent.

Theorem 1 (Soundness). For any closed expression e, if e −→∗ e′ and e′ is stuck then e

does not typecheck.
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Chapter 5

Formalization of Tagged TinyBang

Core

In this chapter, we formalize an alternate, but equivalent, semantics for TinyBang

Core based on the notion of adaptive tags described in Chapter 3. For distinguishing this

system from the standard TinyBang Core system, we will use the term Tagged TinyBang

Core to refer to it. Our definition is divided in to two parts: Section 5.3, defines an

operational semantics, parameterized by a universe of tags and a dispatch table and Section

5.4 describes a formal scheme to derive this information via an enhanced TinyBang Core

type system.

5.1 Notation

This chapter introduces a number of mapping structures where the same key is

mapped multiple times. Such “multimaps” can be viewed as a mapping from a key to a set
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? ::= ⋆ | int | { . . . , l:? , . . . } tag

Ω ::= x ↦→ ⨽−−⨼? var tag map

∆ ::=
⨽−−⨼
ã dispatch table

ã ::= (x,
⨽−−⨼
? , i) dispatch table entry

Figure 5.1: Extensions to the TinyBang Core grammar

of values or simply as a set of unique key-value mappings. We use one view or the other

based on convenience. Let k and l be arbitrary grammar elements and let Q be a multimap,

then:

• We overload the set membership operator to work on such maps; e.g. k ↦→ l ∈ Q

• We define a generic lookup operation on multimaps that return a set of mapped values

for a given key: i.e. Q(k) = {l | k ↦→ l ∈ Q}.

• We use the ⊎ to indicate the merging or union of two multimaps.

5.2 Grammar

In order to define our semantics, we need to augment the TinyBang Core grammar

from Section 4.2. The additional non-terminals are defined in Figure 5.1.

Tags are an abstract representation of the deep structure of a value. So we model

their grammar on types, although in contrast to the TinyBang Core types (Figure 4.1) which

are shallow, the tag grammar is deep. Tags need not represent the complete structure of a

value; so the tag grammar includes a “leaf” tag (⋆) that can be used to elide parts of the

structure that are irrelevant.

Ω and ∆ are both parameters to our operational semantics. The former represents
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Ê ::= −−−−⇀
x = v̂ environment

v̂ ::= ⟨v,
⨽−−⨼
? ⟩ tagged values

Figure 5.2: Extensions to the Tagged TinyBang Core grammar

the universe of tags, described in Section 3.2, and is a multimap from variables to tags.

The operational semantics assigns tags to values exclusively from this collection. The latter

is the dispatch table which is a collection of dispatch entries where each entry is a tuple

consisting of a program point in the form of a type variable, a tag set and the index of

the branch that matches the tag set. The semantics consults this table to perform efficient

dispatch for case statements.

5.3 Operational Semantics

The small step operational semantics for Tagged TinyBang Core is defined over

an environment of tagged values. The enhanced grammar is defined in 5.2. Each tagged

value is represented as a pair consisting of the actual value and a set of tags.

Since Ê is not explicitly a subset of e, we define a separate well-formedness criteria

for it below in the same vein as Definition 4.2.

Definition 5.1 (Well-formed Tagged Environment). An expression Ê is considered well-

formed if it meets the following criteria:

• Ê is closed.

• Each variable is bound in at most one clause.

It is also convenient to define a set of lookup operations on the environment:
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Definition 5.2 (Tagged TinyBang Core Environment Lookup). If Ê be a well-formed en-

vironment, then:

• Ê(x) = v̂ if and only if x = v̂ ∈ Ê.

• Êv(x) = v if and only if x = ⟨v,
⨽−−⨼
? ⟩ ∈ Ê.

• Ê?(x) = ⨽−−⨼? if and only if x = ⟨v,
⨽−−⨼
? ⟩ ∈ Ê.

Many of our operational semantics rules need to select the leaf tag from Ω, if one

exists. We define a simple function for that purpose:

Definition 5.3 (Leaf Tag Selection). We let Leaf(Ω, x) = {⋆ | ⋆ ∈ Ω(x)}.

We can now formally define the small step relation for the system as well as the

multi-step evaluation process:

Definition 5.4 (Tagged TinyBang Core Small Step Semantics). We let E ∥ e−→
Ω,∆

1
δ
E′ ∥ e′ be

the relationship satisfying the rules in Figure 5.3.

Definition 5.5 (Tagged TinyBang Core Multiple Small Steps). We let Ê0 ∥ e0 −→∗
δ Ên ∥ en

if and only if Ê0 ∥ e0 −→1 Ê1 ∥ e1 −→1 . . . −→1 Ên ∥ en.

The small-step operational semantics is parameterized over Ω and ∆. We often

elide the parameters when it is clear from context. All the rules, except for Pattern Match

are mechanically similar to the rules from TinyBang Core (Figure 4.5) except for the as-

signment of tags.

Given an expression of the form x = r, the tags assigned are always a subset of Ω(x)

and will include leaf tags, if present. For example, when assigning tags for an expression

of the form x = 100, the Integer rule deterministically assigns the subset of {int , ⋆} that
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Integer Value
n ∈ Z v̂ = ⟨n,

⨽−−⨼
? ⟩ ⨽−−⨼

? = {int | int ∈ Ω(x)} ∪ Leaf(Ω, x)
Ê ∥x = n ∥ e −→1

δ Ê ∥x = v̂ ∥ e

Function Value
v̂ = ⟨x2 -> e2,

⨽−−⨼
? ⟩ ⨽−−⨼

? = {? | ? = Jx2 -> e2KE ∧ ? ∈ Ω(x1)} ∪ Leaf(Ω, x1)
Ê ∥x1 = x2 -> e2 ∥ e3 −→1

δ Ê ∥x1 = v̂ ∥ e3

Record Value (TODO: Rework)
v̂ = ⟨{ . . . , li=xi , . . . },

⨽−−⨼
? ⟩

⨽−−⨼
? = {{ . . . , li:?j , . . . } ∈ Ω(x) | ?j ∈ Ê?(xi)} ∪ Leaf(Ω, x)

Ê ∥x = { . . . , li=xi , . . . } ∥ e −→1
δ Ê ∥x = v̂ ∥ e

Variable Lookup
v = Êv(x2) ⨽−−⨼

? = (Ê?(x2) ∩ Ω(x1)) ∪ Leaf(Ω, x1)

Ê ∥x1 = x2 ∥ e −→1
δ Ê ∥x1 = ⟨v,

⨽−−⨼
? ⟩ ∥ e

Application
Êv(x2) = x′

4 -> e′
1

Êv(x3) = v
⨽−−⨼
? = (Ê?(x3) ∩ Ω(x4)) ∪ Leaf(Ω, x4) α(x1, x′

4 -> e′
1) = x4 -> e1

Ê ∥x1 = x2 x3 ∥ e2 −→1
δ Ê ∥x4 = ⟨v,

⨽−−⨼
? ⟩ ∥ e1 ∥x1 = RV(e1) ∥ e2

Projection
Êv(x2) = { . . . , l=x3 , . . . }

v = Êv(x3) ⨽−−⨼
? = (Êv(x3) ∩ Ω(x1)) ∪ Leaf(Ω, x1)

Ê ∥x1 = x2.l ∥ e −→1
δ Ê ∥x1 = ⟨v,

⨽−−⨼
? ⟩ ∥ e

Pattern Match
⨽−−⨼
?1 = Ê?(x′)

(x,
⨽−−⨼
?1, i) ∈ ∆ fi = xi -> ei v = Êv(x′) ⨽−−⨼

?2 = (⨽−−⨼?1 ∩ Ω(xi)) ∪ Leaf(Ω, xi)

Ê ∥x = case x′ of
n−−−−−−⇀
p� ; f� ∥ e −→1

δ Ê ∥xi = ⟨v,
⨽−−⨼
?2⟩ ∥ ei ∥x = RV(ei) ∥ e

Figure 5.3: Tagged TinyBang Core operational semantics
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appear in Ω(x). In the case of other expressions like x1 = x2, tag assignment depends on the

current environment: the rule must examine the set of tags assigned to x2 to determine the

set of tags to assign to x1. The most complex rule of this kind is the Record Value rule;

each field at runtime has a set of tags associated with it; any record tag formed by selecting

any one tag for each field is a viable candidate; the rule selects the subset of such tags that

appears in Ω.

The semantics handles pattern matches differently from TinyBang Core. The rule

does not invoke compatibility, but merely examines the dispatch table ∆ to determine the

appropriate matching branch. The rest, i.e. binding of arguments, freshening the branch

body and inlining, are handled in a manner identical to TinyBang Core. Generating the

dispatch table ∆, along with an appropriate Ω, such that dispatch behavior of Tagged

TinyBang Core is equivalent to that of TinyBang Core, is a goal of the thesis.

5.4 Tag Derivation

In this section we formally address the question of deriving adaptive tags for a

given program. Specifically we discuss the process of computing Ω and ∆, the parameters

to the operational semantics from Section 5.3, by extending the TinyBang Core type system

from Section 4.5.

The operational semantics from the previous section provides a framework to tar-

get. The goal of a tag derivation system is then two fold: it must generate tags and dispatch

tables for each case statement and it must then distribute tags amongst program points in

such a way that, at runtime, when the small step evaluation reaches a case statement, the
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ω ::= α ↦→ ? type tag multimap

Figure 5.4: Type compatibility extensions for Tagged TinyBang Core type grammar

tags present on the subject of the pattern match ensure correct dispatch.

A key observation from our initial discussion of adaptive tags in Section 3.2 is

that construction and destruction are dual operations; it is then possible to generate tags

by observing the destruction process. The TinyBang Core operational semantics and type

systems are closely aligned and the latter simulates the former. Together this allows us

to conservatively trace the destruction process and propogate tag information through the

program.

The rest of this section is organized as follows: in Section 5.4.1 we define an

extended type compatibility relation that generates tag information; then in Section 5.4.2

we define the extended constraint closure relation that collects tag and dispatch information

from across the whole program and finally in Section 5.4.3 we define the scheme to generate

the tag map Ω and dispatch table ∆ given this information.

5.4.1 Type Compatibility

Our first task is to extend type compatibility to include tags. This involves modi-

fying the rules from Figure 4.10 to also “emit” tags. The modification is sometimes straight-

forward: for example, in the case of the Integer rule, the tag is always int. However type

compatibility is inductively defined; so in the general case the tag depends on the structure

of the proof tree. But otherwise the extensions are fairly intuitive.

We first extend our grammar slightly in Figure 5.4 to include ω, a multimap from
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type variables to tags.

Our extended type compatibility relation has the form: α\C ∼ Π+
Π− ▷ (?, ω). Here

α, C, Π+ and Π− have the same meanings as in the TinyBang Core type compatibility

relation from Figure 4.10; ? is the tag associated with this compatibility invocation while

ω accumulates tags in the current proof tree.

These rules are in the same spirit as the type compatibility rules for TinyBang

Core in Figure 4.10. They have been extended to trace usage and extract tag information.

Each instance of type compatibility represents a pattern match on a particular value with

a specific set of union choices and generates a single tag. The constraint closure, which we

define in Section 5.4.2, ensures that we collect information from across all possible matches

and union choices, which we then use to build up a collection of potential tags for each

value.

Our formal definition of type compatibility is similar to Definition 4.11 from Tiny-

Bang Core:

Definition 5.6. We let α\C ∼ Π+
Π− ▷ (?, ω) and τ\C ∼ Π+

Π− ▷ (?, ω) be the mutually defined

relations satisfying the rules in Figure 5.5.

5.4.2 Constraint Closure

Our modified type compatibility relation is capable of generating tags from indi-

vidual pattern matches. We must now modify our constraint closure to utilize it to not only

generate and accumulate tags across the whole program, but also to record dispatch data.

We must also handle a minor, but fairly technical, wrinkle. Consider code and
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Leaf

α\C ∼ ∅
∅ ▷ (⋆, {α ↦→ ⋆})

Type Selection
τ

⏐⏐Π+
1

Π−
1

<: α ∈ C τ\C ∼ Π+
1 ∪Π+

2
Π−

1 ∪Π−
2

▷ (?, ω) ω′ = ω ⊎ {α ↦→ ?}

α\C ∼ Π+
2

Π−
2

▷ (?, ω′)

Record
τ = { . . . , li:αi , . . . }

∀π ∈ Π+. IsRecord(π) ∀π ∈ Π+. Fields(π) ⊆ Fields(τ)
∀i.αi\C ∼ Π+.li

Π−
i

▷ (?i, ωi) ? = { . . . , li:?i , . . . } ω =
⨄

ωi

τ\C ∼ Π+⋃
i

liΠ−
i

▷ (?, ω)

Record - Absent Field
τ\C ∼ Π+

Π− ▷ (?, ω) IsRecord(τ) l /∈ Fields(τ)
τ\C ∼ Π+

{l:π}∪Π− ▷ (?, ω)

Record - Extension
τ\C ∼ Π+

π∪Π− ▷ (?, ω)
IsRecord(τ) π = { . . . , li:πi , . . . } π′ = { . . . , li:πi, . . . , l′′:π′′}

τ\C ∼ Π+

π′∪Π− ▷ (?, ω)

Record - Non-Record Pattern
τ\C ∼ Π+

Π− ▷ (?, ω) IsRecord(τ) ¬IsRecord(π′)
τ\C ∼ Π+

π′∪Π− ▷ (?, ω)

Integer
Π+ = {int} int /∈ Π−

int \C ∼ Π+

Π− ▷ (int , ∅)

Figure 5.5: Tagged TinyBang Core type compatibility relation

the corresponding initial constraint set like in Listing 5.6 where the type variable αi corre-

sponds to program variable xi. The modified type compatibility relation will analyze the

case branch and assign a potential tag of {a:int} to α2. However the variable x1 (and

correspondingly α1) is never directly involved in any destruction operation given the way

the rules of compatibility and small step evaluation are defined; so it is never directly as-

signed a tag. Recollect that tags at runtime are assigned from a fixed set. If x1 has no tags

associated with it, it will never be assigned any at runtime which causes x2 to also have no
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1 x0 = 3

2 x1 = { a = x0 }

3 . . .

4 x2 = x1

5 . . .

6 x3 = case x2 of

7 | { a:int } -> . . .

(a) Code listing

int <: α0

{a:α0} <: α1

α1 <: α2

case α2 of [{a: int } ; . . . ] <: α3

. . .

(b) Constraint set

Figure 5.6: Constraint closure discontinuity example

runtime tags and the dispatch fails at x3 which would be unsound. To solve this issue we

must ensure that tags are properly shared between x2 and x1.

An important point is that assignment operations in the program correspond to

type constraints of the form α1 <: α2 which are easily detected within the constraint set.

Similar points of discontinuity exist for many other operations; for example in the case of

pattern matching, there is a similar disconnect between branch variables and the subject

variables; these are not easily found by examining the constraint set. So we chose to explic-

itly track such data “feeds” during constraint closure. For example, the feed corresponding

to α1 <: α2 is α1 ↬ α2.

The formal grammar is listed in Figure 5.7. Our extended constraint closure tracks

four pieces of data: the set of constraints C, the set of tags discovered so far ω, a set of

dispatch entries δ and a collection of feeds η. We formally define the relationship below:

Definition 5.7 (Tagged TinyBang Core Constraint Closure). We let Ĉ =⇒1
δ Ĉ ′ be the

relationship satisfying the rules in Figure 5.8.

The extensions to the standard TinyBang Core constraint closure rules (Figure
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η ::= ⨽−−−−−−⨼
α ↬ α feeds

δ ::=
⨽−−−−−−−⨼
(α, ?, i) dispatch data

Ĉ ::= (C, ω, δ, η) augmented constraints

Figure 5.7: Constraint Closure extensions for Tagged TinyBang Core type grammar

4.11) are fairly straightforward and work on some general principles:

• For each rule, the underlying constraint propogation is identical to the corresponding

rule for TinyBang Core’s constraint closure.

