
Types for Flexible Objects

Pottayil Harisanker Menon Zachary Palmer Alexander Rozenshteyn Scott Smith
The Johns Hopkins University

{pharisa2, zachary.palmer, scott, arozens1}@jhu.edu

Abstract
Scripting languages are popular in part due to their ex-
tremely flexible objects. These languages support numerous
object features, including dynamic extension, mixins, traits,
and first-class messages. While some work has succeeded in
typing these features individually, the solutions have limita-
tions in some cases and no project has combined the results.

In this paper we define TinyBang, a small typed language
containing only functions, labeled data, a data combinator,
and pattern matching. We show how it can directly express
all of the aforementioned flexible object features and still
have sound typing. We use a subtype constraint type infer-
ence system with several novel extensions to ensure full type
inference; our algorithm refines parametric polymorphism
for both flexibility and efficiency. We also use TinyBang to
solve an open problem in OO literature: objects can be ex-
tended after being messaged without loss of width or depth
subtyping and without dedicated metatheory. A core subset
of TinyBang is proven sound and a preliminary implementa-
tion has been constructed.

1. Introduction
Modern scripting languages such as Python and JavaScript
have become popular in part due to the flexibility of their
object semantics. In addition to supporting traditional OO
operations such as inheritance and polymorphic dispatch,
scripting programmers can add or remove members from
existing objects, arbitrarily concatenate objects, represent
messages as first-class data, and perform transformations on
objects at any point during their lifecycle. This flexibility
allows programs to be more concise and promotes a more
separated design; in Ruby, for instance, refinements and
other forms of “monkey patching” can be used to extend
class definitions, allowing a user to add to the behavior of
library classes without modifying the relevant library.

While a significant body of work has focused on typ-
ing these flexible object operations, the solutions proposed
place restrictions on how the resulting objects can be used.
The Bono-Fisher object calculus [8] defines a sound means
by which objects may be functionally extended: functions
within the calculus can define mixins and other higher-order
object transformations. But objects in this calculus must be

“sealed” before they are messaged and sealed objects cannot
be extended. Later works define models which allow objects
to be extended at any point during their lifecycle, but these
models either do not admit depth subtyping [26] or limit
the precision of types which result from object extensions
[6]. As we will show, these restrictions are too prohibitive to
properly model the philosophy of script programming.

In this paper, we present TinyBang, a typed core language
which contains very few features: onioning (an asymmetric
data combinator for record-like data structures), scapes (par-
tial functions which pattern-match their arguments) and la-
beled data. TinyBang has no explicit syntax for classes, ob-
jects, inheritance, object extension, overloading, or switch/-
case. We show, however, that objects and flexible operations
on them, including those listed above, can be tersely ex-
pressed with only scapes and onions. These operations pre-
serve width and depth subtyping and TinyBang’s type sys-
tem infers correct types for them without any programmer
annotation.

We do not expect programmers to write in TinyBang di-
rectly but instead in BigBang, a language including syntax
for objects, classes, and so on that is not presented here;
BigBang will desugar to TinyBang. While the fundamen-
tal ideas we present here could be used to give BigBang
types and runtime semantics for objects directly, we focus
on object encodings because they yield a few benefits. First:
TinyBang’s object calculus operations can be defined as in-
language functions, avoiding the need for object-specific
metatheory. Second: our encoding is simple enough to be
translucent in that it will be possible, though atypical, to
“work under the hood” to manipulate objects on a lower level
when necessary. Third: this translucency ensures an elegant
encoding and attests to the expressiveness of the underlying
language constructs.

In order to preserve translucency in the face of flexible
operations like method override and first-class messages, we
design our object encoding with a variant-based philosophy.
In contrast with record-based encodings, in which objects
are records and method invocation occurs by calling the ap-
propriate member, variant-based encodings encode objects
as message-processing functions and represent method in-
vocation as a simple function call. First-class messages are
then simply the argument to that function call, and method

Types for Flexible Objects 1 2013/5/28

names are the (optional) tags placed on such arguments. The
variant-based philosophy not new; Actor models [2] are un-
typed variant-based objects, but the variant-based encoding
is more challenging to type than record-based encodings.
This paper shows how, using onions and scapes, the variant-
based encoding is more translucent than a traditional record-
based one.

