
A Practical, Typed Variant Object Model
Or, How to Stand On Your Head and Enjoy the View

Pottayil Harisanker Menon Zachary Palmer Alexander Rozenshteyn Scott Smith
The Johns Hopkins University

{pharisa2, zachary.palmer, arozens1, scott}@jhu.edu

Abstract
Traditionally, typed objects have been encoded as records; the fields
and methods of an object are stored in the fields of a record and
projected when needed. While the dual approach of using variants
instead of records has been explored, it is more challenging to type:
the output type of a variant case match must depend on the input
value; this is a form of dependent typing.

In this paper, we construct a variant-based encoding of objects
which is statically typeable and which improves on the flexibility
of typed object models in several dimensions: messages can be
represented as simple first-class data, object extension is more
generally typeable than in previous systems and, arguably, a better
integration of objects and functions is obtained.

This encoding is possible due to the features of our new core
language, TinyBang, which incorporates a subtype constraint type
inference system with several novel extensions. We develop a gen-
eralized notion of first-class cases – functions with an inherent pat-
tern match that are composable – and we extend previous notions of
conditional constraint types to obtain accurate typings. For added
flexibility, TinyBang’s record-like structure is type-indexed, mean-
ing data can be projected based on its type alone. Our record struc-
ture’s concatenation operator is asymmetric by default, naturally
supporting object extension. Finally, we develop a refined notion
of parametric polymorphism which aims to achieve a good combi-
nation of flexibility and efficiency of inference.

1. Introduction
Typed objects today sit on a foundation of records and subtyping:
object members are stored in record fields and are projected on
access, update, or invocation [9]. While many formalizations of
typed objects are direct and not defined by a translation to records
[1], they are in spirit not far from this underlying record view.

While records have been the most common form of encoding,
there is a well-known duality between records and variants which
means tagged variants and a match/case over them can also be
used to encode objects. This variant encoding has been effectively
used in dynamically-typed settings: an object is a function which
receives a message in the form of a variant, matches on that variant,
and executes the appropriate branch of code. Instead of invoking
a method by projecting a foo field from a record and passing
arguments to the result, one passes a Foo(. . .) message to the
object and allows the object to invoke the appropriate function. The
variant-based encoding has the advantage of representing object
messages as first-class data that can be directly manipulated. This
view is the object model of actors [3] and is the most natural
for distributed objects since the packet data being sent across the
network to a remote object is directly realized as a variant.

Unfortunately, it is well-known that the variant-based encoding
of objects is difficult to type; all languages currently supporting a

variant-based view of objects are dynamically typed. The root of
the typing problem is that a match expression’s cases are generally
required to each produce the same type, meaning all methods of
the encoded objects would have to have the same return type to
typecheck (ouch!). In the record-based encoding, record fields are
heterogeneously typed and so are not afflicted in this way. So while
the duality is perfect in the dynamically-typed setting, it is not
perfect using standard type theory.

In this paper, we present a small core language, TinyBang, in
which a variant-based encoding of objects is typeable. TinyBang
improves on the flexibility of typed object models in several dimen-
sions. We can represent messages as simple first-class data; exist-
ing work on first-class message typing generally requires messages
to be “frozen” under a function abstraction whereas our messages
can be direct tagged data. Also, object extension is more generally
typeable than in previous type theories for extensible objects; this
results in an arguably better integration of objects and functions.

In order to achieve these expressiveness advantages, TinyBang
contains several novel approaches to record/variant syntax and typ-
ing. The variants and records are different enough from the standard
variety that we elect to use different names: onions are our record-
like constructor, and scapes1 are the variant match/case destructor.
Onions and scapes combine and improve on several language de-
sign ideas, including the concepts of first-class cases, dependent
pattern types, type-indexed records, and asymmetric concatenation.
A high-level overview of these features is as follows.

Scapes: generalizing first-class cases Traditional case/match
statements are monolithic blocks that lack an explicit composition
operator on case constructs. Such a composition is key to encoding
objects as variants because, if objects are case matches on mes-
sages, object extension/subclassing/mixin is case composition.

The solution is a (typed) notion of first-class cases, which has
been explored previously in [6]. There, a construct ⊕ is defined
for extending a case with an additional single clause. Our scapes
generalize first-class cases by supporting composition of arbitrary
case expressions, not just the addition of one clause. In the record
analogy, this is like the difference between extension of a record
by a single field and a generalized record append. Since their case
extension is only adding case clauses to the end of an existing
case, it cannot model inheritance or mixins: the former requires
added methods to be higher-priority than existing ones and the
latter appends of two sets of methods rather than adding a single
method to a set. So, we believe our scapes offer the first high-level
algebraic case composition operator which can directly support
object inheritance for the variant encoding of objects.

Less related is the Pattern Calculus [13], which is a more fun-
damental algebra in that patterns themselves are first-class entities
separate from the code to be executed in case of a match. How-

1 A scape is the green, leafless stem of an onion that grows above the ground.

1 2012/9/20

ever, variable bindings in this calculus are extremely complex; we
therefore elect to make the case clause our level of abstraction.

Dependent pattern types A weak form of dependent type is nec-
essary to address the need for heterogeneity in case branches, the
most fundamental problem existing type systems have with typing
the variant object encoding. A case branching on multiple variants
needs to return a type based on the particular value of the variant
that arrives at runtime, in particular based on which tag the vari-
ant has. Our dependent pattern types solve this problem. They are
weakly dependent since they depend only on the tag and not more
detailed information from the value; the advantage of their weak-
ness is that type inference is still decidable.

Our approach is a generalization of the conditional constraints
originating in [5] and elaborated in [18]. Conditional constraints
partly capture this dependency but only locally and so lose the de-
pendency information in the presence of side effects. Our depen-
dent pattern types fully capture the dependency.

Onions: type-indexed records supporting asymmetric concate-
nation and object extension A type-indexed record is one
for which contents are projected using types rather than la-
bels [22]. For example, consider the type-indexed record
{foo = 45; bar = 22; (); 13} which implicitly tags the un-
tagged elements () and 13 with their types. Projecting int from
this record would yield 13 (as the other integers are already la-
beled). Similarly, one can project unlabeled functions from a type-
indexed record. Our onions are a form of type-indexed record. This
added flexibility is handy in many situations as will be seen below.

Additionally, since (untagged) functions can be placed in our
onions, we can re-use the onion record structure to hold our scape
clauses and avoid the need for two different extension operations
as found in [6]. As we alluded above, asymmetric concatenation
is the key to composing scapes and thus properly defining inheri-
tance and overriding; onions thus support asymmetric concatena-
tion as the default. Asymmetric record concatenation was initially
proposed by Wand for modeling inheritance [27], but difficulties in
obtaining principal types in unification-based type inference [26]
caused a switch in research focus to symmetric notions of record
concatenation, which unfortunately are not amenable to modeling
the overriding of methods. In standard record-based encodings of
inheritance [9], there is no first-class record extension operation; in-
heritance requires the superclass to be known statically. This is im-
plicitly a consequence of the difficulty of typing asymmetric record
extension. Dynamically-typed OO languages have explored first-
class object extenders to good benefit; the use of typed asymmetric
record concatenation can bring this flexibility to the typed world.

There has been work developing type systems that support more
flexible notions of object extension [8, 20] and our presented object
encoding builds on this work. They define a phase transition where
objects are initially open for extension but closed for messaging
and can transition to sealed objects open for messaging but perma-
nently closed for extension. This approach allows for more flexible
programming patterns than standard class/inheritance object con-
struction. Here we show for the first time how this approach may be
generalized to support the (functional) extension of already-sealed
objects, bringing fundamentally new dynamic-style object flexibil-
ity to a statically-typed domain.

Synergy Each of these features has some precedent in the liter-
ature and in each we have made improvements. The main claim
of this paper is that the combination of this set of features yields
a highly expressive language in which many paradigms of object-
oriented programming can be encoded in an extremely lightweight
fashion. Along with supporting the variant-based encoding of ob-
jects, it naturally supports functional object extension, mixins, as

well as new programming patterns not even imaginable when wear-
ing the straitjacket of a fixed object model.

Subtype constraint types TinyBang uses a subtype constraint in-
ference based type system [5, 12, 18]; in particular, it is most
closely related to [18]. Compared to [18], our system does not need
row types or conditional constraints to typecheck record concate-
nation, incorporates type-indexed records and first-class cases, and
contains a more general notion of conditional type and a more gen-
eral model of parametric polymorphism. Our approach to paramet-
ric polymorphism is based on flow analysis [23, 28] and improves
on previous work for expressive but efficient contour sharing.

While use of subtype constraint inference is a major thrust of
our broader research agenda, the concepts of this paper should not
fundamentally depend on use of a constraint inference type system.
We believe it should be possible to build a more standard declara-
tive polymorphic subtype system for TinyBang syntax; it would
need to include a form of dependent pattern type for scapes, as well
as an asymmetric record concatenation operation for onions.

