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Abstract
Patterns provide an important dimension of expressiveness to func-
tional programming languages because they describe a concise syn-
tax for data destruction. However, most languages treat patterns as
second-class citizens: case match expressions cannot be extended,
patterns cannot be selected dynamically, and patterns cannot be
composed or modified by program logic. In this paper, we present a
rich, full-featured pattern language, PatBang, which treats patterns
as first-class data, and additionally supports highly expressive pat-
terns including recursive and disjunctive patterns, yet is still prov-
ably type-safe. We additionally show how such an expressive pat-
tern language enables new programming patterns, including use of
patterns for expressing pytes, a form of lightweight static interface
declaration. Type soundness is proven and an implementation of
the type inference algorithm and interpreter is provided.

1. Introduction
Patterns provide an important dimension of expressiveness to
functional programming languages because they describe a
concise syntax for data destruction. Pattern clauses such as
Tree(data,left,right) -> . . . are easy to read; they make im-
mediately evident both the structure of the argument as well as the
values to which the data, left, and right variables are bound. This
is even more valuable when matching deep structure such as in
Node(Some(n),Empty,Empty) -> . . .. Pattern matching also gives
a terse syntax for exhaustively destructing on disjunctive data, e.g.

1 match t with Empty -> . . .
2 | Tree(data,left,right) -> . . .

However, most languages treat patterns as second-class citizens:
match expressions such as the above cannot be extended to work
with wider data types; patterns cannot be selected dynamically; and
patterns cannot be composed or modified by program logic.

In this paper, we present a rich, full-featured pattern semantics
with the goal of writing even more concise and expressive code.
Our presentation language, PatBang, supports these pattern seman-
tics along with flexible data composition operations. Despite this
flexibility, PatBang is statically typed via structural subtyping prin-
ciples and types are fully inferred – no type annotations are neces-
sary. The following is a brief outline of the kinds of patterns that
PatBang supports.

Recursive patterns for shape invariant assertions While patterns
can often be deep, standard pattern match syntax puts a fixed depth
on pattern structure. But consider a pattern which can describe
inductive invariants on data. If such a pattern is statically type-
checked, it amounts to a compile-time shape assertion on the struc-
ture of the data. Consider the following ML-like pseudo-syntax:

1 match d with (rec l. Cons(Good(y),l) | Nil) -> ()

Informally, the rec l is defining a recursive pattern which con-
strains the simple list data to only contain Good-wrapped elements.
The PatBang pattern grammar includes such recursive patterns and
ensures that they are typechecked appropriately. Previous work [9]
typechecks recursive patterns in the context of an ML-style type
system, which requires the pattern to match a substructure of a
fixed, declared data type. Other previous work [22] supports re-
cursive patterns with subtyping but requires type declarations and
lacks polymorphism. We aim to support recursive patterns over
highly flexible data without need for declared data types.

First-class patterns for dynamic pattern composition While
first-class functions are now universally accepted as a useful pro-
gramming language feature, patterns remain fixed syntactic con-
structs rather than values. This prevents patterns from being con-
structed or chosen at runtime and limits how they can be reused.
Composable, first-class patterns are a natural dual to first-class
functions and have not been widely explored.

We design PatBang to include first-class patterns and define the
type system to conservatively approximate pattern flow. We also
define semantics that allow patterns to be composed, placing one
pattern somewhere within another pattern’s structure. This allows
patterns to describe e.g. lists of pairs or balanced binary trees of
lists through the use of generic, reusable pattern values. This also
allows patterns to serve as data destruction strategies and, with
sufficient polymorphism, witnesses to dynamic shape assertions.
Some interesting forms of pattern abstraction were explored in
[13] which allows for elegant generic programming patterns over
structures; we aim to support patterns as fully first-class entities.

Powerfully typed patterns with a concise formalization We for-
malize PatBang as an extension of the TinyBang language [16],
which uses a polymorphic subtype constraint inference type sys-
tem [2, 12, 19, 23]. While the aforementioned novel pattern con-
cepts are fundamental and could be realized in many forms of type
system, PatBang’s pattern semantics and TinyBang’s type system
benefit considerably from each other. The pattern semantics can be
typechecked precisely due to the expressiveness of constraint-based
typing and, because the patterns are powerful enough to describe
static shapes, they can serve as a lightweight form of type assertion
in PatBang.

Synergy of recursive and first-class patterns Our ultimate goal
is not simply to extend patterns for their own sake; it is to produce
a more powerful notion of pattern and pattern matching that can
lead to a more expressive and useful programming language de-
sign. In the following section, we give numerous examples showing
how the combination of features in PatBang leads to improved pro-
grammability. One particularly useful example we show is pytes,
a novel form of type filter that can statically verify the shape of
recursive data.
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Validation The supplementary material supplied with this sub-
mission contains a complete proof of type soundness and an argu-
ment for the decidability of the type inference algorithm. It also
contains an implementation of the PatBang language with a set of
unit tests.

Paper outline The remainder of this paper proceeds as follows.
Section 2 gives an overview of the semantics and expressiveness
of PatBang by code example. Section 3 provides an operational se-
mantics for PatBang, and the type system is presented in Section 4.
Section 5 summarizes the work and draws conclusions.

2. Overview
The PatBang language extends TinyBang [16] to support patterns
which are first-class, higher-order, recursive, and composable. We
use these terms to describe different properties of these patterns.
First-class indicates that patterns are values and so can be passed to
functions. Higher-order indicates that the patterns interact; that is,
patterns can be passed to other patterns.

The TinyBang language on which PatBang is based is designed
as a compilation target for a scripting language. This motivation
inspires a number of design decisions. First, TinyBang has no
type declarations or type signatures; all types in TinyBang are
inferred. Second, all data (including higher-order functions) can
be arbitrarily conjoined, generalizing record concatenation. Third,
case matches are heterogeneously typed: the output type of a given
match is weakly dependent upon the match argument (up to the
expressiveness of the pattern grammar).

To achieve these goals, TinyBang’s type system uses a sub-
type constraint-based type system with several novel modifications.
General data conjunction is asymmetric to allow overriding. And
polymorphism is per call site rather than per binding use (as in
let-bound polymorphism).

TinyBang’s type system is quite powerful and already admits
quite expressive pattern semantics; we describe them in Section 2.1.
Building on top of this type system, PatBang is able to statically
typecheck far more advanced patterns. The remainder of this sec-
tion shows how these patterns can be used to test deep structural
subtyping properties, describe compositions of data structures, and
even serve a purpose similar to type signatures or contracts.

2.1 Extensible Cases
The pattern semantics we take from TinyBang already permit first-
class, extensible case constructs; we summarize the ideas taken
from TinyBang in this subsection. In most languages, a simple
expression which extracts the contents of a variant data type might
be written:

1 case arg of
2 | ‘Dollars n -> n
3 | ‘Euros n -> n

This expression extracts the units from a currency value. PatBang
uses the syntax ‘Dollars to describe a label: a single-argument data
constructor similar to OCaml’s polymorphic variants. The PatBang
type system therefore requires that arg be either a ‘Dollars- or
‘Euros-labeled value.

But this traditional form of case expression is quite mono-
lithic: it cannot be extended to support more forms of currency.
In PatBang, this expression is syntactic sugar for the following:

1 def cases = ( (‘Dollars n -> n)
2 & (‘Euros n -> n) )
3 in cases arg

In the desugared form, each case branch is a distinct, function-
like value called a scape. The ‘Dollars n -> n scape, for instance,

matches any ‘Dollars-labeled argument and returns the contents of
the label. The operator & is used to conjoin two scape values into a
larger scape value which accepts any argument that either scape can
accept. Finally, the expression cases arg applies this conjunction
of scapes to the argument.

Scapes are distinct from functions in that the entire structure
of the pattern is part of the scape’s type. This is part of what
distinguishes them from previous work on extensible cases [5].
That work permits cases to be extended, but only in the direction
of lower priority and only by one case at a time. PatBang’s scapes,
on the other hand, can be used to encode behavior such as method
override and can be arbitrarily concatenated.

Because scapes are first-class data and can be arbitrarily con-
joined with other scapes, it is now possible to extend our case
match with additional cases matching other currency patterns. For
instance, one can now write

1 def cases’ = cases & (‘Wampum n -> n) in cases’ arg

in order to define a cases’ which handles a new form of cur-
rency. In fact, the extension may itself be an arbitrary value (e.g.
cases & moreCases). Because scapes are general and because pat-
terns are permitted to match the outermost argument (e.g. x -> x),
scapes supercede functions in PatBang.

Because the type of a scape includes its pattern, a scape con-
junction can correctly compute the pattern describing the argu-
ment types it will accept. This ensures that type errors on appli-
cation can be detected despite free-form scape conjunction. For in-
stance, cases ‘Dirt 3 would raise a type error because the type
of cases is “(‘Dollars α1 → α1) & (‘Euros α2 → α2)” and
neither pattern in this type matches the ‘Dirt label. This type for
cases is also critical because it permits the heterogeneous typing
of case branches described above; the mapping from input pattern
to output type is retained for use at call sites, allowing the types of
arguments to refine the types of the results.

As stated above, PatBang’s data model uses structural subtyp-
ing. This means that the pattern ‘Dollars n matches any datum
which includes a ‘Dollars-labeled value; it is possible for other
data to be present as well. For instance,

1 cases (‘Dollars 4 & ‘Commission 0.07)

evaluates to 4. Here, the & operator is being used to conjoin two
labeled data together; in PatBang, this operator conjoins any data
into a value known as an onion. An onion is a form of type-
indexed record; the above argument can be equivalently viewed
as the record {Dollars = 4, Commission = 0.07}. Type indexing
means that scapes may also be present in the onion without be-
ing under a particular label name; in a sense, a special scapes la-
bel exists which contains all of the scapes that have been onioned
into the record (so informally 5 & (v -> v) & (‘A x -> x) is
the record {int = 5, scapes = [v -> v, {A = x} -> x]}). Ev-
erything is an onion in PatBang, even primitive values such as 5

(it is informally the record {int = 5}); this perspective helps to
simply PatBang’s semantics and type system.

Because PatBang’s type system is constraint-based, variant
types are expressed as a type variable with multiple labeled lower
bounds: a variant type with constructors ‘Foo and ‘Bar would
have the type α3 \{‘Foo α1 <: α3 , ‘Bar α2 <: α3}. It is well-
known that positive union types can be constructed in constraint-
based type systems using this approach. One consequence of this
is that unary variant types and unary record types are equivalent in
PatBang.

2.2 Recursive Patterns
PatBang programs do not require type declarations or signatures;
data can be composed arbitrarily and labels do not restrict their
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contents. In contrast to more traditional systems, this means that
matching a ‘Hd x & ‘Tl _ value is insufficient for establishing
that a datum is a cons-cell style list: there is no guarantee that
the contents of the ‘Tl will have similar structure. For this reason
(among others), it is useful to have a recursive pattern: a form
of pattern which recursively constrains a data type. For instance,
consider

1 def isList =
2 ( (_ -> false)
3 & (rec p: ‘Nil _ | (‘Hd _ & ‘Tl p) -> true) ) in . . .

(Recall that the rightmost scape is given priority in applica-
tion, hence the catch-all being on the left/top of the onion.)
This scape includes pattern operators for pattern conjunction
and disjunction: the & pattern matches only if both of its argu-
ment patterns match, while the | pattern matches whenever ei-
ther of its arguments match. The recursive pattern above matches
only data which has a list structure recursively under the ‘Tl

label. While it is still possible for other data to be present
(e.g. ‘Hd 4 & ‘Tl (‘Nil ()) & ‘Note "clean"), the pattern rep-
resents a least guarantee. This pattern can be refined as usual; that
is

1 rec p: ‘Nil _ | (‘Hd ‘Dollars _ & ‘Tl p) -> true

will match only lists containing ‘Dollars-labeled values; lists con-
taining a non-‘Dollars element and values which are not lists will
not match.

A naı̈ve pattern matching algorithm at runtime simply descends
into each level of the argument, expanding the recursive part of
the pattern as it goes. Because PatBang is an eager, stateless lan-
guage, all runtime data are finite and so matching a well-formed
pattern (e.g. from isList) will terminate. It is possible however
to do much better in practice: a sensible runtime could include a
means by which data could be flagged as matching a given pattern.
Information gathered by the type system can be used to determine
which patterns a given datum will always (or never) match; the re-
maining cases would be handled by caching the results of the naı̈ve
match described above.

Our pattern grammar does introduce the subtle problem of ill-
formed recursive patterns. Pattern matching would not terminate
in the face of non-contractive patterns such as rec p: p. A non-
contractive pattern is similar to a non-contractive recursive type
[14]: it recurses without reaching an intervening constructor. Like
non-contractive types, such patterns have no well-defined seman-
tics; as a result, the PatBang type system prohibits them. Further
discussion on detecting and prohibiting non-contractive patterns
can be found in Section 4.2.4.

Well-defined recursive patterns are especially useful in match-
ing deep, complex structure. Consider the following task: given a
deep expression grammar (such as PatBang’s) and a deep value
grammar where value terms are also expression terms, determine
whether a given expression is a value. For example, ‘A 3 is a value
but ‘A (3 + 4) is not. In particular, the nesting property is impor-
tant; an expression is a value only if all of its subexpressions are
values. The following scape solves this problem:

1 def isValue = (_ -> false) in . . .
2 & (rec p: ‘Int _ | ‘Label (‘Name string) p |
3 ‘Onion (‘L p & ‘R p) | . . . -> true)

While a recursive function can solve this problem as well, re-
cursive patterns are interesting for two reasons. First, all pattern
matches are decidable (since non-contractive patterns are prohib-
ited). Second, a pattern is more declarative; it indicates the author’s
intentions in analyzing the shape of data.

2.3 Patterns as Data
As mentioned above, patterns in PatBang are first-class data mem-
bers. In fact, all scapes in PatBang are constructed from two data
items – a pattern and a function – using the scape operator ><. The
syntax ‘A x & ‘B y -> x + y we have been using up to now is in
fact equivalent to the following:

1 def p = (x,y) <- ‘A x & ‘B y in
2 def f = (n,m) -> n + m in
3 p >< f

When the scape p >< f is applied to an argument (e.g.
‘A 9 & ‘B 5), that argument is first matched against the pattern
to yield bindings for the pattern’s variables (x 7→ 9, y 7→ 5). These
bindings are then aligned positionally to the function’s parameters
(n 7→ x, m 7→ y), yielding a final binding (n 7→ 9, m 7→ 5).

As a result of these semantics, patterns represent general strate-
gies for destructing data. For instance, consider the following alter-
natives for the pattern p above:

1 def p = (x,y) <- ‘A y & ‘B x in . . .

1 def p = (a,b,c) <- ‘A (a & b) & ‘B c in . . .

1 def p = (y) <- ‘A y in . . .

The first alternative binds the contents of ‘A and ‘B to opposite
positions. This results in n taking on the value 5 and m taking on the
value 9, thus yielding -4. The second alternative binds both a and
b to the contents of ‘A and binds c to the contents of ‘B but, since
the function only consumes two arguments, c goes unused and the
evaluation results in 0. The last alternative will produce a type error
at p >< f because the pattern does not bind enough variables to
satisfy the requirements of the function.

2.4 Pattern Substitution
In addition to being first-class, patterns are also higher-order: they
can be passed to other patterns to perform pattern composition. Be-
cause patterns describe shapes of data, such a pattern composition
is the composition of these shapes. Consider the following patterns:

1 def list = (x) <- rec p: (‘Hd x & ‘Tl p) | ‘Nil _ in
2 def dlrs = () <- ‘Dollars _ in
3 def dlrsList = () <- list (dlrs ()) in . . .

The list pattern generally describes the shape of lists. The
dlrsList pattern uses pattern substitution to replace every occur-
rence of x in list with the pattern dlrs. The result is a pattern
which will only match lists of elements which include ‘Dollars-
labeled data.

It should be noted that the variable x in the list pattern is not
fully bound: in the case of an empty list, there would be no data for
it to consume. It would therefore be a type error to pair the list

pattern with any scape with a non-empty parameter list. But x still
appears in the pattern’s variable list so that substitutions can match
pattern arguments with their substitution sites.

Because patterns are first-class data, pattern substitution also
permits a programmer to write functionality that generalizes cer-
tain forms of patterns. For instance, consider the problem from Sec-
tion 2.2 in which values are a subset of expressions. Consider the
following:

1 def pats = [ (r) <- ‘Int _, (r) <- ‘Label (‘Name string) r
2 , (r) <- ‘Onion (‘L r & ‘R r), . . .] in
3 def rec disjunctPat =
4 (‘Hd next & ‘Tl rest ->
5 (x) <- next (x) | (disjunctPat rest) (x) )
6 & (‘Nil _ -> (x) <- none) in
7 () <- rec p: (disjunctPat pats) p
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This code creates a pattern similar to the one in the isValue scape:
it matches only the values in a given expression grammar. The
values it matches are defined by the list of pats. Each such pat-
tern takes a single argument defining how it should recurse. The
disjunctPat scape then creates a single-variable pattern which is
the disjunction of all of these patterns; the special pattern none

matches nothing and is therefore the base case of pattern disjunc-
tion. Finally, the pattern substitution of the recursion variable p ties
the knot and allows each part of the disjunction to recurse back into
the disjunction. In leaf cases such as (r) <- ‘Int _, the recursive
pattern is simply ignored. The key observation is that pats is an ar-
bitrary list of patterns that could have been dynamically computed.

2.5 Pytes: Patterns as Type Signatures
PatBang has no type assertion syntax; all types are inferred. While
this decision is motivated by the objectives of the language, it is
also in part because patterns can be used in their stead: PatBang’s
patterns can fulfill the purpose that type signatures fulfill in many
other languages. We use the term pyte to describe a pattern used in
this way. A pyte is an identity scape restricted to a specific pattern;
any value passed to the scape will be returned unchanged, but a
type error will result if the value does not match the pyte’s pattern.
We use the syntactic sugar :- to denote application of a pyte. For
example, x :- ‘A _ is equivalent to

1 def pyte = arg & ‘A _ -> arg in pyte x

This code passes the value x through a scape which matches argu-
ments of the form ‘A _. If the type of x has some form which does
not match the pyte, a type error occurs; otherwise, the argument is
returned unaffected. Dynamic pyte-checking can be expressed by
the sugar x :+ ‘A _, which de-sugars to

1 def dynPyteFail = (_ -> raise ‘TypeError ()) in
2 def pyte = arg & ‘A _ -> arg in
3 (dynPyteFail & pyte) x

Because dynPyteFail matches anything that pyte does not, this
code will always typecheck. If the value fails the pattern match, an
exception is raised at runtime.

In some sense, pytes are similar to contracts [10] in that they
are programs that constrain values. Pytes, however, are statically
verified because non-exhaustive matches are always treated as type
errors. We further discuss how pytes relate to contracts below.

Because every pattern is a pyte, PatBang’s pytes are capable
of expressing recursive forms such as lists. In fact, the list pyte
from Section 2.4 expresses a polymorphic list type. For instance,
y :- list will (statically) verify that y is a list; y :- dlrsList

will verify that y is a list of ‘Dollars values. (This is similar to e.g.
Java’s List<T>.)

While patterns are suitable for matching against first-order data,
they are not suitable for constraining the types of scapes; patterns
in PatBang cannot be precise about a scape’s input type because it
can be constrained in quite complex ways by the scape’s body. For
this reason, we also admit arrow pytes which restrict the input and
output of a scape. Formally, we let pytes (ψ) range over patterns (ϕ)
and arrow pytes (ψ ->ψ). This too is syntactic sugar; a reasonable
attempt at desugaring scape :- ψ1 -> ψ2 is as follows:

1 arg -> (scape (arg :- ψ1)) :- ψ2

This code simply performs η-expansion on scape, and then an-
notates the input and output of that expansion with the pytes to
the left and right of the arrow. Because non-exhaustive pattern
matches are always a type error in PatBang, any program flow
which does not conform to the expectations of the arrow pyte is
statically detected. Pytes are similar to contracts in that this pro-
grammatic decoration only has an effect if the flow is actually used;

(x -> x + 1) :- char -> char will not produce a type error un-
less it is called.

Programmatic type decoration on higher-order functions has
a long history in programming languages, dating back to Dana
Scott’s retracts [20]. More recent work on higher-order contracts
[10] has shown how dynamic constraints on a function domain and
range can enforce assertions on higher-order functions at runtime.
Higher-order contracts are weaker than pytes in that they are not
static, and they are stronger in that dependent contracts may be ex-
pressed in analogy to dependent types, and conditions that could
never be statically checked, such as being a member of a subrange
of int, are expressible as dynamic checks. There have been sev-
eral subsequent projects which add a layer of static verification for
contracts [11, 17, 24], but the advantage of pytes is they come “for
free” for us: no additional theorem prover, program analysis, or
decision procedure (respectively) is needed. Additionally, none of
these static contract frameworks support statically verifying recur-
sive shape properties of data as is possible with recursive patterns
used in a pyte.