Scapes: generalizing first-class cases In our variant-based
encoding, method dispatch is essentially matching on a mes-
sage value. But traditional match/case expressions are mono-
lithic blocks: they lack an explicit composition operator. We
must have extensible match/case expressions to allow our
encoded objects to be extensible. To accomplish this, we use
a (typed) notion of first-class cases, which has been explored
previously in [7]. There, a construct ⊕ is defined for extend-
ing a case with a single additional clause. Our scapes gener-
alize first-class cases by supporting composition of arbitrary
case expressions, not just the addition of one clause. Since
the case extension of [7] is only adding case clauses to the
end of an existing case, it cannot model inheritance or object
concatenation: the former requires the subclass’s methods to
take priority over those of the superclass and the latter re-
quires arbitrary composition of case expressions. We believe
that scapes offer the first high-level algebraic case composi-
tion operator which can directly support object inheritance
for a variant encoding of objects.

Scapes are in spirit similar to typed multimethods [10,
21, 22] but multimethods are a nominal dispatch on class
names whereas scapes are a structural dispatch following
ML/Haskell deep patterns; many of the scripting patterns we
aim to model rely on structural dispatch.

Less related is the Pattern Calculus [15], which is a more
fundamental algebra in that patterns themselves are first-
class entities separate from the code to be executed in case
of a match. However, variable bindings in this calculus are
extremely complex, so we choose the case clause as our level
of abstraction.

Dependent pattern types Another problem arises when us-
ing traditional match/case expressions in a typed, variant-
based object encoding: all case branches must have the same
output type. This essentially requires every method of an ob-
ject to return the same type, which is clearly unacceptable.
TinyBang solves this fundamental problem by including a
weak form of dependent type, the dependent pattern type,
to allow for heterogeneity in case branches. A dependent
pattern type allows the type of a value to condition on the
variant tag of the argument. We call these types weakly de-
pendent because they depend only on this variant tag and not
more detailed information from the value; the advantage of
this weakness is that type inference is still decidable.

Our approach is a generalization of the conditional con-
straints originating in [4] and elaborated in [24]. Conditional
constraints partly capture this dependency but only locally
and so lose the dependency information in the presence of

side effects. Our dependent pattern types fully capture this
dependency. Dependent pattern types are related to types
that can be given to multimethods [10], but again are struc-
tural instead of being nominal.

Onions: type-indexed records supporting asymmetric con-
catenation and object extension A type-indexed record is
one for which contents are projected using types rather than
labels [27]. For example, consider the type-indexed record
{foo = 45; bar = 22; (); 13} which implicitly tags the
untagged elements () and 13 with their types. Projecting int
from this record would yield 13 (as the other integers are la-
beled). Similarly, one can project unlabeled functions from a
type-indexed record. Our onions are a form of type-indexed
record; this added flexibility is handy in many situations, as
will be seen below.

Additionally, since (untagged) functions can be placed in
our onions, we can re-use the onion record structure to hold
our scape clauses and avoid needing two different extension
operations as found in [7]. As we alluded above, asymmetric
concatenation is the key to composing scapes and thus prop-
erly defining inheritance and overriding; onions thus support
asymmetric concatenation as the default. Asymmetric record
concatenation was initially proposed by Wand for modeling
inheritance [29], but difficulties in obtaining principal types
in unification-based type inference [30] caused a switch in
research focus to symmetric notions of record concatenation.
Unfortunately, these notions are not amenable to modeling
method overriding. In standard record-based encodings of
inheritance [9], there is no first-class record extension oper-
ation; inheritance requires the superclass to be known stat-
ically. This is implicitly a consequence of the difficulty of
typing asymmetric record extension. Dynamically-typed OO
languages have explored first-class object extenders to sig-
nificant benefit; the use of typed asymmetric record concate-
nation can bring this flexibility to the typed world.