• Whenever a rule requires a compatibility check, we extend the existing map of tags

with the new set of tags from the compatibility as well as the top level tag it emits. For

example, the Pattern Match rule defines the new tag map ω′′ as ω ⊎ ω′ ∪ {α ↦→ ?}

where ω is the original map, ω′ is the set of tags from the type compatibility relation

in the premises of the rule and ? is the corresponding top level tag.

• Whenever the lower bound of a type variable is selected and copied to another type

variable, we extend the set of feeds to indicate that the former feeds in to the latter.

For example in the Application rule, we introduce a feed α2 ↬ α4 between the

argument α2 and the function’s formal parameter α4.

• The Pattern Match rule extends the dispatch data with a new entry (α, ?, i) where

α corresponds to the program point with the case statement, ? is the top-level tag

corresponding to the successful type compatibility match and i is the index of the

branch that matched.

We also define the notion of multiple constraint closure steps:
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Transitivity
{τ

⏐⏐Π+

Π− <: α1, α1 <: α2} ⊆ C η′ = η ⊎ {α1 ↬ α2}

(C, ω, δ, η) =⇒1
δ (C ∪ {τ

⏐⏐Π+

Π− <: α2}, ω, δ, η′)

Application
{α1 α2 <: α3, τ1

⏐⏐Π+
1

Π−
1

<: α1, τ2
⏐⏐Π+

2
Π−

2
<: α2} ⊆ C

τ1 = α4 -> α′\C ′ C ′′ = C ∪ C ′ ∪ {τ2
⏐⏐Π+

2
Π−

2
<: α4, α′ <: α3} η′′ = η ∪ {α2 ↬ α4}

(C, ω, δ, η) =⇒1
δ (C ′′, ω, δ, η′′)

Projection
{α1.l <: α2, { . . . , l:α3 , . . . }

⏐⏐Π+
1

Π−
1

<: α1, τ
⏐⏐Π+

2
Π−

2
<: α3} ⊆ C τ\C ∼ Π+

2 ∪Π+
1 .l

Π−
2

▷ (?′, ω′)

C ′ = C ∪ {τ ′⏐⏐Π+
2 ∪ Π+

1 .l

Π−
2

<: α2} ω′′ = ω ⊎ ω′ ⊎ {α3 ↦→ ?′} η′ = η ⊎ {α3 ↬ α2}

(C, ω, δ, η) =⇒1
δ (C ′, ω′′, δ, η′)

Pattern Match
{case α′ of

n−−−−−−⇀
π� ; ϕ� <: α, τ

⏐⏐Π+

Π− <: α′} ⊆ C

i ≤ n Π+
1 = Π+ ∪ {πi} Π−

1 = Π− ∪ {πj | j < i}
τ\C ∼ Π+

1
Π−

1
▷ (?, ω′) ϕi = αi -> α′

i\C ′
i C ′ = C ∪ {τ

⏐⏐Π+
1

Π−
1

<: αi} ∪ C ′
i ∪ {α′

i <: α}
ω′′ = ω ⊎ ω′ ⊎ {α′ ↦→ ?} δ′ = δ ∪ {(α, ?, i)} η′ = η ∪ {α′ ↬ αi}

(C, ω, δ, η) =⇒1
δ (C ′, ω′′, δ′, η′)

Figure 5.8: Tagged TinyBang Core constraint closure

Definition 5.8 (Tagged TinyBang Core Multiple Constraint Closure Steps). We define

Ĉ0 =⇒∗
δ Ĉn if and only if Ĉ0 =⇒1

δ Ĉ1 =⇒1
δ · · · =⇒1

δ Ĉn

And a notion of a full closure:

Definition 5.9 (Tagged TinyBang Core Complete Constraint Closure). We define Ĉ0 =⇒!
δ

Ĉn if and only if Ĉ0 =⇒∗
δ Ĉn and there exists no Ĉ ̸= Ĉn such that Ĉn =⇒1

δ Ĉ.

At the end of constraint closure, the co-domain of ω has all the tags ever required

by the whole program. However we still must solve the tag set discontinuity issue from

earlier in the section. This is now fairly simple since we have also accumulated all pairs

of variables at which the issue appears. To address it, all we need to do is to define a

63



CHAPTER 5. FORMALIZATION OF TAGGED TINYBANG CORE

α′ ↬ α ∈ η ? ∈ ω(α) ω′ = ω ⊎ {α′ ↦→ ?}
(C, ω, δ, η) ↓ (C, ω′, δ, η)

Figure 5.9: Tagged TinyBang Core Tag Closure

tag-closure operation on Ĉ which pushes tags back to the source of the feed.

Definition 5.10 (Tag Closure). We let Ĉ ↓ Ĉ ′ be the relation that satisfies the rules in

Figure 5.9.

We also define a notion of a complete tag closure:

Definition 5.11 (Complete Tag Closure). We say Ĉn is a complete tag closure of Ĉ0, i.e.

Ĉ0 ↓! Ĉn, if and only if Ĉ0 ↓ Ĉ1 . . . ↓ Ĉn and there exists no Ĉ ̸= Ĉn such that Ĉn ↓ Ĉ.

For convenience, we define an extended version of the initial derivation for Tagged

TinyBang Core:

Definition 5.12 (Tagged TinyBang Core Initial Derivation). We let JeKδ = (C, ∅, ∅, ∅) if

and only if α\C = JeKE.

Definition 5.13 (Tagged TinyBang Core Complete Closure). We say Ĉn is a complete

closure of Ĉ0 if and only if there exists Ĉm which is the complete constraint closure of Ĉ0

as per Definition 5.9 and Ĉn is the complete tag closure of Ĉm as per Definition 5.11.

5.4.3 Deriving the Parameters

We are almost ready to define Ω, but defining ∆ requires a little bit more work.

All the dispatch data we have collected during constraint closure have the form (α, ?, i).

Runtime data, on the other hand, is associated with a set of tags. Dispatch would be

inefficient if we have to search through such a set at runtime. So we would like to index
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dispatch tables directly on tag sets.

Conceptually the tag set associated with a value at runtime is highly structured;

the tags represent parts of the same structure and are therefore closely related. We formalize

this using a notion of non-conflict:

Definition 5.14 (Non-Conflicting Tags). Two tags ? and ?′ are non-conflicting (? ↭ ?′)

if any of the following hold:

• ? = ?′

• ? = ⋆ or ?′ = ⋆

• ? = { . . . , li:?i , . . . } and ?′ = { . . . , li:?′
i , . . . } and for all i, ?i ↭ ?′

i

Tag sets that occur at runtime cannot have conflicting tags in them. We define

the notion of non-conflicting tag sets formally:

Definition 5.15 (Non-Conflicting Tag Sets). A tag set ⨽−−⨼? is non-conflicting if and only if

for any {?1, ?2} ∈
⨽−−⨼
? , ?1 ↭ ?2.

Since the source of our data is the type system, our tables are all currently keyed

on type variables. However the operational semantics parameters Ω and ∆ are expected to

be keyed on program variables. So we need a mapping between the two. Assuming such a

mapping, we can finally define the two parameters for the operational semantics:

Definition 5.16 (Extracting Ω and ∆ parameters). Given an expression e and a map-

ping from program variables to type variables, M , let the complete closure of JeKδ as per

Definition 5.13 be (C, ω, δ, η). Further let C be consistent. Then Ω and ∆ are derived as

follows:
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• Ω = {x ↦→ ⨽−−⨼? |M(x) ↦→ ⨽−−⨼? ∈ ω}.

• Let t(α) be the complete set of applicable tags for a case statement at program point

α, that is: t(α) = ω(α′) for case α′ of
−−−−−−⇀
π ; ϕ <: α ∈ C. Then ∆ = {x ↦→ (α,

⨽−−⨼
? , i) |

∃M(x) ↦→ (α, ?, i) ∈ δ. ∃⨽−−⨼? . ? ∈ ⨽−−⨼? ∧ ⨽−−⨼? ⊆ t(α) ∧ ⨽−−⨼? is non-conflicting}

We denote the above derivation of parameters Ω and ∆ from e and M as the operation

(∆, Ω) ↞M e.

The definition of Ω is trivial given M ; it simply translates the variables using M

and then defers to ω. The definition of the dispatch table is slightly more involved: for each

case statement, it collects the set of all tags and then “distributes” the dispatch entries to

non-conflicting subsets that includes the tag from the entry. This relies on two properties:

tags on any particular value do not conflict among themselves at runtime and that non-

conflicting tag sets will not disagree on dispatch. We will prove both properties in Chapter

6.

5.5 Properties of Tagged TinyBang Core

Our ultimate goal is to demonstrate the equivalence between the operational se-

mantics of Tagged TinyBang Core and TinyBang Core. Our strategy is to show that the

two systems bisimulate: specifically we prove that the two systems execute in lock-step with

each other and execute the same computations.

To compare the two systems, we need to define a notion of equivalence between

the environments:
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Definition 5.17. E ≈̇M e0 Ê if and only if e0 −→∗ E ∥ e for some e and there exists

(Ω, ∆) ↞M e0 such that e0−→Ω,∆

∗
δ
Ê ∥ e and the following conditions are met:

• |E| = |Ê| = n.

• For all i ≤ n, E(xi) = Êv(xi)

The equivalence above is somewhat complicated by the fact that we must constrain

the set of tags to those legitimately derived from the scheme described in Section 5.4. The

definition is, therefore, parameterized over an initial expression e0 and the mapping, M ,

from variables to type variables.

Then the theorem below states that if we execute a program using both the Tiny-

Bang Core and the Tagged TinyBang Core semantics, each system executes a small step if

and only the other does. Further if their environments were equivalent at the start, they

remain equivalent after the step. The formal statement is as follows:

Theorem 2 (Bisimulation of the Operational Semantics). Let e0 be the initial program.

Further let e0 −→∗ E1 ∥ e1 and e0−→Ω,∆

∗
δ
Ê1 ∥ e1 such that (Ω, ∆) ↞M e0 and E1 ≈̇M e0 Ê1.

Then E1 ∥ e1 −→1 E2 ∥ e2 if and only if there exists Ê2 such that Ê1 ∥ e1 −→1
δ Ê2 ∥ e2 and

E2 ≈̇M e0 Ê2.

We present a proof of this theorem in Chapter 6.
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The Bisimulation Proof

In this chapter, we prove the equivalence between TinyBang Core and Tagged

TinyBang Core via bisimulation.

Most of the operational semantics rules assign tags to values. Then, at pattern

matches, these tags are used to make dispatch decisions. From the perspective of an equiv-

alence proof for Tagged TinyBang Core, we must show that, for any case statement, the

tags present on the subject value can be used to make dispatch decisions that are consistent

with those made by TinyBang Core. Recall, from Section 4.4, that the latter performs

pattern matching and dispatch by inspecting the value at runtime.

Our overall strategy is to show that the two operational semantics bisimulate each

other. Specifically, we define an equivalence between the environments defined by TinyBang

Core and Tagged TinyBang Core and then show that when either of the operational seman-

tics takes a step, there is a corresponding step in the other that maintains this equivalence.

But this involves a number of sub-tasks, which we tackle in the following sections.
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6.1 Bisimulation of Type Systems

The type system for Tagged TinyBang Core, defined in Section 5.4 is an exten-

sion of the TinyBang Core type system defined in Section 4.5. We formalize this idea by

demonstrating a bisimulation relation between the two type systems. In turn, this allows

us to “port” many of the properties of the TinyBang Core type system defined in Section

4.6 to the extended type system.

The two constraint closure relations are very similar to each other except that

the Tagged TinyBang Core system also “emits” some structural information. This has

the advantage of making their bisimulation fairly easy to prove; but first we must ensure

that the extra data emitted by the tagged system is properly constrained. We do this

by parameterizing the relation over an initial constraint set and adjusting our definition

accordingly. The bisimulation relation is defined formally below:

Definition 6.1. We let C ≈̇C0 (C, ω, δ, η) if and only if (C0, ∅, ∅, ∅) =⇒∗
δ (C, ω, δ, η)

We use this relation to define a series of lemmas that relate the two type systems.

First we relate the two compatibility relations:

Lemma 6.2. α\C ∼ Π+
Π− if and only if there exists fixed values of ? and ω such that

α\C ∼ Π+
Π− ▷ (?, ω). Similarly τ\C ∼ Π+

Π− if and only if τ\C ∼ Π+
Π− ▷ (?, ω) for some ? and ω.

Proof. The forward implication follows from induction over the height of the proof tree of

α\C ∼ Π+
Π− , followed by case analysis of the rules from Figure 4.10. Similarly the converse

property follows from induction over the height of the proof tree of α\C ∼ Π+
Π− ▷ (?, ω)

followed by case analysis of the rules from Figure 5.5. A similar argument can be made for
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τ\C ∼ Π+
Π− and τ\C ∼ Π+

Π− ▷ (?, ω).

Furthermore, for every TinyBang Core constraint closure, there is a corresponding

closure operation in the Tagged TinyBang Core type system and vice-versa. We define this

in two steps:

Lemma 6.3. Let C1 ≈̇C0 Ĉ1. Then C1 =⇒1 C2 if and only if Ĉ1 =⇒1
δ Ĉ2 such that

C2 ≈̇C0 Ĉ2.

Proof. Direct by case analysis of the rules in Figure 5.8.

Lemma 6.4. Given an initial constraint set C0, C0 =⇒∗ C if and only if there exists ω, δ

and η such that (C0, ∅, ∅, ∅) =⇒∗
δ (C, ω, δ, η) and C ≈̇C0 (C, ω, δ, η).

Proof. By induction on the length of C0 =⇒∗ C and using Lemma 6.3.

As we discussed in Chapter 4, the TinyBang Core type closure simulates its small

step semantics. Intuitively, for each small step, there is a corresponding step in the con-

straint closure. From the previous lemmas, we have established that the constraint closures

of TinyBang Core and Tagged TinyBang Core bisimulate. Therefore, for each small step

in TinyBang Core, there is a constraint closure step in Tagged TinyBang Core or in other

words, the TinyBang Core small step semantics is simulated by Tagged TinyBang Core

constraint closure. Similarly the compatibility relation of TinyBang Core is simulated by

the type compatibility relation of Tagged TinyBang Core. We formalize these notion below.

Definition 6.5 (Simulation). We let e ≼̇E M,C0 Ĉ if and only if Ĉ = (C, ω, δ, η), e ≼E M C

and C ≈̇C0 Ĉ. The simulation relation e ≼E M C, is defined as per 4.16.
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Lemma 6.6. Suppose e ≼̇E M,C0 Ĉ, P + ≼E M Π+ and P − ≼E M Π−, then:

• x\E ∼ P +
P − and x ≼E M α together imply α\C ∼ Π+

Π− ▷ (?, ω) for some fixed ? and ω.

• v\E ∼ P +
P − and v ≼E M τ together imply τ\C ∼ Π+

Π− ▷ (?, ω) for some fixed ? and ω..

Proof. Let Ĉ = (C, ω, δ, η). Then from Definition 6.5, we have e ≼E M C. From x\E ∼ P +
P − ,

this gives us α\C ∼ Π+
Π− , by Lemma 4.18 where P + ≼E M Π+ and P − ≼E M Π−. Lemma 6.2

then gives us α\C ∼ Π+
Π− ▷ (?, ω) for some ? and ω. Similarly for v\E ∼ P +

P − , Lemma 4.18

and Lemma 6.2 together gives us τ\C ∼ Π+
Π− ▷ (?, ω) for some ? and ω

Lemma 6.7. If E1 ∥ e1 −→1 E2 ∥ e2 and E1 ∥ e1 ≼̇E1 M1,C0 Ĉ1, then there exists Ĉ2 and M2

such that Ĉ1 =⇒1
δ Ĉ2 where E2 ∥ e2 ≼̇E2 M2,C0 Ĉ2.