Extracting patterns While this encoding seems correct at first
glance, it is imperfect: the resulting scape matches every argument,
meaning that t & s and t & (s :- ψ) may have different mean-
ings. Fortunately, the pattern-of prefix operator $ can solve this
problem. When evaluated on a single scape, this operator retrieves
that scape’s pattern; that is, $(p >< f) is always p. When evaluated
on an onion of scapes, the resulting pattern is the disjunction of
the patterns of all of the scapes in the onion; that is, it is a pattern
matching anything that the onion of scapes can match. This opera-
tor permits the implementation of lightweight proxy functions and
other similar design patterns in the OO model described in [16].

Using the pattern-of operator, we can define a match-preserving
η-conversion to use in the desugaring of the arrow pyte above:

1 arg & $scape -> (scape (arg :- ψ1)) :- ψ2

This desugaring allows arrow pytes to describe transpar-
ent interface specifications without affecting the semantics
of the underlying value. Using the pattern-of operator, we
can also intercept invocations in a proxy-like manner (e.g.
arg & $s -> log arg; s arg); we can also improve upon the
seal method used in the object model of [16] to allow the addition
of default methods. Most importantly, this operator allows each of
these applications to have match-preserving semantics; the full ex-
tensibility of scapes is unaffected in these encodings.

2.6 More Pattern Expressiveness
This subsection briefly discusses other forms of patterns which
further expand upon the expressiveness of PatBang.

Match list variables The previous patterns which match deep
data structures serve only as recognizers. Using match list vari-
ables, a class of pattern variables with different binding seman-
tics, patterns are able to describe filtered iteration strategies. Typ-
ically, pattern variables observe the same asymmetric properties
as onions: the rightmost binding is preferred. For instance, the
pattern (x) <- rec p: x & (int | ‘A p) will, for the argument
‘A (3 & ‘A 4), bind x to 4; we prefer the rightmost bindings
and so the deepest value is bound to x. But a match list variable
(such as in (*x) <- rec p: x & (int | ‘A p) would produce a
‘Hd _ & ‘Tl _ form of list containing all of the bindings it en-
counters: in this case, the list [3,4]. For a more complex example,
consider:

1 def treeWalk = (*x) <- rec p: ‘Leaf x | (‘L p & ‘R p) in
2 def red = (y) <- ‘Red y in
3 def redWalk = (*z) <- treeWalk (red (z)) in
4 def redFilterWalk = (*z) <- treeWalk (_ | red (z)) in . . .
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The treeWalk pattern, if combined with a single-parameter func-
tion, would generate a depth-first walk of a binary tree, placing the
list of leaf values in the variable x. The redWalk pattern uses pattern
composition to generate such a walk but only over trees which ex-
clusively contain ‘Red leaves. The redFilterWalk pattern, on the
other hand, matches every leaf but binds z to a list of the ‘Red-
labeled data encountered on the walk. In general, match list vari-
ables allow PatBang’s patterns to tersely describe general strategies
for processing the contents of data structures in a higher-order and
composable fashion.

Patterns and data construction The list pattern shown in Sec-
tion 2.2 is capable of recognizing lists but not binding its contents.
In general, binding is only successful if both branches of a disjunct
can bind a value and, in the case of empty lists, the list pattern
cannot. This changes with the introduction of a where clause: a data
construction clause which can be attached to a pattern to artificially
construct a binding. For instance, consider the following pattern:

1 def listHead =
2 (y) <- rec p: (‘Nil _ where y = ‘None ())
3 | (‘Tl p & ‘Hd x where y = ‘Some x) in . . .

The listHead pattern binds any list (including empty ones). It binds
y to the head of the list when the list is not empty. In general, the
contents of the where clause admits any expression; that expression
is executed after the pattern match is considered successful. The
where clause permits a pattern to act as an interpretation of a data
structure similar to the where clause found in [9].

Label variables Every pattern shown thus far assumes that labels
are first-order: the names of labels are statically known everywhere
they are constructed or destructed. This view is taken as a default
in PatBang to assist in efficient compilation. But it can be useful to
process a data structure without prior knowledge of its entire shape.
To accomplish this, PatBang uses label variables. Label variables `
are bound in a special form of pattern such as in the code below:

1 def rec s = (z -> z)
2 & (n & int -> n + 1)
3 & (` x &! y -> ` (s x) & (s y)) in
4 s (‘A (‘B 7 & ‘C "yes") & ‘D 3)

(Recall that application prefers rightmost scapes; thus, the iden-
tity scape (z -> z) only applies if the other scapes do not.) The
first step of evaluation in this code applies s to an onion of data,
which matches the third scape. The pattern ` x &! y in that scape
describes a disjoint conjunction which matches any onion with a
label: the value y is bound to all of the argument except the part
containing the label ` while x is bound to the contents of the label
`. In this case, we bind such that {x 7→ (‘B 7 & ‘C "yes"), y 7→
‘D 3, ` 7→ ‘A}. In the body of this branch, the code recurses on both
x and y, reconstructing the onion once recursion is complete. When
a recursion reaches an integer, it is incremented; other data is han-
dled by the identity scape. As a result, evaluation yields the value
‘A (‘B 8 & ‘C "yes") & ‘D 4.

This process is quite similar to the generic programming found
in [13], although PatBang’s &! pattern offers fewer guarantees on
the order in which it disassembles the onion (i.e., ` is chosen arbi-
trarily from the labels in the onion). But PatBang’s data structures
use label name rather than position to describe construction. This
permits PatBang to be more flexible regarding data composition; it
also permits more precise invariants on the routine’s recursion (e.g.
don’t recurse into ‘Salary labels).

3. Operational Semantics
We now present the operational semantics for a restricted form of
PatBang. This language does not include all of the features from

if e1 then e2 else e3 ∼= ( (‘True _ -> e1)
& (‘False _ -> e2)) e3

def x = e1 in e2 ∼= (x -> e2) e1
def rec x = e1 in e2 ∼= def x = fix (x -> e1) in e2

fix ∼= f -> (x -> f (v -> x x v))
(x -> f (v -> x x v))

Figure 3.1. Simplified PatBang Encodings

e ::= −⇀s expressions

E ::= −−−−⇀x = v environment
s ::= x = v | x =x | x =xx | x =x�x clauses
v ::= Z | () | l x | x &x | values

−⇀x -> e | −⇀y <-ϕ | x ><x
l ::= ‘(alphanumeric) labels

x , y ::= (alphanumeric) value and pattern variables
� ::= + | == integer operators
ϕ ::= int | l ϕ | fun | pat | scape | pattern bodies

ϕ &ϕ | x−⇀ϕ | rec y :ϕ | y
π ::= int | l | fun | pat | scape projectors

Figure 3.2. PatBang ANF Language Grammar

Section 2; we leave out a number of pattern forms to reduce redun-
dancy in the formalization. First, it does not include the expressive-
ness enhancements described in Section 2.6. Second, some simple
patterns like | and none are elided; we discuss their formalism in
Appendix C. Third, language features such as if and def are en-
coded (see Figure 3.1) to simplify the expression semantics. Encod-
ing def is safe because it does not affect call-site polymorphism as
it affects let-bound polymorphism. We can use an encoded fix be-
cause our constraint-based type system can express recursive types.
Restricted PatBang does include all of the functionality of labels,
onions, scapes, recursive patterns, and pattern substitution.

Notation For a given grammatic construct ∗, we let [∗1, . . . , ∗n]

denote a list of ∗, often using the equivalent shorthand
n−⇀∗� ; the

“�” indicates which constructs are indexed, and the n and � can
be elided when they are obvious or not needed. Operator ‖ denotes
list concatenation. For sets, we use similar indexing notation:

n⨽−−⨼∗�

abbreviates {∗1, . . . , ∗n} for some arbitrary ordering of the set.

3.1 PatBang Syntax
In addition to the encodings described in Figure 3.1, we also sim-
plify our formalization by using the A-normal form grammar ap-
pearing in Figure 3.1. The A-translation from the nested grammar
of Section 2 is fairly straightforward and so is elided. For instance,
the nested expression (s 2) (‘B n) -> n + 1 would A-translate
to

1 x1 = 2
2 p1 = s x1
3 p2 = (n) <- p1 (‘B n)
4 f = (n) -> x2 = 1
5 r = n + x2
6 s = p2 >< f

We use indentation to indicate the two clauses which are in the body
of the function f. Note that each clause is a variable assignment to
a redex. Finally, we also require a guarantee of well-formedness:
a PatBang ANF expression is well-formed iff it is closed and each
variable is defined no more than once. For the remainder of this
document, we assume that expressions are well-formed.
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3.2 Supporting Relations
We prepare to define the operational semantics of PatBang by
specifying the following supporting relations.

Lookup Evaluation of PatBang proceeds by reducing each non-
value clause in an expression to a value form (or a series of new
clauses in the case of application). A list E of value assignments is
therefore an evaluation environment. For such an environment, we
defineE (x) = v when x = v ∈ E. Because variable definitions are
unique, this lookup function is deterministic.

Projection Projectors π in the grammar represent different out-
ermost value sorts. We use the notation v ∈ π to denote that the
outermost sort of v matches π; for instance, ‘A x ∈ ‘A. All outer-
most sorts are matched by some projector except for onions, which
no projector matches. The cases in which projection holds are ex-
actly the following:
Definition 3.3 (Projector Matching).

−⇀x -> e ∈ fun Z ∈ int
−⇀y <-ϕ ∈ pat l x ∈ l
x ><x′ ∈ scape

We then define a simple projection function E ↓∗π(x) which
projects from a given variable x all values which match the pro-
jector π. The result is a list because, when x is an onion, projection
yields all of its components which match π.
Definition 3.4 (Value Projection).

E ↓∗π(x) =


[] if E (x) = ()
[] if E (x) is non-onion, E (x) /∈ π
[E (x)] if E (x) is non-onion, E (x) ∈ π
E ↓∗π(x1) ‖E ↓∗π(x2) if E (x) = x1 &x2

In most cases, we only need the highest priority (right-most)
value from the onion. For those cases, we define the following:
Definition 3.5 (Single Value Projection).

E ↓π(x) = vn where E ↓∗π(x) =
n−⇀v

Note that E ↓π(x) is partial; it is undefined when x contains no
values which match the projector.

Compatibility We will also require a notion of compatibility be-
tween patterns and arguments. When an onion of scapes is called,
the call is expanded in a series of steps. First, the argument is
checked against each pattern in priority order to determine which
scape to use. On a match, this pattern checking process yields a set
of bindings from pattern variables to values within the argument.
Second, these values are matched positionally with their respective
function parameters and the body of the function is expanded.

In order to formalize this process, we begin by defining the pat-
tern compatibility relation x �E

−⇀y <-ϕ \−⇀v as the least relation
that satisfies the clauses in Figure 3.6. This relation receives an ar-
gument variable and a pattern in the context of some environment
and yields a list of values for consumption by the corresponding
function. Because this relation descends into the argument produc-

ing bindings as it goes, we overload it as x �E ϕ \B ;
⨽−−⨼
ϕ′ to operate

on pattern bodies to produce a set of bindingsB of the form ⨽−−−−−−⨼y 7→ v.
The cases of pattern substitution in that figure (e.g. ϕ2 [ϕ1 / y]) are
capture-avoiding; substitution of e.g. y will not replace below a
shadowing binding of y.

Here, the occurrence check driven by
⨽−−⨼
ϕ′ is used to detect non-

contractive patterns. Non-contractive patterns are those which refer
to themselves without an intervening use of a label; for instance,
rec p: int & p is a non-contractive pattern. Non-contractive pat-
terns are treated as a match failure here for simplicity of presenta-
tion; the type system, however, treats them as type errors because

x �E
n−⇀y <-ϕ \n−⇀v if x �E ϕ \m⨽−−−−−−⨼y� 7→ v� ∪B ; ∅, n ≤ m

x �E ϕ \∅;
⨽−−⨼
ϕ′ if ϕ ∈ {int , fun , pat , scape},

E ↓ϕ(x) is defined

x �E l ϕ \B ;
⨽−−⨼
ϕ′ if E ↓l(x) = l x′ , x′ �E ϕ \B ; ∅

x �E ϕ1 &ϕ2 \B ;
⨽−−⨼
ϕ′ if x �E ϕ1 \B1 ;

⨽−−⨼
ϕ′, x �E ϕ2 \B2 ;

⨽−−⨼
ϕ′,

B = B2 ∪ {y 7→ v ∈ B1 | y 7→ v′ /∈ B2}
x �E ϕ1 \B ;

⨽−−⨼
ϕ′ if ϕ1 = x′

n−⇀
ϕ′′ , E ↓pat(x′) =

n−⇀y <-ϕ2 ,

ϕ2 /∈
⨽−−⨼
ϕ′, ϕ3 = ϕ2 [ϕ′′1 / y1] . . . [ϕ′′n / yn],

x �E ϕ3 \B ;
⨽−−⨼
ϕ′ ∪ {ϕ1}

x �E ϕ1 \B ;
⨽−−⨼
ϕ′ if ϕ1 /∈

⨽−−⨼
ϕ′, ϕ1 = rec y :ϕ2 ,

x �E ϕ2 [ϕ1 / y]\B ;
⨽−−⨼
ϕ′ ∪ {ϕ1}

x �E y \{y 7→ v};
⨽−−⨼
ϕ′ if E (x) = v

Figure 3.6. PatBang Value Compatibility

they have no well-defined semantics. This is quite similar to the
issue of non-contractive types [14] such as µt. t, which are also tra-
ditionally rejected. Note that this occurrence check does not trigger
for contractive patterns because the set of visited patterns is “for-
gotten” by the label clause; the pattern matching the label’s con-
tents is related with an empty set of visits rather than the set with
which the label relates.

For notational purposes, we write e.g. x �E ϕ to indicate that

there exists no B and
⨽−−⨼
ϕ′ such that x �E ϕ \B ;

⨽−−⨼
ϕ′.

The first clause in Figure 3.6 is of a different form than the other
clauses. It describes how values bound in the pattern are arranged
into a list to be used in a function. The notation

m⨽−−−−−−⨼y� 7→ v� implies
that there is some ordering over the set which aligns with the vari-
able list

n−⇀y . Note that m may be less than n. This allows patterns
with some variables that are not always bound to be utilized by
functions that do not require those variables.

We now require a mechanism which will apply an argument to
an onion of scapes in priority order. Formally, we write x��E

−⇀v\ e
to indicate that the application of −⇀v to the argument x should result
in the expression e being executed. Note that e does not contain
fresh variables – its bound variables are freshened later – but it
otherwise represents how the scape should be evaluated for the
given argument x. We define this relation as follows:
Definition 3.7 (Value Application Compatibility).
x1��E []\ e is false

x1��E
−⇀v ‖[x2 ><x3]\

n−−−−⇀
x′

�
= v′

�
‖ e if E ↓pat(x2) = v′′ ,

E ↓fun(x3) =
n−⇀
x′ -> e ,

x1 �E v′′ \
n−⇀
v′

x1��E
−⇀v ‖[x2 ><x3]\ e if E ↓pat(x2) = v′′ , x1 �E v′′ ,

E ↓fun(x3) = v′ , x1��E
−⇀v\ e

As with compatibility, we write x �E
−⇀v to signify that there is

no e such that x��E
−⇀v\ e.

3.3 Small-Step Semantics
Using the above relations, we now define small-step semantics for
PatBang. We take α(e) to be an α-conversion function which re-
names all bound variables in e to a fixed set of fresh names relative
to the current context. We then define our small-step relation over
closed e such that variable names are unique. This definition is as
follows; an explanation of the rules appears below.
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Definition 3.8 (PatBang Small-Step Semantics).
E ‖[x =x′] −→1 E ‖[x = v] when E (x′) = v
E ‖[x =x1 +x2] ‖ e −→1 E ‖[x =n] ‖ e

when E ↓int(x1) = n1, E ↓int(x2) = n2, n1 + n2 = n
E ‖[x =x1 ==x2] ‖ e −→1 E ‖[x′ = () , x = ‘True x′] ‖ e

when E ↓int(x1) = n1, E ↓int(x2) = n2, n1 = n2, x′ fresh
E ‖[x =x1 ==x2] ‖ e −→1 E ‖[x′ = () , x = ‘False x′] ‖ e

when E ↓int(x1) = n1, E ↓int(x2) = n2, n1 6= n2, x′ fresh
E ‖[x =x1 x2] ‖ e′′ −→1 E ‖α(e′ ‖[x′ = r]) ‖[x =α(x′)] ‖ e′′

when E ↓∗scape(x1) = −⇀v, x2��E
−⇀v\ e′ ‖[x′ = r]

We then define small-step computation e0 −→∗ en to hold
when e0 −→1 . . . −→1 en for some n ≥ 0. Note that e −→∗ E
means that computation has resulted in a final value. We write
e X−→1 iff there is no e′ such that e −→1 e′; observe E X−→1

for any E.
Here are some intuitions for the above operational semantics

rules. In the second case, we observe that the first unevaluated redex
is an addition: x1 +x2. We first use projection to obtain the integer
from each of x1 and x2; we then replace the redex with the sum
of the results. If e.g. x1 is defined as an integer (or as a variable
which is inductively defined as an integer) in E, then projection
is straightforward. If x1 is an onion containing integers, then the
rightmost integer is used; that is, 1 & 2 projects the integer 2 in
keeping with the examples in Section 2. If x1 contains no integers,
then projection is undefined and no small step can occur, leaving
the evaluation “stuck” (that is, e X−→1). The small step evaluation
rules for equality use the same approach as addition.

In the final case, the first unevaluated redex is an application
x1 x2. We begin by projecting all scapes from x1; we then use
the compatibility relation to determine which scape matches the
argument x2 first. If no such scape exists, then the argument does
not match any of the patterns and evaluation is stuck; otherwise,
we determine the appropriate body e′ ‖[x′ = r] to execute (which
includes the pattern’s bindings). We describe the body of the scape
in this manner because x′, as the last variable in the body, describes
the result of the scape. We then replace the original application
expression [x =x1 x2] with α(e′ ‖[x′ = r]) ‖[x =α(x′)]: the body of
the matched scape modified to copy the result of the scape into x.
The variables in these terms have been freshened by α-conversion
wherever they originated from the body of the scape in order to
ensure that names in the new expression are still unique; note that
both occurrences of x′ freshen to the same variable here.

We have defined a small-step operational semantics for
PatBang; we will now discuss how it may be typed.

4. Type System
In this section, we present a type system for the restricted form of
PatBang shown in Section 3. The operational semantics of PatBang
are highly flexible and we need a correspondingly flexible type
system for this task. Data conjunction via the onion operator, for
instance, means that we must support structural subtyping. For this
reason, we base our type system on polymorphic subtype constraint
type systems [2, 12, 19, 23] with a number of novel extensions
as discussed below. In such systems, types are expressed as a pair
between a type and a set of constraints on that type; for instance,
boolean values have the type

α1\{‘Trueα2 <: α1, ‘Falseα3 <: α1, () <: α2, () <: α3}
In short, this type indicates that α1 has two lower bounds: ‘True ()

and ‘False (). As a result, we can view α1 as the union between
these two types. Quantifying over such sets gives a form of poly-
morphism generalizing F-bounded quantification [7] since arbitrary
subtype constraints are allowed on the bound variables.

Because the constraints admitted by PatBang are so expressive,
it is difficult to construct a traditional subject-reduction proof for

C ::= ⨽−−⨼c constraint sets
c ::= τ <: α | α <: α | αα <: α | constraints

α�α <: α
τ ::= int | () | l α | α &α | types

−⇀α ->α \C |
−⇀
β <-φ | α ><α

φ ::= int | l φ | fun | pat | scape | pattern body types

φ &φ | α
−⇀
φ | recβ :φ | β

α ::= 〈x , Ċ〉 type variables
β ::= 〈y〉 pattern type variables

Figure 4.1. PatBang Type Grammar

its type system. While it is possible to compute constrained types
for both expressions in e −→1 e′, it is in general difficult to
align the constraints between those types to satisfy a (decidable)
subtyping relation. It is also difficult to construct a regular tree
or other form of denotational type model [3, 6, 22] given how
flexible the typing of pattern matching needs to be1. Instead, we
prove soundness by simulation: the type system conservatively
approximates the operational semantics at each relation, ensuring
that a program that “gets stuck” at runtime will have an identifiable
inconsistency in the constraints of its type. In this view, it is helpful
to view constraints as possible information flows in the PatBang
program; for instance, we can take the constraint () <: α2 to
indicate that, at runtime, a value of the type () may appear at
the point in the program which we have designated α2. In fact,
every operational semantics construct has a type system analogue:
clauses map to constraints, expressions map to constraint sets,
the value-level pattern compatibility function maps to a type-level
compatibility relation, and so on. Preserving this alignment makes
the simulation proof relatively straightforward and is part of the
reason we chose to formalize over an ANF grammar. As such,
PatBang’s type system can be viewed as a hybrid between a flow
analysis [1, 18, 21] and a traditional type system.

While PatBang’s type system infers extremely precise and ex-
pressive types, these types are also by nature difficult to read and
defy modularization. The type system presented here is therefore
whole-program. Our broader research agenda includes acquiring
the typical benefits of modularity by using other techniques.