Direct objects vs encoded objects plus translucent sugar While
this paper discusses how to encode object features in a non-OO lan-
guage [9] as opposed to directly giving types and runtime seman-
tics for objects [1], the fundamental ideas here could also be used to
give an object language a direct type system and runtime semantics.
We focus on encodings rather than direct semantics because, given
that our encodings are extremely lightweight, we believe it is pos-
sible to expose them directly to the programmer. In other words,
sugar can be directly added to the language for objects, classes,
inheritance, etc, but the sugar is so simple it is translucent: it is
possible for the programmer to look under the hood of the encod-
ing if needed and do some cool things not possible if the hood was
permanently locked.

Record vs variant encoding We believe the variant encoding has
been under-appreciated outside of the actor-like language commu-
nity and a main focus of this paper is showing it has potential as
a viable alternative in a typed context. The typed variant encod-
ing was previously explored by our lab in [24], but that paper only
showed how primitive objects could be encoded and was not fo-
cusing on a practical encoding of all object features such as self
awareness and object extension.

Outline In the next section, we give a high-level overview of how
TinyBang can encode objects. Section 3 contains the formal type
system for MicroBang, a subset of TinyBang containing the key
features but trimmed down for technical readability. We conclude
in Section 4.

2. Overview
In this Section we informally present our object encoding and make
the case that it is a good one.

2.1 Variant-Based Object Encodings
We begin with a very brief review of the standard record encoding,
and then we outline the main problem with the natural dual variant
encoding.

Record encodings Typed object encodings today generally en-
code objects into some form of record: an object consists of a record
with the labels representing the method names and the label values
are the functions which represent the method bodies, as in:

1 let o = { double = (fun x -> x + x);
2 inc = (fun x -> x + 1) } in . . .

Various different encoding methods are used for self-awareness
of such records and for representing fields [9]; we momentarily

2 2012/9/20

e ::= x | lbl e | e & e | e &-π | e &.π | e e TinyBang expressions
| e op e | defx = e in e |x = e in e
| () |Z | c | (&) |χ -> e TinyBang literals

q ::= ε | final | immut
op ::= + | - | == | <= | >=
x ::= (alphanumeric identifiers)

lbl ::= ‘[a-zA-Z0-9_]+

c ::= ’[ˆ\’]’ | ’\\’ | ’\’’ character literals
χ ::= x :χP |x |χP patterns
χP ::= tprim | lblχ | (χP & . . . &χP) | fun | any
π ::= tprim | lbl | fun projectors

tprim ::= char | int | unit

Figure 1: TinyBang Syntax

ignore these issues for simplicity. Invoking a method on a record-
encoded object involves projecting the function from the record and
invoking that function, o.double 4.

Variant encodings In a variant-based encoding of objects, the ob-
ject is instead a single dispatch function. Messages are passed di-
rectly to the dispatch function as variants and the dispatch function
cases on the message to choose the code to execute. The following
example shows a trivial variant-encoded object and a correspond-
ing message dispatch.

1 let obj = fun msg -> match msg with
2 | Say_Hello -> print_string "Hello!"
3 | Calc_Double x -> x + x
4 in obj (Calc_Double 2)

Unfortunately, the above variant-encoded object does not type-
check in most languages with a match or similar expression because
the branches are required to have the same result type. In the above,
the Say_Hello branch has type unit while the Calculate_Double

branch has type int. This property of the match expression im-
poses the debilitating requirement that all methods on an object
have the same return type. We solve this problem by inferring more
expressive dependent pattern types for match expressions; we dis-
cuss these types in the following Section.

2.2 Language Features for a Typeable Encoding
Our goal is to create a concise, typeable encoding for variant-
based objects. By concise, we mean that the desugared, encoded
version of objects should be legible and intuitive to a programmer.
TinyBang’s feature set is specifically selected to make such an
encoding viable. The syntax for TinyBang appears in Figure 1. This
figure should be used as a reference; we will discuss the semantics
of each production as necessary throughout this section.

In order to typecheck our encoding, we will use a subtype
constraint-based type system. The encoding we present is not in-
trinsically tied to such an approach, but subtype constraints pro-
vide a number of advantages. Principal typing, for instance, is triv-
ial. Also, unlike when row types are used, it is not necessary to
explicitly annotate type transition sites such as upcasts [21]. Most
importantly, subtype constraint systems are handily modified to ac-
commodate the more unusual language features we describe below.
We defer detailed discussion of our type system until section 3; this
section’s use of types remains informal for presentation clarity.

Scapes as methods We begin by considering the oversimplified
case of an object with a single method and no fields. This object
is not self-aware; self-awareness is discussed in Section 2.3. In the
variant encoding, such an object can be represented by a function
which matches on a single case. In the TinyBang grammar, note
that all functions are written χ -> e, with χ being the pattern to
match against the function’s argument. Combining pattern match

with function definition is also possible in ML and Haskell, but we
can go further: there is no need for any match syntax in TinyBang
since match can be encoded as a pattern and its application. We call
such pattern-matching functions scapes. For instance, consider the
following object and its invocation:

1 def obj = `double x -> x + x
2 in obj (`double 4)

The syntax `double 4 is a label constructor similar to a OCaml
polymorphic variant; as in OCaml, the expression `double 4 has
type `double int. The scape `double x -> x + x is a function
which matches on any argument containing a `double label and
binds its contents to the variable x. As a result, the above code
evaluates to 8. Note that the expression `double 4 represents a
first-class message; the entire object invocation is represented with
its arguments as a variant.

Unlike a traditional match expression, an individual scape is a
function, and is only capable of matching a single pattern. To ex-
press general patterns with scapes, individual scapes are appended
via our general data conjoiner, the onion operation &. This conjoiner
has many uses which are discussed below; for now we only use it
to append scapes together. Given two scape expressions e1 and e2,
the expression (e1 & e2) will conjoin the patterns together to make
a function with the conjoined pattern, and (e1 & e2) a will apply
the scape which has a pattern matching a; if both patterns match
a, the rightmost scape (e2) is given priority. We can thus write a
dispatch on an object with two methods simply as:

1 def obj = (`double x -> x + x)
2 & (`isZero x -> x == 0)
3 in obj `double 4

The above shows that traditional match expressions can be en-
coded by using the & operator to join a number of scapes: one
scape for each case. Our scape conjunction generalizes the first-
class cases of [6] to support general appending of arbitrary cases;
the aforecited work only supports adding one clause to the end and
so does not allow “override” of an existing clause or “mixing” of
two arbitrary sets of clauses. The above work does includes a con-
struct	 for removing a case clause containing a certain pattern and
we plan to add similar functionality to our system in the near future.

Dependent pattern types Critical to our typed encoding
is the fact that the scape extension is assigned a depen-
dent pattern type which remembers the association be-
tween input types and output types. The two scapes above
have the approximate2 types `double int → int and
`isZero int → boolean, respectively. While we could assign a
type (`double int) ∪ (`isZero int) → int ∪ boolean, this
type is imprecise; we want to retain the fact that, if a `double int

is passed to the scape, an int will always be returned.
The dependent pattern type assigned to the above scape

contains this relationship and loses no information; it is
(`double int → int) & (`isZero int → boolean). If
the scape is applied in the context where the type of message
is known, the appropriate result type is inferred; the above
method invocation, for instance, always has type int and not
type int ∪ boolean. Because of this dependent typing, match

expressions encoded in TinyBang may be heterogeneous; that is,
each case branch may have a different type in a meaningful way.
When we present our type system in Section 3, we show how these
dependent pattern types extend the expressivity of conditional
constraint types in a dimension critical for typing objects.

2 This section uses simplified types which improve readability by avoiding
constraint sets. The actual types used in TinyBang are more precise and are
described in Section 3.

3 2012/9/20

Onions as records We now show how our general onion data
conjoiner, &, can act like a record constructor. For example, here is
how we encode objects with methods that take multiple arguments:

1 def obj = (`sum (`x x & `y y) -> x + y)
2 & (`equal (`x x & `y y) -> x == y)
3 in obj (`sum (`x 3 & `y 2))

In the last line, the object is invoked with the argument
`sum (`x 3 & `y 2). As above, the `sum label merely wraps
another value. In this case, it is an onion between two labels;
this is pretty much a two-label record. This record-like onion
is passed to the pattern `x x & `y y; here, we use & to denote
pattern conjunction, which requires that the value must match
both subpatterns to match the overall pattern. When the argument
`sum (`x 3 & `y 2) is passed to the object, the formal parameters
x and y are bound to the values 3 and 2. Observe from this example
how there is no hard distinction in TinyBang between records and
variants: there is only one class of label and a 1-ary record is the
same as a 1-ary variant.

2.3 Self-Awareness and Resealable Objects
Up to this point objects have not been able to invoke their own
methods, so the encoding is incomplete. To address this, each scape
representing an object method now includes an additional parame-
ter component `self which binds a self variable. For instance, we
can encode a simple self-aware object as:

1 def obj = (`double x -> x + x)
2 & (`quad x & `self self ->
3 self `double (self `double x)) in
4 . . .