Subtype constraint types TinyBang uses a subtype con-
straint inference based type system [4, 14, 24]; in particu-
lar, it is most closely related to [24]. Compared to [24], our
system does not need row types or conditional constraints to
typecheck record concatenation, incorporates type-indexed
records and first-class cases, and contains a more general
notion of conditional type and a more general model of para-
metric polymorphism. Our approach to parametric polymor-
phism is based on flow analysis [28, 31] and improves on
previous work for expressive but efficient contour sharing. It
uses a restricted form of regular expressions to finitely ab-
stract call strings, following program analyses [20].

While our subtype constraint system infers extremely
precise and expressive types, these types are also by nature
difficult to read and defy modularization. TinyBang’s type
system is therefore a whole-program analysis. Our broader
research agenda includes acquiring the typical benefits of
modularity by using other techniques. Lightweight, approx-
imate type declarations, for instance, can be used to provide

Types for Flexible Objects 2 2013/5/28

e ::= x | lbl e | e & e | e &-π | e &.π | e &!π expressions

| e e | e op e | defx = e in e |x = e in e
|Z | (characters) | () |φ -> e literals

op ::= + | - | == | <= | >=
x ::= (alphanumeric identifiers)

lbl ::= ‘(alphanumeric identifiers)

φ ::= x :ϕ |x |ϕ patterns

ϕ ::= tprim | lblφ | (ϕ & . . . &ϕ) | fun | any
π ::= tprim | lbl | fun projectors

tprim ::= int | char

Figure 2.1. TinyBang Syntax

well-defined type interfaces and to support dynamic loading.
While we believe whole-program typechecking can be made
efficient and practical, the means to do so are well beyond
the scope of this paper.

Outline In the next section, we give an overview of how
TinyBang can encode object features. Section 3 contains the
operational semantics for MicroBang, a subset of TinyBang
trimmed to the key features for readability. In Section 4 the
type system for MicroBang0, a monomorphic restriction of
the full MicroBang type system, is presented; we add poly-
morphism in Section 5 to yield the full MicroBang type sys-
tem. (Type soundness of MicroBang is established in Ap-
pendix A.) Since MicroBang lacks several features of Tiny-
Bang, we then define a series of language extensions that
close this gap: Section 6 adds fully wide and deep patterns
and Section 7 describes how mutable state, onion filtering,
and symmetric concatenation are added to MicroBang. We
conclude in Section 8.

2. Overview
This section gives an overview of the TinyBang language
and of how it supports flexible object operations and other
scripting features. Section 2.1 describes the TinyBang lan-
guage itself and shows how simple objects can be encoded.
Section 2.2 describes how self-awareness is encoded and is
more flexible in TinyBang than in previous work. Section 2.3
describes flexible operations that we can define over this ob-
ject encoding, such as mixins and overloading. Section 2.4
compares this variant-based encoding with its record-based
analogue.

2.1 Language Features for Flexible Objects
TinyBang’s syntax appears in Figure 2.1. The expression
grammar contains the key features mentioned above: scapes
(written φ -> e), onions (written e & e), and labeled data
(written `Foo e for a label constructor `Foo). The remain-
ing language features are orthogonal to our object encoding
but are helpful simplifying the examples below.

In order to typecheck our encoding, we use a subtype
constraint-based type system. The encoding we present is
not intrinsically tied to such an approach, but subtype con-

straints provide numerous advantages. Compared to row typ-
ing systems, for instance, it is not necessary to explicitly an-
notate type transition sites such as upcasts [25]. Most impor-
tantly, subtype constraint systems are handily modified to ac-
commodate the more unusual language features we describe
below. We defer detailed discussion of our type system to
Sections 4 through 7; this section’s use of types remains in-
formal for presentation clarity.