Proof. Let Ĉ1 = (C1, ω1, δ1, η1). From E1 ∥ e1 −→1 E2 ∥ e2, the simulation E1 ∥ e1 ≼̇E1 M1,C0

Ĉ1 and Definition 6.5, we have E1 ∥ e1 ≼E1 M1
C1 and (C0, ∅, ∅, ∅) =⇒∗

δ Ĉ1. Then, from

Lemma 4.20, we have C2 and M2 such that C1 =⇒1 C2 and E2 ∥ e2 ≼E2 M2
C2. Then by

Lemma 6.3, there exists Ĉ2 = (C2, ω2, δ2, η2) such that Ĉ1 =⇒1
δ Ĉ2 and C2 ≈̇C0 Ĉ2. By

definition (C0, ∅, ∅, ∅) =⇒∗
δ Ĉ2. From Definition 6.5, this gives us E2 ∥ e2 ≼̇E2 M2,C0 Ĉ2. This

completes the proof.

Lemma 6.8. Let e be the initial program and C0 = JeKE. Then if e −→∗ e′, then Ĉ =⇒∗
δ Ĉ ′

where Ĉ = (C0, ∅, ∅, ∅) and e′ ≼̇E M,C0 Ĉ ′.

Proof. From e −→∗ e′ and Lemma 4.21 we have C0 =⇒∗ C ′ such that e′ ≼E M C ′. From

Lemma 6.4, it follows that there exists ω, δ and η such that (C0, ∅, ∅, ∅) =⇒∗
δ (C ′, ω, δ, η)

and C ′ ≈̇C0 (C ′, ω, δ, η). Then from Definition 6.5, we have e′ ≼̇E M,C0 (C ′, ω, δ, η).
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6.2 Properties of the Tag Generation System

In this section, we define a set of general, and often obvious, properties related to

tag generation that are used in the rest of the document. Our first lemma concerns the

monotonicity of Tagged TinyBang Core’s constraint closure operation.

Lemma 6.9. The constraint closure operation is monotonic on C, ω, δ and η. That is, if

(C0, ω0, δ0, η0) =⇒1
δ (C1, ω1, δ1, η1) =⇒∗

δ (Cn, ωn, δn, ηn), then C0 ⊆ C1 ⊆ Cn, ω0 ⊆ ω1 ⊆ ωn,

δ0 ⊆ δ1 ⊆ δn and η0 ⊆ η1 ⊆ ηn.

Proof. Follows immediately from the definition of constraint closure in Definition 5.7 and

multiple constriant closure steps in Definition 5.8.

In Section 5.4.2, we discussed the necessity of tracking “feeds” between variables

explicitly. A tag closure process was created to “push” tags across the feed boundary in

order to mitigate the issue. The next two lemmas concern feeds and their effects on the tag

system. Our first lemma effectively asserts that, if there is a feed between two variables,

then our tag derivation process ensures that all the tags from the destination side have been

pushed to the source.

Lemma 6.10. Let e0 be the initial expression and let x1, x2 be two variables in e0. Further

let Je0Kδ =⇒∗
δ (C, ω, δ, η) and M(x1) ↬ M(x2) ∈ η. Then, (Ω, ∆) ↞M e0 implies Ω(x2) ⊆

Ω(x1).

Proof. Let (C ′, ω′, δ′, η′) be the complete closure of Je0Kδ as per Definition 5.13. Given

M(x1) ↬ M(x2) ∈ η, by Lemma 6.9, M(x1) ↬ M(x2) ∈ η′. Further from the same

definition and Definition 5.10, we have ω′(M(x2)) ⊆ ω′(M(x1)). Finally from Definition
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5.16, this gives us Ω(x2) ⊆ Ω(x1).

The next lemma explicitly connects TinyBang Core’s runtime clauses with the

extended type system’s collected feeds and tags.

Lemma 6.11. Let e0 be the initial expression and let e0 −→∗ E1 ∥ e1 and (Ω, ∆) ↞M e0.

Then:

• If the first clause of e1 has the form: x = x′, then Ω(x) ⊆ Ω(x′).

• If the first clause of e1 has the form: x3 = x1 x2 and x1 = x4 -> e1 ∈ E1, then Ω(x4) ⊆

Ω(x2).

• If the first clause of e1 has the form: x2 = x1.l and x1 = { . . . , l=x3 , . . . } ∈ E1, then

Ω(x2) ⊆ Ω(x3).

• If the first clause of e1 has the form: x = case x′ of
n−−−−−−⇀
p� ; f� and we have x′ = v ∈ E1

and v\E1 ∼ {pi}
{pj |j<i} for some i ≤ n, then Ω(xi) ⊆ Ω(x′) given fi = xi -> ei.

Proof. Given e0 −→∗ E1 ∥ e1, from Lemma 6.8, we have (C1, ω1, δ1, η1) such that it simulates

E1 ∥ e1. This also gives us E1 ∥ e1 ≼E1 M C1.

Suppose the next small step operation exists and has the form: E1 ∥ e1 −→1 E2 ∥ e2;

then from Lemma 6.7, we have (C2, ω2, δ2, η2) such that E2 ∥ e2 ≼̇E2 M,C0 (C2, ω2, δ2, η2). Our

next step is to show that for each of the statements in the lemma the small step operation

and the corresponding constraint closure step exists and that the specified variable pairs

will be included in η2. This allows us to utilize Lemma 6.10 to demonstrate the subset

property of tags.
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• Given that the form of the first clause is x = x′, the Variable Lookup small step

rule applies; then from Definition 6.8, we have α′ <: α ∈ C where α = M1(x) and

α′ = M1(x′). In this case, the Transitivity rule from the closure rules in Figure 5.8

applies, giving us α′ ↬ α ∈ η2. Then, from Lemma 6.10, we have Ω(x) ⊆ Ω(x′).

• For the second statement, the Application rule applies. From Definition 6.8, we

have α1 α2 <: α3 ∈ C1, τ
⏐⏐Π+

Π− <: α1 and τ = α4 -> t1, such that αi = M(xi) for

i ∈ {1, 2, 3, 4} and e1 ≼̇E1 M,C0 t1. In this case, the Application rule from the closure

rules in Figure 5.8 applies, giving us α2 ↬ α4 ∈ η2. Then, from Lemma 6.10, we have

Ω(x4) ⊆ Ω(x2).

• The first clause has the form: x2 = x1.l and we are given x1 = { . . . , l=x3 , . . . } ∈ E1.

Here the Projection rule applies. From Definition 6.8, we have α1.l <: α2 ∈

C1, { . . . , l:α3 , . . . } <: α1 ∈ C1 such that αi = M(xi) for i ∈ {1, 2, 3}. The

Projection closure rule from Figure 5.8 then applies which gives us α3 ↬ α2 ∈ η2.

Then, from Lemma 6.10, we have Ω(x2) ⊆ Ω(x3).

• For the final statement, the first clause has the form: x = case x′ of
n−−−−−−⇀
p� ; f�. We

are also given x′ = v ∈ E1 and v\E ∼ {pi}
{pj |j<i} for some i ≤ n. Therefore the

Pattern Match operational semantics rule applies. Then from Lemma 6.7, we have

case α′ of
n−−−−−−⇀
π� ; ϕ� <: α ∈ C1 and τ

⏐⏐Π+

Π− <: α ∈ C1 where α = M(x), α′ = M(x′)

and v ≼̇E1 M,C0 τ
⏐⏐Π+

Π− . Further, for all i ≤ n, pi ≼E1 M πi and fi ≼E1 M ϕi.

Given the simulation, v\E1 ∼ {pi}
{pj |j<i} and Lemma 4.18, we have τ\C1 ∼

Π+
1

Π−
1

for some

fixed Π+
1 and Π−

1 . By Lemma 6.2, we have τ\C1 ∼
Π+

1
Π−

1
▷ (?, ω), for some ? and ω.

Let ϕi = αi -> ti. Since fi ≼E1 M ϕi, αi = M(xi). The Pattern Match rule from
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the closure rules in Figure 5.8 then applies, which gives us α′ ↬ αi ∈ η2. Then, from

Lemma 6.10, we have Ω(xi) ⊆ Ω(x′).

6.3 Properties of the Environment(s)

We have already defined a notion of equivalence between the environments of

TinyBang Core and Tagged TinyBang Core in the previous chapter (Definition 5.17). We

use this equivalence to define a few properties that relate the data flow in TinyBang Core

to tag flow in Tagged TinyBang Core.

Many of the lemmas in this and the next section are conditioned on simultaneously

executing both TinyBang Core and Tagged TinyBang Core on the same initial program for a

fixed number of steps such that the resulting environments are equivalent (as per Definition

5.17). Informally, we term such pairs of executions, “equivalent” executions.

The next three lemmas are partially statements that the operational semantics

rules do not arbitrarily throw away tags. Each rule selects all tags that meet a certain

criteria and does not “lose” tags thereafter. For example, the next lemma states that, given

a pair of equivalent executions, for a record value in the environment, and any record tag

formed out of a combination of runtime tags from its fields, if the resultant tag is present

in Ω, then it will also be included in the set of runtime tags attached to the record value,

irrespective of its genesis.

Lemma 6.12. Let e0 be the initial program. Let e0 −→∗ E ∥ e and e0−→Ω,∆

∗
δ
Ê ∥ e such that

(Ω, ∆) ↞M e0 and E ≈̇M e0 Ê. Then given x = { . . . , li=xi , . . . } ∈ E and a list of tags, −⇀?,
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where each ?i ∈ Ê?(xi), if { . . . , li:?i , . . . } ∈ Ω(x) then { . . . , li:?i , . . . } ∈ Ê?(x).

Proof. By induction on the number of steps in the computation of E and then by case

analysis on the operational semantics rules.

Suppose the lemma holds at the end of n steps of computation. Further suppose

the preconditions all hold. We will show by case analysis that the lemma holds after n + 1

steps. First observe that any step that does not introduce x = { . . . , li=xi , . . . } in to the

environment trivially satisfies the lemma. Thus we only have to consider the following cases:

• The first clause of e has the form x = { . . . , li=xi , . . . }. From E ≈̇M e0 Ê, we have

x = ⟨{ . . . , li=xi , . . . },
⨽−−⨼
? ⟩. By the tagged operational semantics rules for record val-

ues in Figure 5.3, it follows that if { . . . , li:?i , . . . } ∈ Ω(x) then { . . . , li:?i , . . . } ∈

⨽−−⨼
? .

• The initial clause of e is an assignment clause: i.e. a clause of the form x = x′ where

x′ = { . . . , li=xi , . . . } ∈ E. From Lemma 6.11, we have Ω(x) ⊆ Ω(x′). Then, if

{ . . . , li:?i , . . . } ∈ Ω(x), it must be the case that it is also in Ω(x′). Further by

induction, since { . . . , li:?i , . . . } ∈ Ω(x′), we have { . . . , li:?i , . . . } ∈ Ê?(x′).

From the tagged operational semantics rules for Variable Lookup in Figure 5.3,

Ê?(x) = Ω(x) ∩ Ê?(x′). Thus { . . . , li:?i , . . . } ∈ Ê?(x).

Similar arguments apply for cases where the initial clause of e is a projection, appli-

cation or a pattern match.

The next lemma is similar to the previous, but about integer tags.
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Lemma 6.13. Let e0 be the initial program. Let e0 be the initial program. Let e0 −→∗ E ∥ e

and e0−→Ω,∆

∗
δ
Ê ∥ e such that (Ω, ∆) ↞M e0 and E ≈̇M e0 Ê. Then, given x = v ∈ E such that

v ∈ Z, if int ∈ Ω(x) then int ∈ Ê?(x).

Proof. By induction on the number of steps in the computation of E and then by case

analysis on the operational semantics rules.

Suppose the lemma holds at the end of n steps of computation. Further suppose

the preconditions all hold. We will show by case analysis that the lemma holds after n + 1

steps. First observe that any step that does not introduce x = v in to the environment

trivially satisfies the lemma. Thus we only have to consider the following cases:

• The first clause of e has the form x = v such that v ∈ Z. From E ≈̇M e0 Ê, we have

x = ⟨v,
⨽−−⨼
? ⟩ ∈ Ê. By the tagged operational semantics rules for record values in Figure

5.3, it follows that if int ∈ Ω(x) then int ∈ ⨽−−⨼? .

• The initial clause of e is an assignment clause: i.e. a clause of the form x = x′ where

x′ = int ∈ E. From Lemma 6.11, we have Ω(x) ⊆ Ω(x′). Then if int ∈ Ω(x), it must

be the case that it is also in Ω(x′). Further by induction, since int ∈ Ω(x′), we have

int ∈ Ê?(x′). From the tagged operational semantics rules for Variable Lookup

in Figure 5.3, Ê?(x) = Ω(x) ∩ Ê?(x′). Thus int ∈ Ê?(x).

Similar arguments apply for cases where the initial clause of e is a projection, appli-

cation or a pattern match.

The next lemma states that for any value in the environment, if a leaf tag (⋆) is
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present in Ω then it is always selected to be part of the value’s runtime tag set.

Lemma 6.14. Let e0 be the initial program. Let e0−→Ω,∆

∗
δ
Ê ∥ e such that (Ω, ∆) ↞M e0.

Then, given x = ⟨v,
⨽−−⨼
? ⟩ ∈ Ê, if ⋆ ∈ Ω(x) then ⋆ ∈ ⨽−−⨼? .

Proof. By induction on the number of steps in the computation of Ê and then by case

analysis on the operational semantics rules.

Suppose the lemma holds at the end of n steps of computation. Further suppose

the preconditions all hold. We will show by case analysis that the lemma holds after n + 1

steps. First observe that any step that does not introduce x = ⟨v,
⨽−−⨼
? ⟩ in to the environment

trivially satisfies the lemma. For any case where the particular clause gets introduced, the

leaf tags are in ⨽−−⨼? since ⋆ ∈ Ω(x) by assumption and all operational semantics rules for

Tagged TinyBang Core picks leaf tags.

6.4 Tag Propogation

In this section we discuss a number of properties of the tag flow entailed by the

structure of our tagged operational semantics. Our first lemma shows that a compatibility

check in TinyBang Core induces a particular tag that, given an equivalent run of Tagged

TinyBang Core, appears in the tag set of the subject value.

Lemma 6.15. Let e0 be the initial program. Let e0 −→∗ E ∥ e and e0−→Ω,∆

∗
δ
Ê ∥ e such that

(Ω, ∆) ↞M e0 and E ≈̇M e0 Ê. Further let E ∥ e ≼̇E M,C0 Ĉ where C0 = Je0KE. Then:

• If x ≼E M α and x\E ∼ P +
P − then α\C ∼ Π+

Π− ▷ (?, ω) such that P + ≼E M Π+ and

P − ≼E M Π−. Further if ? ∈ Ω(x) then ? ∈ Ê?(x).
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• If x = v ∈ E, v ≼E M τ and v\E ∼ P +
P − then τ\C ∼ Π+

Π− ▷ (?, ω) such that P + ≼E M Π+

and P − ≼E M Π−. Further if ? ∈ Ω(x) then ? ∈ Ê?(x).

Proof. We proceed by mutual induction on the height of the compatibility proof trees and

further by case analysis on the rule used at the root.

Leaf. In this case we have x\E ∼ ∅
∅ . From the assumptions we have x ≼E M α.

From Lemma 6.6, we have α\C ∼ ∅
∅ ▷ (⋆, {α ↦→ ⋆}) where P + ≼E M Π+ and P − ≼E M Π−.

From the assumptions of the lemma, we have ⋆ ∈ Ω(x). From E ≈̇M e0 Ê, we have x ∈ Ê.

By Lemma 6.14, ⋆ ∈ Ê?(x).

Value Selection. From the premises of the rule, given x\E ∼ P +
P − , we have x = v ∈ E

and v\E ∼ P +
P − . From Definition 4.16, there exists τ

⏐⏐Π+
1

Π−
1

<: α ∈ C such that v ≼E M τ .