Messaging such an object requires the more cumbersome
obj (`quad 4 & `self obj) to send message `quad 4 to obj.
While this encoding is acceptable for simple uses of objects, it re-
quires the full type of the object to be known at the call site; in a
heterogeneous collection of objects, for instance, the exposed self-
types are artificially forced to be the same and legal messagings
may fail. This is a classic problem and we follow previous work [8]
to address this issue. In [8], an object exists in one of two states:
as a prototype, which can be extended but not messaged, or as a
“proper” object, which can be messaged but not extended. A proto-
type may be “sealed” to transform it into a proper object, at which
point it may never again be extended. This work was refined in [20]
to increase the granularity to a per-method basis: an object can be
proper in one method and prototypical in another, but a method
must still be sealed before the object can receive any messages of
that type, and sealed code may never again be extended.

Unlike the aforecited work, our encoding permits objects to be
resealed: sealed objects may be extended and then sealed again.
The flexibility of TinyBang allows the sharp phase distinction be-
tween prototypes and proper objects to be relaxed. All object ex-
tension below will be performed on sealed objects. The resulting
language is, to our knowledge, the first static type system with gen-
eral, flexible support for typing extensible objects. Object sealing
in TinyBang is defined directly as a function seal:

1 def fix = f -> (g -> x -> g g x)
2 (h -> y -> f (h h) y) in
3 def seal = fix (seal -> obj ->
4 obj & (msg ->
5 obj (`self (seal obj) & msg))) in
6 def sObj = seal obj in
7 . . .

The seal function above accepts an object as an argument and
returns that same object with a new message handler onioned onto
its right. This message handler matches every argument and will

therefore be used for every message the returned object receives.
We call this message handler the self binding scape because it adds
a `self component to every message sent to the object using a
reference to the object as it stood at the time the seal occurred. The
self binding scape also ensures that the value in `self is a sealed
object, allowing methods to message it normally. As a result of
sealing the object, a `quad 4 message send to sObj would produce
the same effect as a `self sObj & `quad 4 message sent to obj.

Extending previously sealed objects We now show how we can
improve on the previous object extension models to support ex-
tension of previously-sealed objects. In the self binding scape, the
value of self is onioned onto the left of the message rather than the
right; this choice is purposeful. Because of this, any value of `self
which exists in a message passed to a sealed object takes priority
over the `self provided by the self binding scape. While we do
not anticipate that programmers will want to manually specify a
self value, this overriding is what permits an object to be resealed.
Consider the following continuation of the previous code:

1 . . .
2 def sixteen = sObj `quad 4 in
3 def obj2 = sObj & (`double x -> x) in
4 def sObj2 = seal obj2 in
5 def four = sObj2 `quad 4 in
6 . . .

When this code is executed, the variable sixteen will hold the
value 16. Even after the `quad 4 message has been sent to sObj, we
may extend it; in this case, obj2 redefines how `double messages
are handled. sObj2 represents the sealed version of this new object.
When the `quad 4 message is sent to sObj2, it is passed to obj2

with a `self component; that is, sObj2 (`quad 4) has the same
effect as obj2 (`self sObj2 & `quad 4). Because obj2 does not
change how `quad messages are handled, this has the same effect
as sObj (`self sObj2 & `quad 4). sObj is also a sealed object
which adds a `self component to the left; thus this has the same
effect as obj (`self sObj & `self sObj2 & `quad 4). Because
any pattern match will always match the rightmost `self, the
latter-sealed object is provided in the `self added to the message
passed to the `quad-handling method and so any messages sent
from that method will be dispatched to an object which includes
the extensions in sObj2.

In summary, this encoding works because, while we “tie the
knot” on self using seal, we leave open the possibility of future
overriding of self; it is merely a record element and we support
record field override via asymmetric concatenation. Note that we
could easily define a final, non-extensible object to restrict exten-
sion for encapsulation purposes; this is achieved simply by adding
`self to the right of the argument rather than the left in seal.

One limit of this sealing approach is that sealed objects cannot
be extended to the left; thus, the following will not typecheck:

1 . . .
2 def obj = (`foo _ -> 1) in
3 def sObj = seal obj in
4 def obj2 = (`bar _ -> 2) & sObj in
5 def sObj2 = seal obj2 in
6 sObj2 `bar ()

The last line in the above code produces a type error. This is
because the `bar message is captured by the self-binding scape of
sObj and is then sent only to obj, where it will fail to match.

For examples in the remainder of the paper, we will assume that
seal has been defined as above.

Onioning it all together Onions also provide a natural mecha-
nism for including fields; we simply concatenate them to the scapes
that represent the methods. Consider the following object which
stores and increments a counter:

4 2012/9/20

o.x ∼= (`x x -> x) o

o.x = e1 in e2 ∼= (`x x -> x = e1 in e2) o
if e1 then e2

else e3
∼= ((`True _ -> e2) &

(`False _ -> e3)) e1

e1 and e2 ∼= ((`True _ -> e2) &
(`False _ -> `False ())) e1

Figure 2: Some Simple Syntactic Sugar

1 def obj = seal (
2 (`inc _ & `self self ->
3 (`x x -> x = x + 1 in x) self)
4 & `x 0) in
5 obj `inc ()

The above bears some description. Label construction implicitly
creates a mutable cell, so the `x label is used to store the counter’s
current value. The bottom line invokes the obj onion with an
increment message. The label `x 0 is not considered as part of this
invocation because it is not a scape; thus, the scape is considered
next (and is executed because its pattern matches the message).

In this body, self is passed to a scape matching `x x. Because
seal onions the target object onto the left of the self binding
method, all of the labels from the unsealed object are still visible
in the sealed object. Thus, self has the same `x label as obj and
the cell within obj’s `x label is bound to the variable x. The code
x = x + 1 in x is then executed; this increments the contents of
the `x label and returns the value 1. It should be noted that, in
TinyBang, variable expressions implicitly dereference cells; this is
the reason that x + 1 successfully typechecks.

It may seem unusual that obj is, at the top level, a heterogeneous
“mash” of a record field (the `x) and a function (the scape which
handles `inc). This is in fact perfectly sensible; onions are type-
indexed [22], meaning that they use the types of the values them-
selves to identify data. A simple case of type indexing is 4 & ()

which denotes the “onion” between the values 4 and (); such an
onion would have the type int & unit. Values are projected when
matched by a pattern, but they can also be implicitly projected;
for example, (4 & ()) + 1 evaluates to 5. Note that, unlike label-
indexed records, a value is equivalent to the 1-ary indexed record
containing it; 5 can be viewed as both the integer five as well as the
onion containing only the integer five.

In the case of overlap, the rightmost value is projected;
(7 & 3) + 1 is just 4 since the rightmost integer in the onion has
precedence. Scapes are a special case; instead of projecting the
rightmost scape, all scapes are projected and application selects
the rightmost scape which matches the argument. For instance, the
application (`x 0 & (int -> 4)) 1 implicitly projects the scape
from the onion. We believe this type-indexed view is useful be-
cause it leads to more concise code; it also makes it trivial to define
operator overloading, as we will discuss in Section 2.5 below.

The above counter object code is quite concise considering that
it defines a self-referential, mutable counter object using no syn-
tactic sugar whatsoever in a core language with no explicit ob-
ject syntax. But programmers would benefit from syntactic sugar
to capture common abstractions. We define a number of sugarings
in Figure 2 which we use in the examples throughout the remainder
of this section. It should be observed that this sugar is still translu-
cent in the sense we describe above: looking at desugared code is
not prohibitive for programmers desiring more control.

Using this sugar, the third line of the counter object above can
be more concisely expressed as self.x = self.x + 1 in self.x.

2.4 Typeable OO Abstractions
The previous section demonstrates a typed, variant-based encoding
for objects. In this section, we focus on a typed, variant-based en-

coding for common object-oriented abstractions such as mixins and
inheritance. Traditionally, these abstractions are defined in a first-
order sense; inheritance, for instance, can only be expressed if the
type of the parent class is statically known. In contrast, TinyBang’s
variant-based encoding can type higher-order abstractions.

We show our encoding in terms of objects rather than classes for
simplicity; applying these concepts to classes is straightforward.
We also work at the object and not class layer to show how Tiny-
Bang can easily express (functional) object extension. For clarity,
we use the above-defined sugar for projection.

Mixins The following example shows how a simple two-
dimensional point object can be combined with a mixin providing
extra methods:

1 def point = seal (
2 `x 0 & `y 0
3 & (`l1 _ & `self self -> self.x + self.y)
4 & (`isZero _ & `self self ->
5 self.x == 0 and self.y == 0)) in
6 def mixin = ((`nearZero _ & `self self ->
7 (self `l1 ()) <= 4)) in
8 def mixedPoint = seal (point & mixin) in
9 mixedPoint `nearZero ()

The point variable is our original point object. The mixin is
merely a scape which makes demands on the value passed as
self. Because an object’s methods are just scapes onioned together,
onioning the mixin into the point object is sufficient to produce the
resulting mixed point; the mixedPoint variable contains an onion
with x and y fields as well as all three scapes.