The grammar used by the PatBang type system appears in Fig-
ure 4.1. This grammar makes evident the simulation described
above: the productions of constraints mirror the productions of
clauses in Figure 3.1. The PatBang typechecking process consists
of three phases. First, a constrained type is inferred for the expres-
sion being typechecked. Next, the constraints in that type are de-
ductively closed over a logical system. Finally, this constraint set is
checked for immediate inconsistencies which indicate a type error.
The following sections describe each of these processes in detail.

4.1 Initial Derivation
Because the PatBang operational semantics and type system are
so closely related, it is quite simple to lift an expression into a set
of constraints; this process is called initial derivation and, for the
most part, maps each evaluation-level construct onto its type system
counterpart.

Simulation of most clauses in the operational semantics of
PatBang is quite simple, but scape application presents challenges
to the type system due to its need to freshen type variables in the
body of the scape. Executing a program may yield unbounded calls,
but the type system cannot freshen an unbounded number of type

1 We have constructed a draft regular tree model and do believe it is possible,
just not illuminative since the pattern matching sematics is very complex.
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J[s]KE = 〈α ,C〉
where JsKS = 〈α ,C〉

J[s′] ‖−⇀sKE = 〈α ,C ∪ C′〉
where Js′KS = 〈α′ , C′〉, J−⇀sKS = 〈α′ , C〉

Jx =ZKS = 〈?αx, int <:
?
αx〉

Jx = ()KS = 〈?αx, () <:
?
αx〉

Jx = l x1KS = 〈?αx, l ?
αx1 <:

?
αx〉

Jx =x1 &x2KS = 〈?αx, ?
αx1 &

?
αx2 <:

?
αx〉

Jx =
n−⇀x -> eKS = 〈?αx,

n−⇀?
αx�

->x′ \C <:
?
αx〉

where JeKE = 〈α′ , C〉
Jx =

n−⇀y <-ϕKS = 〈?αx,
n−−⇀
〈y�〉 <- JϕKP <:

?
αx〉

Jx =x1 ><x2KS = 〈?αx, ?
αx1 ><

?
αx2 <:

?
αx〉

Jx =x1KS = 〈?αx, ?
αx1 <:

?
αx〉

Jx =x1 x2KS = 〈?αx, ?
αx1

?
αx2 <:

?
αx〉

Jx =x1�x2KS = 〈?αx, ?
αx1 �

?
αx2 <:

?
αx〉

JintKP = int
Jl ϕKP = l JϕKP

JfunKP = fun
JpatKP = pat

JscapeKP = scape
Jϕ1 &ϕ2KP = Jϕ1KP & Jϕ2KP

Jx
n−⇀ϕ KP =

?
αx

n−−−⇀
Jϕ�KP

Jrec y :ϕKP = rec 〈y〉 : JϕKP

JyKP = 〈y〉

Figure 4.2. PatBang Initial Derivation

variables or it would not terminate. PatBang uses the polymorphism
model of TinyBang [16]: type variables are freshened using a con-
tour C which describes the context of the application that generated
them; recursive calls reuse contours, preventing them from freshen-
ing variables indefinitely. We defer further discussion of contours
to Section 4.3.

To model these contours, type variables in PatBang have struc-
ture (as opposed to being atomic as in most type systems). A
PatBang type variable is defined as a pair between the value vari-
able from which it was initially derived and a possible contour Ċ,
which is either a contour (if the variable has already been fresh-
ened) or the special symbol Z (if it is still contained within the set
of constraints in its enclosing scape type). Type variables produced
by initial derivation have no contour as they have not yet been fresh-
ened. For notational convenience, we write ?

αx to represent 〈x ,Z〉.
We define initial derivation using three functions: JeKE =

〈α ,C〉 (which produces a type variable and constraint set from
an expression), JsKS = 〈α , c〉 (which produces a type variable and
single constraint for a single clause), and JϕKP = 〈φ〉 (which pro-
duces a pattern type from a pattern). The definition of these func-
tions appears in Figure 4.2. These functions are often written as
type rules; we are using an inductive definition because there is no
nondeterminism.

4.2 Constraint Closure
The second step of the typechecking process is where the hard
work happens: the deductive closure over the set of constraints
produced by initial derivation [2]. In essence, constraint closure
abstractly models the computation performed by the operational
semantics: where the operational semantics would replace clauses
with other clauses, constraint closure uses constraints to add more
constraints. Old constraints are never removed during closure. This
is in part because the PatBang type system is flow-insensitive:
constraint closure can happen in any order and it is not always
clear when a constraint is no longer needed. Also, this makes the

constraint closure monotonic (excepting type variable unification)
and so simplifies the proof of soundness.

Because constraint closure models evaluation, we must have for
each function used during evaluation some type system counterpart.
We begin by defining a function FVAR(α) which precisely describes
how fresh type variables are created to model the fresh variables
required when integer comparisons are executed. (Fresh variables
produced during application are discussed elsewhere; they require a
more complex definition because the number of variables freshened
per application is not constant.)
Definition 4.3 (Fresh Variables).
For all α in the initial derivation, FVAR(α) = α′ where α′ is a fresh type
variable not in the initial derivation with the same possible contour as α.

4.2.1 Fibrations
Constraint closure requires type system analogues for the projec-
tion and compatibility functions appearing in Section 3.2. Before
these relations can be defined, however, we need to define fibra-
tions. We use fibrations to prevent a class of false positives which
arise in the PatBang type system.

Recall that the evaluation system looks up the value for a given
variable x simply by locating an assignment for that variable in the
environment (e.g. x = v ∈ E). Likewise, a type can be found for a
type variable α by searching for a bound in the constraint set (e.g.
τ <: α ∈ C). In the case of a union, however, we might choose
one of many lower bounds and a problem arises if these choices are
made inconsistently. For instance, consider

1 ( (int -> 1) & (char -> 2) ) arg

Suppose that arg has the type α \{int <: α , char <: α}; that is, it
is a union between int and char. If we naı̈vely check each pattern
to see if some form of α fails to match it, we conclude that the
onion does not exhaustively match arg; char fails to match the first
pattern and int fails to match the second. But this is obviously
the wrong conclusion; there exists no single type of α that fails to
match both patterns.

The root of this problem is that we are not ensuring that we
have a consistent view of α across pattern matches. This so-called
union alignment problem is well-known and invariably is an issue
that must be dealt with in union type systems; [8] for example is
a recent paper reviewing the problem. Unfortunately, sound union
elimination rules in traditional union typing systems usually end
up being weaker than desired: the rule must be syntactically con-
strained to eliminate only on union-typed expressions which are
known to be evaluated only once (and thus to have made a single
choice for which union branch was taken at runtime).

In a subtype constraint context, where (positive) union types
take the form of multiple lower bounds on a type variable, union
eliminations can be viewed as occurring in canonical positions:
each choice of a lower bound on a type variable implicitly performs
union elimination. For example, we must process α pointwise first
as int and then as char, fixing the choice throughout the overall
check for application compatibility. To achieve this, we record
the union elimination decision(s) in a fibration, formally described
below. We add fibrations to the projection relation, allowing us to
require that multiple projections use the same fibration. We also add
fibrations to the compatibility relation. The grammar of fibrations
is as follows:

f ::= 〈τ ,
−⇀
f 〉 | Z fibrations

We additionally require that, for all fibrations of the form
〈τ ,

n−⇀
f 〉, there are n type variables in τ ; that is, labels have n = 1,

onions and scapes have n = 2, and all others have n = 0. Each
fibration in the list corresponds directly to a type variable in τ , de-
scribing how its union elimination decisions were made. The pur-
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C ` α π−_ []; 〈τ ,
n−⇀
f 〉 if τ <: α ∈ C, τ is non-onion,
and one of π = int ∧ τ 6= int ∧ n = 0

or π = l ∧ τ 6= l α′ ∧ n = 1

or π = fun ∧ τ 6=
−⇀
α′ ->α′′ \C′ ∧ n = 0

or π = pat ∧ τ 6=
−⇀
β <-φ ∧ n = 0

or π = scape ∧ τ 6= α′ ><α′′ ∧ n = 2
C ` α π−_ []; 〈() , []〉 if () <: α ∈ C
C ` α int−−_ [f]; f if f = 〈int , []〉, int <: α ∈ C
C ` α l−_ [f]; f if l α′ <: α ∈ C, f = 〈l α′ , [f′]〉
C ` α fun−−_ [f]; f if τ <: α ∈ C, τ =

−⇀
α′ ->α′′ \C′, f = 〈τ , []〉

C ` α pat−−_ [f]; f if τ <: α ∈ C, τ =
−⇀
β <-φ , f = 〈τ , []〉

C ` α scape−−−_ [f]; f if τ <: α ∈ C, τ = α1 ><α2 , f = 〈τ , [f1, f2]〉
C ` α π−_

−⇀
f 1 ‖

−⇀
f 2; f′′ if τ ′ <: α ∈ C, τ ′ = α1 &α2 ,

C ` α1
π−_
−⇀
f 1; f′1, C ` α2

π−_
−⇀
f 2; f′2,

f′′ = 〈τ ′ , [f′1, f′2]〉

Figure 4.4. PatBang Projection

pose of the Z construction is to act as a simple base case for the
fibration; it represents the lack of any further decisions being made.

For instance, consider the type α1 \{‘Aα2 <: α1 , int <:

α2 , α1 <: α2}. In a deep grammar with unions and µ types, this
type is equivalent to µα. ‘A (int∪α): in other words, a sequence of
‘A labels (at least one) terminating in a an int. (Such a type may
be inferred in PatBang as a result of type variable unification.) One
legal fibration of this type is 〈‘Aα2 , [〈int , []〉]〉. This fibration de-
scribes that the first decision (which, admittedly, is the only legal
one) was to pick the ‘Aα2 lower bound for α1. It also indicates that
int was used as the lower bound for α2. Another legal fibration for
this type is 〈‘Aα2 , [Z]〉; this fibration may be valid in cases in which
deeper decisions were not necessary, such as matching against the
pattern ‘A _. The Z symbol exists in the fibration grammar to en-
sure that finite fibrations exist for corecursive types; while these
types cannot be instantiated at runtime, type variable unification
can create them in response to pathological code.

The construction of a fibration can be viewed as inference of
a series of both wide and deep union elimination decisions. One
problem with standard union type elimination is developing a com-
plete type inference procedure over those unions; fibrations can be
viewed as a solution to the union elimination type inference prob-
lem. Using fibrations, we can now define the type system analogues
of the functions used during evaluation.

4.2.2 Projection
We define a relation to extract from a type variable all lower
bounds matching a given projector. This relation corresponds to
the E ↓∗π(x) function in the operational semantics. Unlike the op-
erational semantics, however, the type system looses information;
while evaluation has a single value for x, the type system must in-
dependently consider every type lower bound which could reach
the type variable corresponding to x. For this reason, type projec-
tion is a relation and not a function.

We write C ` α π−_
−⇀
f ; f′ to denote that we project from α all

types which match π. These types arrive as the list of fibrations
−⇀
f

(rather than a list of types) in order to track not only which types can
be projected but which union elimination decisions have already
been made for them. The f′ is the fibration describing the union
decisions that were made in order to find this list; it is alignment
with this fibration across multiple relations which preserves the
union alignment property described above. Its definition appears
in Figure 4.4.

The additional complexity in this projection definition when
compared to Definition 3.4 is largely the result of fibrations: in

the cases where rules could be simplified using Definition 3.3, the
type system projection relation must create a fibration specific to
the projector and so cannot easily generalize. But this is a matter
of notation; type system projection is only more complex than
evaluation projection in that it tracks the lower-bounding decisions
made as it explores onion structure.

In cases in which only the types of the fibrations are necessary,
we may write a list of types rather than the list of fibrations; that

is, we write C ` α π−_
n−⇀τ ; f′ to mean C ` α π−_

n−−−−−−⇀
〈τ� , . . .〉; f′. We

may also elide f′ when it is unimportant; that is, C ` α π−_
−⇀
f is an

abbreviation for ∃f′. C ` α π−_
−⇀
f ; f′. Finally, as in the evaluation

system, we define a single projection relation for cases in which
only the highest priority result is important:
Definition 4.5 (Single Projection).
C ` α π−_ fn; f′ holds iff C ` α π−_

n−⇀
f ; f′ holds.

We use single projection in most cases; application is the only
case which requires multiple projection. Note that single projection
is partial; if there are no types in any concrete form of α matching
π, it does not hold.

For an example, we consider the list type α1 \{‘Nilα4 <:

α1 , α2 &α3 <: α1 , ‘Hdα5 <: α2 , ‘Tlα1 <: α3 , () <: α4 , int <:

α5}; intuitively, this type is µt. ‘Nil () ∪ ‘Hd int & ‘Tl t, the type
of integer lists. One legal projection is C ` α1 ‘Hd−−_ [f]; f′ where
f = 〈‘Hdα5 , [f

′′]〉 and f′ = 〈α2 &α3 , [f, 〈‘Tlα1 , [Z]〉]〉. The
value of f reflects the specific instance of ‘Hd which was found; in
particular, this result delivers α5 as a means by which the contents
of that label can be accessed. The value of f′ contains the work
necessary to reach this value of f: we must choose the onion for
α1, choose the ‘Tlα1 bound for α3 (to ensure that no ‘Hd value
could appear there), and then use f as our decision for α2. The Z
appears because decisions under the ‘Tl are irrelevant here. The
separation between f and f′ ensures that the specific work done to
reach the label has been abstracted away by this projection relation.
Note that there are no constraints on f′′ – projection is shallow – but
such limitations can be enforced where this relation is used.

4.2.3 Positive Compatibility
Next, we must define the type-level compatibility relations to
model the pattern compatibility relations defined in the operational
semantics. We begin by showing a simplified version of type com-
patibility that aligns quite closely with value compatibility; we then
extend the relation because the compatibility failures need to be
made explicit and are not just the negation of successes.

As with projection, type-level compatibility is a relation (but
not a function) and includes fibrations to permit union alignment.
We write α1 �C

n−⇀
β <-φ \n−⇀τ ; f to indicate that an argument type

variable α is compatible with the pattern
n−⇀
β <-φ, producing the

argument types
n−⇀τ . As with type projection, this is in the context

of a fibration f to address union alignment. Instead of using a
mappingB from variables onto values, this relation uses a mapping
Γ =

⨽−−−−−−⨼
β 7→ τ from pattern type variables onto types. Otherwise, type

compatibility closely mirrors that of Figure 3.6.
The label clause of compatibility reveals why projection must

relate to fibrations (as opposed to just types): compatibility of a
pattern may need to explore beyond a specific projection, so we
might need to constrain the fibration from projection to match
the fibration from a recursive compatibility check. Using the con-
straint set from the example in Section 4.2.2, consider α1 �C

‘Hd int \∅; f′; ∅. The label clause shows the relation to hold by
showing both that ‘Hd can be projected from α1 and that its con-
tents are compatible with int. In showing the latter, it is nec-
essary to align the appropriate part of the fibration f′ with the
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α1 �C

n−⇀
β <-φ \n−⇀τ ; f if α1 �C φ \

m⨽−−−−−−⨼
β� 7→ τ� ∪ Γ; f; ∅, n ≤ m

α1 �C φ \∅; f′;
⨽−−⨼
φ′ if φ ∈ {int , fun , pat , scape},

C ` α1
φ−_ f; f′

α1 �C l φ \Γ; f′;
⨽−−⨼
φ′ if C ` α1

l−_ 〈l α2 , [f]〉; f′,
α2 �C φ \Γ; f; ∅

α1 �C φ1 &φ2 \Γ; f;
⨽−−⨼
φ′ if α1 �C φ1 \Γ1; f;

⨽−−⨼
φ′, α1 �C φ2 \Γ2; f;

⨽−−⨼
φ′,

Γ = Γ2 ∪ {β 7→ τ ∈ Γ1 | β 7→ τ ′ /∈ Γ2}
α1 �C φ1 \Γ; f;

⨽−−⨼
φ′ if φ1 = α2

n−⇀
φ′′ , C ` α2

pat−−_ 〈
n−⇀
β <-φ2 , []〉; f′,

φ2 /∈
⨽−−⨼
φ′, φ3 = φ2 [φ′′1 / β1] . . . [φ′′n / βn],

α1 �C φ3 \Γ; f; {φ1} ∪
⨽−−⨼
φ′

α1 �C φ1 \Γ; f;
⨽−−⨼
φ′ if α1 /∈

⨽−−⨼
φ′, φ1 = recβ :φ2 ,

α1 �C φ2 [φ1 / β]\Γ; f; {φ1} ∪
⨽−−⨼
φ′

α1 �C β2 \{β2 7→ τ}; 〈τ ,
−⇀
f 〉;

⨽−−⨼
φ′ if τ <: α1 ∈ C

Figure 4.6. PatBang Compatibility Successes

contents of the label. The example in Section 4.2.2 shows that
C ` α1 ‘Hd−−_ 〈‘Hdα5 , [f

′′]〉; f′ and it remains to show that α5 �C

int \∅; f′′; ∅; this is true when f′′ = 〈int , []〉.
The decidability of this relation is more subtle than its

evaluation-level counterpart; nonetheless, a decidable algorithm
exists to determine the type lists and fibrations for which a given
compatibility will hold. We defer discussion of this decidability
property to Appendix B.

4.2.4 Complete Compatibility
While the simple compatibility relation above provides intuitions
about how type system compatibility works in PatBang, it is incom-
plete. Because compatibility is a relation, it is no longer sufficient
to use the failure of the relation to signify compatibility failure. It
is possible that compatibility succeeds for a given argument under
one fibration but not under another; this does not allow us to deter-
mine whether it is because the fibration does not correctly describe
the argument or if the argument does not match the pattern. Fur-
thermore, we must observe the non-contractive case in Section 3.2:
non-contractive patterns should generate a type failure for reasons
of soundness.

To address this problem, we first define two additional grammar
symbols: Γ̇, which ranges over Γ and the special symbols / and A;
and Ċ, which ranges over C and the special symbol A. We use /
to designate a compatibility failure; in such cases, pattern matching
should move on to the next available pattern. We use A to designate
that type checking should fail. This allows us to solve the above
problem by making our failure modes explicit in the type system
compatibility relation. We then define compatibility as follows:
Definition 4.8 (Compatibility). Let relationRS be the least relation satisfy-
ing the clauses in Figure 4.6. Let relation RF be the least relation satisfying
the clauses in Figure 4.7. We define PatBang’s compatibility relation as the
union between these two relations.

As with the operational semantics, substitution is capture-
avoiding.

4.2.5 Application Compatibility
Just as in the small-step semantics, we use the compatibility re-
lation to create an application compatibility relation. Because ap-
plication compatibility is a type system relation, it makes failure
explicit just as in Definition 4.8. Further, application compatibil-
ity must yield a fibration for union alignment purposes. Otherwise,
however, the following definition is quite similar to Definition 3.7.

Using Γ̈ to range over / and A,

α1 �C

n−⇀
β <-φ \Γ̈; f if α1 �C φ \Γ̈; f; ∅

α1 �C φ \/; f′;
⨽−−⨼
φ′ if φ ∈ {int , fun , pat , scape},

C ` α1
φ−_ []; f′

α1 �C l φ \/; f;
⨽−−⨼
φ′ if C ` α1

l−_ []; f

α1 �C l φ \Γ̈; f′;
⨽−−⨼
φ′ if C ` α1

l−_ 〈l α2 , [f]〉; f′, α2 �C φ \Γ̈; f; ∅
α1 �C φ1 &φ2 \Γ̈; f;

⨽−−⨼
φ′ if α1 �C φi \Γ̈; f;

⨽−−⨼
φ′, i ∈ {1, 2}

α1 �C φ1 \/; f;
⨽−−⨼
φ′ if φ1 /∈

⨽−−⨼
φ′, φ1 = α2

n−⇀
φ′′ ,

C ` α2
pat−−_ []; f′

α1 �C φ1 \Γ̈; f;
⨽−−⨼
φ′ if φ1 /∈

⨽−−⨼
φ′, φ1 = α2

n−⇀
φ′′ ,

C ` α2
pat−−_ 〈

n−⇀
β <-φ2 , []〉; f′,

φ3 = φ2 [φ′′1 / β1] . . . [φ′′n / βn],

α1 �C φ3 \Γ̈; f; {φ1} ∪
⨽−−⨼
φ′

α1 �C φ1 \Γ̈; f;
⨽−−⨼
φ′ if α1 /∈

⨽−−⨼
φ′, φ1 = recβ :φ2 ,

α1 �C φ2 [φ1 / β]\Γ̈; f; {φ1} ∪
⨽−−⨼
φ′

α1 �C φ \A; f;
⨽−−⨼
φ′ if φ ∈

⨽−−⨼
φ′

Figure 4.7. PatBang Compatibility Failures

Definition 4.9 (Application Compatibility).
α1��C

−⇀τ ‖[(α2 ><α3)]\α4 ;C′ ∪ C′′; f
if C ` α2

pat−−_ τ ′′ , α1 �C τ ′′ \
n−⇀
τ ′ ; f,

C ` α3
fun−−_

(
n−⇀
α′ ->α4 \C′

)
, C′′ =

n⨽−−−−−−−⨼
τ ′

�
<: α′

�

α1��C
−⇀τ ‖[(α2 ><α3)]\α4 ; Ċ′; f

if C ` α2
pat−−_ τ ′′ , C ` α3

fun−−_ τ ′′′ , α1 �C τ ′′ \/; f,

α1��C
−⇀τ \α4 ; Ċ′; f

α1��C []\α2 ;A; f always
α1��C

−⇀τ ‖[(α2 ><α3)]\α4 ;A; f

if C ` α2
pat−−_ τ ′′ , C ` α3

fun−−_
(

n−⇀
α′ ->α4 \C′

)
,

∀m. α1 �C τ ′′ \
m−⇀
τ ′ ; f =⇒ m < n

α1��C
−⇀τ ‖[(α2 ><α3)]\α4 ;A; f if C ` α2

pat−−_ τ ′′ , α1 �C τ ′′ \A; f

α1��C
−⇀τ ‖[(α2 ><α3)]\α4 ;A; f if C ` α2

pat−−_ [] or C ` α3
fun−−_ []

As in projection, we elide the fibration when it is unimportant.