Then, given the strengthening clause, by induction, we have τ\C ∼ Π+
Π− ▷ (?, ω) such that

P + ≼E M Π+ and P − ≼E M Π− and if ? ∈ Ω(x) then ? ∈ Ê?(x).

Record. In this case we have v\E ∼ P +⋃
i

liP −
i

where v has the form { . . . , li=xi , . . . }.

By the assumptions of the lemma, we have v ≼E M τ where τ = { . . . , li:αi , . . . } and for

all i, xi ≼E M αi. Then, by Lemma 6.6, we have τ\C ∼ Π+⋃
i

liΠ−
i

▷ (?, ω) where P + ≼E M Π+

and for all i, P −
i ≼E M Π−

i . Observe that ? has the form { . . . , li:?i , . . . } by inspection

of the applicable type compatibility rule.

From the premises of the Record rule from Figure 4.4, for all i, xi\E ∼ P +.li

P −
i

.

Then, by induction, we have for all i, αi\C ∼ Π+.li⋃
i

liΠ−
i

▷ (?i, ωi). Further, if ?i ∈ Ω(xi) then

?i ∈ Ê?(xi).

Finally, from the assumptions of the lemma, we have { . . . , li:?i , . . . } ∈ Ω(x)

and x = v ∈ E. Together, this gives us { . . . , li:?i , . . . } ∈ Ê?(x), by Lemma 6.12.
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Slow Step
E′ = E ∥x = v

E ∥x = v ∥ e′ −→1 E′ ∥ e′

Figure 6.1: Augmenting TinyBang Core with an extra rule

Integer. In this case v\E ∼ P +
P − where v ∈ Z, P + = {int} and int /∈ P −.

By the assumptions of the lemma, we have v ≼E M int. Then by Lemma 6.6, we have

int \C ∼ Π+
Π− ▷ where P + ≼E M Π+ and P − ≼E M Π−. From the assumptions we have

int ∈ Ω(x). Further, since x = v ∈ E, from the assumptions, it follows by Lemma 6.13 that

int ∈ Ê?(x).

The Rest. The remaining cases are straightforward via induction.

When attempting to prove the bisimulation between the two operational semantics,

we must be able to compare their steps. There is a minor wrinkle here: there are fewer

operational semantics rules in TinyBang Core compared to Tagged TinyBang Core. This is

fueled by the fact that the grammar of E is a subset of e. So, for example, there is no rule

for clauses of the form x = 42 since it is already part of the E grammar. We will augment

TinyBang Core with the extra rule in Figure 6.1. The rule is a no-op as far the current

semantics of TinyBang Core goes, but it helps align the two operational semantics.

Our next lemma is a formal statement of a property of the tag framework which

we have discussed many times in the text: tag sets are non-conflicting at runtime. This

is fairly intuitive since, at each step, the rules only select tags that has the same shallow

structure. Formally:

Lemma 6.16 (Tags at runtime are non-Conflicting). If e0 −→∗
δ Ê ∥ e1 then for all x =
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⟨v,
⨽−−⨼
? ⟩ ∈ Ê, ⨽−−⨼? is a non-conflicting tag set as per Definition 5.15.

Proof. By induction on the number of steps in computation, followed by case analysis of

the operational semantics rules.

We are finally ready to state the first simulation lemma between the operational

semantics.

Lemma 6.17. Let e0 be the initial program. Further let e0 −→∗ E1 ∥ e1 and e0−→Ω,∆

∗
δ
Ê1 ∥ e1

such that (Ω, ∆) ↞M e0 and E1 ≈̇M e0 Ê1. If E1 ∥ e1 −→1 E2 ∥ e2, then there exists Ê2 such

that Ê1 ∥ e1 −→1
δ Ê2 ∥ e2 and E2 ≈̇M e0 Ê2.

Proof. By induction on the number of steps and then by case analysis of the operational

semantics rules from Figure 4.5.

Value. Consider the case when e has the form: x = v ∥ e′ where v ∈ Z. Then

E1 ∥ e −→1 E2 ∥ e′ where E2 = E1 ∥x = v. Similarly from the Integer Value rule in

Figure 5.3, we have Ê1 ∥ e −→1
δ Ê2 ∥ e′ such that Ê2 = Ê1 ∥x = ⟨v,

⨽−−⨼
? ⟩ for a fixed value of

⨽−−⨼
? . From Definition 5.17, E2 ≈̇M e0 Ê2, which completes this case. Similar arguments can

be made for other values; i.e. functions and records.

Variable Lookup. When the e has the form: x1 = x2 ∥ e′, the Variable Lookup

rule applies. Then E1 ∥ e −→1 E2 ∥ e′ where E1(x2) = v and E2 = E1 ∥x1 = v. Similarly for

the Tagged TinyBang Core semantics, we have Ê1 ∥ e −→1
δ Ê2 ∥ e′ where E1(x2) = ⟨v,

⨽−−⨼
? ⟩

and E2 = E1 ∥x1 = ⟨v,
⨽−−⨼
? ∩Ω(x1)⟩. From Definition 5.17, E2 ≈̇M e0 Ê2, which completes this

case.

Observe that the Tagged TinyBang Core rule is very similar to the TinyBang Core
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rule in the way it operates on values. The differences only pertain to the propagation of

tags which does not affect the equivalence between the environments. Other rules of this

ilk are Application and Projection; their cases are similar to the Variable Lookup

case. The main difference is in the Pattern Match rule which we consider next.

Pattern Match. Consider the case when e has the form: x1 = case x2 of
n−−−−−−⇀
p� ; f� ∥ e′.

From the premises of the Pattern Match, we have x2 = v ∈ E1 and some i ≤ n, such

that v\E1 ∼ {pi}
{pj |j<i} . Then E1 ∥ e1 −→1 E2 ∥ e2 where we set E2 = E1 ∥xi = v, e2 =

ei ∥x1 = RV(ei) ∥ e′ and α(x1, fi) = xi -> ei.

We also have, from Lemma 6.8, Ĉ1 such that E1 ∥ e1 ≼̇E1 M,C0 Ĉ1. Further there

exists α2, τ , Π+ and Π− such that x2 = v ≼E1 M τ
⏐⏐Π+

Π− <: α2. From Definition 4.16, we have

x2 ≼E1 M α2, v ≼E1 M τ , P + ≼E1 M Π+ and P − ≼E1 M Π− such that v\E1 ∼ P +
P − . Lemma 4.19

allows us to combine the two compatibilities in to one: v\E1 ∼
P +

1
P −

1
where P +

1 = P + ∪ {pi}

and P −
1 = P − ∪ {pj | j < i}.

Given v ≼E1 M τ , from Lemma 6.15, this gives us α\C ∼ Π+
1

Π−
1

▷ (?, ω) for some ?

and ω such that P +
1 ≼E1 M Π+

1 and P −
1 ≼E1 M Π−

1 which completes the first part of this case.

We have also satisfied all the pre-conditions for the Pattern Match constraint

closure rule from Figure 5.8 to apply. Therefore there exists Ĉ2 = (C2, ω2, δ2, η2) such that

Ĉ1 =⇒1
δ Ĉ2. From the rule, α2 ↦→ ? ∈ ω2 and (α1, ?, i) ∈ δ. Given the monotonicity

of closure (Lemma 6.9) and Definition 5.16, ? ∈ Ω(x2). Then from Lemma 6.15, we can

conclude that ? ∈ Ê?
1 (x2).

Lemma 6.9 and Definition 5.16 also allow us to conclude that (x1,
⨽−−⨼
? , i) ∈ ∆ for

all ⨽−−⨼? such that ⨽−−⨼? is a non-conflicting subset of Ω(x2) and it contains ?. From Lemma
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6.16, Ê?
1 (x2) is non-conflicting and we have already shown that ? is a member of this set.

It then follows that, there exists at least one (x1,
⨽−−⨼
? , i) ∈ ∆, which match the runtime tag

set attached to x2.

The Pattern Match rule for Tagged TinyBang Core, from Figure 5.3, now ap-

plies and it gives us Ê1 ∥ e1 −→1
δ Ê2 ∥ e2 where Ê2 = Ê1 ∥xi = ⟨v,

⨽−−⨼
? ∩Ω(xi)⟩, e2 and xi -> ei

are the same as defined above. From the assumptions, E2 ≈̇M e0 Ê2, which concludes this

case and the proof.

6.5 Uniqueness of Dispatch

We have shown, in the previous section, that when TinyBang Core takes a step,

so does Tagged TinyBang Core. The section is dedicated to demonstrating the converse.

Given that the operational semantics parameter derivation in Definition 5.16 requires a

consistent set of constraints, it is clear that TinyBang Core will not be stuck. So we are

primarily trying to show the uniqueness of the step.

One of the primary concerns, therefore, is to ensure that there are no conflicting

dispatch entries: i.e. for a point x, there does not exist (x,
⨽−−⨼
? , i) and (x,

⨽−−⨼
? , j) in ∆ where

i ̸= j. We are going to chip away at this problem by demonstrating that in certain common

situations, the tags generated conflict with each other, which prevents them from appearing

together at runtime. First we need a definition of shallow non-conflict of types: essentially

types that have the same “shape” in a shallow sense.

Definition 6.18 (Type Shallow Non-Conflict). Two types τ and τ ′ are in shallow non-

conflict (the relation ≍) in the following cases:
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• τ = int and τ ′ = int

• τ = ϕ and τ ′ = ϕ

• τ and τ ′ are record types and Fields(τ) = Fields(τ ′)

In all other cases the types shallow conflict: i.e. τ ̸≍ τ ′.

Our next lemma states that if two types shallow conflict, the corresponding com-

patibility proofs produce conflicting tags.

Lemma 6.19. Suppose we have τ1\C ∼
Π+

1
Π−

1
▷ (?1, ω1) and τ2\C ∼

Π+
2

Π−
2

▷ (?2, ω2) and

τ1 ̸≍ τ2, then ?1 ↭̸ ?2

Proof Sketch. By strong induction on the sum of the heights of the two compatibility proof

trees and case analysis on the roots of the proof trees.

Next we argue that two compatibility proof trees, where the set of positive patterns

in one overlaps with the set of negative patterns in the other, would produce conflicting

tags. The intuition here is that the two proof trees must diverge at some point as one tries

to match a pattern and the other attempts to prove a match failure; specifically such a

situation can only be resolved by choosing different lower bounds somewhere deep in the

proof trees, which, in turn, leads to the situation described in Lemma 6.19. Formally we

state the lemma as follows:

Lemma 6.20. Let at least one of the following be true: Π+
1 ∩ Π−

2 ̸= ∅ or Π+
2 ∩ Π−

1 ̸= ∅.

Then, given α1\C ∼
Π+

1
Π−

1
▷ (?1, ω1) and α2\C ∼

Π+
2

Π−
2

▷ (?2, ω2), it must be the case that

?1 ↭̸ ?2. Further if τ1\C ∼
Π+

1
Π−

1
▷ (?1, ω1) and τ2\C ∼

Π+
2

Π−
2

▷ (?2, ω2), then ?1 ↭̸ ?2.
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Proof Sketch. By strong induction on the sum of the heights of the two compatibility proof

trees and case analysis on the roots of the proof trees.

Finally we can state our second simulation lemma:

Lemma 6.21. Let e0 be the initial program. Further let e0 −→∗ E1 ∥ e1 and e0−→Ω,∆

∗
δ
Ê1 ∥ e1

such that (Ω, ∆) ↞M e0 and E1 ≈̇M e0 Ê1. If Ê1 ∥ e1 −→1
δ Ê2 ∥ e2, then there exists E2 such

that E1 ∥ e1 −→1
δ E2 ∥ e2 and E2 ≈̇M e0 Ê2.

Proof. By induction on the number of steps and then by case analysis of the operational

semantics rules from Figure 5.3.

The only interesting case is Pattern Match. All other cases are similar to

Lemma 6.17.

Pattern Match. Consider the case when e1 has the form: x1 = case x2 of
n−−−−−−⇀
p� ; f� ∥ e′.

From the premises of the Pattern Match rule in Figure 5.3, we have x2 = ⟨v,
⨽−−⨼
? ⟩ ∈ Ê1

and (x1,
⨽−−⨼
? , ι) for some ι ≤ n. Then Ê1 ∥ e1 −→1

δ Ê2 ∥ e2 where we set Ê2 = Ê1 ∥xι = ⟨v,
⨽−−⨼
? ∩

Ω(xι)⟩, e2 = eι ∥x1 = RV(eι) ∥ e′ and α(x1, fι) = xι -> eι.

From Definition 5.16, we must have some (α1, ?, ι) ∈ δ where δ is the set of dispatch

entries after complete closure.

Given that the program type checks (from Definition 5.16), we know that TinyBang

Core must take a step. From E1 ≈̇M e0 Ê1, we have x2 = v ∈ E1. From the premises of the

corresponding rule, there exists i ≤ n, such that v\E1 ∼ {pi}
{pj |j<i} . Then E1 ∥ e1 −→1 E2 ∥ e2

where we set E2 = E1 ∥xi = v, e2 = ei ∥x1 = RV(ei) ∥ e′ and α(x1, fi) = xi -> ei.

We have, from Lemma 6.8, Ĉ1 such that E1 ∥ e1 ≼̇E1 M,C0 Ĉ1. Leveraging the

same argument as in Lemma 6.17, we have ?′ such that ?′ ∈ Ê?
1 (x2), (α1, ?′, i) ∈ δ and
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(x1,
⨽−−⨼
? , i) ∈ ∆ for some x1 ≼E1 M α1.

By Lemma 6.16, ⨽−−⨼? is a non-conflicting set. It suffices to show that ι = i given

? ↭ ?′. Each dispatch entry in δ is the result of a Pattern Match rule. Therefore

we have two proof trees: τ\C ∼ Π+
1

Π−
1

▷ (?, ω) with πι ∈ Π+
1 and {πj | j < ι} ⊆ Π−

1 and

τ ′\C ∼ Π+
2

Π−
2

▷ (?′, ω′) with πi ∈ Π+
2 and {πj | j < i} ⊆ Π−

2 . From Lemma 6.19 and given the

non-conflict of tags, τ = τ ′. Further, if ι < i then Π+
1 ∩ Π−

2 ̸= ∅ and if not Π+
2 ∩ Π−

1 ̸= ∅;

but by Lemma 6.20 either of these cases would result in conflicting tags. Therefore i = ι,

which gives us E2 ≈̇M e0 Ê2, which completes this case and the proof.

6.6 Proof of Bisimulation

The above lemmas are sufficient to prove the bisimulation between TinyBang Core

and Tagged TinyBang Core. We restate the theorem and give its proof here:

Theorem 2 (Bisimulation of the Operational Semantics). Let e0 be the initial program.

Further let e0 −→∗ E1 ∥ e1 and e0−→Ω,∆

∗
δ
Ê1 ∥ e1 such that (Ω, ∆) ↞M e0 and E1 ≈̇M e0 Ê1.

Then E1 ∥ e1 −→1 E2 ∥ e2 if and only if there exists Ê2 such that Ê1 ∥ e1 −→1
δ Ê2 ∥ e2 and

E2 ≈̇M e0 Ê2.

Proof. Direct from Lemma 6.17 and Lemma 6.21.
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Implementation

This section describes our proof-of-concept implementation of TinyBang Core. The

implementation includes an interpreter for the basic TinyBang Core semantics from Section

4.4 as well as the corresponding type checker from Section 4.5. The Tagged TinyBang

Core implementation has the extended typechecker from Section 5.4 as well as a series of

interpreters for the tagged semantics, each progressively “closer to the metal” than the

previous.