The above example is well-typed; parametric polymorphism is
used to allow point, mixin, and mixedPoint to have different self-
types. The mixin variable, the interesting part of the above code,
has roughly the type “(`nearZero unit & `self α) → boolean

where α is an object capable of receiving the `l1 message and pro-
ducing an int”. mixin can be onioned with any object that satisfies
these properties. If the object does not have these properties, a type
error will result when the `nearZero message is passed. For in-
stance, consider the following code in which the mixin is invoked
directly:

1 def mixin = seal (
2 (`nearZero _ & `self self ->
3 (self `l1 ()) <= 4)) in
4 mixin `nearZero ()

As we would expect, this code is not typeable because mixin, the
value of self, does not have a scape which can handle the `l1

message.
TinyBang mixins are first-class values; the actual mixing need

not occur until runtime. For instance, the following code selects
a weighting metric to mix into a point based on some runtime
condition cond.

1 def cond = (runtime boolean) in
2 def point = (as above) in
3 def w1 = (`weight _ & `self self ->
4 self.x + self.y) in
5 def w2 = (`weight _ & `self self ->
6 self.x - self.y) in
7 def mixedPoint = seal (point &
8 (if cond then w1 else w2)) in
9 mixedPoint `weight ()

Inheritance Inheritance can be encoded with similar ease. As
above, we show inheritance using objects rather than classes for
simplicity; applying these concepts to classes provides no signifi-
cant technical challenge. We consider the case in which we define
an extension of the above point object which includes a concept of
brightness in a field k:

5 2012/9/20

1 def point = (as above) in
2 def brightPoint = seal (
3 def super = point in
4 point & `k 255 &
5 (`isZero _ & `self self ->
6 self.k == 0 and
7 super (`isZero () & `self self)))
8 in brightPoint `isZero ()

As with mixins, we extend the object by onioning new scapes
and fields onto the right. But recall that the onioning operator & is
asymmetric; the rightmost scape matching a message is invoked.
Because this extended object has a scape which handles `isZero

messages, that scape will be invoked (as opposed to the original
`isZero-matching scape from point). Because we have bound the
parent object using the super variable, we may use it to statically
invoke point’s scape from within our new `isZero-handling scape.
To ensure that any messages it receives are potentially handled by
brightPoint methods, we explicitly pass to super our own self.

Classes and subclasses The above examples show mixins and
inheritance over objects. Classes are encoded by taking the view
that they are merely objects with construction methods for other
objects. The class for the point object above can be encoded as
below. This class also includes a counter which tracks the number
of points which have been created.

1 def Point = seal (
2 `created 0 &
3 (`new (`x x & `y y) & `self self ->
4 self .created = self .created + 1 in
5 seal (
6 `x x & `y y &
7 (`l1 _ & `self self -> self.x + self.y) &
8 (`isZero _ & `self self ->
9 self.x == 0 and self.y == 0)))) in

10 def point = Point `new (`x 1 & `y 2) in
11 . . .

Subclasses of classes can be defined in direct parallel to how
extension of objects was defined above.

As previously stated, a language in practice would benefit from
sugar to standardize and beautify class definitions. Nonetheless,
users of the class may wish to examine the desugared form of the
class definitions they create; as they are first-class values, these
classes may be passed as arguments to other routines, pattern-
matched, and so on. The lightweight encoding we have specified
in this section ensures that the desugared form of a class is legible.

2.5 Programming Patterns with Scapes and Onions
Scapes and onions as defined above are motivated by our typeable,
variant-based encoding for objects. However, this expressiveness
also permits us to code in patterns not strictly in line with tradi-
tional object-oriented concepts such as objects or inheritance. This
section provides a few examples of the emergent expressiveness of
TinyBang’s onions and scapes.

Operator overloading The pattern-matching semantics of scapes
also provide a natural definition of operator overloading; we merely
view an operator as an onion of scapes matching against the ar-
guments. Operator overloading generally refers to infix operators;
here we avoid complicating the discussion with matters of parsing
and consider overloading on functions only. We might originally
define negation on the integers as

1 def neg = x:int -> 0 - x in . . .

Later code could extend the definition of negation to include
boolean values. Booleans in TinyBang are represented as `True ()

and `False (). Because operator overloading assigns new mean-
ing to an existing symbol, we redefine neg to include all of the
behavior of the old neg as well as new cases for `True and `False:

1 . . .
2 def neg = neg
3 & (`True unit -> `False ())
4 & (`False unit -> `True ()) in . . .

Negation is now overloaded: neg 4 evaluates to -4, and
neg `True () evaluates to `False () due to how scape applica-
tion matches patterns. Furthermore, these operator overloadings
can be defined in a lexically scoped manner; thus, operators may
be defined to have different meanings in specific contexts.

The biggest problem with reasoning about operator overloading
in this fashion is that it admits the same overriding properties that
we described for objects. TinyBang can easily solve this problem
by including a symmetric concatenation operator &! which pro-
duces a type error if its arguments overlap.

Data sharing TinyBang has two additional operations over
onions: onion projection (&.) and onion subtraction (&-). Both of
these operations use a projector to keep (or discard) components of
an onion which match the projector. Projectors, represented in Fig-
ure 1 as π, are a shallow form of pattern with no variable bindings.
For instance, consider the following:

1 def a = `A 1 & `B 2 & `C 3 in
2 def b = a &- `A in
3 def c = a &. `A in
4 b.B = 4 in
5 . . .

In the above code, b lacks the `A component of a but is otherwise
structurally the same. c contains only the `A component of a and
nothing else. Because b is a structural copy of a (including copies
of all of the references in its labels), the assignment of a value to
b’s `B component also affects a; by the end of the above code, a is
`A 1 & `B 4 & `C 3.

The object-oriented analogue of these operations is being able
to strip away or extract fields from an object. This can result in a
form of data sharing. Consider the following code (in which we
leave objects unsealed for brevity):

1 def obj1 = seal (
2 `x 0 &
3 (`take _ & `self self ->
4 self.x = self.x + 1 in self.x)) in
5 def obj2 = seal (
6 (obj1 &. `x) & `y 2 &
7 (`sum _ & `self self ->
8 self.x + self.y)) in
9 . . .

In the above, obj1 is a counter object increments an internal
counter and returns that counter’s current state. obj2 is simply an
object which sums two numbers. However, the `x label in obj2

is drawn from obj1; they are, in essence, the same variable. This
means that obj2’s response to the `sum message will change each
time obj1 is sent a `take message.

Exceptions While the TinyBang grammar in Figure 1 does not
include a mechanism for exceptions, they are easy to incorporate.
Typical exception semantics can be obtained by (1) extending the
expression grammar with a throw expression and (2) extending
the pattern grammar with an exception form. This observation is
made in [7] and is a natural consequence of the first-class cases
defined in [6]. TinyBang improves upon this behavior. Just as
the aforecited extensible cases can extend a case with a single
clause but not generally concatenate cases, their exception handling
mechanism only permits extension by one exception handler at a

6 2012/9/20

time. TinyBang onions permit general concatenation whether the
scapes contained within are using exception patterns or not. The
following is an example of how exception handling can be written
using this extension of TinyBang:

1 def f = z -> throw `Bar z in
2 def handler = (n -> n)
3 & (exn ‘Foo _ -> 0)
4 & (exn `Bar x -> x) in
5 handler (f 4)

The above code would evaluate to 4. When f 4 is evaluated, an
exception with the payload `Bar 4 is raised. When the argument
to an application evaluates to an exception, the applied onion’s
exception-matching scapes are used to locate a match for the ex-
ception payload. If no such match is found, the entire application
expression evaluates to the exception (which will then propagate
upward). The identity function in the above handler is required to
ensure that the argument will be passed on if no exception is raised.

2.6 Record vs variant encoding comparison
Now that we have overviewed the joys of standing on your head,
let us step back to compare the objects-as-records and objects-as-
variants approaches.

First, note that TinyBang’s scapes and onions can also be used
to build a pure record-based encoding of objects that would include
support for first-class messages. Unlike previous encodings of first-
class messages [17, 18], TinyBang provides a view which uses sub-
typing and dependent pattern types and does not require conditional
constraints, row types, or a higher-kinded system. Such a record-
based encoding is the true dual of the variant-based encoding pre-
sented above; the variant-encoded message `msg arg, for example,
dualizes to obj -> obj.msg arg in the record-encoded system.

It is also possible to use first-class labels to form a record-based
encoding of objects; first-class messages are then easily encoded
with first-class labels. Fluid object types [11] are a recent system
which uses this approach to infer types in scripting languages such
as JavaScript. (Note that we do intend to investigate in the future
whether the addition of first-class labels to TinyBang will give
us additional added flexibility; they should not be theoretically
challenging to add.)

We focus on the variant-based encoding of messages because
we believe they are a more simple and direct syntax; for example,
the variant form `msg arg may be directly pattern-matched. The
TinyBang variant encoding also cleanly puts fields and methods
into different syntactic sorts (labels and scapes, respectively). By
analogy with boolean logic, it is possible to use only ∧ (or only
∨) since DeMorgan’s Laws allow one to be defined in terms of
the other; in practice, however, it is far more pleasant to live on
both sides of the duality. We believe the most natural view is to
put fields on the record (∧) side of the duality and methods on the
variant (∨) side. We were motivated to switch from a record-based
encoding to the variant-record hybrid presented here due to how
pleasantly simple the self-reference encoding of objects becomes
with the simple seal function. A record-based encoding which
declares seal as a function and which supports object extensibility
as outlined in Section 2.5 is either very complex or impossible to
define (we tried, not very hard, and failed).