4.3 Contours
As a last step before defining PatBang’s constraint closure relation,
we now discuss contours. Contours are used during constraint clo-
sure in order to provide call-site polymorphism. PatBang uses the
same polymorphism model as the one presented in Section 5.3 of
[16] but, for clarity, we summarize it here.

Recall that type variables in PatBang are not atomic: a type vari-
able is a pair between a single value variable in the original source
program and a possible contour. Type variables which are captured
in the body of a scape have no contour; type variables at the top
level of a constraint set always have a contour. A contour describes
the calling context in which the type variable was polyinstantiated.
Our contour is a form of regular expression over call strings, where
each character in the string is a call site in the program. For decid-
ability and performance, we restrict these regular expressions such
that (1) a given call site appears in only one place in the expression
and (2) the only terms in the expression are literal call sites and
Kleene closures over non-empty sets of call sites. Furthermore, we
require that, during closure, no two contours overlap.

Consider the example call graph in Figure 4.10. Suppose that
some scape s is called in three different places (which we name a,
b, and c). Suppose also that call sites b and c are within another
scape t which is called once at a site we name d. Let a and d be
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Figure 4.10. Example Call Graph

at top level. Finally, consider any value variable x which appears
within the scape s. (We initially ignore the dotted edge.)

Constraint closure will polyinstantiate the contents of s every-
where it appears; this creates the type variables 〈x, “a”〉, 〈x, “db”〉,
and 〈x, “dc”〉; these latter two are because call sites b and c are
nested within the scape called from d. If no other calls exist, these
are the only type variables for x. They are completely different type
variables; each has a distinct set of lower bounds.

But suppose call site b from within scape t calls a variable which
may either call s or recurse back into t; this latter case corresponds
to the dotted edge in Figure 4.10. To prevent divergence, flows
which differ only in the number of times they use a b-labeled
are represented using the same contour. This produces a variable
〈x, “db∗c”〉. This variable’s contour covers the contour dc (in that
the former’s regular expression subsumes the latter’s); we would
therefore unify those two variables, keeping the former contour.

We choose this model of polymorphism because of PatBang’s
scripting background: it can capture program-wide invariants while
still being intuitive and robust to refactoring. The non-overlapping
restriction and similar decisions allow constraint closure to be poly-
nomial in usual cases; exponential cases exist but are similar to
those which arise in ML-like systems.

For the purposes of constraint closure, we outline three func-
tions which are defined in [16]:

• CNEW(α ,C), a function which creates a contour for the call site
described by variable α (with C as the current constraint set);
• INST(C, C), a function which polyinstantiates the free variables

in a set of constraints C using contour C; and
• REPL(C, C), a function which uses information in C to unify

type variables in recursive call cycles in C.

4.3.1 Constraint Closure
PatBang’s constraint closure is defined in terms of a relation
C =⇒1 C′ which describes single closure steps. Just as expres-
sions are modeled by constraint sets, evaluation of expressions is
modeled by constraint closure. For this reason, the constraint clo-
sure rules parallel the small-step semantics of PatBang shown in
Section 3.3. The fresh variables needed by integer equality are
modeled by the FVAR(α) function. The variable freshening function
α(∗) used in application is modeled here by the contour functions
described above.
Definition 4.12 (Constraint Closure). Constraint closure is defined to be the
least relation satisfying the clauses in Figure 4.11.

As in small-step evaluation, we define C0 =⇒∗ Cn to indicate
C0 =⇒1 . . . =⇒1 Cn.

After constraint closure is complete, the constraint set is
checked for immediate contradictions. A constraint set containing a
contradiction is inconsistent and represents a type error. We define
inconsistency as follows:
Definition 4.13 (Inconsistency). A constraint set C is inconsistent iff one
of the following holds:
∃α1 α2 <: α3 ∈ C such that C ` α1

fun−−_
n−⇀τ and α2��C

n−⇀τ \α3 ;A
∃α1�α2 <: α3 ∈ C such that C ` αi int−−_ [] for i ∈ {1, 2}

Transitivity
C =⇒1 C ∪ {τ <: α2}

when τ <: α1 ∈ C,α1 <: α2 ∈ C
Addition
C =⇒1 C ∪ {int <: α1}

when α2 +α3 <: α1 ∈ C,C ` α2
int−−_ int , C ` α3

int−−_ int
Equality
C =⇒1 C ∪ {() <: α′ , ‘Trueα′ <: α1 , ‘Falseα

′ <: α1}
when FVAR(α1) = α′ , α2 ==α3 <: α1 ∈ C,

C ` α2
int−−_ int , C ` α3

int−−_ int
Application
C =⇒1 REPL(C ∪ C′′, C)

when α1 α2 <: α3 ∈ C,C ` α1
scape−−−_

n−⇀τ , α2��C

n−⇀τ \α4 ;C′,
C = CNEW(α3 , C), C′′ = INST(C′ ∪ {α4 <: α3}, C)

Figure 4.11. Constraint Closure Clauses

These conditions check for direct conflicts. In the latter condi-
tion, we detect non-integer arguments passed to integer operations.
In the former, we detect cases in which an argument passed to an
onion of scapes does not match any of the patterns on those scapes.
Note that this also detects the application of non-scapes; in such
a case, projection yields an empty list which trivially satisfies the
failure condition.

4.4 Typechecking
Using the above, we then define typechecking as:
Definition 4.14 (Typechecks). A closed expression e typechecks iff JeKE =
〈α ,C〉, C′ = INST(C, {[]}), and for any C′′, C′ =⇒∗ C′′ implies C′′ is
consistent.

This algorithm first derives a set of constraints for the expres-
sion. It then performs an instantiation with the initial contour {[]};
this represents the top-level calling context and maintains the in-
variant that all top-level constraints have a contour. A program then
typechecks if constraint closure cannot find an inconsistent con-
straint set.

Typechecking is both sound and decidable.
Theorem 4.15 (Type Soundness). For any closed e such that
e −→∗ e′, e′ X−→1, and e′ is not of the form E, we have that e
does not typecheck.
A full proof of this theorem appears in Appendix A.
Theorem 4.16 (Decidability). Given a closed e, it is decidable
whether e typechecks.
A full proof of this theorem appears in Appendix B.

5. Conclusions
In this paper the flexibility and usability of type-safe pattern match-
ing is extended in the context of the toy language PatBang. PatBang
is built on top of TinyBang [16] which itself includes flexible no-
tions of data, including statically typable record append operations
and first-class case constructs, all built on a highly polymorphic
subtype constraint inference type system. PatBang extends pattern
matching in two primary directions. First, patterns are fully first-
class: they can be passed directly as parameters, composed, and
hooked up to functions. Second, recursive patterns are supported
and allow for static or dynamic determination that values match a
recursive shape. These and other features such as disjunctive pat-
terns and pattern extraction enable a new class of expressive pro-
gramming patterns.

The paper here includes some new technical results of interest.
We develop a novel notation of a fibration which is used to align
“union type elimination choices” in a pattern match with multiple
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branches. Since at runtime any union type is realized by a datum
inhabiting exactly one side of the union, the particular choice of
data made in the first pattern match will be the same made for the
second, and fibrations are structures that record the “proof trace”
as to which union choices were taken so they can be replayed. Fi-
brations are somewhat related to path-sensitive program analyses,
where multiple conditional branches on the same (immutable) ex-
pression can be inferred to always branch the same way. A path-
sensitive analysis is a shallow notion of union alignment, whereas
fibrations align union choices over arbitrary recursive datatypes. Fi-
brations were briefly defined in [16] but are fully defined and first
proven sound here.

In addition to the above theoretical contributions, the supple-
mentary material includes a PatBang interpreter and typechecker,
written in Haskell. This implementation includes unit tests for all
the examples of Section 2, excepting the extended operators of Sec-
tion 2.6 and the dynPyteFail example that uses runtime exceptions.

5.1 Related Work
Recursive patterns were explored in [9, 22]. [9] is less general than
PatBang: recursive patterns there are defined over a language re-
quiring ML-style declared datatypes and every pattern is thus a sub-
component of a single fixed ML datatype. PatBang includes sub-
typing, bounded quantification, and inferred variant types. [22] has
recursive patterns in the presence of subtyping but lacks bounded
polymorphism, type inference, first-class patterns or conjunctive
patterns (which are not useful in their context because there is no
record concatenation operator). A built-in notion of function pat-
tern is included but it matches by matching the static type, and
cannot be encoded like pytes; a pattern disjunction operator is in-
cluded.

Some forms of first-class pattern were explored in [13]. This
book contains many different formal systems that include more
generic forms of pattern matching as well as an implemented pro-
gramming language, bondi. The system is capable of expressing
a certain style of higher-order pattern and describing data shapes
using patterns, but it does not support fully programmatic compo-
sition of patterns, data types, or case branches. For example, the #
operator in this calculus composes cases in a first-class manner but
requires each case branch to return the same type, and there is no
programmatic operator for composing two pattern values to make a
new pattern. But bondi does admit a form of generic programming:
algorithms can be written to destruct and operate on data while be-
ing agnostic to its overall structure. The disjoint conjunction oper-
ator described in Section 2.6 permits similar behavior in PatBang,
although differences in the languages’ data models prevent either
language’s generic programming from being strictly more expres-
sive than the other’s.

In the dynamically-typed world there have been several exten-
sions to patterns, of which a recent extension to the Thorn script-
ing language [4] appears to be the most ambitious. The current pa-
per was partly inspired by the expressiveness of the patterns in the
aforecited paper. While Thorn lacks recursive patterns, it includes
a related iterative pattern; it also includes conjunctive, disjunctive,
negation, and higher-order patterns. Many of the patterns in [4]
are purely dynamic; in fact arbitrary dynamic predicates can be as-
serted in a pattern. Such patterns could easily be added to PatBang,
but the type system would have to conservatively assume that each
dynamic predicate could either hold or fail.

5.2 Future work
While PatBang is a toy language, the longer-term aim is to incorpo-
rate these flexible patterns into a practical programming language.
While PatBang’s patterns are already very flexible, we believe more
exploration is necessary to find the optimal set of pattern matching

operators. At a simpler level, negation patterns are also a planned
extension; they are not difficult to add to the specification but re-
quire a more powerful form of fibration to support a decidable type
inference algorithm.
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A. Proof of Soundness
We present here a proof for Theorem 4.15, the type soundness the-
orem for PatBang. Our proof strategy is to build a simulation re-
lation between the small step semantics and the type system. We
show that the initial derivation of a program simulates that pro-
gram and that the simulation is preserved as the program executes.
Finally, we use this simulation to show that every stuck program is
simulated by an inconsistent constraint set.

In order to complete the PatBang type system, we first provide
definitions for the contours described in Section 4.3. We then give
the simulation relation which demonstrates alignment of the evalu-
ation and type systems. Next, we show that corresponding relations
in the evaluation and type systems preserve simulation. Finally, we
use this simulation to prove soundness.

A.1 Contour Definitions
Before the proof can proceed, we must precisely define the con-
tours from Section 4.3 as well as relations over them. Contours
themselves are defined using the following grammar:
Definition A.1 (Contour Grammar).

P ::= x | ⨽−−⨼x contour parts

S ::=
−⇀
P contour strands

C ::=
⨽−−⨼
S contours

Because contours represent regular expressions over call
strings, we define operations over contours in terms of the sets of
call strings they match. We therefore define contour meaning as an
operation JCK which produces the (potentially infinite) set of call
strings matched by a contour.
Definition A.2 (Contour Meaning).

(Contours) JCK =
⋃
{JSK | S ∈ C }

(Strands) J[]K = {[]}
J
n−⇀
P K = {−⇀x1 ‖ . . . ‖−⇀xn | ∀i ∈ {1..n}.−⇀xi ∈ JPiK}

(Parts) J⨽−−⨼x K = {
n−⇀
x′ | ∀i ∈ {1..n}. x′i ∈

⨽−−⨼x }
JxK = {[x]}

A.1.1 Contour Relations
In order to define the three contour functions used in closure,
we require some auxiliary definitions. The first and simplest of
these is contour extraction, a relation which produces the set of
contours found in a type system grammatic construct such as a
constraint set; we use LCM to denote this. In most cases, this is
just the natural catamorphism which unions results; for instance,
Lα1 <: α2M = Lα1M ∪ Lα2M. The interesting leaf cases are defined
below:
Definition A.3 (Contour Extraction).

LCM = {C}
LZM = ∅

For all other leaf cases, the extraction yields an empty set.
We next define contour subsumption: a contour C2 subsumes

another contour C1 (written C1 ≤ C2) if every call sequence de-
scribed by C1 is also described by C2. We also define contour over-
lap: a contour C1 overlaps a contour C2 (written C1 G C2) if there
is any call sequence represented by both of them. We define these
relations below:
Definition A.4 (Contour Relations).

C1 ≤ C2 iff JC1K ⊆ JC2K
C1 G C2 iff JC1K ∩ JC2K 6= ∅

Because contours are a restricted subset of regular expressions,
subsumption and overlap can be computed efficiently.

A.1.2 Contour Creation
We now define one of the three contour functions used during con-
straint closure. This function, CNEW(α ,C), generates a new con-
tour for a given type variable representing a call site; C represent
the constraint set with which the resulting contour must be compat-
ible.
Definition A.5 (Contour Creation).
MAKE(〈x , C〉) = {S ‖[x] | S ∈ C}
SITES(x) = {x}
SITES(⨽−−⨼x ) = ⨽−−⨼x
COLLAPSE(C) = {COLLAPSE(S) | S ∈ C}

COLLAPSE(S) =


COLLAPSE(S1 ‖

(⋃ n−−−−−−−−⇀
SITES(P�)

)
‖ S2)

when
{
S = S1 ‖

n−⇀
P ‖S2 , n > 1,

SITES(P1) ∩ SITES(Pn) 6= ∅
S otherwise

WIDEN(C , C) = C ∪ (
⋃
{C′ | C′ ∈ LCM ∧ C G C′})

CNEW(α ,C) = WIDEN(COLLAPSE(MAKE(α)), C)

A.1.3 Contour Replacement
The contour replacement function REPL(C, C) performs contour
replacement on the provided set of constraints. This function is
largely the natural homomorphisms on the type system constructs;
for instance, REPL(τ <: α , C) = REPL(τ , C) <: REPL(α , C). The
only case for which this is not true is as follows:
Definition A.6 (Contour Replacement).

REPL(〈x , Ċ〉, C) =

{
〈x , C〉 if Ċ ≤ C
〈x , Ċ〉 otherwise

A.1.4 Contour Instantiation
Contour instantiation is written INST(C, C) and instantiates free,
non-contoured variables in a given constraint set. Because this
function is recursively defined and because of the free variable
requirement, we define instantiation as a function INST(C, C ,⨽−−⨼α )
and take INST(C, C) to be an alias for INST(C, C , ∅). The third
argument is used to track the set of variables which are presently
bound and so should not be instantiated.

We also require a function BTV(·) to determine the set of vari-
ables bound by a given construct. We define this function as fol-
lows:
Definition A.7 (Bound Type Variables).

BTV(. . . <: α) = {α}
BTV(C) =

⋃
c∈C BTV(c)

We now define INST(C, C ,⨽−−⨼α ). This is largely the natural homo-
morphisms over the type system constructs. There are two cases in
which this differs:
Definition A.8 (Contour Instantiation).

INST(〈x , Ċ〉, C ,⨽−−⨼α ) =

{
〈x , C〉 if Ċ = Z ∧ 〈x , Ċ〉 /∈ ⨽−−⨼α
〈x , Ċ〉 otherwise

INST(
n−⇀α ->α′ \C, Ċ ,

⨽−−⨼
α′′) = −⇀α ->α′ \INST(C, Ċ ,

⨽−−⨼
α′′ ∪ ⨽−−⨼α ∪ BTV(C))

A.2 Variables
Before defining simulation, we must be more precise with respect
to the variable freshening function α(·) used in Definition 3.8. Sim-
ulation must show that, when variables are freshened during small-
step evaluation of application, the correponding type variables are
freshened in a way that maintains simulation. To do this, we de-
fine a bijection with elements of the form x↔ 〈x′ , Ċ〉; that is, the
bijection maps each variable to another variable and a possible con-
tour. The intuition behind this bijection is to track how each value
variable x is freshened so that its pair 〈x′ , Ċ〉 can be simulated by

13 2013/9/13



the type variable corresponding to x. This bijection is implicitly
parametric in the expression e that we are typechecking.
Definition A.9 (Variable Bijection).
Let

n⨽−−⨼x be all variables in the expression e. For all i ∈ {1..n}, we let
xi ↔ 〈xi ,Z〉. The remainder of the bijection for e is unconstrained.

We choose this bijection because it allows us to align fresh
variables with the type variables that represent them. Throughout
this proof, we occasionally write a pair in the place of the variable
it represents; for instance, we may write 〈x′ , C〉 = v in place of x = v
if x↔ 〈x′ , C〉.

We will also need to be more precise in our definition of the α-
conversion function discussed in Section 3.3. We begin by defining
a function BEV(e) which produces the set of variables bound within
a given expression e; this parallels Definition A.7.
Definition A.10 (Bound Variables).

BEV(x = . . .) = {x}
BEV(−⇀s) =

⋃
s′∈−⇀s BEV(s′)

Next we define a function EINST(∗,⨽−−⨼x , C) which freshens the
free variables in the language construct ∗ except those appearing in
⨽−−⨼x . This definition is the analogue of Definition A.8 and, as such, is
largely the natural homomorphism over the language constructs.
The only case in which this function deviates is shown below.
Recall that, as specified above, we use pairs in place of variables
according to the bijection in Definition A.9.
Definition A.11 (Evaluation Instantiation).

EINST(〈x , Ċ〉, C ,
⨽−−⨼
x′) =

{
〈x , C〉 if Ċ = Z ∧ 〈x , Ċ〉 /∈

⨽−−⨼
x′

〈x , Ċ〉 otherwise

EINST(−⇀x -> e , Ċ ,
⨽−−⨼
x′) = −⇀x -> EINST(e , Ċ ,

⨽−−⨼
x′ ∪ ⨽−−⨼x ∪ BEV(e))

Given the above, we define an α-conversion function
EFRESH(x , e) which freshens variables in the given expression in
the context of call site x. We define this function as:
Definition A.12 (Evaluation Freshening).

EFRESH(〈x , C〉, e) = EINST(e , ∅, C′)
EFRESH(〈x , C〉, x′) = EINST(x′ , ∅, C′)

where C′ = {S ‖[x] | S ∈ C}

In this function, C′ is analogous to the result of MAKE from
Definition A.5. We overload EFRESH to be defined over lists of
scapes, which is calculated by applying pointwise on each scape.

Using the freshening function as defined above, we can now
clarify its use in the small step semantics in Definition 3.8. We do
so in the following definition:
Definition A.13 (Clarified Application Semantics).
E ‖[x =x1 x2] ‖ e′′ −→1 E ‖ EFRESH(x , e′ ‖[x′ = r]) ‖[x = EFRESH(x , x′)] ‖ e′′

when E ↓∗scape(x1) = −⇀v, x2��E
−⇀v\ e′ ‖[x′ = r]

Observe that Definition A.13 merely replaces the use of α(·)
with EFRESH(x , ·). For this proof, we take the small-step semantics
of PatBang to be those in Definition 3.8 except the application
case, which is taken from Definition A.13. In light of this precise
definition of freshening, it is now possible to define the simulation
relation for the soundness proof.