Unfortunately the proof-of-concept does not include a complete compiler. However

our more advanced interpreters implement the semantics in a manner closer to the compiler,

modulo necessary standard transformations like closure conversion and hoisting. Our focus

has been on validating the correctness of our tag framework as opposed to raw performance;

so the interpreter implementations are not particularly optimized.
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7.1 Interpreters

The adaptive tag framework is complex, even for the simplified semantics of Tiny-

Bang Core. So we have chosen to implement a series of interpreters, rather than jumping

directly to code generation. The interpreters all implement the same essential semantics

from Section 4.4 or the equivalent one from Section 5.3, albeit with different intermediate

data structures and tag representations. The primary advantage of this approach is that

errors are easier to localize: each interpreter makes only incremental changes to the previous

one and since the same tests can run on all of them, it is easier to isolate and debug bugs

and regressions. We describe three of the most important interpreters below along with the

corresponding type checker implementations.

7.1.1 Standard Interpreter and Typechecker

This is is an implementation of the original operational semantics and type checker

for TinyBang Core from Sections 4.4 and 4.5 respectively. This interpreter is the “gold

standard” against which we verify all others.

The interpreter directly implements the rules for TinyBang Core with one ex-

ception: the implementation of value compatibility is simplified to match against a single

pattern; i.e. x ∼ p as opposed to the more complex definition from 4.4.1. When evaluating

a case statement, the implementation of the pattern match rule invokes this rule, once for

each pattern, in the sequence dictated by case branches. This simplification is reasonable

at runtime since values are union-free and there are no union alignment issues.

The type checker is also a straightforward implementation of the rules. Type
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checking proceeds by computing the initial alignment of an expression, performing con-

straint closure and then verifying consistency.

7.1.2 Naive Interpreter for Tagged TinyBang Core

This simple interpreter for Tagged TinyBang Core is based on the semantics from

Section 5.3. Tags are reified individually and values have a set of tags attached to them.

Type checking is implemented as per the extended definitions of type compatibility and

constraint closure in Section 5.4. The tag universe Ω is derived exactly as described in

the section, but the computation of the dispatch table ∆ is simplified: the implementation

simply uses the collection of (α, ?, i) obtained from constraint closure, forgoing the collation

to tag sets described in Section 5.4.3. Dispatch is then implemented by matching the tag set

of the subject value against this set of dispatch entries and jumping to the corresponding

branch. The rest of the operational semantics is implemented exactly as described in Section

5.3.

This modification still yields correct results given the absence of conflicting tags at

runtime and the fact that non-conflicting tags agree on dispatch decisions. The simplified

system has the benefit of being straightforward to implement and debug with no complicated

pre-computations; so it is a good stepping stone between the standard interpreter and the

more complicated table-based interpreters.

7.1.3 Table-based Interpreter for Tagged TinyBang Core

The tag assignment operations in the Tagged TinyBang Core semantics are simply

filters on Ω with some set of runtime tags as input; i.e. they are operations from tag sets
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to tag sets. Further we are operating on a fixed universe of tags. So many operations can

be sped up with some pre-computation. Our advanced interpreters are thus table-based;

pre-computed tables attached to each program point and tag assignment and dispatch are

implemented as lookups on these tables.

A key feature of our tag based semantics is that runtime tags are always selected

from a fixed set; i.e. the set of tags associated with a variable x in the environment is

always some subset of Ω(x). So given a clause like x′ = x, we can approximate the runtime

tag assignment operation by considering each subset of Ω(x) and applying the tag filtering

operation specified by the Variable Lookup rule; in this case that amounts to an inter-

section operation with Ω(x′). By recording the results in a table, tag assignment at runtime

reduces to a simple lookup. The size of this table can be further reduced by observing that

tag sets with conflicting tags cannot occur at runtime; we filter out such subsets of Ω(x)

during table creation.

Since the maximal set of tags associated with a program point is finite, so are the

subsets. This makes it possible to “index” them; i.e. associate a numeric value with each

one. Many viable indexing schemes exist with various costs and benefits. For example, a

simple approach is to associate a unique number with a subset based on its contents. With

tag set indexing, the pre-computed tables can be rendered as integer-based lookup tables

at runtime which has memory and performance benefits.

We implement an “indexed” interpreter for Tagged TinyBang Core based on this

idea. Type checking and tag derivation are implemented as described in Section 5.4. The

system then computes a set of tables, at least one for each program point, that encode
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the tag operation. The operational semantics is implemented to utilize these tables for tag

assignment and dispatch.

7.1.4 Validating the Interpreters

To validate the interpreters, we crafted a set of about 15 small programs in the

language of TinyBang Core, each ranging between 10 to 120 clauses, that tests most of

the features of the language and the tag framework. The suite of tests run on all of our

interpreters; it type checks or fails as appropriate and produces the expected runtime values

when executed.

7.2 Performance

The long term goal of the current project is to build the core of an efficient scripting

language. To this end, we discuss a number of optimizations to the tag framework in Section

9.1. However, the current set of interpreters were built primarily to validate the correctness

of the tag framework and not its performance. Nontheless investigating the interpreter

performance provides some insight in to the performance characteristics of the tag schema

presented in this thesis, even though we do not expect to see particularly great results from

micro-benchmarks.

Directly comparing the standard interpreter with, say, the indexed interpreter

from the previous section is fraught with issues. The two have very different overheads

that are hard to normalize. Instead we ported the standard interpreter to the tag based

framework. This interpreter tags values based on shallow tags similar to standard functional
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tb
Table 7.1: Comparing the performance of interpreters
Length Invocations Iterations Shallow Indexed

10 25 100 15.26 15.08
10 50 100 32.37 31.93
10 100 100 67.12 66.70
10 200 100 143.08 141.95
20 25 100 45.78 45.83
20 50 100 96.32 95.99
20 100 100 207.04 206.014
20 200 100 444.14 443.57

language implementations. The indexed interpreter implementation has no optimizations

implemented except for one tweak: we have chosen to synchronize tags across feeds; i.e. we

ensure that for any feed, α ↬ α′, both sides have the same set of tags. The theory only

requires that the left hand side be a super set of the right. But synchronizing them has the

advantage of eliminating unnecessary “re-tagging” between feeds.

To benchmark the interpreters, we crafted a small series of programs in TinyBang

Core, each of which constructs a list and then finds the last element of a list1, but varying

in the length of the list and the number of times the function to find the last element

was invoked. We used a micro-benchmarking suite for Ocaml to wrap each interpreter’s

evaluation function and configured it to run for 100 iterations to ensure that the measured

times were significant. The tests were run on a standard desktop machine with an AMD

Phenom II processor and 8GB of RAM.

Our results appear in Figure 7.1. The first two columns show the length of the list

and the number of invocations of the function in the program respectively. The primary

observation is that the indexed interpreter has a small, but mostly consistent performance

advantage over the shallow tagged interpreter. The advantage increases slightly as the length
1The lists were encoded using records
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of the list and the number of invocations increases. This is consistent with theoretical

expectations: when the number of destruction operations in a program increases for a

fixed number of constructor operations, the adaptive tag based approach tends to perform

better. At smaller numbers, the advantage offered by fast dispatch is somewhat mitigated

by the overheads introduced by tag assignment at construction. We expect the performance

differential to increase in the case of large programs with more complex pattern matching.

It is worth noting that the interpreter itself has a very high overhead compared to the

programs being run. So a small advantage is likely to translate to larger numbers in a

compiled environment.
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Related Work

This chapter summarizes some of the work related to the semantics we presented

in the previous chapters. Our primary focus is on features of TinyBang Core though we will

touch upon topics relevant to TinyBang as well. For a comprehensive discussion of work

related to the latter, see [39].

8.1 Pattern Matching

Pattern matching in programming languages have been around for a long time

[17] and shallow tags, in some form, have been used to implement pattern matching almost

from the time the feature appeared in functional languages [18, 12]. A significant amount

of work has gone in to optimizing pattern matches by building matching automata with

carefully chosen heuristics [18, 12, 35, 36]. However there does not appear to have been

significant efforts towards extending these schemes towards languages with subtyping.

Clojure’s implementation of pattern matching [5] is perhaps the closest: it follows
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the broad scheme dictated by [36], but has been expanded to cover more data structures.

In particular, it is capable of handling maps with arbitrary keys. During specialization (a

la Maranget) on map patterns, each map is effectively extended to the same size in order to

keep the number of columns in the specialized pattern matrix the same. Such an approach

can potentially be applied to pattern matching on record subtypes. But it is somewhat

tedious in the presence of ad-hoc unions and deep record subtypes.

MLPolyR [15] supports both extensible matching and record extensions, but ap-

pears to support pattern matching only among variants and not arbitrary types. Pattern

compilation is performed by mapping cases to records of functions and variants to functions

that take (converted) cases as input. It is unclear whether this approach can be extended

to support arbitrary types. Garrigue explores the implementation of polymorphic variants

in [30]. Tags for variants are created by hashing the variant’s label; a type error being

emitted if there are hash collisions. This scheme is not easily extensible to ad-hoc unions

of arbitrary types like in TinyBang Core. Neither system appears to handle deep and wide

pattern matches with any degree of efficiency.

8.2 Object-Oriented Dispatch

Dynamic dispatch in object-oriented languages is a well-studied problem. To

achieve late binding and dispatch, the runtime system builds and maintains a dispatch-

ing data structure such that a query can efficiently find the appropriate implementation for

a message, based on the dynamic type of the receiver. In a language like C++, virtual

function tables (VFT) serve this purpose, supporting both efficient creation and query [53].
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This is more challenging in the case of scripting languages, most of which sup-

port features like duck typing and are dynamically typed. The simple VFT model is no

longer possible. Attribute and method lookup may require a hashing scheme, though some

optimization is possible using caches.

If global analysis is possible, as is the case with languages like Smalltalk more

sophisticated techniques become applicable. For example, class hierarchy analysis [22],

enables the monomorphization of methods which have no overloads. Dispatch, in many

cases, can be made more efficient with the use of tables or decision trees. The former

involves constructing a large dispatch matrix, with objects on one axis, methods on the

other and code pointers as the content and dispatching based on that. Tables are usually

sparse and techniques exist to compress them to be more manageable [23]. Decision tree

based approaches, on the other hand, encode the potential set of receivers in to an easily

searchable binary tree. Dispatch is implemented by walking down this decision tree [56].

TinyBang supports a variant-based object model with the ability to functionally

extend objects [40]. OO dispatch, in this model, relies on the underlying pattern matching

implementation of TinyBang and can benefit from any optimizations introduced by our

tag system. The dispatch semantics of Tagged TinyBang Core is akin to the table based

approach above. However our tables are compact and can potentially be elided. Our

semantics also incorporates complex pattern matching in to the dispatch system; the feature

does not usually apply to traditional OO languages. On the other hand, constructing and

extending objects in our system introduces a small overhead for adaptive tag assignment.
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8.3 Heterogeneous Cases

Functions in TinyBang can have patterns attached to them. The onioning operator

allow such functions to be concatenated in to compound functions with support for asym-

metric dispatch. This can be considered a generalization of first class cases from MLPolyR

[15] where we have eliminated both the requirement of writing branches in CPS as well

as the phase distinction between case construction and use. In TinyBang Core, for sim-

plicity, we have chosen to eliminate compound functions and use case statements instead.

Our case statement can be considered a simplification of compound functions where the

set of component functions are fixed. Unlike traditional ML-style languages, we allow our

branches to return differing types and our system is capable of inferring precise types in the

vein of conditional constraints [11, 44].

Interestingly the TinyBang Core language does not appear to suffer from the union

elimination problem [25] in the absence of conjunction patterns. However our definition is

mostly future proof: it uses TinyBang’s notion of filtered types to perform union elimination

and induce path sensitivity; further the compatibility relation is structured in such a way as

to avoid eliminating a given union more than once. Filtered types have some similarities to

refinement types [27], but have a somewhat different semantics. The predicates for filtered

types are patterns which have limited expressiveness compared to the more general predicate

expressions common with refinement types. The latter is typically used to augment an

existing type system and prove properties about programs. In contrast, filtered types are a

fundamental part of our type system and serves to drive our type analysis.

97



Chapter 9

Future Work

Our long term goal is to improve the safety and performance of scripting languages,

especially typed scripting languages. The adaptive tag framework we presented in the

previous chapters is a first step towards this goal. In this section we discuss some potential

improvements to our theory and discuss how to adapt them to solve other problems in the

domain.

9.1 Improving the Tag Framework

A next step for the TinyBang Core project is to implement a code generator for

the tagged semantics and investigate its performance on a larger and more diverse set

of programs. The semantics implemented by the indexed interpreter is suitable for code

generation; but there are a number of potential enhancements that can both simplify the

porting and make it more efficient.
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9.1.1 Tag Tables to Tag Functions

A key part of the overhead induced by the tag framework is the cost of tag as-

signment. An observation we made back in Section 3.2.3 was that such operations can po-

tentially be encoded as simple functions which are significantly more efficient than lookup

tables. With the indexed interpreter, we have already reached part-way to this scenario: all

tag assignments are effectively mappings from integers to integers. Given that we have the

ability to chose an indexing scheme to suit our needs, it may be possible to come up with

one that has a mapping to simple and efficient functions.

We propose to solve this by encoding it as a satisfiability problem and using an

SMT solver. We give a brief overview of this process. Consider a clause like x1 = x2. The

indexed interpreter already has a process to generate a table that maps the tag sets from

x2 to those from x1. The same process can also be used to generate symbolic equations

that represent the mapping: i.e. equations of the form f(α1) = β1 . . . f(αm) = βn where f

is some, as yet undefined, function and α1 . . . αm represent the tag sets of x2 and β1 . . . βn

represent the tag sets associated with x1. We can now set up additional constraints to ensure

that {. . . , αi, . . . , βi, . . . } are integers and f is chosen from a set of well-known, efficient,

functions. We set up such equations and constraints for all clauses in the program and feed

it to an SMT solver. If the solver finds a solution, we can use its generated model to obtain

a viable tag assignment. We can fall back to a table-based approach if the solver fails to

find a solution.
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9.1.2 Tag and Tag Set Elision

In building our lookup tables (and the equations above), we consider all subsets

of tags associated with a given variable excluding the conflicting subsets. Even this is

something of a conservative approximation of the sets of tags that can appear at runtime.

For example, given Ω(x) = {int , ⋆}, the subset {int} appears to be a viable subset; but

in practice such a tag set does not occur at runtime since any operational semantics rule

that assigns the int tag will also assign the ⋆ tag. This is a fairly obvious issue that can

be easily patched up as a special case. However, in general, a more precise tracking of tags

can help reduce the subsets we have to consider.

An advantage of reducing this count is that lookup tables become much more

compact. The reduction in the number of tag sets also translates to fewer constraints on

the SMT solver and should make tag function inference (as described in the previous section)

more likely to succeed. Finally if the cardinality reduces to one for any variable, we can

completely elide the lookup table (and tag function) and directly assign the tag set to the

value at runtime. Reducing the number of tag sets offer similar advantages with regards to

the dispatch table as well. If the cardinality reduces to one, the test can be fully elided and

the code inlined.

A first step here is to implement a call-site polymorphism scheme in our type

system. Polymorphism “pries apart” a number of type variables that appear conjoined

in a monomorphic system. Correspondingly this splits the tag sets associated with each

variable which in turn reduces the number of tag sets we have to consider for each point

and offers better opportunities for tag elision. It is also worth considering a more flow
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1 let xtnd r = fun q * (‘A _ * ‘B x) -> q & ‘D x &
2 fun r * (‘B _ * ‘C y) -> r & ‘D y
3 in
4 let pick = choose { ‘A 3 & ‘B ‘C 0 } { ‘A 2 & ‘B 1 & ‘C 0}
5 { ‘B 5 & ‘C 4 } { ‘B 2 & ‘D 7 & ‘C 4}
6 in
7 xtnd pick

Listing 9.1: Layout Example

sensitive tracking of data, similar to [41], for extra precision.

9.2 Onions and Data Layout

One of our long term goals is to produce an efficient implementation of the Tiny-

Bang language. In the appendix we have presented the basic tag framework for TinyBang.