Overall, the use of variants as messages is more suitable for our
uses and, more generally, is an approach that is woefully neglected
in the current literature.

3. Type System
In this section, we outline the type system for TinyBang in terms of
a smaller language: MicroBang. MicroBang has a simpler syntax
and lacks both state and complex patterns. We have developed the

e ::= x | lbl e | e & e | e &-π | e &.π MicroBang expressions
| e e | e + e | e - e
| () |Z | (&) |χ -> e MicroBang literals

x ::= [a-zA-Z_][a-zA-Z0-9_]∗

lbl ::= ‘[a-zA-Z0-9_]+

v ::= () |Z | lbl v | v & v | (&) |χ -> e
Z ::= [0123456789]+ | -[0123456789]+

χ ::= x :χP patterns
χP ::= tprim | lblx | fun | any
π ::= tprim | lbl | fun projectors

Figure 3: MicroBang Grammar

full TinyBang type rules and omit features here only for concise-
ness of presentation. The syntax of MicroBang appears in Figure 3.

The TinyBang type system is designed to realize an intu-
ition of types and subtyping held by programmers accustomed to
dynamically-typed languages: a method call which can be under-
stood using the philosophy of duck typing should simply work. For
this reason, we base our system on expressive polymorphic set con-
straint type systems [4, 10, 12, 18, 28] adding several extensions for
greater expressiveness.

Parametric polymorphism is important for expressiveness and
we would like to avoid the arbitrary cutoffs of polymorphism that
are found with let-polymorphism or local type inference. In or-
der to obtain the maximal amount of polymorphism, every scape
in MicroBang is inferred a polymorphic type; this approach is in-
spired by flow analyses [2, 23] and has previously been ported to
a type constraint context [28]. In the ideal, each call site then pro-
duces a fresh instantiation of the type variables. Unfortunately, this
ideal cannot be implemented since a single program can have an
unbounded number of function call sequences and so produce in-
finitely many instantiations. A standard solution to dealing with this
case in the program analysis literature is to simply chop off call se-
quences at some fixed point. While arbitrary cutoffs may work for
program analyses, they work less well for type systems: they make
the system hard for users to understand and potentially brittle to
small refactorings.

We have developed an approach here starting from our previ-
ous work on this topic [14, 15, 28] to produce polymorphism on
functions which is “nearly maximal” in that common programming
patterns have expressive polymorphism, suffer no arbitrary cutoffs,
and are not too inefficient. In this approach, non-recursive functions
are maximally polymorphic. Recursive call cycles are polymorphic
only on the first traversal; type variables are reused when a recur-
sive cycle is closed. We discuss our polymorphism model in more
detail in Sections 3.3 and 3.5.

3.1 Type Grammar
We now present the mechanics of the MicroBang type system.
Typechecking consists of two phases: derivation, in which the ex-
pression is assigned a type variable and a set of constraints based on
its structure; and closure, during which the constraint set is deduc-
tively closed over a logical system in a monotonically increasing
fashion, and then checked for consistency. We begin our discussion
by presenting the grammar of types and constraints for MicroBang,
shown in Figure 4. In that figure, we use the notation [R, . . . , R] to
denote a list of R. Throughout this paper, we use | to denote list
concatenation.

Type derivation occurs over a fixed program. We assign each
subexpression of that program a unique expression identifier; we
use ι to range over all expression identifiers. Program points are
named by an expression identifier ι and an index. Type variables
are named by a program point and a contour identifier C. Contour

7 2012/9/20

` ::= 〈ι,Z〉
α ::= `αC

C ::= [`, . . . , `] contour identifiers
τ ::= tprim | lblα |α &α |α &-π |α &.π | (&)

| ∀⇀⇀α.τχ→α \C
⇀⇀τ ::= [τ, . . . , τ]
τχ ::= α ∼ τχP

τχP ::= tprim | lblα | fun | any
tprim ::= int | unit

c ::= τ <: α |α <: α |α <: α→α |α opα <: α |
C ::= c∗

Ċ ::= C |��

Figure 4: MicroBang Type Grammar

identifiers are defined by lists of program points and are used for
tracking polymorphism. We defer discussion of contours until Sec-
tion 3.3. For now, a reader may assume that all contour identifiers
are equal; indeed, this is the case until constraint closure.

The types τ in the type grammar represent concrete lower
bounds in MicroBang’s type system. They are, informally and re-
spectively, primitives, labels of cells, the onion concatenation of
two other types, the subtraction and projection of a term from an
onion, the empty onion type, and polymorphic functions. Functions
are associated with a set of constraints which are expanded when-
ever that function is applied.

MicroBang’s constraint grammar is inspired by [25] in that the
lower-bounding types τ are not used as upper bounds. Instead,
upper bounds define uses of types; for instance, the constraint
α1 <: α2→α3 describes the use of α1 as a function where input
is a subtype of α2 and output is a supertype of α3. This allows
MicroBang to be precise about how types are used.

The grammar uses a symbol �� to represent a special “none”
value which is used in the relations discussed in Section 3.4. We
also include a special constraint which indicates that a contradic-
tion has occurred and typechecking should fail.

3.2 Type Derivation
Type derivation is described in terms of a four place relation Γ ` e :
α \C which relates a type context, an expression, a type variable,
and a set of constraints over that type variable.

A type context in derivation is a set Γ of mappings x : α from
a variable name x onto a type variable α. We define a context Γ to
be well formed if ∀x : α, x′ : α′.x = x′ =⇒ α = α′; that is, no
two mappings exist which have different values but the same key.
We assume that we will only operate over well-formed contexts.

Given the nature of contexts, the disjoint union Γ1]Γ2 of two
well-formed contexts Γ1 and Γ2 is well-formed; however, the union
Γ1∪Γ2 is not necessarily well-formed. We use the notation Γ1

7→∪Γ2

to denote Γ2]{x : α|x : α ∈ Γ1, ∀α′.x : α′ /∈ Γ2}.
We use the notation nα to select type variables as follows:

nα = `α[] where ` = 〈ι, n〉

Thus an expression with identity ι would have 2α = 〈ι,2〉α[].
We define a distinguished type variable, αunit, to represent a

unit type. We take some ιunit used in evaluation which is not
associated with any expression in e and define αunit = 〈ιunit,0〉α[].
In addition to the constraints below, derivation is always assumed
to include the constraint unit <: αunit.

Type derivation uses a function TPATTYPE to type patterns. That
function is defined as follows:

TPATTYPE(x :χP, ι) = 〈Γ 7→∪{x : 3α}, 3α ∼ τχP〉
where TPATPRITYPE(χP, ι) = 〈Γ, τχP〉 and

INTEGER LITERAL

Γ ` [0-9]+ : 1α \{int <: 1α}

UNIT LITERAL

Γ ` () : 1α \{unit <: 1α}

EMPTY ONION LITERAL

Γ ` (&) : 1α \{(&) <: 1α}

LABEL
Γ ` e : α2 \C

Γ ` lbl e : 1α \{lblα2 <: 1α} ∪ C

ONION
Γ ` e1 : α1 \C1 Γ ` e2 : α2 \C2

Γ ` e1 & e2 : 0α \{α1 &α2 <: 0α} ∪ C1 ∪C2

ONION SUBTRACTION
Γ ` e : α2 \C

Γ ` e &-π : 1α \{α2 &-π <: 1α} ∪ C

ONION PROJECTION
Γ ` e : α2 \C

Γ ` e &.π : 1α \{α2 &.π <: 1α} ∪ C

HYPOTHESIS
x : α1 ∈ Γ

Γ ` x : α1 \[]

SCAPE
TPATTYPE(χ, ι) = 〈Γ′, τχ〉 Γ 7→∪Γ′ ` e : α2 \C

Γ ` χ -> e : 1α \{(∀⇀⇀α.τχ→α2 \C) <: 1α}

APPLICATION
Γ ` e1 : α1 \C1 Γ ` e2 : α2 \C2

Γ ` e1 e2 : 2α′ \{α1 <: 1α′→ 2α′, α2 <: 1α′} ∪ C1 ∪C2

LAZY OPERATION
Γ ` e1 : α1 \C1 Γ ` e2 : α2 \C2

Γ ` e1 op e2 : 0α \{α1 opα2 <: 0α} ∪ C1 ∪C2

Figure 5: MicroBang Type Derivation

TPATPRITYPE(tprim , ι) = 〈 [] , tprim 〉
TPATPRITYPE(lblx , ι) = 〈 {x : 4α} , lbl 4α 〉
TPATPRITYPE(fun , ι) = 〈 [] , fun 〉
TPATPRITYPE(any , ι) = 〈 [] , any 〉

Using this function, the type derivation rules appear in Figure 5.
It should be noted that these rules are not subtyping judgments; as
is the standard in the constraint subtyping literature [5], we need not
present judgments for a subtyping relation. Instead, the subtyping
relation is implicit in whether or not closure over the constraints
inferred from Figure 5’s derivation will produce a contradiction
[10]. We defer discussion of constraint closure until Section 3.5
since it is defined in terms of a number of supporting relations.