A.3 Simulation
We now define the simulation relation for the soundness proof as a
two-place relation ∗1 4 ∗2 between an evaluation-level construct
∗1 and its corresponding type-level construct ∗2. Values, for exam-
ple, are simulated by types; clauses are simulated by constraints.
We define this relation as follows:
Definition A.14 (Simulation).
The simulation relation ∗1 4 ∗2 is defined by the rules in Figure A.15.

variables:
Z 4 Z

C 4 C′ iff C ≤ C′

〈x , Ċ〉 4 〈x , Ċ′〉 iff Ċ 4 Ċ′
⨽−−⨼x 4 ⨽−−⨼α iff ∀x′ ∈ ⨽−−⨼x . ∃α′ ∈ ⨽−−⨼α . x′ 4 α′

patterns:
y 4 〈y〉
int 4 int
l ϕ 4 l φ iff ϕ 4 φ
fun 4 fun
pat 4 pat

scape 4 scape
ϕ1 &ϕ2 4 φ1 &φ2 iff ϕ1 4 φ1 , ϕ2 4 φ2

x
n−⇀y 4 α

n−⇀
β iff x 4 α , ∀i ∈ {1..n}. yi 4 βi

rec y :ϕ 4 recβ :φ iff y 4 β , ϕ 4 φ
n⨽−−−−−⨼y 7→ v 4

n⨽−−−−−⨼
β 7→ τ iff ∀i ∈ {1..n}. yi 4 βi ∧ vi 4 τi

values:
n 4 int iff n ∈ Z
() 4 ()
l x 4 l α iff x 4 α

x1 &x2 4 α1 &α2 iff x1 4 α1 ∧ x2 4 α2
n−⇀x -> e 4

n−⇀α ->α′ \C iff e 4 〈α′ , C〉, ∀i ∈ {1..n}. xi 4 αi
n−⇀y <-ϕ 4

n−⇀
β <-φ iff ϕ 4 φ , ∀i ∈ {1..n}. yi 4 βi

x1 ><x2 4 α1 ><α2 iff x1 4 α1 , x2 4 α2

clauses:
x = v 4 τ <: α iff x 4 α , v 4 τ
x =x′ 4 α′ <: α iff x 4 α , x′ 4 α′

x1 =x2 x3 4 α2 α3 <: α1 iff ∀i ∈ {1..3}. xi 4 αi
x1 =x2�x3 4 α2�α3 <: α1 iff ∀i ∈ {1..3}. xi 4 αi
expressions:

[] 4 C
e ‖[s] 4 C ∪ {c} iff e 4 C ∧ s 4 c
e ‖[s] 4 〈α ,C〉 iff s = x = . . . , e ‖[s] 4 C ∧ x 4 α

Figure A.15. Simulation Relation Definition

A.4 Contours
We begin constructing the type soundness proof by showing some
properties of contours.
Lemma A.16. Given any contour C 6= ∅, JCK 6= ∅.

Proof. Because C 6= ∅, it is sufficient to show that JSK 6= ∅ for
any S in C. When S is the empty list, the result is {[]} and so
non-empty. Otherwise, it suffices to show that JPK 6= ∅ for any P ,
which is immediate by inspection.

Lemma A.17. Suppose C1 ≤ C2 and C1 ≤ C3 and C1 6= ∅. Then
C2 G C3.

Proof. By the definition of subsumption, we have JC1K ⊆ JC2K and
JC1K ⊆ JC3K. Thus, JC2K∩ JC3K ⊇ JC1K. By Lemma A.16, we have
that JC1K 6= ∅ and so C2 G C3 by Definition A.4.

Lemma A.18. Contour subsumption is transitive.

Proof. Trivial by definition of contour subsumption:⊆ is transitive.

Lemma A.19. LC1 ∪ C2M = LC1M ∪ LC2M

Proof. Trivial by inspection of Definition A.3.

Lemma A.20. If τ appears in C, then LτM ⊆ LCM. Similar state-
ments are true about other constructs appearing in C.

Proof. Trivial by inspection of Definition A.3.
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Lemma A.21. If two contour strands have a meaning subset rela-
tionship, this relationship is preserved by prepending or appending
a new contour part. This is to say that JS1K ⊆ JS2K iff JS1 ‖[P]K ⊆
JS2 ‖[P]K; likewise, JS1K ⊆ JS2K iff J[P] ‖ S1K ⊆ J[P] ‖ S2K.

Proof. By Definition A.2, J·K assigns to contours a subset of the
semantics of regular expressions. This property therefore reduces to
showing that subsumption between regular expressions is preserved
by concatenation, which is true.

Lemma A.22. If two contours have a meaning subset relationship,
this relationship is preserved by prepending or appending a new
contour part to each strand in both contours. This is to say that
JC1K ⊆ JC2K iff J{S ‖[P] | S ∈ C1}K ⊆ J{S ‖[P] | S ∈ C2}K;
likewise, JC1K ⊆ JC2K iff J{[P] ‖ S | S ∈ C1}K ⊆ J{[P] ‖ S | S ∈
C2}K.

Proof. In a fashion similar to Lemma A.22. In particular, contours
simply introduce the semantics of regular expression alternatives;
preservation of subsumption by concatenation is still valid in the
presence of these alternatives.

A.5 Constraint Set Well-Formedness
The constraint closure process relies on the assumption that every
contour in the constraint set is disjoint; that is, no two contours
found in the constraint set overlap. This is necessary to ensure that
closure is efficient; otherwise, two premises which share a term
might apply at some intersection of their terms’ contours. Further-
more, it is necessary to ensure that every constraint is meaningful;
therefore, no constraint may contain the empty contour (∅). We de-
scribe a contour set as well-formed when all of its contours are
disjoint and none are the empty contour. A constraint set is well-
formed when the contours which appear within it constitute a well-
formed set. We formalize this as Definition A.23.

Definition A.23 (Well-Formed Contour Set). A contour set
⨽−−⨼
C′ is well-

formed when ∀ C1 ∈
⨽−−⨼
C′. C1 6= ∅ ∧ ∀ C2 ∈

⨽−−⨼
C′. C1 6= C2 =⇒ C1 G� C2. A

constraint set C is well-formed when LCM is well-formed.

We now show some important properties of well-formed con-
straint sets.
Lemma A.24. Let C′ = C1 ∪ C2 where C1 and C2 are well-
formed. If LC1M ⊆ LC2M, then C′ is also well-formed.

Proof. By Lemma A.19 and because LC1M ⊆ LC2M, we thus have
LC′M = LC1 ∪ C2M = LC1M ∪ LC2M = LC2M. If C2 is well-formed,
we have that LC2M is well-formed; thus, LC′M is well-formed and so
C′ is well-formed.

Lemma A.25. Let C be a well-formed constraint set and let C1 be
a contour such that C1 ≤ C2, C1 ≤ C3, and {C2 , C3} ⊆ LCM. Then
C2 = C3.

Proof. Because C is well-formed, we know that C1 6= ∅. By
Lemma A.17, we have that C2 G C3. Again because C is well-
formed, we have that ∀ C , C′ ∈ C. C 6= C′ =⇒ C G� C′. Since
C2 G C3 we must therefore have C2 = C3.

Lemma A.26. Let
⨽−−⨼
C be well-formed and let

⨽−−⨼
C′ ⊆

⨽−−⨼
C ; then

⨽−−⨼
C′ is

also well-formed. If C and C′ are well-formed and LC′M ⊆ LCM,
then C ∪C′ is well-formed. If C is well-formed and C′ ⊆ C, then
C′ is also well-formed.

Proof. Because
⨽−−⨼
C is well-formed, we have that ∅ /∈

⨽−−⨼
C and that

∀ C1 , C2 ∈
⨽−−⨼
C .JC1K ∩ JC2K = ∅. Because

⨽−−⨼
C′ ⊆

⨽−−⨼
C , we have that

∅ /∈
⨽−−⨼
C′ . Likewise, we have that ∀ C1 , C2 ∈

⨽−−⨼
C′ .JC1K ∩ JC2K = ∅.

Thus,
⨽−−⨼
C′ is well-formed.

If LC′M ⊆ LCM, the fact that C ∪ C′ is well-formed reduces to
the above.

If C′ ⊆ C, then LC′M ⊆ LCM; this can be established from
Definition A.3 because L·M is defined pointwise on constraint sets
due to being a natural homomorphism. As a result, that C′ is well-
formed reduces to the above.

A.6 Evaluation Properties
We briefly show some properties of the evaluation system which
become important in later proofs.
Lemma A.27. All values represented in a closed environment E
are finite.

Proof. By induction on the number of clauses to the left of a given
variable definition. For any variable x in a closed E, every variable
x′ in its value must appear to the left of the definition of x; thus,
fewer variables appear to the left of the definition of x′ than appear
to the left of the definition of x.

Lemma A.28. Value compatibility is deterministic: given a value
variable and a pattern, only one definition of compatibility can exist
for a given x and ϕ.

Proof. Immediate by inspection of Figure 3.6.

A.7 Simulation Properties
We next show useful properties of the simulation relation in Defi-
nition A.14.

Lemma A.29. Suppose
n−⇀s ‖[s′] ‖

m−⇀
s′′ 4 C. Then

n−⇀s ‖
m−⇀
s′′ 4 C.

Proof. Immediate from Definition A.14.

Lemma A.30. Suppose
n−⇀
s′ 4 C′ and

m−⇀
s′′ 4 C′′. Let

n+m−⇀s be
defined such that the latter list has been interjected into the former
at some position k; that is, for some k in {0..n}, we have sj = s′j
for all j ≤ k, sj = s′j−m for all j > k + m, and sj = s′′j−k
otherwise. Let C = C′ ∪ C′′. Then

n+m−⇀s 4 C.
As a corollary, if e 4 C for some e and C, then e 4 C ∪C′ for

any C′.

Proof. By repeated application of Definition A.14, we have
that [] ‖[s′1] ‖ . . . ‖[s′n] 4 C′ ∪ {c′1} ∪ . . . ∪ {c′n}. Likewise,
[] ‖[s′′1 ] ‖ . . . ‖[s′′m] 4 C′′ ∪ {c′′1} ∪ . . . ∪ {c′′m}.

We aim to show that
n+m−⇀s 4 C. Because C = C′ ∪ C′′,

we have that C = C′ ∪ C′′ ∪
n⨽−−⨼
c′ ∪

m⨽−−⨼
c′′ . We can thus show that

[] ‖[s1] ‖ . . . ‖[sn+m] 4 C ∪ {c1} ∪ . . . ∪ {cn+m} by choosing
each c as we chose s: we let cj = c′j for all j ≤ k, cj = c′j−m for
all j > k + m, and cj = c′′j−k otherwise. By Definition A.14, we
are finished.

The corollary can be shown by the degenerate case in which
m = 0.

Lemma A.31. Suppose ⨽−−⨼x 4 ⨽−−⨼α and
⨽−−⨼
x′ 4

⨽−−⨼
α′. Then ⨽−−⨼x ∪

⨽−−⨼
x′ 4

⨽−−⨼α ∪
⨽−−⨼
α′.

Proof. From ⨽−−⨼x 4 ⨽−−⨼α we have that for each x in ⨽−−⨼x there exists

some α in ⨽−−⨼α such that x 4 α; thus, there exists some α in ⨽−−⨼α ∪
⨽−−⨼
α′

such that x 4 α. The same argument can be made regarding
⨽−−⨼
α′. As

a result, every x in ⨽−−⨼x ∪
⨽−−⨼
x′ has some α in ⨽−−⨼α ∪

⨽−−⨼
α′ such that x 4 α.

By Definition A.14, we are finished.
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Lemma A.32. If e 4 C, then x2 =x1 ∈ e =⇒ ∃α1 , α2 . α1 <:
α2 ∈ C ∧ x2 =x1 4 α1 <: α2. Corresponding statements hold
true for the remaining expression and constraint forms.

Proof. Immediate from Definition A.14.

Lemma A.33. If e 4 C and C is well-formed, then x2 =x1 ∈
e ∧ x3 =x2 ∈ e =⇒ ∃α1 , α2 , α3 ∈ C. {α1 <: α2 , α2 <:
α3} ∈ C ∧ ∀i ∈ {1..3}. xi 4 αi. Similar statements hold for
other sequences of constraints.

Proof. From Lemma A.32, we have that there exist some α1, α2,
α′2, and α3 such that {α1 <: α2 , α

′
2 <: α3} ∈ C, x1 4 α1,

x2 4 α2, x2 4 α′2, and x3 4 α3. It remains to show that α2 = α′2.
Let x2 ↔ 〈x′′1 , Ċ1〉, let α2 = 〈x′′2 , Ċ2〉, and let α′2 = 〈x′′3 , Ċ3〉.

From x2 4 α2 and x2 4 α′2, we have that x′′1 = x′′2 = x′′3 . We
have two cases: one in which Ċ1 = Z and one in which it does not.
If Ċ1 = Z, then x2 4 α2 gives us by Definition A.14 that Ċ2 = Z;
similarly, Ċ3 = Z. Thus, α2 = α′2.

Otherwise, Ċ1 = C1. By x2 4 α2 and x2 4 α2, we have that
Ċ2 = C2 and Ċ3 = C3 such that C1 ≤ C2 and C1 ≤ C3 Because
C is well-formed, we know by Lemma A.25 that C2 = C3; thus,
α2 = α′2.

A.8 Initial Derivation Simulation
Our next step is to show that the initial derivation of a program
simulates that program. We begin by showing the simulation of
initial pattern derivation.
Lemma A.34. For any ϕ such that JϕKP = φ, we have that ϕ 4 φ.

Proof. By induction on the definition of initial derivation in Fig-
ure 4.2, every case is immediate from Definition A.14.

We next show that initial derivation over clauses and expres-
sions simulates as expected.

Lemma A.35. Let e be a well-formed expression
n−⇀s . If JeKE =

〈α ,C〉, then e 4 〈α ,C〉 where C is well-formed.

Proof. By structural induction on the size of e.
For all 1 ≤ i ≤ n, suppose si = xi = . . ., let αi =

?
αxi , and let

ci = JsiKS. Then by the definition of initial derivation, C =
n⨽−−⨼c

and α = αn. By Definition A.14, it is thus sufficient to show that
e 4 C. By induction on the length of e, it is sufficient to show that
si 4 ci for all 1 ≤ i ≤ n. For all si which are not assignments
of patterns or functions, this property is immediate by inspection
of Figure 4.2. Otherwise, we have two cases: when si is a pattern
assignment or when si is a function assignment.

Suppose si = x =−⇀y <-ϕ. By Figure 4.2, ci =
−⇀
β <-φ. By

inspection, each y simulates the corresponding β. We have that
ϕ 4 φ by Lemma A.34. Thus, si 4 ci.

Suppose si = x =
m−⇀
x′ -> e′. By Figure 4.2, ci =

m−⇀
α′ ->α′′ \C′. To show that si 4 ci, we show that for all 1 ≤
j ≤ m we have x′j 4 α′j ; we must also show that e′ 4 〈α′′ , C′〉.
The former is trivial by inspection; the latter is proven by induction
on this lemma (because e′ is smaller than e).

It remains to show that C is well-formed. This is trivial because
every type variable appearing within it resulted from Figure 4.2 and
all such type variables have no contour.

A.9 Simulation Preservation
The next step in this proof is to demonstrate that each pair of rela-
tions in the evaluation and type systems preserve the simulation re-
lation shown above. Because these relations make use of fibrations,
it is now necessary to discuss how fibrations relate to variables. We
inductively define the canonical fibration for a given value variable
as follows:
Definition A.36 (Canonical Fibration). Suppose variable x exists in expres-
sion e. Suppose also that, for some C and α appearing in that C, e 4 C
and x 4 α. A fibration f is canonical for x and α under e and C (equiv
x 4 α@ f) iff for some row in the following table, we have E (x) = v

and τ <: α ∈ C and f = 〈τ ,
−⇀
f′〉 and P is true. (This definition is built by

induction on the structure of the fiber.)
v τ

−⇀
f′ P

n int [] n ∈ Z
() () []
l x1 l α1 [f1] x1 4 α1 @ f1

x1 &x2 α1 &α2 [f1, f2] x1 4 α1 @ f1, x2 4 α2 @ f2
−⇀
x′ -> e′

−⇀
α′ ->α′′ \C′ []

−⇀y <-ϕ
−⇀
β <-φ []

x1 ><x2 α1 ><α2 [f1, f2] x1 4 α1 @ f1, x2 4 α2 @ f2

We can now show that various relations used during constraint
closure preserve constraint set simulation.

Lemma A.37. Suppose that E 4 C, E ↓∗π(x) =
n−⇀v , and x 4

α@ f∗. Then C ` α π−_
n−⇀
f ; f′ and for all 1 ≤ i ≤ n we have

vi 4 τi (where fi = 〈τi , . . .〉).

Proof. By induction on the depth of x (which is sound by
Lemma A.27). We proceed by cases on v′ = E (x). Because
E 4 C and v′ ∈ E, we have by Lemma A.32 that τ ′ <: α ∈ C
for some τ ′ such that v′ 4 τ ′.

If v′ is non-onion, we have two cases. If v′ ∈ π, then n = 1
and v1 = v′. By Figure 4.4, we have that f1 = f′ for all such cases
of τ ′. In each case, we can let f1 = f∗; because f∗ is canonical,
Definition A.36 gives us that this satisfies C ` α π−_

n−⇀
f ; f′.

Otherwise, suppose v′ is non-onion but v′ /∈ π; then n = 0.
In all such cases, Figure 4.4 gives us that C ` α π−_ []; f′ where

f′ = 〈τ ′ ,
m−⇀
f′′ 〉. Inspection of Definition A.36 shows us that m

is always the length of the canonical fibration’s inner list; that
is, a canonical fibration can always be used for f′. Because f∗ is
canonical, we let f′ = f∗ and this case is complete.

Otherwise, v′ is an onion. If v′ = () then τ ′ = () and this
result is trivial to show using the above approach.

Otherwise, v′ = x1 &x2 and we know that E ↓∗π(x1) =
n′′−⇀
v′′

and E ↓∗π(x2) =
n′′′−⇀
v′′′ such that

n−⇀v =
n′′−⇀
v′′ ‖

n′′′−⇀
v′′′ . We also

have that τ ′ = α1 &α2. Next, we induct on x1 and x2 to learn

C ` α1 π−_
n′′−−−−−⇀
〈τ ′′� , f

′′
� 〉; f′′′′1 and C ` α1 π−_

n′′′−−−−−⇀
〈τ ′′′� , f′′′� 〉; f′′′′2 such that

n′′−⇀
τ ′′ 4

n′′′−⇀
τ ′′′ . By Definition A.36, 〈τ ′ , [f′′′′1 , f′′′′2 ]〉 is canonical for

x and α as long as f′′′′1 is canonical for x1 and α1 (and similarly for
f′′′′2 ). Thus, we are finished.

Lemma A.38. Suppose thatE 4 C,E ↓π(x) = v, and x 4 α@ f′.
Then C ` α π−_ f; f′ and v 4 τ (where f = 〈τ , . . .〉).

Proof. Immediate from Lemma A.37.

Lemma A.39. Suppose E 4 C, ϕ 4 φ, and x 4 α@ f. If

x �E ϕ \B ;
⨽−−⨼
ϕ′, then α �C φ \Γ; f;

⨽−−⨼
φ′ such that B 4 Γ and

⨽−−⨼
ϕ′ 4

⨽−−⨼
φ′ .
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x1 �/
E

n−⇀y <-ϕ \/ if x1 �/
E ϕ \/; ∅

x1 �/
E ϕ \/;

⨽−−⨼
ϕ′ if ϕ ∈ {int , fun , pat , scape},

E ↓ϕ(x1) = []

x1 �/
E l ϕ \/;

⨽−−⨼
ϕ′ if E ↓∗l (x1) = []

x1 �/
E l ϕ \/;

⨽−−⨼
ϕ′ if E ↓l(x1) = l x2 , x2 �/

E ϕ \/; ∅
x1 �/

E ϕ1 &ϕ2 \/;
⨽−−⨼
ϕ′ if x1 �/

E ϕi \/;
⨽−−⨼
ϕ′, i ∈ {1, 2}

x1 �/
E ϕ1 \/;

⨽−−⨼
ϕ′ if ϕ1 /∈

⨽−−⨼
ϕ′, ϕ1 = x2

n−⇀
ϕ′′ ,

E ↓∗pat(x2) = []

x1 �/
E ϕ1 \/;

⨽−−⨼
ϕ′ if ϕ1 /∈

⨽−−⨼
ϕ′, ϕ1 = x2

n−⇀
ϕ′′ ,

E ↓pat(x2) =
n−⇀y <-ϕ2 ,

ϕ3 = ϕ2 [ϕ′′1 / y1] . . . [ϕ′′n / yn],

x1 �/
E ϕ3 \/; {ϕ1} ∪

⨽−−⨼
ϕ′

x1 �/
E ϕ1 \/;

⨽−−⨼
ϕ′ if x1 /∈

⨽−−⨼
ϕ′, ϕ1 = rec y :ϕ2 ,

x1 �/
E ϕ2 [ϕ1 / y]\/; {ϕ1} ∪

⨽−−⨼
ϕ′

x1 �/
E ϕ \/;

⨽−−⨼
ϕ′ if ϕ ∈

⨽−−⨼
ϕ′

Figure A.40. PatBang Value Compatibility Failures

Proof. By induction on the structure of the definition of x �E

ϕ \B ;
⨽−−⨼
ϕ′.