Scapes as methods We begin by considering the oversim-
plified case of an object with a single method and no fields
or self-awareness. In the variant encoding, such an object is
represented by a function which matches on a single case.
Note that, in TinyBang, all functions are written φ -> e, with
φ being a pattern to match against the function’s argument.
Combining pattern match with function definition is also
possible in ML and Haskell, but we go further: there is no
need for any match syntax in TinyBang since match can
be encoded as a pattern and its application. We call such
pattern-matching functions scapes. For instance, consider
the following object and its invocation:

1 def obj = (`double x -> x + x) in obj (`double 4)

The syntax `double 4 is a label constructor similar
to an OCaml polymorphic variant; as in OCaml, the ex-
pression `double 4 has type `double int. The scape
`double x -> x + x is a function which matches on any
argument containing a `double label and binds its contents
to the variable x. Note that the expression `double 4 rep-
resents a first-class message; the object invocation is repre-
sented with its arguments as a variant.

Unlike a traditional match expression, an individual scape
is a function and is only capable of matching one pattern.
To express general match expressions with scapes, individ-
ual scapes are appended via the onion operation &. (This
conjoiner has many other uses which are discussed be-
low.) Given two scape expressions e1 and e2, the expres-
sion (e1 & e2) conjoins the patterns to make a scape with
the conjoined pattern, and (e1 & e2) a will apply the scape
which has a pattern matching a; if both patterns match a, the
rightmost scape (e2) is given priority. We can thus write a
dispatch on an object with two methods simply as:

1 def obj = (`double x -> x + x)

2 & (`isZero x -> x == 0) in obj `double 4

The above shows that traditional match expressions can
be encoded using the & operator to join a number of scapes:
one scape for each case. Our scape conjunction generalizes
the first-class cases of [7] to support general appending of
arbitrary cases; the aforecited work only supports adding
one clause to the end and so does not allow “override” of an
existing clause or “mixing” of two arbitrary sets of clauses.

Dependent pattern types The above shows how to encode
an object with multiple methods as an onion of scapes.
But we must be careful not to type this encoding in the

Types for Flexible Objects 3 2013/5/28

way that match/case expressions are traditionally typed. The
analogous OCaml match/case expression

1 let obj m = (match m with

2 | ‘double x -> x + x

3 | ‘isZero x -> x == 0) in . . .

will not typecheck; OCaml match/case expressions must
return the same type in all case branches. (The recent
OCaml 4 GADT extension mitigates this difficulty but
requires an explicit type declaration, type annotations,
and only works under a closed world assumption).
Instead, we give the scape a dependent pattern type
(`double int → int) & (`isZero int → boolean).1

If the scape is applied in the context where the type of
message is known, the appropriate result type is inferred;
for instance, invoking this method with `isZero 0 always
produces type int and not type int ∪ boolean. Because
of this dependent typing, match expressions encoded in
TinyBang may be heterogeneous; that is, each case branch
may have a different type in a meaningful way. When
we present the formal type system below, we show how
these dependent pattern types extend the expressiveness
of conditional constraint types in a dimension critical for
typing objects.

Onions as records We now show how our data conjoiner,
&, can act like a record constructor. For example, here is how
we encode objects with multi-argument methods:

1 def obj = (`sum (`x x & `y y) -> x + y)

2 & (`equal (`x x & `y y) -> x == y)

3 in obj (`sum (`x 3 & `y 2))

The `sum label on line 3 merely wraps another value, in
this case an onion of two labels: our representation of a two-
label record. This record-like onion is passed to the pattern
`x x & `y y; here, we use & to also denote pattern conjunc-
tion, which requires that the value must match both subpat-
terns to match the overall pattern. Observe from this exam-
ple how there is no hard distinction in TinyBang between
records and variants: there is only one class of label and a
1-ary record is the same as a 1-ary variant.

2.2 Self-Awareness and Resealable Objects
Up to this point objects have not been able to invoke their
own methods, so the encoding is incomplete. To model self-
reference we build on the work of [8], where an object exists
in one of two states: as a prototype, which can be extended
but not messaged, or as a “proper” object, which can be
messaged but not extended. A prototype may be “sealed” to
transform it into a proper object, at which point it may never
again be extended.

Unlike the aforecited work, our encoding permits sealed
objects to be extended and then resealed. The flexibility of

1 This section uses simplified types which improve readability by avoiding
constraint sets. The actual types used in TinyBang are described in Sec-
tions 4-7.