We begin by considering the integer literal rule. In any context,
an integer literal expression is assigned a type variable 1α into
which the concrete lower bound int will flow. Similar rules apply
for other literal forms. These are the means by which ground types
enter the flow graph.

The onion derivation rule for an expression () & 5 first performs
derivations on the subexpressions () and 5; it then creates a con-
straint which indicates that an onion of these two values flows into
the type variable representing the entire expression. Using natu-
ral numbers to represent points in the program, such an expres-
sion might result in the overall type 1α[] \{unit <: 2α[], int <:
3α[], 2α[] & 3α[] <: 1α[]}.

Scape types are particularly important in MicroBang; they pro-
vide both polymorphism and dependent pattern typing. Scape types
are always polymorphic; the ⇀⇀α represents those type variables
which are free in the scape’s body. As in [25], we polyinstantiate
functions during closure and not derivation; thus, the application
rule merely adds an upper-bounding constraint.

8 2012/9/20

V ::= vertices
VVV ::= {V, . . . , V}
E ::= 〈V, V, `〉 edges
EEE ::= {E, . . . , E}
T ::= 〈VVV, EEE〉 contour trees

Figure 6: Contour Tree Grammar

The input for a scape is represented as a pattern type τχ; this
is critical to dependent pattern typing. When an onion of scapes is
applied, each scape type includes a set of constraints representing
its behavior. Because the pattern type is available when application
closure occurs, we can use it to select only the scape (and corre-
sponding constraint set) which will actually be used. MicroBang’s
dependent pattern typing has the same expressiveness to condi-
tional constraints [5, 12, 19]. But in TinyBang, dependent pattern
typing also captures the constraints for state modifications; con-
ditional constraints do not model this behavior. For instance, we
statically know that the expression

1 ((`A int & `B x -> x = 2 in x)
2 & (`A unit & `B x -> x = () in x))
3 (`A 1 & `B 0)

has the type int because the latter scape will never be invoked.
Using dependent pattern types, the TinyBang type system can cor-
rectly infer this behavior; the constraints in the latter scape which
allow unit to flow into the `B cell are never introduced into the
global constraint set.

3.3 Contours and Contour Trees
We take a brief aside to discuss type contours. Each time applica-
tion is processed in the constraint closure described below, the type
variables in the body of the applied scape are instantiated with a
new contour; in essence, the flow graph representing the function’s
body is duplicated. This is the means by which the MicroBang type
system achieves polymorphism; these new variables are only used
to represent the flow of a specific scape application. Decidability is
achieved by reusing old contours when recursion is detected.

In order to determine when and which contours are reused, we
make use of a contour tree. A contour tree is, more precisely, a
rooted multi-tree with self loops. Edges in this tree are annotated
with a single program label ` representing the site of the applica-
tion which created them; vertices are unannotated. The grammar
describing this system appears in Figure 6.

A contour tree T = 〈VVV, EEE〉 is well-formed if (1) it is non-empty
and (2) for all 〈V1, V2, `1〉 and 〈V1, V3, `2〉 in EEE, `1 6= `2; that is,
no vertex has more than one outgoing edge with a given `. In the
following discussion, we only describe well-formed contour trees.

Extension When new contours are created, they are represented
in the contour tree by an extension. In Figure 7, we define a function
CEXTEND over contour trees which ensures that a given tree contains
a specified path. CEXTEND accepts as input a contour tree and a
path in the form of a contour identifier; it produces a resulting tree
containing that path.

Reduction When a contour tree contains a path which repeats a
call site, the type system has detected recursion. In order to ensure
termination, the contour tree is reduced; this creates equivalence
classes of contours, effectively assigning only a single contour to
each recursive call cycle. We define contour tree reduction as a
relation5; we write T 15 T 2 to indicate that T 1 reduces to T 2. This
relation is defined in terms of a tree rewriting function CIDENTIFY.

The function CIDENTIFY shown in Figure 8 models vertex iden-
tification over contour trees; given a set of vertices and a tree, it
produces the tree in which those vertices are merged. The identity

CEXTEND(T , C) = CEXTHELP(T , C, V) where V is the root of T
CEXTHELP(〈VVV, EEE〉, C, V) =

T when C = []

CEXTHELP(〈VVV, EEE〉, C′, V′) when C = [`]| C′, 〈V, V′, `〉 ∈ EEE
CEXTHELP(〈VVV ∪ {V′}, EEE ∪ {V, V′, `}〉, C′, V′)

when C = [`]| C′, 〈V, V′, `〉 /∈ EEE

Figure 7: CEXTEND Definition

For a given VVVMERGE and T IN = 〈VVV IN, EEE IN〉, let

• VREPL /∈ VVV IN

• CRENAME(V) =

{
VREPL when V ∈ VVVMERGE

V otherwise

• VVVOUT = {VREPL} ∪ VVV IN − VVVMERGE

• EEEOUT = {〈CRENAME(VSRC), CRENAME(VDST), `〉|〈VSRC, VDST, `〉 ∈
EEE IN}

Then CIDENTIFY(T IN, VVVMERGE) = T OUT = 〈VVVOUT, EEEOUT〉.
Figure 8: CIDENTIFY Definition

V1

V1,1 . . . V1,n V2

V2,1 . . . V2,m

`2`1,1 `1,n

`2,1 `2,m

Before Identification

V3

V1,1 . . . V1,n V2,1 . . . V2,m

`1,1 `1,n `2,1 `2,m

`2

After Identification with VMERGE = {V1, V2}

Figure 9: Vertex Identification Example

of the new vertex is the union of the old vertices’ identities. This
operation does not eliminate any edges between the merged ver-
tices; any edges between the set of vertices being merged become
self-loops on the new vertex in the resulting tree.

The CIDENTIFY function will always output a tree when the input
set VVVMERGE forms a path. This is always the case in the tree reduction
definition. The diagram in Figure 9 gives an example of a vertex
identification between two nodes.

The reduction relation We define a relation 5 which describes
reduction on contour trees; we write T 15 T 2 to indicate that T 1

reduces to T 2. This operation is defined as follows:

T 15 T 2 iff there exists some sequence of edges
〈V0, V1, `1〉, . . . , 〈Vn−1, Vn, `n〉 such that n ≥ 2, `1 = `n,
and CIDENTIFY(T 1, {V0, . . . , Vn}) = T 2

We use the notation T 1 555 T 2 to signify both of the following:

9 2012/9/20

• Either T 1 = T 2 or there exists some T 3 such that T 15 T 3 and
T 3 555 T 2 (that is, T 1 transitively reduces to T 2) and

• There exists no T 4 such that T 25 T 4

Contour equivalence When scape applications are expanded in
closure, they are initially assumed to be non-recursive. When a
given application is discovered to be part of a recursive cycle, a
contour tree reduction occurs. For this reduction to affect constraint
closure, we must define equivalence between contours. We then use
this equivalence definition to define constraint equivalence.

Because contour identifiers are lists of program labels and be-
cause edges in the contour tree are annotated with program labels,
a contour identifier describes a path (or vertex) in a contour tree.
Because there may exist multiple edges from one node to another
and because self-loops exist, multiple paths in a given contour tree
may refer to the same vertex. We define an equivalence relation'T
such that two contour identifiers are equivalent if, as paths from the
root of a contour tree T , they arrive at the same vertex. We write '
when T is evident from context. This relation is defined as follows:

For a given T = 〈VVV, EEE〉, [`1, . . . , `n] 'T [`′1, . . . , `
′
m] if all of the

following are true:

• {〈V0, V1, `1〉, . . . , 〈Vn−1, Vn, `n〉} ⊆ EEE
• {〈V0, V′1, `′1〉, . . . , 〈V′m−1, V

′
m, `

′
m〉} ⊆ EEE

• V0 is the root of T and Vn = V′m

This equivalence definition allows us to define equivalence
classes on contour identifiers; we use the notation [[[[C]]]]T to denote
the equivalence class containing C under the equivalence relation
'T . Again, we elide T when it is evident from context.

Constraint equivalence We also overload the above equivalence
relation notation with a natural homomorphism over other gram-
matical constructs. For instance:

α1 <: α2 ' α3 <: α4 iff α1 ' α3 and α2 ' α4

α1 &α2 ' α3 &α4 iff α1 ' α3 and α2 ' α4

α1 ∼ τχP
1 ' α2 ∼ τχP

2 iff α1 ' α2 and τχP
1 ' τχP

2
`αC ' `αC

′
iff C ' C′

...

We likewise extend the equivalence class notation to cover
other grammatical constructs. For example, if `αC1 ' `αC2 ,
then we would write [[[[‘A `αC1]]]] to denote at least the set
{‘A `αC1 , ‘A `αC2}.