Primitive patterns: If ϕ ∈ {int , fun , pat , scape}, then we
know that ϕ = φ, B = ∅, and E ↓ϕ(x) = v for some v. By
Lemma A.38, we have that C ` α ϕ−_ τ ; f. This gives us that
Γ = ∅ and so B 4 Γ. A similar argument is made in the case
of variable patterns (i.e. patterns of the form y).

Label patterns: If ϕ = l ϕ′′, then we know that E ↓l(x) = l x′

and that x′ �E ϕ′′ \B ; ∅. By Definition A.14, we know that
φ = l φ′′ such that ϕ′′ 4 φ′′. By Lemma A.38, we have that
C ` α l−_ 〈l α′ , [f′]〉; f′′ such that x′ 4 α′. Definition A.36 gives
us that x′ 4 α′ @ f′. We learn by induction that α′ �C φ′′ \Γ; f; ∅.
A similar argument is made in the case of conjunctive patterns.

Recursive patterns: The case for recursive and substitution
patterns follows an argument similar to that of label patterns with
the additional observation that structural substitution on pattern
variables preserves simulation.

Our next lemma is similar to Lemma A.39 but for the case of
a match failure. But Figure 3.6 does not contain any failure cases
analogous to those in Figure 4.7. We first define the value-level fail-
ure cases in Figure A.40 and then argue that the resulting relation
is equivalent to the original. In keeping with notation presented in
Section 4, we use Ḃ to range over B and the symbol /. We write
x1 �/

E

n−⇀y <-ϕ \ Ḃ to distinguish this new relation from the old
one.
Definition A.41 (Complete Value Compatibility). We define value incom-
patibility as the least relation satisfying all clauses in Figure A.40. We define
extended value compatibility x1 �∗E

n−⇀y <-ϕ \B as the union between
this value incompatibility relation and the normal value compatibility rela-
tion from Section 3.2.

Lemma A.42. If x1 �E

n−⇀y <-ϕ \B then x1 �∗E
n−⇀y <-ϕ \B. If

no such B exists, then x1 �∗E
n−⇀y <-ϕ \/.

Proof. By case analysis on the different forms of pattern. In each
case, the original value compatibility relation relies on a set of
premises. A clause exists in Figure 4.7 to address each of these
failures by relating to /.

We now prove alignment of incompatibility using this extended
relation.

Lemma A.43. Suppose that E 4 C for some closed, well-formed

E, that ϕ 4 φ, and that x 4 α@ f. If x �∗E ϕ \/;
⨽−−⨼
ϕ′ then

α �C φ \Γ̇; f;
⨽−−⨼
φ′ such that

⨽−−⨼
ϕ′ 4

⨽−−⨼
φ′ and Γ̇ is either / or A.

Proof. By induction on the structure of x �∗E ϕ \/;
⨽−−⨼
ϕ′.

Primitive patterns: If ϕ ∈ {int , fun , pat , scape}, then we
know that ϕ = φ by Definition A.14. Then we have that E ↓ϕ(x)
is undefined and, in turn, that E ↓∗ϕ(x) = []. By Lemma A.37, we

have that C ` α ϕ−_ []; f. This gives us α �C φ \/; f;
⨽−−⨼
φ′ for any

⨽−−⨼
φ′ and this case is complete.

Label patterns: If ϕ = l ϕ′′, then we know φ = l φ′′.
There are two cases. In the first case, E ↓l(x) is undefined. By
Lemma A.37, this gives us that C ` α l−_ []; f and so, by Defi-

nition 4.8, that α �C φ \/; f;
⨽−−⨼
φ′ for any

⨽−−⨼
φ′ . Otherwise, E ↓l(x) =

l x′ and, by Lemma A.38, we have C ` α l−_ 〈l α′ , [f′]〉; f. If

so, then it must be that x′ �∗E ϕ′ \/;
⨽−−⨼
ϕ′; otherwise, the premise

x �∗E ϕ \/;
⨽−−⨼
ϕ′ would be contradicted. By induction, we learn

that α′ �C φ′ \/; f′;
⨽−−⨼
φ′ such that

⨽−−⨼
ϕ′ 4

⨽−−⨼
φ′ . We thus have that

α �C φ \/; f;
⨽−−⨼
φ′ and this case is complete.

The remaining cases follow the same structure as the above in
parallel to Lemma A.39.

Lemma A.44. Suppose that E 4 C for some closed, well-formed
E, that

n−⇀y <-ϕ 4
n−⇀
β <-φ, and that x 4 α@ f. If x �E

n−⇀y <-ϕ \m−⇀v , then α �C

n−⇀
β <-φ \m−⇀τ ; f. If there exists no such

m−⇀v , then either α �C

n−⇀
β <-φ \/; f or α �C

n−⇀
β <-φ \A; f.

Proof. Immediate from Lemmas A.39 and A.43 and Defini-
tion A.14.

Lemma A.45. Suppose that E 4 C for some closed, well-formed
E, that x1 4 α1 @ f and that

n−⇀v 4
n−⇀τ . If x1��E

n−⇀v \ e1
then α1��C

n−⇀τ \α4 ;C1; f such that e1 4 〈α4 , C1〉 or
α1��C

n−⇀τ \α4 ;A; f. If no such e1 exists, then α1��C
−⇀τ \α′ ;A; f.

Proof. By induction on the length of the value list.
If n = 0 then x1 �E [] and so this property is trivial.
Otherwise, let vn = x2 ><x3; thus, τn = α2 ><α3 with the

appropriate simulation. If E ↓pat(x2) is undefined or if E ↓fun(x3)

is undefined, then x1 �E

n−⇀v . In either case, α1��C
−⇀τ \α′ ;A; f.

Otherwise, E ↓pat(x2) = v′ and E ↓fun(x3) =
m−⇀
x′ -> e′. By

Lemma A.38, this gives us C ` α2 pat−−_ τ ′ such that v′ 4 τ ′ and

also C ` α3 fun−−_
m−⇀
α′ ;α4 C

′ such that e′ 4 〈α4 , C
′〉. Then we

have two cases: either the argument is compatible with that pattern
or it is not.

If there exists no
m−⇀
v′′ such that x1 �E vn \

m−⇀
v′′ , then

Lemma A.44 gives us the either α �C τn \A; f or α �C τn \/; f.
In the former case, have that α1��C

−⇀τ \α′ ;A; f. In the latter case,
we proceed by induction using the first n− 1 elements of each list.

Otherwise, x1 �E vn \
m−⇀
v′′ . Then Lemma A.44 gives us that

α1 �C τn \
m−⇀
τ ′′ ; f such that simulation holds between these lists.

Let e′′ =
m−−−−⇀
x′� = v

′′
� and let C′′ =

m⨽−−−−−−−⨼
τ ′′� <: α′�. We then observe

that e′′ 4 C′′ by Definition A.14 and by the simulations granted
from the theorems above. By Lemma A.30, we have that e′′ ‖ e′ 4
C′′ ∪ C′. Because the last variable of e′′ ‖ e′ is the last variable of
e′, we also have e′′ ‖ e′ 4 〈α4 , C

′′ ∪C′〉. We let e1 = e′′ ‖ e′ and
C1 = C′′ ∪ C′ and we are finished.
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Contour instantiation preserves the simulation relation. To
demonstrate this property, we first prove a supplementary lemma.

Lemma A.46. Suppose that e 4 C, that ⨽−−⨼x 4 ⨽−−⨼α , and that
C1 4 C2. Then for any x′ appearing in e, there is a corresponding
α′ appearing in C such that EINST(x′ , C1 ,⨽−−⨼x ) 4 INST(α′ , C2 ,⨽−−⨼α ).

Proof. For any x′ in e, Lemma A.32 gives us that there is a corre-
sponding α′ in C such that x′ 4 α′. By Definition A.9, we have
that x′ ↔ 〈x′′ , Ċ′1〉 and, by Definition A.14, that α′ = 〈x′′ , Ċ′2〉
such that Ċ′1 4 Ċ′2.

Suppose that x′ ∈ ⨽−−⨼x and that Ċ′1 = Z. By Definition A.11,
EINST(x′ , C1 ,⨽−−⨼x ) = x′. Because Ċ′1 4 Ċ′2, we know that Ċ′2 = Z.
Because ⨽−−⨼x 4 ⨽−−⨼α , we know that α′ ∈ ⨽−−⨼α . By Definition A.8,
INST(α′ , C2 ,⨽−−⨼α ) = α′. Since x′ 4 α′, this case is complete.

Suppose that x′ /∈ ⨽−−⨼x and that Ċ′1 = Z. Then
EINST(x′ ,⨽−−⨼x , C1) ↔ 〈x′′ , C1〉. Because Ċ′1 4 Ċ′2, we know that
Ċ′2 = Z. Because ⨽−−⨼x 4 ⨽−−⨼α , we know that α′ /∈ ⨽−−⨼α . Therefore,
INST(α′ ,⨽−−⨼α , C2) = 〈x′′ , C2〉 and, by Definition A.11, we have
〈x′′ , C1〉 4 〈x′′ , C2〉 so this case is finished.

Otherwise, Ċ′1 6= Z. Then EINST(x′ , C1 ,⨽−−⨼x ) = x′. Because
x′ 4 α′, we know Ċ′2 6= Z. As a result, INST(α′ , C2 ,⨽−−⨼α ) = α′ and
we are finished.

Lemma A.47. Suppose that e 4 C, that ⨽−−⨼x 4 ⨽−−⨼α , and that C1 4 C2.
Then EINST(e , C1 ,⨽−−⨼x ) 4 INST(C, C2 ,⨽−−⨼α ).

Proof. By induction on Definition A.14.
For variables, simulation is demonstrated by Lemma A.46. For

all lower bound types other than functions and all constraints,
simulation is parametric in variables and so is also demonstrated
by Lemma A.46.

For function lower bound types, we must show that for any

v =
n−⇀
x′ -> e′ appearing in e, there is a corresponding τ =

n−⇀
α′ ->α′′ \C′ appearing in C such that EINST(v , C1 ,⨽−−⨼x ) 4
INST(τ , C2 ,⨽−−⨼α ). For any such v in e, Lemma A.32 gives us that
such a τ exists in C and that v 4 C. By Definition A.14, this

means that
n−⇀
x′ 4

n−⇀
α′ and e′ 4 〈α′′ , C′〉. Since each of these terms

is smaller than v or τ accordingly, we induct on the definition of
this lemma. Thus, function lower bound types are also simulated.

By Definition A.14, we know that for each s′ ∈ e, there
is a corresponding c′ ∈ C such that s′ 4 c′. Suppose
that EINST(s′ , C1)⨽−−⨼x = s′′, that INST(c′ , C2 ,⨽−−⨼α ) = c′′, that
EINST(e , C1 ,⨽−−⨼x ) = e′, and that INST(C, C2)⨽−−⨼α = C′. Because we
have that simulation of each constraint is preserved by instantia-
tion, we have that s′′ 4 c′′. Since this is true for each s and c, we
have that each s in e′ is simulated by some c in C′ and so we are
finished.

Lemma A.48. If e 4 C and C1 4 C2, then EFRESH(e , C1) 4
INST(C, C2).

Proof. Immediate from Lemma A.47.

Contour replacement also preserves simulation. We use a strat-
egy similar to that above, first proving over variables.
Lemma A.49. If x 4 α then x 4 REPL(α , C).

Proof. Let REPL(α , C) = α′. Then, let x ↔ 〈x′ , Ċ1〉, let α =
〈x′ , Ċ2〉, and let α′ = 〈x′′ , Ċ3〉. By Definition A.6, contour re-
placement is naturally homomorphic down to (but not including)
contours and so we know that x′ = x′′. It remains to show that
Ċ1 4 Ċ3.

Because x 4 α, we know that Ċ1 = Z iff Ċ2 = Z. If Ċ1 = Z,
then by this and Definition A.6 we have Ċ3 = Z and this case is
complete.

Otherwise, Ċ1 = C1 and Ċ2 = C2. By Definition A.6, there are
only two possible values for Ċ3: C (if C2 ≤ C) or C2 (if C2 � C). In
the latter case, α = α′ and so x 4 α′.

Otherwise, Ċ3 = C and C2 ≤ C and so it suffices to show that
C1 ≤ C. By Lemma A.18, it suffices to show that C1 ≤ C2 and that
C2 ≤ C. The latter is shown from this case’s premise; the prior is
shown from Definition A.14 because we know x 4 α.

Lemma A.50. If E 4 C then E 4 REPL(C, C).

Proof. Because contour replacement is a natural homomorphism
in all cases not proven by Lemma A.49, this argument follows in
parallel to that of Lemma A.47.

A.10 Contour Properties of Functions and Relations
We now prove contour-related properties about functions and rela-
tions which are necessary to show simulation of constraint closure.
Lemma A.51. C ≤ COLLAPSE(C)

Proof. This is to show that JCK ⊆ J{COLLAPSE(S) | S ∈ C}K. By
Definition A.5, this is to show that

⋃
{JSK | S ∈ C} ⊆

⋃
{JSK |

S ∈ COLLAPSE(C)}, which is equivalent to
⋃
{JSK | S ∈ C} ⊆⋃

{JSK | S ∈ {COLLAPSE(S) | S ∈ C}}, which reduces to⋃
{JSK | S ∈ C} ⊆

⋃
{JCOLLAPSE(S)K | S ∈ C}. It is therefore

sufficient to prove that JSK ⊆ JCOLLAPSE(S)K for all S.
We proceed by strong induction on the number of cycles in

S; by “cycle”, we mean a pair of distinct parts P1 and P2 in S
such that SITES(P1) ∩ SITES(P2) 6= ∅. The base case is trivial,
since in the absence of a cycle we have COLLAPSE(S) = S. In the
inductive case, let S =

n−⇀
P . Let cycles in S be represented by pairs

of indices (i, j) where i < j and SITES(Pi) ∩ SITES(Pj) 6= ∅;
let

m⨽−−−−⨼
(i�, j�) be the set of all cycles in S. Finally, let S ′ =

m−⇀
P ′ =

[P1 , . . . ,Pik−1 , (SITES(Pik ) ∪ . . . ∪ SITES(Pjk )) ,Pjk+1 , . . . ,Pn]
for some 1 ≤ k ≤ m. We can construct the set of cycles in S ′ by
forming a mapping M from each index in S to indices in S ′ such
that all 1 ≤ i′′ < ik map to themselves, all ik ≤ i′′ ≤ jk map to
ik, and all jk < i′′ ≤ n map to themselves minus jk − ik. For
each (i, j) in the cycles of S, either M [i] = M [j] or (M [i],M [j])
is a cycle in S ′; in particular, we know thatM [ik] = M [jk], which
indicates that cycle k has been eliminated. From this, we have that
the set of cycles in S ′ is strictly smaller than the set of cycles in
S; thus, it is sufficient by the induction hypothesis to show that
JSK ⊆ JS ′K. By repeated application of Lemma A.21, it remains to
show that J[Pik , . . . ,Pjk ]K ⊆ J[SITES(Pik ) ∪ . . . ∪ SITES(Pjk )]K.

It is sufficient to show that J
n−⇀
P K ⊆ J[

⋃ n−−−−−−−⇀
SITES(P�)]K. This is

immediate; the latter contains every call sequence composed of any
elements in

n−⇀
P and the prior contains no call sequences containing

elements not in
n−⇀
P .

Lemma A.52. ∀C. C ≤ WIDEN(C , C)

Proof. For any C, we have that WIDEN(C , C) = C′ ⊇ C by
inspection. By definition, C ≤ C′ iff JCK ⊆ JC′K. This reduces
to (

⋃
{JSK | S ∈ C}) ⊆ (

⋃
{JSK | S ∈ C′}). Because C ⊆ C′,

every element in the comprehension on the left also appears in the
comprehension on the right; thus, C ≤ C′.

Lemma A.53. If WIDEN(C , C) = C′, then ∀ C′′ ∈ LCM. C′′ G
C′ =⇒ C′′ ≤ C′.
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Proof. By definition, C′ = C∪(
⋃
{C′′ | C′′ ∈ LCM ∧ C G C′′}). We

therefore have for any C′′ in LCM that C′′ ⊆ C′. By Definition A.2,
we thus have that JC′′K ⊆ JC′K and so C′′ ≤ C′.

Lemma A.54. If C ` α π−_−⇀τ for some well-formed C, then
L−⇀τ M ⊆ LαM ∪ LCM.

Proof. By inspection. Each rule produces a type which is either (1)
devoid of contours, (2) constructed from τ , (3) constructed from
constraints found in C, or (4) derived from another projection.

Lemma A.55. If α �C

−⇀
β <-φ \−⇀τ ; f, then L−⇀τ M ⊆ LCM.

Proof. By inspection. The types in −⇀τ are a subset of those in the
bindings set. The only case in which a binding is added to the
bindings set is the variable pattern case, which obtains its type
directly from the constraint set C.

Lemma A.56. If INST(C, C ,⨽−−⨼α ) = C′, then LC′M ⊆ LCM ∪ {C}.

Proof. Let α′ = INST(α′′ , C ,⨽−−⨼α ). We observe that Lα′M ⊆ Lα′′M ∪
{C} by case analysis. Because contour instantiation is largely nat-
urally homomorphic, the remainder of this argument proceeds in
parallel to Lemma A.47.

Lemma A.57. If REPL(C, C) = C′, then LC′M ⊆ {C} ∪ {C′ | C′ ∈
LCM ∧ C′ � C}.

Proof. Let α′ = REPL(α , C). We first prove that Lα′M ⊆ {C}∪{C′ |
C′ ∈ LαM ∧ C′ � C}. This is done by simple case analysis.
If the contour of α is Z then contour replacement is a natural
homomorphism and so α′ = α; thus, Lα′M = {C}. Otherwise,
let the contour of α be C′ and let the contour of α be C′′. If C′ ≤ C,
then C′′ = C; thus we have Lα′M = {C}. If C′ � C, then C′′ = C′;
thus we have Lα′M = {C′} ⊆ {C} ∪ {C′}.

Because contour replacement is largely naturally homomorphic,
the remainder of this argument proceeds in parallel to Lemma A.47.

A.11 Closure Simulation
We now show our Preservation Lemma. Informally, this lemma
says that, for any expression e simulated by a constraint set C,
every legal small step corresponds to some legal type closure step
such that simulation still holds over the new expression and closure
set. This is formalized as follows:
Lemma A.58 (Preservation). Suppose e 4 C, that C is well-
formed, and that e −→1 e′. Then either (1) C is inconsistent or
(2) there exists some C′ such that C =⇒1, e′ 4 C′, and C′ is
well-formed.

We now give a proof of Lemma A.58.

Proof. By case analysis on the operational semantics small step
rule. Our strategy for each case is first to show that at least one
type closure rule applies for each small step. We then show that the
resulting expression is simulated by the resulting constraint set.

Assignment: If e = E ‖[x =x′] ‖ eREST, then e′ =
E ‖[x = v] ‖ eREST where E (x′) = v. By Lemma A.32, we have
that τ <: α′ ∈ C where v 4 τ and x′ 4 α′. The same lemma
gives us that α′ <: α ∈ C such that x 4 α (because x =x′ ∈ e).
We thus have that C′ = C ∪ {τ <: α}.

By Lemma A.29, we have that E ‖ eREST 4 C. Lemma A.30
gives us that e′ 4 C′. To show that C′ is well-formed, we observe
that the only contour appearing in {τ <: α} is the one in α, which
is a type variable already appearing in C; by Lemma A.26, C′ is
well-formed.

Integer Addition: If e = E ‖[x =x1 +x2] ‖ eREST, then e′ =
E ‖[x =n] ‖ eREST for some n. We also have that E ↓int(x1) = n1,
that E ↓int(x2) = n2, and that n = n1 + n2. Because addition is
well-defined, we further have that both n1 and n2 are elements of
Z.

We now show that the Integer Addition closure rule applies in
this case. Because x =x1 +x2 appears in e and because e 4 C,
Lemma A.32 gives us that there exists some α1 +α2 <: α in C
such that x1 4 α1, x2 4 α2, and x 4 α. Because π intx1 = n1

and x1 4 α1, Lemma A.37 gives us that C ` α1 int−−_ τ1 and
n1 4 τ1; the same statement can be made regarding x2, α2, n2,
and τ2.

Because we have shown that the Integer Addition closure rule
applies, we know that C =⇒1 C′ where C′ = C ∪ {int <: α}. It
remains to show that e′ 4 C′ and that C′ is well-formed. We show
both of these properties in the same fashion as the Assignment case
above.

True Integer Equality: Suppose e = E ‖[x =x1 ==x2] ‖ eREST.
If E ↓int(x1) = n and that E ↓int(x2) = n′ for some n, n′ ∈ Z
where n = n′, then e′ = E ‖[x′ = () , x = ‘True x′] ‖ e for a
fresh x′ chosen such that, when x 4 α, we have x′ 4 FVAR(α).

We now show that the Integer Equality closure rule applies in
this case. Because x =x1 ==x2 appears in e and because e 4 C,
Lemma A.32 gives us that there exists some α1 ==α2 <: α in C
such that x1 4 α1, x2 4 α2, and x 4 α. Because E ↓int(x1) =
n1 and x1 4 α1, Lemma A.37 gives us that C ` α1 int−−_ τ1 and
n1 4 τ1; the same statement can be made regarding x2, α2, n2,
and τ2.