Most of augmentations we proposed in the previous section apply directly to that as well.

But the flexible nature of onions in TinyBang pose some interesting challenges to optimiza-

tion.

Consider the code in Listing 9.1. Let choose be a four-argument function that

arbitrarily selects a record from its input and returns. This program typechecks since for

any possible value of pick, there is a case branch that matches it. Any layout scheme

that we choose must be able to perform these operations in a reasonably fast and memory

efficient manner.

The canonical view of onions is as a binary tree where each interior node is an onion.

Data and functions reside at the leaves. Reifying onions in this form is easy to implement

and supports efficient construction, but has performance penalties if data accesses dominate

construction. In such cases it is much more preferable to have a “flat” layout such that data
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can be easily accessed via offsets. However this is not straightforward in the presence of

unions; at runtime, each “node” in the onion, can be one of a number of different types.

A naive solution would be to represent each record as a pointer to a block of the

form A B C D . Each slot stores the contents of the corresponding label and there are

as many slots as labels in the program. With this approach the last parameter to choose

above will look like this: • 2 4 7 ; Such a layout provides efficient access, but is a

significant waste of memory when the number of labels are large and records sparse.

A better solution is to tune the layout to each onion. However since an onion can

have totally different internal structures at runtime, it is necessary to detect its current

“form” before operations. As we discussed in Section 3.3.2, adaptive tags can be used to

detect the deep structure of values at runtime. By pre-computing layouts corresponding to

each viable runtime tag set, it is straightforward to implement data access for onions.

This approach has the advantage that it does not preclude non-flat layouts. This

additional flexibility is warranted: while flat layouts are extremely efficient in terms of

data access, in a language which encourages flexible structures and easy concatenation like

TinyBang, the copy penalty they incur can be prohibitive.

In general, the choice of data layout, given the nature of data structures that

abound in a scripting language, is significantly more complex than in a traditional statically

typed language [24, 20]. We propose to pose general layout as an optimization problem.

Starting from an initial, possibly sub-optimal, boxed, binary tree layout, we incrementally

improve it via a series of well-defined layout transformation that maintain the soundness

of the overall system. For example, the initial representation can be flattened partially or
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completely to improve access efficiency. Even when flattening is not a choice, layouts can

still be reordered to reduce the cost of frequently accessing specific fields. The choice and

sequence of operations can be determined by heuristics, by program analysis or by gathering

runtime profile information.
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Conclusions

Scripting languages have found widespread acceptance in both industry and academia

due to their flexibility and ease of use. However they offer few safety guarantees: most such

languages are dynamically typed, or at best gradually typed, and rely primarily on doc-

umentation and ambient knowledge to help programmers write correct code. The lack of

static type information is often a significant handicap on the scalability of these languages:

in addition to making them hard to debug, their performance also tends to suffer at scale.

Previous work from our lab has led to the design of TinyBang, a language with

expressiveness similar to scripting languages, but statically typed. In this dissertation we

presented a framework, based on the notion of adaptive tags, to exploit the analyzability

of typed scripting languages like TinyBang, with the goal of producing efficient implemen-

tations. Our framework addresses common data layout and dispatch related issues that

hamper the performance of scripting languages: it is capable of precisely tracking struc-

tural types across scripting programs and dispatching efficiently based on them; we have
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also outlined a scheme for utilizing the framework to compute data layouts.

We formalized the framework based on a simplified calculus, TinyBang Core. We

first defined the operational semantics and type system for the language. We then intro-

duced our framework in three steps: we defined an efficient operational semantics based on

the notion of adaptive tags; we then presented an extended type checker capable of gener-

ating tag information for a program and finally we discussed how to efficiently implement

the tagged semantics. We then showed that the alternative semantics is equivalent to the

original TinyBang Core semantics by demonstrating a bisimulation between the two.

We have presented our proof-of-concept implementation and discussed our valida-

tion strategy as well as results from some rudimentary benchmarking. While a significant

amount of optimization work, both standard and specialized to TinyBang Core, is required

to make the language truly efficient, preliminary results are promising. The implementa-

tion based on the adaptive tag framework performs slightly, but consistently better than

our reference implementation.
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Formalizing Tagged TinyBang

In this appendix, we formalize a tagged variant of the TinyBang language, which

we call Tagged TinyBang.

A.1 Grammar

We present the original TinyBang grammar in Figure A.1. This is same as Figure

3.1 of [39]. Our extensions to the grammar are in Figure A.2.

e ::= −⇀s expressions
s ::= x = v | x = x | x = x x clauses
v ::= () | l x | x & x | p -> e values

p ::= x\F patterns

F ::=
⨽−−⨼
f filter rule sets

f ::= x = φ filter rules
φ ::= () | l x | x * x filters

Figure A.1: TinyBang ANF Grammar
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? ::= () | π → t | ⋆ | l ? | ? & ? tag

Ω ::= x ↦→ ⨽−−⨼? var tag map
β ::= ⨽−−−−−−⨼x ↦→ ℘ binding
℘ ::= −⇀ρ binding path
ρ ::= 3 |←|→|↓ path element

∆ ::=
⨽−−⨼
ã dispatch table

ã ::= (x,
⨽−−⨼
? ,
⨽−−⨼
? , ℘, β) dispatch table entry

Figure A.2: Extensions to the TinyBang grammar

Ê ::= −−−−⇀
x = v̂ environments

v̂ ::= ⟨v,
⨽−−⨼
? ⟩ tagged values

Figure A.3: Extensions to the TinyBang Core grammar

A.2 Operational Semantics

Defining the operational semantics requires a slightly extended grammar, which

we define in Figure A.3

We define a well-formedness criteria for Ê below in the same vein as Definition

5.1.

Definition A.1 (Well-formed Tagged Environment). An expression Ê is considered well-

formed if it meets the following criteria:

• Ê is closed.

• Each variable is bound in at most one clause.

It is convenient to define a set of lookup operations on the environment:

Definition A.2 (Tagged TinyBang Environment Lookup). If Ê be a well-formed environ-

ment, then:

• Ê(x) = v̂ if and only if x = v̂ ∈ Ê.
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• Êv(x) = v if and only if x = ⟨v,
⨽−−⨼
? ⟩ ∈ Ê.

• Ê?(x) = ⨽−−⨼? if and only if x = ⟨v,
⨽−−⨼
? ⟩ ∈ Ê.

Many of our operational semantics rules need to select leaf tags from Ω. Further

many of the semantics rules “trim” the tag set down to what is available. We define two

simple functions for that purpose:

Definition A.3 (Leaf Tag Selection). We let Leaf(Ω, x) = {⋆ | ⋆ ∈ Ω(x)}.

Definition A.4 (Tag Trimming). We let Trim(Ω, x,
⨽−−⨼
? ) = (⨽−−⨼? ∩ Ω(x)) ∪ Leaf(x)

We now define a lookup operation, that takes as input a variable and a path, and

returns the value obtained by traversing the path with respect to the variable.

Definition A.5 (Tagged TinyBang lookup operation). We define Lookup(Ê, x, ℘) = v̂ as

follows:

Lookup(Ê, x,3) = v̂ iff x = v̂ ∈ Ê

Lookup(Ê, x, ↓ ∥℘) = v̂ iff x = ⟨l x′,
⨽−−⨼
? ⟩ ∈ Ê ∧ Lookup(Ê, x′, ℘) = v̂

Lookup(Ê, x,← ∥℘) = v̂ iff x = ⟨x′ & x′′,
⨽−−⨼
? ⟩ ∈ Ê ∧ Lookup(Ê, x′, ℘) = v̂

Lookup(Ê, x,→ ∥℘) = v̂ iff x = ⟨x′ & x′′,
⨽−−⨼
? ⟩ ∈ Ê ∧ Lookup(Ê, x′′, ℘) = v̂

We can then define an operation that utilizes this lookup to generate bindings

corresponding to pattern matches:

Definition A.6 (Tagged TinyBang bind operation). We define Bind(Ω, Ê, x1, β) to be

equal to [x = v̂ | x ↦→ ℘ ∈ β ∧ ⟨v,
⨽−−⨼
? ⟩ = Lookup(Ê, x1, ℘) ∧ v̂ = ⟨v, Trim(Ω, x,

⨽−−⨼
? )⟩]

We can now formally define the small step relation for the system as well as the

multi-step evaluation process:
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Function Value
v̂ = ⟨p -> e,

⨽−−⨼
? ⟩ ⨽−−⨼

? = {? | ? = Jp -> eKE ∧ ? ∈ Ω(x)} ∪ Leaf(Ω, x)
Ê ∥[x = p -> e] ∥ e −→1

δ Ê ∥[x = v̂] ∥ e

Empty Onion
v̂ = ⟨() ,

⨽−−⨼
? ⟩ ⨽−−⨼

? = {() | () ∈ Ω(x)} ∪ Leaf(Ω, x)
Ê ∥[x = ()] ∥ e −→1

δ Ê ∥[x = v̂] ∥ e

Label
v̂ = ⟨l x0,

⨽−−⨼
? ⟩ ⨽−−⨼

? = {l ?′ ∈ Ω(x1) | ?′ ∈ Ê?(x0)} ∪ Leaf(Ω, x1)
Ê ∥[x1 = l x0] ∥ e −→1

δ Ê ∥[x1 = v̂] ∥ e

Onion
v̂ = ⟨x0 & x1,

⨽−−⨼
? ⟩ ⨽−−⨼

? = {?′ & ?′′ ∈ Ω(x2) | ?′ ∈ Ê?(x0) ∧ ?′′ ∈ Ê?(x1)} ∪ Leaf(x2)
Ê ∥[x2 = x0 & x1] ∥ e −→1

δ Ê ∥[x2 = v̂] ∥ e

Assignment
x0 = ⟨v,

⨽−−⨼
? ⟩ ∈ Ê

⨽−−⨼
?′ = Trim(Ω, x1,

⨽−−⨼
? ) v̂ = ⟨v,

⨽−−⨼
?′ ⟩

Ê ∥[x1 = x0] ∥ e −→1
δ Ê ∥[x1 = v̂] ∥ e

Application
?f ∈ Ê?(x0) ?p ∈ Ê?(x1)

(x2, ?f , ?p, ℘, β) ∈ ∆ ⟨p -> e′, _⟩ = Lookup(Ê, x0, ℘) Ê′ = Bind(Ω, Ê, x1, β)
ς = α(x2,−) ς ′ = ς

⏐⏐
Ê′ ∥ e′ e′′ = ς ′(e′) Ê′′ = BFresh(ς ′, Ê′)

Ê ∥[x2 = x0 x1] ∥ e −→1
δ Ê ∥ Ê′′ ∥ e′′ ∥[x2 = RV(e′′)] ∥ e

Figure A.4: Tagged TinyBang operational semantics

Definition A.7 (Tagged TinyBang Small Step Semantics). We let Ê ∥ e−→
Ω,∆

1
δ
Ê′ ∥ e′ be the

relationship satisfying the rules in Figure A.4.

A.3 Tag Derivation

A.3.1 Type Compatibility

We first extend our grammar slightly in Figure A.5 to include ω, a multi-map from

type variables to tags and another multi-map from type variables to type variables to track
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ω ::= α ↦→ ? type tag multi-map
η ::= ⨽−−−−−−⨼

α ↬ α feeds

Figure A.5: Type compatibility extensions for Tagged TinyBang type grammar

the “feeds” as discussed in Section 5.4.2.

We also define an operator for manipulating prepending to a collections of paths:

Definition A.8. We let ρ⊞β = {α ↦→ (ρ ∥℘) | α ↦→ ℘ ∈ β}

Our formal definition of type compatibility is similar to Definition 5.6 from Tagged

TinyBang Core:

Definition A.9. We let α\C ∼ Π+◦ /Π+

Π− ↑↓◦ C ′ ▷ (?, ω, β, η) and τ\C ∼α
Π+◦ /Π+

Π− ↑↓◦ C ′ ▷

(?, ω, β, η) be the mutually defined relations satisfying the rules in Figure A.6.

The compatibility rules are an extension of the TinyBang type compatibility rules

from Figure 3.14 in [39]. The rules follow the same principles as in Figure 5.5; but TinyBang

also supports bindings which must be tracked. Further bindings introduce discontinuities;

so feeds must be tracked as well.

A.3.2 Pattern Matching

In TinyBang, the left hand side of an application is a compound function. The

semantics inspects the compound function, in a left-to-right order, and dispatches to the

first function that matches the function. The TinyBang type system has a corresponding

set of Type Application Matching rules (Chapter 3, Figure 3.15). We extend these rules to

also track tag information. Our formal definition of type application pattern matching is

defined as follows:
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Leaf
α\C ∼ ∅/∅

∅ ↑↓◦ ∅ ▷ (⋆, {α ↦→ ⋆}, ∅, ∅)

Type Selection
τ

⏐⏐Π+
1

Π−
1

<: α ∈ C τ\C ∼α
Π+◦ /Π+

1 ∪Π+
2

Π−
1 ∪Π−

2
↑↓◦ C ′ ▷ (?, ω, β, η) ω′ = ω ⊎ {α ↦→ ?}

α\C ∼ Π+◦ /Π+
2

Π−
2
↑↓◦ C ′ ▷ (?, ω′, β, η)

Binding
τ\C ∼α̊

Π+◦ /Π+

Π− ↑◦ C ′ ▷ (?, ω, β, η) C ′′ = {τ
⏐⏐Π+◦ ∪Π+

Π− <: α | α\Ψ ∈ Π+◦}
β′ = {α ↦→ [3] | α\Ψ ∈ Π+◦} η′ = {α̊ ↬ α | α\Ψ ∈ Π+◦}

τ\C ∼α̊
Π+◦ /Π+

Π− ↓◦ C ′ ∪ C ′′ ▷ (?, ω, β ∪ β′, η ∪ η′)

Empty Onion Pattern
τ\C ∼α̊

Π+◦
1 /Π+

1
Π− ↓◦ C ′ ▷ (?, ω, β, η) Π+◦

2 ∪Π+
2 = {() \Ψ}

τ\C ∼α̊
Π+◦

1 ∪Π+◦
2 /Π+

1 ∪Π+
2

Π− ↑◦ C ′ ▷ (?, ω, β, η)

Conjunction Pattern
τ\C ∼α̊

Π+◦
1 /Π+

1
Π−

1
↓◦ C ′ ▷ (?, ω, β, η) Π+◦

2 ⊆ {α′
1 * α′

2\Ψ | α′
1\Ψ ∈ Π+◦

1 ∧ α′
2\Ψ ∈ Π+◦

1 }
Π+

2 ⊆ {α
′
1 * α′

2\Ψ | α′
1\Ψ ∈ Π+

1 ∧ α′
2\Ψ ∈ Π+

1 }
Π−

2 ⊆ {α
′
1 * α′

2\Ψ | α′
1\Ψ ∈ Π−

1 ∨ α′
2\Ψ ∈ Π−

1 }

τ\C ∼α̊
Π+◦

1 ∪Π+◦
2 /Π+

1 ∪Π+
2

Π−
1 ∪Π−

2
↑◦ C ′ ▷ (?, ω, β, η)

Conjunction Weakening
τ\C ∼α̊

Π+◦
1 ∪Π+◦

2 /Π+
1 ∪Π+

2
Π−

1 ∪Π−
2

↓◦ C ′ ▷ (?, ω, β, η) Π+◦
2 ⊆ {αi\Ψ | i ∈ {1, 2} ∧ α1 * α2\Ψ ∈ Π+◦

1 }
Π+

2 ⊆ {αi\Ψ | i ∈ {1, 2} ∧ α1 * α2\Ψ ∈ Π+
1 }

Π−
2 ⊆ {αi\Ψ | i ∈ {1, 2} ∧ α1 * α2\Ψ ∈ Π−

1 }

τ\C ∼α̊
Π+◦

1 /Π+
1

Π−
1
↓◦ C ′ ▷ (?, ω, β, η)