TinyBang allows the sharp phase distinction between proto-
types and proper objects to be relaxed. All object extension
below will be performed on sealed objects. Object sealing
in TinyBang requires no special metatheory; it is defined di-
rectly as a function seal:

1 def fixpoint = f -> (g -> x -> g g x)

2 (h -> y -> f (h h) y) in

3 def seal = fixpoint (seal -> obj ->

4 obj & (msg -> obj (`self (seal obj) & msg))) in

5 def obj = (`double x -> x + x)

6 & (`quad x & `self self ->

7 self (`double x) + self (`double x))

8 def sObj = seal obj in . . .

The seal function accepts an object as an argument and
returns it with a new message handler onioned onto its
right. This message handler matches every argument and
will therefore be used for every message the returned object
receives. We call this message handler the self binding scape
because it adds a `self component to every message sent to
the object using a reference to the object as it stood at the
time the seal occurred. The self binding scape also ensures
that the value in `self is a sealed object, allowing methods
to message it normally. As a result of sealing the object, a
`quad 4 message sent to sObj would produce the same ef-
fect as a `self sObj & `quad 4 message sent to obj.

Extending previously sealed objects Previous work
[6, 26] allows an object to be extended after it has been
messaged. In [26], this power comes at the cost of depth
subtyping, which is fundamental to modern object-oriented
languages; for instance, it is necessary for the Java statement
Set<? extends Number> s = new HashSet<Integer>();

to typecheck. In [6], depth subtyping is admitted but the
type system is nominal rather than structural; one result
of this is that extended objects have only the type of the
extension and not the type of the original object. We now
show how TinyBang improves on previous work without
making either of these concessions.

In the self binding scape above, the value of self is
onioned onto the left of the message rather than the right;
this choice is purposeful given the right-precedence nature of
onioning. Because of this, any value of `self which exists
in a message passed to a sealed object takes priority over
the `self provided by the self binding scape. Consider the
following continuation of the previous code:

1 def sixteen = sObj `quad 4 in

2 def obj2 = sObj & (`double x -> x) in

3 def sObj2 = seal obj2 in

4 def four = sObj2 `quad 4 in . . .

When this code is executed, the variable sixteen will
hold the value 16. Even after the `quad 4 message has
been sent to sObj, we may extend it; in this case, obj2

redefines how `double messages are handled. sObj2 rep-
resents the sealed version of this new object. When the

Types for Flexible Objects 4 2013/5/28

`quad 4 message is sent to sObj2, it is passed to obj2

with a `self component; that is, sObj2 (`quad 4) has the
same effect as obj2 (`self sObj2 & `quad 4). Because
obj2 does not change how `quad messages are handled,
this has the same effect as sObj (`self sObj2 & `quad 4).
sObj is also a sealed object which adds a `self

component to the left; thus this has the same ef-
fect as obj (`self sObj & `self sObj2 & `quad 4). Be-
cause any pattern match will always match the rightmost
`self, the latter-sealed object is provided in the `self

added to the message passed to the `quad-handling method
and so any messages sent from that method will be dis-
patched to an object which includes the extensions in sObj2.

This code successfully typechecks object extension be-
cause, while we “tie the knot” on self using seal, we leave
open the possibility of future overriding of self; it is merely
a record element and we support record field override via
asymmetric concatenation.

For examples in the remainder of the paper, we will as-
sume that seal has been defined as above.

Onioning it all together Onions also provide a natural
mechanism for including fields; we simply concatenate them
to the scapes that represent the methods. Consider the fol-
lowing object which stores and increments a counter:

1 def obj = seal (`x 0 &

2 (`inc _ & `self self ->

3 (`x x -> x = x + 1 in x) self))

4 in obj `inc ()

Label construction implicitly creates a mutable cell2, so the
`x label is used to store the counter’s current value. The
bottom line invokes the scape part of obj; the `x label does
not interfere because it is not a scape. (Note that syntax ()

here is the “empty onion”, the 0-ary conjunction of data
items.)