Because we have shown that the Integer Equality closure rule
applies, we know that C =⇒1 C′ where C′ = C ∪{‘True α′ <:
α , ‘False α′ <: α , () <: α′} where α′ = FVAR(α). By Defini-
tion A.14 and because x′ 4 FVAR(α), we have that [x′ = () , x =
‘True x′] 4 {‘True α′ <: α , () <: α′}; by Lemma A.30,
we have that [x′ = () , x = ‘True x′] 4 {‘True α′ <:
α , ‘False α′ <: α , () <: α′}. By Lemma A.30, we therefore
have that e′ 4 C′. It remains to show that C′ is well-formed; this
is demonstrated by Lemma A.26 as above.

A similar argument is made when n 6= n′ using ‘False rather
than ‘True.

Application: If e = E ‖[x =x1 x2] ‖ eREST, then
e′ = E ‖ EFRESH(x , e′′ ‖[x′ = r]) ‖[x = EFRESH(x , x′)] ‖ eREST

where E ↓∗scape(x1) = −⇀v and x2��E
−⇀v\ e′ ‖[x′ = r].

We now show that the Application closure rule applies in
this case. Because x =x1 x2 appears in e and because e 4 C,
Lemma A.32 gives us that there exists some α1 α2 <: α in C such
that x1 4 α1, x2 4 α2, and x 4 α. Because E ↓∗fun(x1) = −⇀v and
x1 4 α1 and by Lemma A.37, we have that there exists some −⇀τ
such that −⇀v 4 −⇀τ and C ` α fun−−_−⇀τ . Let eNEW = e′ ‖[x′ = r].

Because x2��E
−⇀v\eNEW, Lemma A.45 gives us that either (1)

α2��C
−⇀τ \α0 ;A or (2) there exists some αLAST andCNEW such that

α2��C
−⇀τ \αLAST ;CNEW and eNEW 4 〈αLAST , CNEW〉. In the prior

case, we know by Definition 4.13 that C is inconsistent and we
are finished. In the latter case, because both contour creation and
contour instantiation are total functions, the Application closure
rule applies.

Let xLAST = rLAST be the last clause of eNEW. Then eNEW 4 CNEW

and xLAST 4 αLAST. Because x 4 α, we have by Definition A.14
that [x =xLAST] 4 {αLAST <: α}.

Let C = CNEW(α2 , C), let e′NEW = EFRESH(eNEW, C), and let
C′NEW = INST(CNEW, C). By Lemma A.48, we have e′NEW 4 C′NEW.
Let EFRESH(xLAST , C) = x′LAST. Let C′′ = INST({αLAST <: α}, C).
By Definition A.8, we have that C′′ = {INST(αLAST , ∅, C) <:
INST(α , ∅, C)}. The contour of α is not Z as it appears at top level
inC ; thus,C′′ = {α′LAST <: α}where α′LAST = INST(αLAST , ∅, C).
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By Lemma A.48, we thus have that [x =x′LAST] 4 C′′; thus by
Lemma A.30 we have that e′NEW ‖[x =x′LAST] 4 C′NEW ∪ C′′. It
should be observed that the prior represents the expression which
replaces the application at the call site in the operational semantics;
the latter represents the set of constraints after instantiation in the
Application Closure rule. We let CNEW ∪ C′′ = C′′′ and we let
e′NEW ‖[x =x′LAST] = e′′′.

Finally, we show simulation by proceeding with an argument
similar to the Assignment case above. By Lemma A.29, we
have that E ‖ eREST 4 C; thus by Lemma A.30 we have that
E ‖ EFRESH(x , e′′′) ‖ eREST 4 C ∪ C′′′. Finally, we let C′ =
REPL(C ∪ C′′′, C) and by Lemma A.50, we have e ‖ e′′′ ‖ eREST 4
C′.

It remains to show that REPL(C ∪ C′′, C) is well-formed. We
know from premises that C is well-formed. Our strategy is to use
the extractions of the contour sets involved in the application rule
to show that each step in this process is also well-formed. Because
α1 appears inC, we have from Lemma A.54 that L−⇀τ M ⊆ LCM. From
this, because α2 appears in C and by Lemma A.55, we have that
LCNEWM ⊆ LCM.

By Lemma A.56, we have that LC′NEWM ⊆ LCM ∪ {C}. We also
have that LC′′M ⊆ LCM ∪ {C}. This gives us LC′NEW ∪ C′′M ⊆
LCM ∪ {C} by Lemma A.19, which is equivalent to LC′′′M ⊆
LCM∪{C}. Again by Lemma A.19, we have LC∪C′′′M ⊆ LCM∪{C},
which is equivalent to LC′M ⊆ LCM ∪ {C}. By Lemma A.57, we
have that LC′M ⊆ {C} ∪ {C′ | C′ ∈ LC ∪ C′′′M ∧ C′ � C}.
Because LC ∪ C′′′M ⊆ LCM ∪ {C}, this can be weakened to
LC′M ⊆ {C} ∪ {C′ | C′ ∈ LCM ∪ {C} ∧ C′ � C}; since C ≤ C,
this simplifies to LC′M ⊆ {C} ∪ {C′ | C′ ∈ LCM ∧ C′ � C}. For

notational convenience, let
⨽−−⨼
C = {C′ | C′ ∈ LCM ∧ C′ � C}. It

remains to show that LC′M is well-formed; by Lemma A.26 it is
sufficient to show that {C} ∪

⨽−−⨼
C is well-formed.

Since
⨽−−⨼
C is a subset of LCM and C is well-formed, it is sufficient

to show that ∀ C′ ∈
⨽−−⨼
C . C′ G� C. By Lemma A.53, we have that for

every C′ in LCM, we have either C′ G� C or C′ ≤ C. By definition,
⨽−−⨼
C contains only those C′ such that C′ � C; thus, we know that

∀ C′ ∈
⨽−−⨼
C . C′ G� C. Therefore,

⨽−−⨼
C ∪ {C} is well-formed and so C′ is

well-formed.

To complete our simulation of closure, we show stuck expres-
sions are modeled by simulation as inconsistencies in the constraint
set.
Lemma A.59. If e 4 C, there exists no e′ such that e −→1 e′, and
e is not of the form E, then C is inconsistent.

Proof. We begin by observing that every e not of the form E
must be factorable into some E ‖[x = r] ‖ e′′ where r is not of the
form v. We proceed by case analysis on r and the conditions of
Definition 3.8 which lead to a stuck e. In each case, we show that
the corresponding constraint set is inconsistent.

If r is of the form x1�x2, we observe that e is only stuck
when E ↓∗int(xi) = [] for i = 1 or i = 2. By Definition 3.5,
this implies that E ↓∗int(xi) = []. Because [x =x1�x2] is in e,
Lemma A.32 gives us that α1�α2 <: α ∈ C for x1 4 α1,
x2 4 α2, and x 4 α. Because xi 4 αi, Lemma A.37 gives us that
C ` αi int−−_ []. The presence of the constraint α1�α2 <: α in C
such that C ` αi int−−_ [] is inconsistent by Definition 4.13.

Otherwise, r is of the form x1 x2. Let E ↓∗scape(x1) = −⇀v .
In this case, e is only stuck if x2 �E

−⇀v . By Lemma A.32, we
know that α1 α2 <: α ∈ C with the appropriate simulations. By
Lemma A.45, we have that α2��C

−⇀τ \α3 ;A where −⇀v 4 −⇀τ . By
Definition 4.13, this is inconsistent.

A.12 Proof of Soundness
We now prove Theorem 4.15. Our strategy for doing so is to show
that simulation holds after the initial derivation and after each small
step evaluation. Once small step evaluation is complete, we use
this simulation to show that evaluation can only be stuck if the
constraint set is inconsistent.

Proof. Given a closed, well-formed e, we have by Lemma A.35
that, if JeKE = 〈α ,C〉, then C is well-formed and e 4 〈α ,C〉.
Since every type variable created by initial derivation has no
contour, LCM = ∅. Let e′ = EFRESH(e , {[]}) and let C′ =
INST(C, {[]}); by Lemma A.48, we have that e′ 4 C′. Observe
that, by Definition A.12, e′ is α-equivalent to e and so gets stuck
iff e gets stuck.

We next induct on the length of constraint closure. Let e0 = e′

and let C0 = C′. Further, let e0 −→∗ en for some n ≥ 0. We start
with the base case that e0 4 C0 and that C0 is well-formed. We
use Lemma A.58 to prove our inductive step: if ei 4 Ci and Ci is
well-formed, then either Ci is inconsistent (and we are finished) or
there exists some Ci =⇒1 Ci+1 such that ei+1 4 Ci+1 and Ci+1

is well-formed. We therefore have by induction that en 4 Cn and
that Cn is well-formed.

We have by premise that en X−→1 and that en is not of the
form E. By Lemma A.59, we have that Cn is inconsistent. By
Definition 4.14, e does not typecheck.

B. Proof of Termination
We show here that the PatBang typechecking definition presented
in Section 4 is decidable. We first present a proof of decidability via
a counting argument. We then informally discuss how typechecking
can be made computationally feasible.

B.1 Proof of Termination
We begin by showing each relation used in defining the type system
is decidable, and each function is computable. We then show that
the number of constraints which may appear in any closure is
bounded in terms of the size of the original program and that the
number of closure steps necessary to decide typechecking is finite.
Lemma B.1. Given a closed e, JeKE is a computable function.

Proof. By direct induction on the definition in Figure 4.2.

The decidability of the projection relation and computability of
a function which finds all

−⇀
f and f′ that can be projected are com-

plex. This is due to the (rare in practice) case where onions can
directly recurse without an intervening label. Since onioning is a
form of type intersection, such recursions are non-contractive and
are usually syntactically ruled out as they have no well-defined se-
mantics [15], but we support non-contractive recursions. The fol-
lowing series of Definitions and Lemmas give us this decidability
and computability result.

We begin by defining a relation similar to the projection shown
in Figure 4.4 and then align this new definition with the old version
to show the decision procedure. The definition below uses the
notation επ(α) to indicate that a type variable α is nullable: it may
produce an empty list for the given projector π.
Definition B.2 (Nullable). επ(α) if and only if either (1) there exists a τ
not of the form α1 &α2 such that τ <: α appears in the constraint set and
τ does not match π or (2) α1 &α2 <: α appears in the constraint set and
inductively both επ(α1) and επ(α2) hold.

Lemma B.3. Relation επ(α) is decidable.

Proof. There are finitely many & constraints in C and it suffices
never to visit the same & constraint twice. This latter is because
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C `ε0 α π−_
−⇀
f ; f′ if C ` α π−_

−⇀
f ; f′,

f′ = 〈τ ,
−⇀
f′′〉, τ is non-onion

C `ε0 α π−_
−⇀
f 1 ‖

−⇀
f 2; f′′ if τ ′ <: α ∈ C, τ ′ = α1 &α2 ,

C `ε0 α1
π−_
−⇀
f 1; f′1, C `ε0 α2

π−_
−⇀
f 2; f′2,

f′′ = 〈τ ′ , [f′1, f′2]〉
C `ε0 α π−_

−⇀
f 2; f′′ if τ ′ <: α ∈ C, τ ′ = α1 &α2 , επ(α1),

C `ε0 α2
π−_
−⇀
f 2; f′2,

f′′ = 〈τ ′ , [f′1, f′2]〉
C `ε0 α π−_

−⇀
f 1 ‖

−⇀
f 2; f′′ if τ ′ <: α ∈ C, τ ′ = α1 &α2 , επ(α2),

C `ε0 α1
π−_
−⇀
f 1; f′1, f

′′ = 〈τ ′ , [f′1, f′2]〉

C `ε α π−_
−⇀
f ; f′ if C `ε0 α π−_

−⇀
f ; f′ or both επ(α) and −⇀τ = []

Figure B.4. PatBang Modified Projection

each cyclic sequence of such constraints gives rise to the same
premises as some set of acyclic sequences. It therefore suffices to
consider all acyclic sequences and, because there is a fixed, finite
number of constraints inC, there is a fixed, finite set of such acyclic
sequences.

B.1.1 Projection

Lemma B.5. Relation C ` α π−_
−⇀
f ; f′ is decidable.

Proof. We first show that the modified projection relation C `ε

α π−_
−⇀
f ; f′ at the bottom of Figure B.4 is equivalent to the origi-

nal projection relation C ` α π−_
−⇀
f ; f′ in Figure 4.4. The modified

definition C `ε0 α π−_
−⇀
f ; f′ at the top of Figure B.4 by inspection

inlines the empty list clause (the first clause) of the original def-
inition into the & clause, and that constructively produces a non-
empty list in each case. Thus, the only case where C ` α π−_

−⇀
f ; f′ /

C `ε0 α π−_
−⇀
f ; f′ differ is where the [] clause is the top-level result,

and C `ε α π−_
−⇀
f ; f′ explicitly aligns that top-level behavior.

The modified relation C `ε α π−_
−⇀
f ; f′ is now shown to be

decidable, and by the above equivalence, the original relation is
decidable. Observe that the list

−⇀
f is divided into two non-empty

sublists in any use of the & clause, so it is possible to exhaustively
test each of the n possible factorings of a length n list, and επ(α)
was shown decidable in Lemma B.3. At the leaf case we rely on
projection matching, which is trivially decidable.

The notational sugar C ` α π−_
−⇀
f implies a quite significant

implication; it is equivalent to the statement ∃f′. C ` α π−_
−⇀
f ; f′.

For decidability, it is critical to ensure that such a fibration can be
constructed if it exists. We therefore present the following lemma:

Now we show that the set of all possible
−⇀
f and f′ pairs that

project from a given type variable is computable. We show this
by showing how the equivalent set of lists with duplicate types in
each list removed, is computable. DEDUP(·, ·) is a function which
removes all duplicate types in a list of types, preserving the right-
most occurrence in the list only. Formally:
Definition B.6 (Deduplication).

DEDUP(
−⇀
f ) = DEDUP(∅,

−⇀
f )

DEDUP(
⨽−−⨼
f′ , []) = []

DEDUP(
⨽−−⨼
f′ ,

−⇀
f ‖[f′′]) =

DEDUP(
⨽−−⨼
f′ ,

−⇀
f ) when f′′ ∈

⨽−−⨼
f′

DEDUP(
⨽−−⨼
f′ ∪ {f′′},

−⇀
f ‖[f′′]) otherwise

Lemma B.7. There is a computable function which takes a C, π,

and α as arguments and returns a set
⨽−−−−−−⨼

〈
−⇀
f , f′〉 such that for all

−⇀
f′′ we

have DEDUP(
−⇀
f′′) ∈

⨽−−⨼
−⇀
f if and only if C ` α π−_

−⇀
f′′; f′.

Proof. The core of the algorithm is to perform non-deterministic
disjunctive computation on each lower bound encountered (subject
to some restrictions for termination). If we encounter a non-onion
type under no other restrictions, computation is simple: we produce
the singleton list containing that type and f′ is immediate.

If we encounter an onion type, we first explore the right side
and then explore the left, concatenating the resulting type list sets
pointwise. As we explore the left side, we maintain knowledge of
the types which appeared in the right side’s list and do not select
proof subtrees which include them; this prevents generation of du-
plicates and is also key to termination: every non-onion expansion
makes some form of progress. As with non-onion cases, construc-
tion of f′ is immediate.

For the case onions recurse into themselves without an inter-
vening label, special care is needed. For instance, consider the con-
straint α1 &α2 <: α2. In order to prevent divergence in such a
case, we track each type variable and the number of times we have
expanded it to an onion lower bound in this proof tree branch. Af-
ter this number of passes reaches a certain threshold, we replace all
expansions of onion lower bounds on that variable with [], pruning
off that branch. We assert that the number of times a given onion
is expanded can be conservatiely be set to the number of distinct
(onion and non-onion) lower-bounding types in C.

We first observe that this choice ensures decidability and then
defend that it is sufficient for correctness. Because of this decision,
there is now a maximum size to the proof tree; each variable with
an onion lower bound is only expanded a fixed number of times and
there are finitely many such variables. Because non-onion cases are
always leaves and because each variable has finitely many lower
bounds, the number of proof trees is finite and can be exhaustively
checked.

We next assert that it is sufficient to build any proof tree de-
scribed by the recursive onions to be large enough to hold any le-
gal permutation of the lower-bounding types in C. This is because
additional onion structure exploration will never yield more legal
variable positions; there are only finitely many types that can be
placed in any position.

Lemma B.8. The function which given some C, α, and π returns
the set of all f and f′ in C such that C ` α π−_ f; f′ is a computable
function.

Proof. By Lemma B.7, there is a computable function which pro-
duces the set of deduplicated lists such that the original lists were
the result of projection. Because deduplication never removes the
rightmost element of a list (trivial by inspection of Definition B.6),
the set of rightmost types from the lists is equal to the set of right-
most types from the lists produced by projection.

B.1.2 Compatibility
We must now demonstrate decidability and computable algorithms
for the compatibility relations. This is quite subtle in comparison to
projection, in particular due to the need to align different compat-
ibility proofs under the same fibration. We begin by showing that
compatibility is decidable if the fibration is known:

Lemma B.9. The relation α �C φ \Γ; f;
⨽−−⨼
φ′ is decidable.

Proof. We first observe that there are finitely many patterns that can
be visited by a compatibility relation before reaching a contractive
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boundary. The occurrence check
⨽−−⨼
φ′ ensures that each substitution

pattern and each recursive pattern are visited only once. There are
finitely many substitution patterns because they are taken from
the lower bounds of the (finite) constraint set. There are finitely
many recursive patterns because they are either (1) part of a pattern
already in the constraint set or (2) finite substitutions on those
patterns.

Because there are finitely many patterns that can be visited,

there is a fixed, finite upper bound on the size of
⨽−−⨼
φ′ in any given

instance of compatibility. For this reason, it is sound to induct first
on the structure of f, then on the number of visitable patterns not

contained in
⨽−−⨼
φ′ , and then on the size of φ. We proceed by case

analysis on φ.
Primitive patterns: When the pattern is one of int, fun, pat,

or scape, compatibility relies on projection which is decidable by
Lemma B.7.

Structural patterns: When the pattern is a label pattern, con-
junctive pattern, or variable pattern, compatibility relies on at most
three types of operations: (1) trivially decidable algebraic opera-
tions (e.g. finite set containment), (2) projection (decidable from
above), and (3) other compatibility relations. In the label case, com-
patibility is over a smaller f; in the conjunctive pattern case, the f

and
⨽−−⨼
φ′ are the same and the patterns φ1 and φ2 are smaller. Thus,

these cases are decidable by induction.
Recursive patterns: For recursive and substitution patterns,

there are two cases: either the pattern exists in the set of visited pat-

terns
⨽−−⨼
φ′ or it does not. If it does, compatibility is trivially decidable.

Otherwise, compatibility relies on (1) projection (Lemma B.7), (2)
trivially decidable operations such as pattern substitution, or (3)
compatibility. For both types of pattern, the compatibility is over a

set
⨽−−⨼
φ′ that contains a visited pattern it did not contain before; thus,

by induction, this operation is decidable.

Next, we must show that appropriate fibrations can be discov-
ered as necessary. To proceed, we rely on fibrations as a means by
which we can describe finite constraints on the regular trees repre-
sented by the constrained type variables in PatBang’s type system.
While the Z fibration is not assigned any special meaning in the
theory, we use it here to represent a sort of wild card, admitting any
fibration in its place. We show the validity of this strategy in the
following lemma:
Lemma B.10. In projection and compatibility: if the relation holds
with a fibration containing a Z, then that relation will also hold for
a fibration containing a different sub-fibration at that position.

Proof. By inspection of the definition of each relation. No clause of
either relation requires a fibration to contain a Z; therefore, the only
case in which a fibration can contain a Z and still allow the relation
to hold is when that part of the fibration is unconstrained.

With the above in mind, we can also define a notion of fibration
subsumption. A fibration f subsumes another fibration f′ if every
relation which holds with f′ also holds with f (up to equivalence
with Lemma B.10). We define fibration subsumption as follows:
Definition B.11 (Fibration Subsumption).

f ≤ Z

〈τ ,
n−⇀
f 〉 ≤ 〈τ ,

n−⇀
f′ 〉 when ∀i ∈ {1..n}. fi ≤ f′i

Lemma B.12. Fibration subsumption is decidable.

Proof. Trivial by induction on the size of the fibrations.

We now describe properties of a computable function which
models compatibility. This function generates the possible bindings

and fibration and takes as input the other positions of the relation.
It also takes as an input a filtering fibration. This argument ensures
that all generated fibrations are restricted to a specific context; all
fibrations produced in the output are subsumed by the filtering
fibration.

Lemma B.13. A computable function exists from C, α, φ,
⨽−−⨼
φ′ , and

a filtering fibration f′ to sets
⨽−−−−−⨼
〈Γ̇, f〉 of possible bindings and the

fibrations which lead to them. Each f in the output is subsumed

by f′. For all Γ̇ and α �C φ \Γ̇; f′′;
⨽−−⨼
φ′ such that f′′ ≤ f′, there

exists some pair 〈Γ̇, f〉 in the output such that α �C φ \Γ̇; f;
⨽−−⨼
φ′ .