Empty Onion
CtrPat(Π−)

() \C ∼ ∅/∅
Π− ↑◦ ∅ ▷ (() , ∅, ∅, ∅)

Function
CtrPat(Π−)

(π → t)\C ∼ ∅/∅
Π− ↑◦ ∅ ▷ (π → t, ∅, ∅, ∅)

Onion
α1\C ∼

Π+◦
1 /Π+

1
Π−∪Π+◦

2 ∪Π+
2
↑◦ C ′

1 ▷ (?1, ω1, β1, η1) α2\C ∼
Π+◦

2 /Π+
2

Π− ↑◦ C ′
2 ▷ (?2, ω2, β2, η2)

CtrPat(Π+◦
1 ∪Π+◦

2 ∪Π+
1 ∪Π+

2 ∪Π−) β = (← ⊞β1) ∪ (→ ⊞β2)

α1 & α2\C ∼α̊
Π+◦

1 ∪Π+◦
2 /Π+

1 ∪Π+
2

Π− ↑◦ C ′
1 ∪ C ′

2 ▷ (?1 & ?2, ω1 ⊎ ω2, β, η1 ∪ η2)

Label
α\C ∼ Π+◦ /Π+

Π−
1
↓◦ C ′ ▷ (?, ω, β, η) CtrPat(Π−

2 ) {l α′\Ψ ∈ Π−
2 } = ∅

l α\C ∼α̊
l Π+◦ /l Π+

(l Π−
1 )∪Π−

2
↑◦ C ′ ▷ (l ?, ω, ↓ ⊞β, η)

Figure A.6: Tagged TinyBang type compatibility relation
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Function Match
τ

⏐⏐Π+

Π− <: α0 ∈ C τ = π → α′\C ′ Sensible(τ, Π+, Π−, C)
α1\C ∼ {π}/∅

Π ↓◦ C ′′ ▷ (?p, ωp, β, η) ? = τ ω = {α0 ↦→ ?} ∪ ωp ℘ = [3]
α0 α1 ;Π {π}

C  α′\C ′ @ C ′′ ▷ (?, ?p, ℘, ω, η, β)

Function Mismatch
τ

⏐⏐Π+

Π− <: α0 ∈ C τ = π → α′\C ′ Sensible(τ, Π+, Π−, C)
α1\C ∼ ∅/∅

Π∪{π} ↓◦ ∅ ▷ (?p, ∅, ∅, ∅) ? = τ ω = {α0 ↦→ ?}

α0 α1 ;Π {π}
C # α′\∅ @ ∅ ▷ (?, ?p, ∅, ω, ∅, ∅)

Non-Function
τ

⏐⏐Π+

Π− <: α0 ∈ C τ not of the form π → t or α′
1 & α′

2
Sensible(τ, Π+, Π−, C) ? = τ ω = {α0 ↦→ ?}

α0 α1 ;Π1 ∅
C # α′\∅ @ ∅ ▷ (?, ⋆, ∅, ω, ∅, ∅)

Onion Left
τ

⏐⏐Π+

Π− <: α0 ∈ C

τ = α2 & α3 Sensible(τ, Π+, Π−, C) α2 α1 ;Π1 Π2
C  α′\C ′ @ C ′′ ▷ (?, ?p, ℘, ω, η, β)

?′ = ? & ⋆ ω′ = ω ∪ {α0 ↦→ ?′} ℘′ = (← ∥℘)
α0 α1 ;Π1 Π2

C  α′\C ′ @ C ′′ ▷ (?′, ?p, ℘′, ω′, η, β)

Onion Right
τ

⏐⏐Π+

Π− <: α0 ∈ C

τ = α2 & α3 Sensible(τ, Π+, Π−, C) α2 α1 ;Π1 Π2
C # α′

2\C ′
2 @ C ′′

2 ▷ (?, _, ∅, ω1, ∅, ∅)
α3 α1 ;Π1∪Π2 Π3

C � α′
3\C ′

3 @ C ′′
3 ▷ (?′, ?p, ℘′, ω2, η, β)

?′′ = ? & ?′ ω′ = ω1 ∪ ω2 ∪ {α0 ↦→ ?′′} ℘′′ = (→ ∥℘′)
α0 α1 ;Π1 Π2∪Π3

C � α′
3\C ′

3 @ C ′′
3 ▷ (?′′, ?p, ℘′′, ω′, η, β)

Figure A.7: Tagged TinyBang type application matching

Definition A.10. We let α0 α1 ;Π+ Π−
C � α′\C ′ @ C ′′ ▷ (?, ?p, ℘, ω, η, β) be the relation

satisfying the rules in Figure A.7.

A.3.3 Constraint Closure

For defining the constraint closure, we need to extend the grammar slightly. The

extra non-terminals are listed in Figure A.8. As in the case of Tagged TinyBang Core, the

extended constraint closure tracks four pieces of data: the set of constraints, the set of tags
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δ ::=
⨽−−−−−−−−−−−−−−⨼
(α, ?, ?, ℘, β) dispatch data

Ĉ ::= (C, ω, δ, η) augmented constraints

Figure A.8: Constraint Closure extensions for Tagged TinyBang type grammar

Transitivity
{τ

⏐⏐Π+

Π− <: α1, α1 <: α2} ⊆ C η′ = η ⊎ {α1 ↬ α2}

(C, ω, δ, η) =⇒∗
δ (C ∪ {τ

⏐⏐Π+

Π− <: α2}, ω, δ, η′)

Application
α0 α1 <: α2 ∈ C α0 α1 ;∅ Π

C � α′
1\C ′

1 @ C ′′
1 ▷ (?f , ?p, ℘, ω′, η′, β)

σ = Φ(α2,−) σ′ = σ
⏐⏐
C′

1∪C′′
1

α′
2\C ′

2 = σ′(α′
1\C ′

1)
C ′′

2 = TFresh(σ′, C ′′
1 ) δ′ = δ ∪ {(α2, ?f , ?p, ℘, β)} ω′′ = ω ∪ ω′ η′′ = η ∪ η′

(C, ω, δ, η) =⇒∗
δ (C ∪ C ′

2 ∪ C ′′
2 ∪ {α′

2 <: α2}, ω′′, δ′, η′′)

Figure A.9: Tagged TinyBang constraint closure

discovered so far, a set of dispatch entries and a collection of feeds. We formally define the

relation below:

Definition A.11 (Tagged TinyBang Core Constraint Closure). We let Ĉ =⇒1
δ Ĉ ′ be the

relationship satisfying the rules in Figure A.9.

We also define the notion of multiple constraint closure steps:

Definition A.12 (Tagged TinyBang Multiple Constraint Closure Steps). We define Ĉ0 =⇒∗
δ

Ĉn if and only if Ĉ0 =⇒1
δ Ĉ1 =⇒1

δ · · · =⇒1
δ Ĉn

We define a tag-closure operation on Ĉ which pushes tags back to the source of

the feed.

Definition A.13 (Tag Closure). We let Ĉ ↓ Ĉ ′ be the relation that satisfies the rules in

Figure A.10.

For convenience, we define an extended version of the initial derivation for Tagged
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α′ ↬ α ∈ η ? ∈ ω(α) ω′ = ω ⊎ {α′ ↦→ ?}
(C, ω, δ, η) ↓ (C, ω′, δ, η)

Figure A.10: Tagged TinyBang Tag Closure

TinyBang:

Definition A.14 (Tagged TinyBang Initial Derivation). We let JeKδ = (C, ∅, ∅, ∅) if and

only if α\C = JeKE.

Definition A.15 (Tagged TinyBang Complete Closure). We let Ĉn be a complete closure

of Ĉ0 if and only if there exists Ĉm which is the closure of Ĉ0 with respect to =⇒1
δ and Ĉn

is the closure of Ĉm with respect to ↓.

A.3.4 Deriving the Parameters

Once again we first define the notion of non-conflicting tags:

Definition A.16 (Non-Conflicting Tags). Two tags ? and ?′ are non-conflicting (? ↭ ?′)

if any of the following hold:

• ? = ?′

• ? = ⋆ or ?′ = ⋆

• ? = l?′′ and ?′ = l?′′′ and ?′′ ↭ ?′′′

• ? = ?1 & ?2 and ?′ = ?′
1 & ?′

2 and ?1 ↭ ?′
1 and ?2 ↭ ?′

2

Tag sets that occur at runtime cannot have conflicting tags in them. We define

the notion of non-conflicting tag sets formally:
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Definition A.17 (Non-Conflicting Tag Sets). A tag set ⨽−−⨼? is non-conflicting if and only if

for any {?1, ?2} ∈
⨽−−⨼
? , ?1 ↭ ?2.

Since the source of our data is the type system, our tables are all currently keyed

on type variables. However the operational semantics parameters Ω and ∆ are expected to

be keyed on program variables. So we need a mapping between the two. Assuming such a

mapping, we can finally define the two parameters for the operational semantics:

Definition A.18 (Parameters for Tagged TinyBang Operational Semantics). Given an

expression e and a mapping from program variables to type variables, M , let the complete

closure of JeKδ as per Definition A.15 be (C, ω, δ, η). Further let C be consistent. Then the

parameters are derived as follows:

• Ω = {x ↦→ ⨽−−⨼? |M(x) ↦→ ⨽−−⨼? ∈ ω}.

• Let α be a program point with an application lower bound. Let tf (α) be the applicable

tags on the left hand side of this application and let tp(α) be the applicable tags for the

right hand side; that is: tf (α) ≜ ω(α1) and tp(α) ≜ ω(α2) if and only if α1 α2 <: α ∈

C. Then ∆ = {x ↦→ (α,
⨽−−⨼
?f ,
⨽−−⨼
?p, ℘, β) | ∃M(x) ↦→ (α,

⨽−−⨼
?f ,
⨽−−⨼
?p, ℘, β) ∈ δ. ∃⨽−−⨼?f .∃⨽−−⨼?p. ?f ∈

⨽−−⨼
?f ∧ ?p ∈

⨽−−⨼
?p ∧

⨽−−⨼
?f ⊆ tf (α) ∧ ⨽−−⨼?p ⊆ tp(α) ∧ ⨽−−⨼?f and ⨽−−⨼?p are both non-conflicting}

We denote the derivation of parameters Ω and ∆ from e as the operation (∆, Ω) ↞M e.

A.4 The Bisimulation Property

As in the case of Tagged TinyBang Core, our ultimate goal is to show that Tagged

TinyBang bisimulates TinyBang: i.e. the two systems operate in lock-step and performs
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all the same computations. In this section, we present a theorem to this effect as well as a

series of supporting lemmas. Our structure largely follows Chapter 6.

To compare the two systems, we first need to define a notion of equivalence between

the environments similar to what we did for Tagged TinyBang Core:

Definition A.19. E ≈̇M e0 Ê if and only if e0 −→∗ E ∥ e for some e and there exists

(Ω, ∆) ↞M e0 such that e0−→Ω,∆

∗
δ
Ê ∥ e and the following conditions are met:

• |E| = |Ê| = n.

• For all i ≤ n, E(xi) = Êv(xi)

Then the theorem below states that if we execute a program using both the Tiny-

Bang and the Tagged TinyBang semantics, each system executes a small step if and only

the other does. Further if their environments were equivalent at the start, they remain

equivalent after the step. The formal statement is as follows:

Theorem 3 (Bisimulation of the TinyBang Operational Semantics). Let e0 be the ini-

tial program. Further let e0 −→∗ E1 ∥ e1 and e0−→Ω,∆

∗
δ
Ê1 ∥ e1 such that (Ω, ∆) ↞M e0

and E1 ≈̇M e0 Ê1. Then E1 ∥ e1 −→1 E2 ∥ e2 if and only if there exists Ê2 such that

Ê1 ∥ e1 −→1
δ Ê2 ∥ e2 and E2 ≈̇M e0 Ê2.

We present the lemmas in the following sections.

A.4.1 Bisimulation of Type Systems

The constraint closure relation of the extended type system is very similar to that

of TinyBang. We now define a bisimulation relation between the two:

Definition A.20. We let C ≈̇C0 (C, ω, δ, η) if and only if (C0, ∅, ∅, ∅) =⇒∗
δ (C, ω, δ, η)
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We use this relation to define a few lemmas that relate the two type systems. We

start with the bisimulation of the two compatibility relations:

Lemma A.21. α\C ∼ Π+◦ /Π+

Π− ↑↓◦ C ′ if and only if there exists fixed values of ?, ω, β and η

such that α\C ∼ Π+◦ /Π+

Π− ↑↓◦ C ′ ▷ (?, ω, β, η)

The relation α\C ∼ Π+◦ /Π+

Π− ↑↓◦ C ′ is defined in Chapter 3 of [39] as Definition 3.26.

We define a similar relation for application matching as well.

Lemma A.22. α0 α1 ;Π1 Π2
C � α′\C ′ @ C ′′ if and only if there exists fixed values of ?f , ?p,

ω, β and η such that α0 α1 ;Π1 Π2
C � α′\C ′ @ C ′′ ▷ (?f , ?p, ℘, ω, η, β).

The relation α0 α1 ;Π1 Π2
C � α′\C ′ @ C ′′ is specified by Definition 3.29 of [39].

For every TinyBang constraint closure, there is a corresponding closure in Tagged

TinyBang. We define two lemmas to this effect.

Lemma A.23. Let C1 ≈̇C0 Ĉ1. Then C1 =⇒1 C2 if and only if Ĉ1 =⇒1
δ Ĉ2 such that

C2 ≈̇C0 Ĉ2.

Lemma A.24. Given an initial constraint set C0, C0 =⇒∗ C if and only if there exists ω,

δ and η such that (C0, ∅, ∅, ∅) =⇒∗
δ (C, ω, δ, η) and C ≈̇C0 (C, ω, δ, η).

The constraint closure operation =⇒1 and =⇒∗ are given by Definitions 3.33 and

3.34 of [39].

This bisimulation allows us to define a simulation relation between the small step

semantics of TinyBang and the Tagged TinyBang type closure relation and also define a

lemma asserting the existence of the simulation.

Definition A.25 (Simulation). We let e ≼̇E M,C0 Ĉ if and only if Ĉ = (C, ω, δ, η), e ≼E M C

and C ≈̇C0 Ĉ. The simulation relation e ≼E M C, is defined as per Definition 4.2 in [39].
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Lemma A.26. If E1 ∥ e1 −→1 E2 ∥ e2 and E1 ∥ e1 ≼̇E1 M1,C0 Ĉ1, then there exists Ĉ2 and

M2 such that Ĉ1 =⇒1
δ Ĉ2 where E2 ∥ e2 ≼̇E2 M2,C0 Ĉ2.

A.4.2 Properties of the Tag Generation System

In this section we define general properties related to tag generation. Our first

lemma concerns the monotonicity of Tagged TinyBang Core’s constraint closure operation.

Lemma A.27. The constraint closure operation is monotonic on C, ω, δ and η. That is, if

(C0, ω0, δ0, η0) =⇒1
δ (C1, ω1, δ1, η1) =⇒∗

δ (Cn, ωn, δn, ηn), then C0 ⊆ C1 ⊆ Cn, ω0 ⊆ ω1 ⊆ ωn,

δ0 ⊆ δ1 ⊆ δn and η0 ⊆ η1 ⊆ ηn.

A.4.3 Properties of the Environments

As in Chapter 6, we define a series of lemmas that state that the operational

semantics rules do not throw away tags. They are conceptually similar to the lemmas from

Section 6.3, but are for TinyBang specific entities like labeled values and onions.

Lemma A.28. Let e0 be the initial program. Let e0 −→∗ E ∥ e and e0−→Ω,∆

∗
δ
Ê ∥ e such that

(Ω, ∆) ↞M e0 and E ≈̇M e0 Ê. Then given x = l x′ ∈ E and ? ∈ Ê?(x′), then l ? ∈ Ω(x)

implies l ? ∈ Ê?(x).