3.4 Closure Relations
The next step of typechecking is closure over the set of constraints
obtained by type derivation. This closure is defined in terms of a
number of relations, the definitions for which appear in this section.
Each of these relations is implicitly indexed by a constraint set Ĉ
which is typically the current global constraint set. We sometimes
write constraints in place of predicates; writing the constraint c in
place of a predicate is syntactic sugar for c ∈ Ĉ.

Concretization The first and simplest relation we define is con-
cretization; see Figure 10. This relation determines those concrete
types in a constraint set which may flow to a given type variable.
While similar to a transitive subtype closure rule, concretization
guarantees us that only concrete lower bounds are propagated.

Projection Next, we define type-based projection; this definition
appears in Figure 11. This is a three place relation between a type,
a projector, and another type. The projection relation determines

τ J:αn
def
= ∃α1, . . . , αn−1. (τ <: α1) ∧ (α1 ' α2)

∧ (α2 <: α3) ∧ (α3 ' α4)
∧ . . .
∧ (αn−2 <: αn−1)∧ (αn−1 ' αn)

Figure 10: TinyBang Concretization Relation

PRIMITIVE PROJECTION

tprim tprim−−−_ [tprim]

LABEL PROJECTION

lblα lbl−_ [lblα]

ONION PROJECTION
τ1 J:α1 τ2 J:α2 τ1 π−_⇀⇀τ1 τ2 π−_⇀⇀τ2

α1 &α2 π−_⇀⇀τ1 |
⇀⇀τ2

ONION SUB. PROJECTION
π 6= π′ τ J:α τ π−_⇀⇀τ

α &-π′ π−_⇀⇀τ

ONION PROJ. PROJECTION
π = π′ τ J:α τ π−_⇀⇀τ

α &.π′ π−_⇀⇀τ

SCAPE PROJECTION

∀⇀⇀α.τχ→α \C fun−−_ [∀⇀⇀α.τχ→α \C]

PRIM. FAIL
τ 6= tprim
τ tprim−−−_ []

LABEL FAIL
τ 6= lblα
τ lbl−_ []

ONION SUB. FAIL
π = π′

α &-π′ π−_ []

ONION PROJ. FAIL
π 6= π′

α &.π′ π−_ []

EMPTY FAIL

(&) π−_ []

SCAPE FAIL
τ 6= ∀⇀⇀α.τχ→α \C

τ fun−−_ []

Figure 11: MicroBang Projection Rules

a priority-ordered list of ways the original type can be used as
the form of type described by the type projector. For example,
int & char int−−_ [int] but unit fun−−_ []. Projection never produces
an onion; instead, onions are concretized and explored in a fashion
which gives right precedence. This is necessary due to the fact that
projection of scapes must produce every available scape so that they
may be pattern-matched in order.

Compatibility We define a type/pattern compatibility relation in
Figure 12. This is a three-place relation between a type, a pattern
type form (τχ or τχP), and a set of constraints (or the �� symbol).
If a set of constraints is related by compatibility with a type and
a pattern type, then that type can be bound to the pattern type in
question using the specified constraints. This relation is used to
ensure that arguments arriving at a call site will flow correctly into
the variables in the scape’s pattern. If a given type and pattern type
relate to ��, then that type does not match the pattern in question. In
the following, we use the notation Ċ1 ∪ Ċ2 to refer to C1 ∪C2 (if
Ċ1 = C1 and Ċ2 = C2) or to �� (if either Ċ1 or Ċ2 is ��).

Application substitution The application substitution relation de-
fines how function application builds new type variables for polyin-
stantiation. It is a three place relation written ζ(∗, ⇀⇀α, C) where ∗ is
a type grammar construct such as τ or α. This relation is used to
perform deep structural replacement of type variables in a given set
of constraints. We thus define application substitution on each type
grammar construct. Most of these definitions are simply the natural
homomorphisms. For instance:

ζ(τ <: α1,
⇀⇀α, C) = ζ(τ, ⇀⇀α, C) <: ζ(α1,

⇀⇀α, C)
ζ(α1 &α2,

⇀⇀α, C) = ζ(α1,
⇀⇀α, C) & ζ(α2,

⇀⇀α, C)
...

10 2012/9/20

BOUND COMPATIBILITY
τ :∼ τχP\ Ċ

τ :∼ α ∼ τχP\{τ <: α} ∪ Ċ

PRIMITIVE COMPATIBILITY
τ tprim−−−_⇀⇀τ | [tprim]

τ :∼ tprim \∅

LABEL COMPATIBILITY
τ lbl−_⇀⇀τ | [lblα1]

τ :∼ lblα2\{α1 <: α2}

FUNCTION COMPATIBILITY
τ fun−−_⇀⇀τ | [τ ′]

τ :∼ fun \∅

ANY COMPATIBILITY

τ :∼ any \∅

PRIMITIVE FAIL
τ tprim−−−_ []

τ :∼ tprim \��

LABEL FAIL
τ lbl−_ []

τ :∼ lblα ∼ τχP\��

FUNCTION FAIL
τ fun−−_ []

τ :∼ fun \��

Figure 12: MicroBang Compatibility Rules

The only cases which are not natural homomorphisms are:

ζ(∀⇀⇀α1.α1→α2 \C, ⇀⇀α2, C) = ∀⇀⇀α1.α1→α2 \ ζ(C, ⇀⇀α2 − ⇀⇀α1, C)

ζ(`αC
′
, ⇀⇀α, C) =

{
`αC when `αC

′
∈ ⇀⇀α

`αC
′

otherwise

Substitution on type variables will only apply a new contour (C)
if the old contour (C′) is the initial contour ([]). This is the case in
the use of ζ because it is only used on free type variables captured
during derivation and such variables always use the initial contour.

Constraint set extension The constraint set extension function
is used to ensure that, during constraint closure, constraints are
only added to the global constraint set in each closure step if no
equivalent constraint is already present. We denote constraint set
extension by the symbol ◦+ and define it as follows:

C1 ◦+ C2 = C1 ∪{c | c ∈ C2 ∧∀ c′ ∈ C1 . c /∈ [[[[c′]]]]}

3.5 Constraint Closure
Using the above relations, we now specify the constraint closure
step as the relation 〈C, T 〉 C→〈C, T 〉 defined in Figure 13.

We begin illustration of the constraint closure process by an-
alyzing the Integer Addition rule. Given an expression 4 + 3, we
would acquire from derivation the type α3 \{int <: α1, int <:
α2, α1 +α2 <: α3}. Concretizing α1 yields the type int which we
can project using the projector int; the same is true for α2. We can
thus conclude that the result of the addition is int, which we then
constrain as a lower bound of α3. The contour tree is largely unused
by this rule; it merely provides a notion of constraint equivalence.
Integer Equality and Integer Operation Failure work similarly.

The Application rule bears explanation; it is responsible for
the usual complexity of application in a type system as well as
for pattern matching and precedence. At any call site α′1→α′2, a
value α0 may arrive; this is the onion of scapes being invoked. We
concretize it as τ1 and project from it all scapes it contains. We
then concretize any argument which could arrive at that call site as
τ2. For that argument, we determine the rightmost scape which is
compatible with the provided argument. The compatibility relation
provides a set of constraints C′ which, when added to the constraint
set, cause the contents of the argument to flow into the variables in
the pattern type of the scape. In this way, the input type flows into
the body of the function. We also introduce a constraint, αi <: α′2,
to connect the function body to the output of the call site.

To achieve polymorphism, we extend the contour tree using the
call site to generate a new contour. To achieve termination, we

APPLICATION
τ1 J:α0 α0 <: α′1→α′2

τ1 fun−−_ [∀⇀⇀α1.τ
χ
1 →α1 \C1, . . . ,∀⇀⇀αn.τχn →αn \Cn]

τ2 J:α′1 τ2 :∼ τχi \C′ ∀j > i.τ2 :∼ τχj \��
α′2 = `αC CEXTEND(T̂ , C | [`]) = T ′ T ′ 555 T

〈Ĉ, T̂ 〉 C→〈Ĉ ◦+ ζ(C′ ∪Ci ∪{αi <: α′2},⇀⇀αi, C), T 〉

INTEGER ADDITION
α1 +α2 <: α3

τ1 J:α1 τ2 J:α2 τ1 int−−_⇀⇀τ ′1 τ2 int−−_⇀⇀τ ′2

〈Ĉ, T̂ 〉 C→〈Ĉ ◦+{int <: α3}, T̂ 〉

INTEGER EQUALITY
α1 ==α2 <: α3

τ1 J:α1 τ2 J:α2 τ1 int−−_⇀⇀τ ′1 τ2 int−−_⇀⇀τ ′2

〈Ĉ, T̂ 〉 C→〈Ĉ ◦+{‘True αunit <: α3, ‘False αunit <: α3}, T̂ 〉

NON-FUNCTION APPLICATION
τ1 J:α0 α0 <: α′1→α′2

τ1 fun−−_ [∀⇀⇀α1.τ
χ
1 →α1 \C1, . . . ,∀⇀⇀αn.τχn →αn \Cn]
τ2 J:α′1 ∀i.τ2 :∼ τχi \��

〈Ĉ, T̂ 〉 C→〈Ĉ ◦+{ }, T̂ 〉

INTEGER OPERATION FAILURE
α1 opα2 <: α3 τ J:αi i ∈ {1, 2} τ int−−_ []

〈Ĉ, T̂ 〉 C→〈Ĉ ◦+{ }, T̂ 〉

Figure 13: Closure Rules

then transitively reduce the resulting contour tree; this is relevant
if the extension we just performed reveals a recursive call. We
then use the application substitution function ζ to polyinstantiate
the type variables in the set of constraints describing the input,
output, and body flow, granting polymorphism. Finally, we subject
this substituted set to the constraint set extension operator ◦+ to
eliminate constraints for which equivalents already exist in Ĉ;
this is key to ensuring termination and preventing unnecessary
exponential complexity in closure.