In this body, self is passed to the inner scape. Because
seal onions the target object onto the left of the self binding
method, all of the labels from the unsealed object are still
visible; thus, self has the same `x label as obj and the cell
within obj’s `x label is bound to the variable x. The code
x = x + 1 in x is then executed, incrementing the label’s
contents.

It may seem unusual that obj is, at the top level, a hetero-
geneous “mash” of a record field (the `x) and a function (the
scape which handles `inc). This is sensible because onions
are type-indexed [27], meaning that they use the types of the
values themselves to identify data. When matching on an
onion, the rightmost value is projected; (7 & 3) + 1 is just
4. Scapes are a special case; instead of projecting the right-
most scape, all scapes are projected and application selects
the rightmost scape which matches the argument. This type-

2 The core MicroBang language we formalize is immutable, but in Section
7.1 we show how the MicroBang type system may be extended to include
mutable state.

indexed view is useful because it leads to more concise code
as seen in Section 2.3 below.

The above counter object code is quite concise consid-
ering that it defines a self-referential, mutable counter ob-
ject using no syntactic sugar whatsoever in a core language
with no explicit object syntax. But as we said before, we do
not expect programmers to write directly in TinyBang under
normal circumstances. Here we define just a few sugarings
which we use in the examples throughout the remainder of
this section, although the larger BigBang language would in-
clude sugarings for each of the features we are about to men-
tion as well. When reading the sugarings below, reflect that it
is still translucent in the sense we describe above: looking at
desugared code is not prohibitive for programmers desiring
more control.
o.x ∼= (`x x -> x) o

o.x = e1 in e2
∼= (`x x -> x = e1 in e2) o

if e1 then e2

else e3

∼= ((`True _ -> e2) &

(`False _ -> e3)) e1

e1 and e2
∼= ((`True _ -> e2) &

(`False _ -> `False ())) e1

Using this sugar, the third line of the counter
object above can be more concisely expressed as
self.x = self.x + 1 in self.x.

2.3 Flexible Object Operations
The above shows both a typed, variant-based object encod-
ing for TinyBang as well as two flexible object features:
first-class messages are trivial to encode and objects may
be extended after they are messaged without compromising
expressiveness. We now focus on typed encodings of flexi-
ble object operations as discussed in Section 1. Traditionally,
these abstractions are defined in a first-order sense; inheri-
tance, for instance, can only be expressed if the type of the
parent class is statically known. In contrast, TinyBang’s en-
coding can type higher-order abstractions.

We show our encoding in terms of objects rather than
classes for simplicity; applying these concepts to classes is
straightforward, and working at the object layer also shows
how TinyBang can express (functional) object extension. For
clarity, we use the sugar defined above.

Default arguments Many scripting languages include a
notion of a “default argument”: an argument which may be
specified to a method but which will take on a default value
if it is missing. Onions encode this behavior quite easily. For
instance, consider:

1 def obj = seal

2 ((`add (`x x & `y y) -> x + y)

3 & (`sub (`x x & `y y) -> x - y)) in

4 def dflt = obj -> obj &

5 (`add a -> obj (`add (`x 1 & a))) in

6 def obj2 = dflt obj in

7 obj2 (`add (`y 3));

Types for Flexible Objects 5 2013/5/28

8 obj2 (`add (`x 7 & `y 2))

Given an object which accepts a message `add, dflt will,
in all `add messages sent without an `x component, include
`x 1. Because the `x 1 is onioned onto the left of a, it will
have no effect if an `x is provided in the message. Thus, the
invocations on the last lines will yield 4 and 9, respectively.
Note also that, while most languages only permit default ar-
guments in a first-order sense, TinyBang can encode default
arguments as a higher-order transformation.

Overloading The pattern-matching semantics of scapes
also provide a translucent mechanism whereby function (and
thus method and operator) overloading can be defined. We
might originally define negation on the integers as

1 def neg = x:int -> 0 - x in . . .

Later code could then extend the definition of negation to in-
clude boolean values. Because operator overloading assigns
new meaning to an existing symbol, we redefine neg to in-
clude all of the behavior of the old neg as well as new cases
for `True and `False:

1 def neg = neg &! (`True _ -> `False ())

2 &! (`False _ -> `True ()) in . . .