Lemma A.29. Let e0 be the initial program. Let e0 −→∗ E ∥ e and e0−→Ω,∆

∗
δ
Ê ∥ e such

that (Ω, ∆) ↞M e0 and E ≈̇M e0 Ê. Then given x = x1 & x2 ∈ E and ?1 ∈ Ê?(x1) and

?2 ∈ Ê?(x2), then ?1 & ?2 ∈ Ω(x) implies ?1 & ?2 ∈ Ê?(x).

Our final lemma in this section states that if a leaf tag (⋆) is present in Ω then it
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Slow Step
E′ = E ∥x = v

E ∥x = v ∥ e′ −→1 E′ ∥ e′

Figure A.11: Augmenting TinyBang with an extra rule

is always selected to be part of the value’s runtime tag set.

Lemma A.30. Let e0 be the initial program. Let e0−→Ω,∆

∗
δ
Ê ∥ e such that (Ω, ∆) ↞M e0.

Then, given x = ⟨v,
⨽−−⨼
? ⟩ ∈ Ê, if ⋆ ∈ Ω(x) then ⋆ ∈ ⨽−−⨼? .

A.4.4 Tag Propagation

The next lemma shows that a compatibility check in TinyBang induces a tag that,

given an equivalent run of Tagged TinyBang, appears in the tag set of the subject value.

Lemma A.31. Let e0 be the initial program. Let e0 −→∗ E ∥ e and e0−→Ω,∆

∗
δ
Ê ∥ e such that

(Ω, ∆) ↞M e0 and E ≈̇M e0 Ê. Further let E ∥ e ≼̇E M,C0 Ĉ where C0 = Je0KE. Then:

• If x ≼E M α and x\E ∼ P +◦ /P +

P − ↑↓◦ E′ then α\C ∼ Π+◦ /Π+

Π− ↑↓◦ C ′ ▷ (?, ω, β, η) such that

P +◦ ≼E M Π+◦ , P + ≼E M Π+ and P − ≼E M Π−. Further if ? ∈ Ω(x) then ? ∈ Ê?(x).

• If x = v ∈ E, v ≼E M τ and v\E ∼ P +◦ /P +

P − ↑↓◦ E′ then α\C ∼ Π+◦ /Π+

Π− ↑↓◦ C ′ ▷ (?, ω, β, η)

such that P +◦ ≼E M Π+◦ , P + ≼E M Π+ and P − ≼E M Π−. Further if ? ∈ Ω(x) then

? ∈ Ê?(x).

Comparing TinyBang and TinyBang Core operational semantics suffers from the

same issue as comparing TinyBang Core and Tagged TinyBang Core in Chapter 6: the

former has fewer rules than the latter. We introduce a no-op semantics rule to align the

two in Figure A.11.
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The next lemma states that tags are non-conflicting at runtime.

Lemma A.32 (Tags at runtime are non-Conflicting). If e0 −→∗
δ Ê ∥ e1 then for all x =

⟨v,
⨽−−⨼
? ⟩ ∈ Ê, ⨽−−⨼? is a non-conflicting tag set as per Definition A.17.

And finally we can state the first simulation lemma:

Lemma A.33. Let e0 be the initial program. Further let e0 −→∗ E1 ∥ e1 and e0−→Ω,∆

∗
δ
Ê1 ∥ e1

such that (Ω, ∆) ↞M e0 and E1 ≈̇M e0 Ê1. If E1 ∥ e1 −→1 E2 ∥ e2, then there exists Ê2 such

that Ê1 ∥ e1 −→1
δ Ê2 ∥ e2 and E2 ≈̇M e0 Ê2.

A.4.5 Uniqueness of Dispatch

This section develops a series of lemmas aimed at showing that for every step taken

by Tagged TinyBang there is a corresponding step in TinyBang. Given a consistent set of

constraints, TinyBang will not be stuck. So we are effectively trying to show the uniqueness

of the step. Demonstrating this for Tagged TinyBang is significantly harder than for Tagged

TinyBang Core due to the high degree of non-determinism in the type compatibility and

application matching rules. We divide the problem in to more manageable chunks:

• Our first set of lemmas attempt to reduce the effect of this non-determinism by demon-

strating that these proof trees still have some well-defined sub-structures.

• The next set of lemmas state that compatibility proof trees on the same data, pro-

ducing non-conflicting tags, will match the same function and produce identical set

of bindings. We state a similar property for application matching as well.

• Finally we state the second simulation lemma - that for every step taken by Tagged

TinyBang there is a corresponding step in TinyBang.
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Our first lemma states that there are no compatibility proof trees where the neg-

ative and positive pattern sets overlap.

Lemma A.34 (No Compatibility with Conflicting Patterns). If (Π+◦ ∪Π+) ∩Π− ̸= ∅, then

there are no type compatibility proof trees of the form α\C ∼ Π+◦ /Π+

Π− ↑↓◦ C ′ ▷ (?, ω, β, η).

Before we move on to the next lemma, we need to introduce a few definitions. The

first one is that of well-formed pattern sets. Palmer [39] defined the notion of well-formed

patterns: roughly patterns that do not have free variables and have a unique lower bound

per variable. We use this definition as a basis to define well-formed pattern sets.

Definition A.35. A pattern set Π is well-formed if and only if for all {π, π′} ⊆ Π both π

and π′ are well-formed patterns and any type variable α that appears as an upper bound

to a filter constraint in π does not appear as an upper bound to a filter constraint in π′.

For example, a pattern set: {α1\Ψ, α2\Ψ} is well-formed, however the pattern

{α1 * α2\Ψ, α1\Ψ, α2\Ψ} is not.

Well-formedness of pattern sets is a strong property which we cannot maintain

throughout a compatibility check: during the conjunction elimination process, the pattern

sets are not necessarily well-formed. However a weaker form is sufficient to prove some

initial properties. But this needs an additional definition - that of BindVars. This is

essentially the set of pattern variables that are expected to bind at the current position.

Definition A.36 (Binding Variables). We let BindVars be defined by the rules below:

BindVars(α\Ψ) = {α} ∪BindVars(α1\Ψ) ∪BindVars(α2\Ψ) if α1 * α2 <: α ∈ Ψ

BindVars(α\Ψ) = {α} if α1 * α2 ≮: α ∈ Ψ
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Definition A.37 (Binding Variables on Pattern Sets). We extend BindVars to operate

on pattern sets: i.e. BindVars(Π) =
⋃
{BindVars(α\Ψ) | α\Ψ ∈ Π}

This allows us to give a definition of weakly well-formed pattern sets:

Definition A.38 (Weakly Well-Formed Pattern Sets). Given a pattern set Π, let Π′ =

{α\Ψ | α′\Ψ ∈ Π ∧ lα <: α′ ∈ Ψ}. Then Π is weakly well-formed if and only if all of the

following conditions are met:

• Each pattern in Π is well-formed

• No element of BindVars(Π) appears as an an upper bound in Π′

• Π′ is weakly well-formed

One of the primary sources of non-determinism in type compatibility is conjunction

elimination: not only are there multiple rules that can apply at each point, it is also

possible to repeatedly apply a series of rules without “making progress”. This is problematic

when attempting to prove properties between compatibility proofs (say, their equivalence

under some conditions). So our first task is to work around this by showing that for any

compatibility proof tree, there is a related proof tree where all conjunction patterns and

superflous empty onion patterns have been eliminated. Note that this proof tree is not

guaranteed to be fully deterministic; it can still contain repeated applications of certain

rules; however in the absence of conjunction patterns they are much easier to reason about.

First a note on notation: we write α1 * α2 ≮: α to indicate ∄α1, α2. α1 * α2 <: α in

the set under consideration.

We now define the Crunch operation that deeply destructs a conjunction pattern
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and eliminates empty onion patterns:

Definition A.39 (Crunching Patterns). We let Crunch be defined by following rules:

Crunch(() \Ψ) = ∅

Crunch(α1 * α2\Ψ) = Crunch(α1\Ψ) ∪Crunch(α2\Ψ)

Crunch(α\Ψ) = {α\Ψ} (for all other cases)

We overload the above definition of Crunch to sets of patterns as follows:

Definition A.40 (Crunching Pattern Sets). We extend Crunch such that it works over

pattern sets: i.e. Crunch(Π) =
⋃
{Crunch(α\Ψ) | α\Ψ ∈ Π}

Conjunction patterns in the negative space introduce a more subtle challenge. It

is sufficient to show anti-match against some sub-component(s) and not all of them. We

will capture this using a slightly different relation Shred. First a definition of Shred for

patterns:

Definition A.41 (Shredding Patterns). We let Shred be defined by the rules below:

Shred(α1 * α2\Ψ) = Shred(α1\Ψ) ∪ Shred(α2\Ψ)

Shred(α\Ψ) = {α\Ψ} (for all other cases)

We now extend Shred to sets of patterns. Notice that Shred(Π) is a relation

and not a function.

Definition A.42 (Shredding Pattern Sets). We extend Shred such that it works over

pattern sets:

Shred({π1 · · ·πn}, Π′) iff ∃Π1 · · ·Πn.∀1 ≤ i ≤ n. Πi ⊆ Shred(πi) ∧Πi ̸= ∅ ∧Π′ =
⋃
n

Πi

We now define predicates that indicate whether further Crunch is needed:
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Definition A.43 (Crunchable Pattern Sets). We define CanCrunch by the rules below:

CanCrunch(Π) iff

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∃α\Ψ ∈ Π. () <: α ∈ Ψ or

∃α\Ψ ∈ Π. α1 * α2 <: α ∈ Ψ for some α1, α2

And similarly for Shred:

Definition A.44 (Shreddable Pattern Sets). We define CanShred as follows:

CanShred(Π) iff ∃α\Ψ ∈ Π. α1 * α2 <: α ∈ Ψ for some α1, α2

Our next major lemma states that for any type compatibility proof there is a

corresponding proof where the match-patterns have been completely “crunched” and the

anti-match patterns have been fully “shredded”.

Lemma A.45 (Conjunction Elimination). For any compatibility proof, the following state-

ments hold:

• If τ\C ∼α̊
Π+◦

1 /Π+
1

Π−
1
↓◦ C ′ ▷ (?, ω1, β1, η1) and Π+◦

1 is weakly well-formed, then there

exists τ\C ∼α̊
Π+◦

2 /Π+
2

Π−
2
↑◦ C ′′ ▷ (?, ω2, β2, η2) such that Π+◦

2 = Crunch(Π+◦
1 ), Π+

2 =

Crunch(Π+
1 ), Shred(Π−

1 , Π−
2 ) and β1 = β2 ∪ β′ where β′ = {α ↦→ [3] | α ∈

BindVars(Π+◦
1 )}.

• If τ\C ∼α̊
Π+◦

1 /Π+
1

Π−
1
↑◦ C ′ ▷ (?, ω1, β1, η1), Π+◦

1 is weakly well-formed and at least one

of CanCrunch(Π+◦
1 ), CanCrunch(Π+

1 ) and CanShred(Π−
1 ) is true, then there ex-

ists τ\C ∼α̊
Π+◦

2 /Π+
2

Π−
2
↑◦ C ′′ ▷ (?, ω2, β2, η2) such that Π+◦

2 = Crunch(Π+◦
1 ), Π+◦

2 =

Crunch(Π+
1 ), Shred(Π−

1 , Π−
2 ) and β1 = β2 ∪ β′ where β′ = {α ↦→ [3] | α ∈

BindVars(Π+◦
1 −Π+◦

3 )} for some Π+◦
3 ⊆ ImmElim(Π+◦

1 ).

Our next set of lemmas focus on the uniqueness of type compatibility results given
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that they produce non-conflicting tags. Comparing two proof trees is non-trivial. But we

are going to chip away at this problem by demonstrating that in certain common situations,

the tags generated conflict with each other and thus need not be considered. First we need

a definition of shallow non-conflict of types: essentially types that have the same “shape”

in a shallow sense.

Definition A.46 (Shallow Non-Conflict). Two types τ and τ ′ are in shallow non-conflict

(the relation ≍) in the following cases:

• τ = () and τ ′ = ()

• τ = int and τ ′ = int

• τ = l α and τ ′ = l α′ for any α and α′

• τ = α1 & α2 and τ ′ = α′
1 & α′

2 for any α1, α2, α′
1 and α′

2.

• τ = π → t and τ ′ = π → t

In all other cases the types shallow conflict; i.e. τ ̸≍ τ ′.

If two type compatibility proof trees are based on shallowly-conflicting subject

types, we argue that the two proof trees produce conflicting tags.

Lemma A.47 (Conflicting tags on conflicting types). Suppose we have τ\C ∼α̊
Π+◦

1 /Π+
1

Π−
1
↓◦

C ′′ ▷ (?, ω, β, η) and τ ′\C ∼α̊
Π+◦

2 /Π+
2

Π−
2
↓◦ C ′′′ ▷ (?′, ω′, β′, η′) and τ ̸≍ τ ′, then ? ↭̸ ?′.

Our next lemma states that given two type compatibility proof trees such that

there is an overlap between the positive patterns of one and the negative patterns of the

other, then the two proof trees have conflicting tags.
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Lemma A.48 (Conflicting tags with conflicting patterns). If α\C ∼ Π+◦
1 /Π+

1
Π−

1
↓◦ C ′ ▷ (?, ω, β, η),

α′\C ∼ Π+◦
2 /Π+

2
Π−

2
↓◦ C ′′ ▷ (?′, ω′, β′, η′) and at least one of the following holds: Π+◦

1 ∩Π−
2 ̸= ∅ or

Π+◦
2 ∩Π−

1 ̸= ∅, then ? ↭̸ ?′.

The next main lemma states that two compatibility proofs with non-conflicting

tags will have the same bindings.

Lemma A.49 (Unique compatibility). Suppose α\C ∼ Π+◦ /Π+
1

Π−
1
↓◦ C ′ ▷ (?, ω, β, η), α′\C ∼

Π+◦ /Π+
2

Π−
2
↓◦ C ′′ ▷ (?′, ω′, β′, η′) where Π+◦ is well-formed and ? ↭ ?′ then β = β′.

We also state that two application matching proofs with non-conflicting tags will

match the same function and have the same bindings.

Lemma A.50 (Unique Pattern Matching). Suppose α0 α1 ;Π Π1
C  α′

1\C ′
1 @ C ′′

1 ▷ (?f , ?p, ℘, ω, η, β)

and α2 α3 ;Π Π2
C  α′

3\C ′
3 @ C ′′

3 ▷ (?′
f , ?′

p, ℘′, ω′, η′, β′) and further suppose ?f ↭ ?′
f and

?p ↭ ?′
p, then ℘ = ℘′ and β = β′.

Finally we can state our second simulation lemma:

Lemma A.51. Let e0 be the initial program. Further let e0 −→∗ E1 ∥ e1 and e0−→Ω,∆

∗
δ
Ê1 ∥ e1

such that (Ω, ∆) ↞M e0 and E1 ≈̇M e0 Ê1. If Ê1 ∥ e1 −→1
δ Ê2 ∥ e2, then there exists E2 such

that E1 ∥ e1 −→1
δ E2 ∥ e2 and E2 ≈̇M e0 Ê2.

The above lemmas are sufficient to prove the bisimulation between TinyBang and

Tagged TinyBang. We restate the theorem:

Theorem 3 (Bisimulation of the TinyBang Operational Semantics). Let e0 be the ini-

tial program. Further let e0 −→∗ E1 ∥ e1 and e0−→Ω,∆

∗
δ
Ê1 ∥ e1 such that (Ω, ∆) ↞M e0

and E1 ≈̇M e0 Ê1. Then E1 ∥ e1 −→1 E2 ∥ e2 if and only if there exists Ê2 such that
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Ê1 ∥ e1 −→1
δ Ê2 ∥ e2 and E2 ≈̇M e0 Ê2.
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