Typechecking Given the above definition of a constraint closure
step, we can provide the following definitions:

Definition 1. Given a constraint set C1 and a contour tree T 1,

1. We write 〈C1, T 1〉
C→* 〈C2, T 2〉 when either

(a) C1 = C2 and T 1 = T 2, or
(b) 〈C1, T 1〉

C→〈C3, T 3〉 and 〈C3, T 3〉
C→* 〈C2, T 2〉

2. We write 〈C1, T 1〉 C9 to indicate that there exists no C2 and T 2

such that 〈C1, T 1〉
C→〈C2, T 2〉.

We can now define typechecking as follows:

Definition 2. Given a closed e,

1. TYPEINFER(e) = 〈Cn, T n〉 such that ∅ ` e : α \C0 for some α
and C0, T 0 is the initial contour tree containing one vertex and
no edges, 〈C0, T 0〉

C→* 〈Cn, T n〉, and 〈Cn, T n〉 C9.
2. TYPECHECK(e) holds if and only if TYPEINFER(e) = 〈C, T 〉 and
 /∈ C.

Algorithmic properties The above typechecking algorithm is
sound and decidable. We present these statements below:

Theorem 1 (Soundness). Let e1
S→ e2 be a small-step evaluation

relation for MicroBang; let e1
S→ ∗ e2 be its transitive closure.

Let T 0 be the contour tree with one vertex and no edges. Then

11 2012/9/20

∀e. e S→ ∗ implies (∅ ` e : α \C0), 〈C0, T 0〉
C→* 〈Cn, T n〉,

and ∈ Cn.

Proof of this Theorem is not trivial; we provide here a very high-
level sketch of our proof technique. We elect to use a technique
different than subject-reduction since it is difficult to re-build type
derivations after a single step. Instead we create a so-called con-
straint evaluator which is a formal system lying at the rough mid-
point between a type constraint system and a small-step operational
semantics: it has actual integer values and does no approximation,
but programs are expressed as a set of constraints that are struc-
turally very similar to type constraints. Contours are never merged;
the constraint evaluator may run forever. We can show our type sys-
tem here is simulated by the constraint evaluator and the constraint
evaluator is simulated by the small-step operational semantics, giv-
ing us the above Theorem by transitivity.

Theorem 2 (Decidability). The predicate TYPECHECK is decidable.

This proof proceeds by demonstrating that there are finitely many
closure steps which may occur on any derived constraint set and
that each of these closure steps is computable. The latter is achieved
by analysis of the operations used in closure; the prior is achieved
by demonstrating that only finitely many constraints can be added
during closure. In fact, this algorithm takes polynomial time under
normal circumstances; worst-case exponential complexity is pos-
sible for pathological code similar to the exponential case of let-
polymorphism.

4. Conclusions
In this paper, we have shown how it is possible to define a flex-
ible variant encoding for typed objects in a novel core language,
TinyBang. Particular advantages of programming in the encoding
beyond the usual OO features include support for a more general
notion of typed object extension than previous works, including
support of fundamentally dynamic extension and extension of ob-
jects already actively being messaged; direct expressibility of first-
class messages as simple labeled data; a trivial encoding of opera-
tor overloading; and enabling of other novel patterns that break the
traditional object straitjacket.

Such a flexible object model is possible due to the flexibility of
TinyBang, the underlying typed language into which we encode.
TinyBang does not have one “blockbuster” extension but gets its
significant expressiveness from a combination of a number of im-
provements to the state of the art in type system design: a more gen-
eral notion of first-class case, simpler typing for asymmetric record
append, a more expressive dependent typing of case/match, concise
syntax via type-indexed records, and a highly flexible method for
inference of parametric polymorphism.

The complete TinyBang type inference algorithm and a Tiny-
Bang interpreter have been implemented in Haskell; with this im-
plementation, we have confirmed correctness of the type inference
algorithm and operational semantics on code examples. All exam-
ples in this paper typecheck and run in the current implementation3.

The larger picture In this paper we focus on fundamental ques-
tions of typing objects. It is not, however, a realistic language de-
sign proposal; TinyBang lacks syntactic sugar and other features
that a real language needs. We are presently working on a realistic
language design and implementation for BigBang [16]; TinyBang
constitutes the proposed core for BigBang. We believe BigBang
will be appealing because of the potential for great flexibility in
coding, coming close to the spirit of dynamically-typed languages,

3 With the exception of the exceptions example in Section 2.5 – exceptions
are currently being implemented.

but with the advantage of full static typechecking and more efficient
running times compared to dynamically-typed languages.

References
[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
[2] O. Agesen. The cartesian product algorithm. In Proceedings

ECOOP’95, volume 952 of Lecture Notes in Computer Science, 1995.
[3] G. Agha. Actors: a model of concurrent computation in distributed

systems. MIT Press, 1985.
[4] A. Aiken and E. L. Wimmers. Type inclusion constraints and type

inference. In FPCA, pages 31–41, 1993.
[5] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with

conditional types. In POPL 21, pages 163–173, 1994.
[6] M. Blume, U. A. Acar, and W. Chae. Extensible programming with

first-class cases. In ICFP ’06, pages 239–250, 2006.
[7] M. Blume, U. A. Acar, and W. Chae. Exception handlers as extensible

cases. In APLAS ’08, pages 273–289. Springer-Verlag, 2008.
[8] V. Bono and K. Fisher. An imperative, first-order calculus with object

extension. In ECOOP’98, pages 462–497. Springer Verlag, 1998.
[9] K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encod-

ings. Information and Computation, 155(1-2):108 – 133, 1999.
[10] J. Eifrig, S. Smith, and V. Trifonov. Type inference for recursively

constrained types and its application to OOP. In MFPS, Electronic
Notes in Theoretical Computer Science. Elsevier, 1995.

[11] A. Guha, J. G. Politz, and S. Krishnamurthi. Fluid object types.
Technical Report CS-11-04, Brown University, 2011.

[12] N. Heintze. Set-based analysis of ML programs. In LFP, pages 306–
317. ACM, 1994.

[13] B. Jay and D. Kesner. First-class patterns. J. Funct. Program., 19(2):
191–225, 2009.

[14] A. Kulkarni, Y. D. Liu, and S. F. Smith. Task types for pervasive
atomicity. In OOPSLA, pages 671–690. ACM, 2010.

[15] Y. D. Liu and S. Smith. Pedigree types. In International Workshop
on Aliasing, Confinement and Ownership in object-oriented program-
ming (IWACO), 2008.

[16] P. H. Menon, Z. Palmer, A. Rozenshteyn, and S. Smith. Big Bang: De-
signing a statically-typed scripting language. In International Work-
shop on Scripts to Programs (STOP), Beijing, China, 2012.

[17] S. Nishimura. Static typing for dynamic messages. In POPL’98, 1998.
[18] F. Pottier. A versatile constraint-based type inference system. Nordic

J. of Computing, 7(4):312–347, 2000.
[19] F. Pottier. A 3-part type inference engine. In ESOP’00, pages 320–

335. Springer Verlag, 2000.
[20] D. Rémy. From classes to objects via subtyping. In ESOP, pages

200–220. Springer-Verlag, 1998.
[21] D. Rémy and J. Vouillon. Objective ml: a simple object-oriented exten-

sion of ml. In Proceedings of the 24th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, POPL ’97, pages
40–53. ACM, 1997.

[22] M. Shields and E. Meijer. Type-indexed rows. In POPL, pages 261–
275, 2001.

[23] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD
thesis, Carnegie-Mellon University, 1991. TR CMU-CS-91-145.

[24] P. Shroff and S. F. Smith. Type inference for first-class messages with
match-functions. In FOOL 11, 2004.

[25] S. F. Smith and T. Wang. Polyvariant flow analysis with constrained
types. In ESOP ’00. Springer Verlag, 2000.

[26] M. Wand. Corrigendum: Complete type inference for simple objects.
In LICS. IEEE Computer Society, 1988.

[27] M. Wand. Type inference for record concatenation and multiple
inheritance. Information and Computation, 93(1):1–15, July 1991.

[28] T. Wang and S. F. Smith. Precise constraint-based type inference for
Java. In ECOOP’01, pages 99–117, 2001. ISBN 3-540-42206-4.

12 2012/9/20