Additionally, if Γ̇ = /, then such a pair exists where f′′ ≤ f.

Proof. Constructability: We first observe that, given the other four
places of the compatibility relation, each set of bindings and some
fibration for that set can be constructed. This process proceeds
as in projection via the aggregation non-deterministic disjunctive
computation at each choice of a type lower bound and at each single
projection. We also add an additional occurrence check for patterns
which is not cleared when passing through a label. This occurrence
check is between pairs of the form 〈α , φ〉, tracking the argument
type as well as the pattern. For substitution patterns, it tracks the
substitution pattern itself, not the projection from the type variable.
This occurrence check permits us to prevent divergence in certain
recursive match scenarios.

Simple patterns (int, fun, etc.) rely on the computability of fi-
brations for projection (Lemma B.7). Label patterns are somewhat
more complex; when the projection of the label type is computed,
the projection function must mark the relevant unconstrained po-
sition of the resulting fibration so that the fibration obtained from
computing compatibility on the label’s contents can be placed in
that position. Conjunctive patterns proceed by first computing com-
patibility on both subpatterns and then, for each pair of fibrations
f1 and f2 obtained in this fashion, only admitting f1 if f1 ≤ f2 (and
vice versa). Variable patterns are trivially computable.

In the case of recursive patterns, we rely on our second occur-
rence check. If the same pattern is seen twice on the same defi-
nition branch at the same type variable, we know that further ex-
pansions of that same structure will always succeed. We also know
that such expansions will yield no more bindings that those ob-
tained by the first expansion. Finally, we observe that, due to the
non-deterministic disjunctive nature of this algorithm, any future
expansions fromαwhich could generate a novel set of bindings can
also generate such bindings immediately after the first visit to the
recursive pattern. For instance, consider the constraints {‘Aα <: α}
and the pattern rec p: ‘A p & int. While it is true that this pat-
tern can find a / result by exploring into the label ‘A, that label
can be discovered from the same variable by expanding in that di-
rection immediately. Our computable function therefore stops with
the binding of ∅ the second time it witnesses a given recursive pat-
tern, relying on the matches between that point in the definition
the point where the pattern was originally visited to gather the ap-
propriate bindings. In order to prevent this occurrence check from
giving false positives in the case of coinductive types, an implemen-
tation can verify that at least one branch of the exploration reached
a leaf case which did not rely on the occurrence check.

Filtering: To ensure that all f in the output is subsumed by f′, we
allow f′ to dictate union decisions as long as it is not Z. As a result,
the only fibrations which are explored are those which agree with
f′ at each step. The only additional change to this strategy is with
respect to recursive pattern forms. The second occurrence check
does not begin to accumulate patterns until the filtering fibration
is f′. The decidability of the recursive case is unchanged by this
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approach; the filtering fibration is finite, so we will eventually
resume the occurrence check strategy described above.

Representation of Failure: Finally, we must show that, for any
failure of compatibility, the set of fibrations

⨽−−⨼
f produced by this

algorithm which relate to failure are representative in that any other
fibration f′′ that relates to failure is subsumed by a fibration in that
set. The clauses in Figure 4.7 allow the algorithm to form a frontier
of failure results: no clause constrains f any more than is necessary
for the proof to hold. The algorithm uses Z in each unconstrained
position in order to ensure that its results are as general as possible.
If some f′′ has a non-Z where a produced f has a Z, Lemma B.10
gives us that f is strictly more general and subsumes f′′. If some
f′′ has a Z where a produced f has a non-Z, then either it does not
allow compatibility to relate or it is not subsumed by the filtering
fibration f′.

Lemma B.14. A computable function exists from C, α,
n−⇀
β <-φ,

and a filtering fibration f′ to a pair of sets
⨽−−−−−⨼
〈−⇀τ , f〉 and

⨽−−⨼
f indicating

the success and failure, respectively, of the compatibility relation.
For all −⇀τ such that α �C

n−⇀
β <-φ \−⇀τ ; f′, there exists some 〈−⇀τ , f〉 in

the first set. For all f′ such that α �C

n−⇀
β <-φ \/; f′, there exists

some f in the second set such that f′ ≤ f.

Proof. Immediate from Lemma B.13. The only remaining compu-
tation is to order the results of the binding set according to

n−⇀
β ,

which is trivially computable.

Lemma B.15. Relation α��C
−⇀τ \α ; Ċ′; f is decidable. A com-

putable function exists from C, α, and −⇀τ to a set of valid Ċ′ and
f.

Proof. First we show that the relation is decidable by induction on
the length of −⇀τ . Inspection of Definition 4.9 reveals that the truth
of this term is either immediate (when the length of −⇀τ is zero),
reliant upon decidable projection failure (shown to be decidable in
Lemma B.5, reliant upon compatibility (shown to be decidable in
Lemma B.9), or defined in terms of a smaller list.

Next, we show that a function exists to compute this relation. By

Lemma B.14, we can compute the set of
−⇀
τ ′ for which compatibility

holds (and one f for each such list) and the set of f′ for which
compatibility relates to / such that any other f′′ relating to / is
subsumed by some f′. We say that this latter set of fibrations is
representative of failure.

We proceed with the intuition of partitioning the (potentially in-
finitely many) different sequences of union decisions made for the
argument type, using fibrations to represent classes of such deci-
sion sequences. (The fibration 〈l α′ , [Z]〉, for instance, represents
all decision sequences which begin with choosing the lower bound

l α′.) In the positive case, the
−⇀
τ ′ represents all fibrations (and thus

decision sequences) which can relate to this list of types. Although
we cannot determine a set of fibrations which is representative for

each
−⇀
τ ′ as we can for / – the fibration grammar is insufficiently

expressive – no further union decisions are made once a binding
set is discovered and so computation is finished.

In the case of failure, on the other hand, we have a set of
f′ which is representative of failure. We proceed by using each
of these fibrations in non-deterministic disjunctive computation to
filter compatibility with the next scape in the list. This ensures that
we only find compatible cases for union decision sequences which
failed for the previous scape. Because the set of f′ is representative
of failure, we know that no f′′ exists which fails in the previous
scape but permits compatibility to hold for the second scape unless

some f′ also permits compatibility to hold (by Lemma B.10). This
is to say that we know that we have not “missed” any union decision
sequences for the argument type.

Finally, we observe that the list of scapes is necessarily finite.
Because compatibility is computable (Lemma B.14) and we use
it finitely many times (at most once for each of finitely many
fibrations for each scape), we have that application compatibility
is computable.

B.1.3 Contours
Lemma B.16. Relations C1 ≤ C2 and C1 G C2 are decidable.

Proof. The grammar and meaning of contours is a subset of regular
expressions and subsumption and overlap on regular expressions is
well-known to be computable.

Lemma B.17. The contour extraction (L·M), instantiation
(INST(·, ·)), and replacement (REPL(·, ·)) are computable.

Proof. These functions are trivially computable by induction on
their respective first arguments. Each step not defined as a natural
homomorphism is trivially computable. For instantiation, the scape
case calculates a finite union and the variable case performs a
presence test on a finite set. For replacement, the variable case
performs subsumption testing (decidable by Lemma B.16). The
leaf cases of extraction are constant.

Lemma B.18. The functions used in contour creation – CNEW(·, ·),
COLLAPSE(·), and WIDEN(·, ·) – are decidable.

Proof. CNEW(·, ·) is trivially computable. COLLAPSE(C) is trivially
computable if each COLLAPSE(S) is computable for each S ∈ C.
COLLAPSE(S) is computable given some S by induction on the
number of cycles in S. WIDEN(C , C) is computable given C and C
because contour extraction and overlap are known to be decidable
from Lemmas B.16 and B.17.

B.1.4 Typechecking
Lemma B.19. Given C and C′, C =⇒1 C′ is decidable.

Proof. We proceed by showing that there is a computable function

from C to
m⨽−−⨼
C′′ such that C =⇒1 C′′i for all i ∈ {1..m} and that

there exists no other C′′′ such that C =⇒1 C′′′; that is, the set
of possible next steps is computable and finite. Inspection of the
closure rules reveals that the first premise of each rule tests for the
presence of a constraint in C of a certain form; because C is finite,
we can enumerate all such constraints. For each such constraint,
the remainder of the premises in each rule are computable either
trivially or by one of the above lemmas. For application, we use
Lemma B.7 to produce the set of possible −⇀τ scapes that may apply;
this Lemma produces a list without duplicates, and it is clear that
the presence of duplicates is irrelevant to the result of application
compatibility, Definition 4.9. Because each rule has finitely many
preconditions, this process is computable. Thus we can compute

the set of constraints
m⨽−−⨼
C′′ ; because each rule only adds finitely

many constraints, eachC′′i is finite. This relation is then determined

simply by C′ ∈
m⨽−−⨼
C′′ .

Lemma B.20. It is decidable whether a given C is inconsistent.

Proof. By inspection of Definition 4.13, each condition of incon-
sistency first checks for a constraint of a given form; this check can
be achieved by enumeration because C is finite. For each such con-
straint, it then performs a series of checks known to be decidable
either trivially or from the above lemmas.
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We now prove Theorem 4.16.

Proof. The proof proceeds by showing that each closure rule can
only introduce constraints drawn from an initial fixed finite set of
possible constraints.

Given a closed e, JeKE = 〈α ,C〉 is computable from
Lemma B.1.

New contours are only created by CNEW(·, ·). This function
guarantees that (1) all contour strands contain a given identifier
only once and that (2) no contour strands contain an empty set as
a part. As a result, there is a fixed, finite number of unique contour
strands that could ever occur in any closure sequence of C and thus
there is a fixed bound on the number of distinct contours possible
in any closure. The only new value variables x introduced during
closure are those produced by FVAR(α) and there exists one such
variable for each x appearing in the initial e. These facts together
give us that, given a C, we can define a fixed, finite set of type
variables which is a superset of any variable that could arise during
any closure sequence.

Since the possible contours in any closure sequence are fixed
in advance, there exists a fixed finite set can be defined which
bounds all of the τ that could occur in any constraint over any
closure sequence: by inspection of the closure rules, no new non-
scape types τ are created in new constraints which are not just
substitutions on types already occurring in C. Finally, function
types contain a constraint set and all substitutions on such a set
are fixed and finite since the number of possible substitutions is
bounded by the above and so the number of constraints that could
be added to closure via application have a fixed bound.

Since given initial e the possible type variables and types have
a fixed bounded size, there is also a fixed, finite set bounding the
constraints which may appear in any closure; let C∗ be that set.
Therefore, any C′ such that C =⇒1 C′ must be in the power set of
C∗; because C∗ is finite, its power set is also finite. Let this power
set be denoted 2C

∗
and let n be the size of this set.

The set
m⨽−−⨼
C′ such that for all i ∈ {1..m} we have C =⇒∗ C′i

is also decidable. We know this set to be a subset of 2C
∗

and that
any acyclic chain of closures C =⇒1 C′j1 =⇒1 . . . =⇒1 C′i (for
i ∈ {1..m} and jk all in {1..n}) has at most n steps (since there are
only n such sets in 2C

∗
). Because the relation holds over the first

and last sets and is not based on the intervening sets, any cyclic
chain of closures need not be considered as it is equivalent to some
acyclic chain. Because these acyclic chains are all composed of
elements of 2C

∗
, the number of such acyclic chains is at most the

sum of the permutations of the subsets of 2C
∗

, which is finite. By
enumeration of these permutations, we can exhaustively determine

which elements of 2C
∗

are in
m⨽−−⨼
C′ and which are not; therefore,

m⨽−−⨼
C′ is computable.

Finally, for each such C′i, Lemma B.20 gives us that it is de-
cidable whether or not that set is inconsistent. Since it is decidable
whether any of these sets is inconsistent, it is decidable whether or
not e typechecks.

B.2 Efficient Typechecking
The proof of Theorem 4.16 in the previous section used a counting
argument for sake of simplicity. While this shows that the PatBang
type system is decidable, it does not show that it is computation-
ally feasible. Because our objective is to produce a usable, highly
flexible scripting language, we will now informally discuss how the
complexity of typechecking is tractable.

Constraint Closure Confluence The first reduction in complex-
ity starts with the way typechecking is phrased. A program e is
typesafe only if, given its initial constraint C, every C′ for which

C =⇒∗ C′ is consistent; computing every such constraint set
would require considerable effort. This could be avoided if con-
straint closure were confluent; then, the closure work would be re-
duced to a computable, deterministic function. The constraint clo-
sure relation is not trivially confluent; the contours which it pro-
duces will vary based upon the order in which the constraint clo-
sure rules are used. This is, in particular, due to the unioning of
contours in the widening step of contour creation. Up to contour
meaning (J·K), however, these contours are equivalent. It is there-
fore sufficient to close over the initial constraint set to any of its
fixed points and simply determine if that constraint set is inconsis-
tent.

Projection Lemma B.7 shows that the set of orderings of scapes
which will project from a type variable is computable, but it uses
an excessively complex algorithm. Algorithms for projecting the
single highest priority element from a type variable are quite sim-
ple, but – due to onion types which recurse directly and not under
a label – the task of projecting multiple types in priority order is
difficult in some corner cases. This is because immediately recur-
sive onions are a form of non-contractive type because & shares
enough similarity with intersection type, and intersection is not a
contractive type operator [15]. It is well known that working with
non-contractive recursive types is difficult [15] and, for that reason,
it is standard to work only with contractive types. While eliminat-
ing non-contractive types from PatBang would be as simple as a
syntactic check prohibiting immediately recursive onion types, we
believe that non-contractive types will make it possible to statically
type certain higher-order programming patterns.

There are only two places that our priority-based projection
is used. The first is in the definition of single projection which,
as mentioned above, can be implemented with simple, efficient
algorithms. The second is in the Application closure rule, where it
is used to determine the order in which scapes are applied. Observe
that the use of priority-based projection here is inefficient; the
projection tries to model each and every concrete type tree and
individually determine the priority list which results from it, and
there are many more such type trees than there are priority lists
in every case. Furthermore, the set of priority-ordered lists contain
significant redundancies, since the ordering only matters in cases
where the types matched by scape patterns overlap.

In order to correct both sources of inefficiency, we plan to
specialize an operation to address the behavior of the application
rule over an onion of scapes. We rely on the fact that all types
expressible in our constraint-based system can be expressed in a
regular tree algebra and we can use operations over regular trees to
calculate how much of the argument type is matched at any given
point during the process. By defining the operation to handle all
lower bounds at a given call site simultaneously, we effectively
group the application cases into equivalence classes and process
each equivalence class only once. This approach also allows us to
consider each recursive onion type only once; because it considers
all lower bounds of the recursive type variable simultaneously, we
know that no further information can be gained by exploring it
again.

Contours The only remaining concern regarding the complex-
ity of the PatBang type system is the generation of type contours.
As with any polymorphic system, the polyinstantiation of variables
gains expressiveness at the cost of complexity and, as with any in-
teresting polymorphic type system (such as those in the ML family
of languages), typechecking PatBang is exponentially complex in
pathological scenarios. We have attempted to ensure, however, that
PatBang typechecking will be polynomial in practice.

The manner in which contours are created, for instance, is in-
tended to prevent exponential complexity. Since contours on type
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variables represent (often infinite) sets of calling contexts, it is not
impossible to imagine that a closure rule may fire for some inter-
section of two variables’ calling contexts. In that case, constraints
would need to be constructed over the intersection of these calling
contexts and propagated appropriately. This deep reasoning about
type propagation is only helpful in very specific cases of overlap-
ping recursive call cycles where the relevant input types are stat-
ically known; such reasoning also generates exponentially many
constraints in the size of the program. Because this precision is
costly and not very useful, we choose to completely unify the vari-
ables involved in any call cycle; this is accomplished at the end
of the contour creation process by the WIDEN(·, ·) function, which
ensures that any new contour will be unified with a contour it over-
laps (even partially). This ensures that each contour in constraint
closure represents a disjoint calling context, significantly reducing
the complexity of closure.

In general, we expect that a polynomial-in-practice implemen-
tation of the PatBang typechecker is feasible, but it will take more
effort to achieve than other, more traditional typecheckers due to
subtle issues like those mentioned above.

C. Formalism of Other Patterns
In this section, we formalize the patterns which were elided from
Sections 3 and 4 for simplicity: disjunction patterns, none patterns,
and the pattern-of operator. Conveniently, this formal treatment
only requires us to extend existing definitions. We begin by ex-
tending the existing syntax of patterns and pattern types:
Definition C.1 (Extended Pattern Grammars).

ϕ ::= . . . | ϕ |ϕ | $x | none pattern bodies
φ ::= . . . | φ |φ | $α | none pattern body types

We then define the operational semantics of value compatibility
as the least relation satisfying all clauses in Figure 3.6 as well as
those in the following definition:
Definition C.2 (Extended Value Compatibility).
x �E ϕ1 |ϕ2 \B2 ;

⨽−−⨼
ϕ′ if x �E ϕ2 \B2 ;

⨽−−⨼
ϕ′

x �E ϕ1 |ϕ2 \B1 ;
⨽−−⨼
ϕ′ if x �E ϕ2 \/;

⨽−−⨼
ϕ′, x �E ϕ1 \B1 ;

⨽−−⨼
ϕ′

x1 �E $x2 \∅;
⨽−−⨼
ϕ′ if E ↓∗scape(x2) =

n−−−−−−⇀
x′

�
><x′′

�
,

∀i ∈ {1..n}. E ↓pat(x′i) = −⇀y i <-ϕi ,
ϕ′′ = none &ϕ1 | . . . |ϕn ,

x1 �E ϕ′′ \B ;
⨽−−⨼
ϕ′

Here, a disjunction pattern attempts to match its right subpattern
first and matches its left subpattern if that fails. The pattern-of
operator creates a disjunction pattern from all of the scapes in the
provided variable and matches against it. The none pattern has no
clause; no values can ever match it.

The above augmentation is sufficient to define these three ad-
ditional patterns; the remaining relations (projection, application
compatibility, closure, etc.) are unaffected. In keeping with the type
system presented in Section 4, the type compatibility clauses are
quite similar but include failure cases. We define type compatibil-
ity to be the least relation satisfying all clauses from Figure 4.6,
Figure 4.7, and Figure C.3.

As in the basic type system from Section 4, each clause either
(1) directly mirrors an evaluation rule or (2) recognizes or propa-
gates failure cases. No further modification to the type system is
necessary.

The manner in which disjunction patterns bind variables is
somewhat unusual and merits consideration. For a given argument,
the left side is only considered when the right side fails to match.
Consider the pattern (x) <- ‘None _ | ‘Some x. In general, this
pattern does not always bind the pattern variable x; it is therefore
often a type error to use that binding (e.g. pairing this pattern with
(y) -> y), although the pattern can be used as a recognizer with

α �C φ1 |φ2 \Γ2; f;
⨽−−⨼
φ′ if α �C φ2 \Γ2; f;

⨽−−⨼
φ′

α �C φ1 |φ2 \Γ̇; f;
⨽−−⨼
φ′ if α �C φ2 \/; f;

⨽−−⨼
φ′ α �C φ1 \Γ̇; f;

⨽−−⨼
φ′

α1 �C $α2 \∅; f;
⨽−−⨼
φ′ if C ` α2

scape−−−_
n−−−−−−−⇀
α′

�
><α′′

�
,

∀i ∈ {1..n}. C ` α′i
pat−−_

−⇀
βi <-φi ,

φ′′ = none &φ1 | . . . |φn ,

α1 �C φ′′ \Γ; f;
⨽−−⨼
φ′

α �C φ1 |φ2 \A; f;
⨽−−⨼
φ′ if α �C φ2 \A; f;

⨽−−⨼
φ′

α1 �C $α2 \/; f;
⨽−−⨼
φ′ if C ` α2

scape−−−_ []

α1 �C $α2 \/; f;
⨽−−⨼
φ′ if C ` α2

scape−−−_
n−−−−−−−⇀
α′

�
><α′′

�
,

1 ≤ i ≤ n,C ` α′i
pat−−_ []

α1 �C $α2 \Γ̇; f;
⨽−−⨼
φ′ if C ` α2

scape−−−_
n−−−−−−−⇀
α′

�
><α′′

�
,

∀i ∈ {1..n}. C ` α′i
pat−−_

−⇀
βi <-φi ,

φ′′ = none &φ1 | . . . |φn ,

α1 �C φ′′ \Γ̇; f;
⨽−−⨼
φ′, Γ̇ ∈ {/,A}

α1 �C none \/; f;
⨽−−⨼
φ′ always

Figure C.3. PatBang Extended Compatibility

zero-argument functions. But in the event that the provided argu-
ment is statically known to have only ‘Some-labeled types as lower
bounds, use of this binding will be successful; the compatibility
check will always produce a sufficiently large bindings set and
application compatibility will hold. This allows a pattern such as
(x) <- rec p: ‘Nil _ | (‘Hd x & ‘Tl p) to match the last ele-
ment in a list successfully as long as it is always passed (statically-
known) non-empty lists.
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