The &! operator is TinyBang’s symmetric concatenation syn-
tax, ensuring that new overloadings produce a type error
if they override existing definitions; &! is not in our core
MicroBang type system but is added as an extension in
Section 7.3. Negation is now overloaded: neg 4 evaluates
to -4, and neg `True () evaluates to `False () due to
how scape application matches patterns. Overloading as de-
fined above shares similarities with the λ&-calculus [10] and
typed multimethod-based language designs [21, 22]; these
projects, however, dispatch on nominal (class) names and
not on structural information as we do. Note that our type
system assumes whole-program compilation. Many of the
subtleties in implementations of overloading arise from at-
tempts to modularize it [5, 21]; we get to live in a simpler
universe.

Mixins The following example shows how a simple two-
dimensional point object can be combined with a mixin

providing extra methods:

1 def point = seal (`x 0 & `y 0

2 & (`l1 _ & `self self -> self.x + self.y)

3 & (`isZero _ & `self self ->

4 self.x == 0 and self.y == 0)) in

5 def mixin = ((`near _ &

6 `self self -> (self `l1 ()) < 4)) in

7 def mixedPoint = seal (point & mixin) in

8 mixedPoint `near ()

The point variable is our original point object. The mixin
is merely a scape which calls the value passed as self. Be-
cause an object’s methods are just scapes onioned together,

onioning the mixin into the point object is sufficient to pro-
duce the resulting mixed point; the mixedPoint variable con-
tains an onion with x and y fields as well as all three scapes.

The above example is well-typed in TinyBang; para-
metric polymorphism is used to allow point, mixin, and
mixedPoint to have different self-types. The mixin variable,
the interesting part of the above code, has roughly the type
“(`near unit & `self α) → boolean where α is an ob-
ject capable of receiving the `l1 message and producing an
int”. mixin can be onioned with any object that satisfies
these properties. If the object does not have these properties,
a type error will result when the `near message is passed;
for instance, (seal mixin) (`near ()) is not typeable be-
cause mixin, the value of self, does not have a scape which
can handle the `l1 message.

TinyBang mixins are first-class values; the actual mixing
need not occur until runtime. For instance, the following
code selects a weighting metric to mix into a point based
on some runtime condition cond.

1 def cond = (runtime boolean) in

2 def point = (as above) in

3 def w1 = (`weight _ & `self self ->

4 self.x + self.y) in

5 def w2 = (`weight _ & `self self ->

6 self.x - self.y) in

7 def mixedPoint = seal

8 (point & (if cond then w1 else w2)) in

9 mixedPoint `weight ()

Traits can be encoded in a similar manner: each trait is an
onion and objects are created by their concatenation. The
encoding becomes slightly more complex when resolving
conflicting methods; we omit the full discussion for brevity.

Inheritance, classes, and subclasses Typical object-
oriented constructs can be defined in almost the same way.
Object inheritance is accomplished in a fashion similar to
mixins but with one exception: a variable super is bound
to the original object and captured in the closure of the in-
heriting objects methods, allowing it to be reached for static
dispatch. This allows overriding methods to invoke the meth-
ods they have overridden. The flexibility of the previously-
defined seal function permits us to ensure that the inherit-
ing object is used for future dispatches even in calls to over-
ridden methods. Classes are defined quite simply as objects
which generate other objects; subclasses are merely exten-
sions of those object generating objects. We forgo any ex-
amples here for brevity.

2.4 A Record-Based Comparison
We have shown how an object model amenable to flexible
operations can be defined using onions and scapes. In our
encoding, we chose a variant-based approach. Since records
and variants are natural duals, however, we now offer a high-
level comparison with a record-based encoding.

Types for Flexible Objects 6 2013/5/28

TinyBang’s scapes and onions can also be used to build
a pure record-based encoding of objects that would include
support for first-class messages. Unlike previous encodings
of first-class messages [23, 24], TinyBang provides a view
which uses subtyping and dependent pattern types and does
not require conditional constraints, row types, or a higher-
kinded system. Such a record-based encoding is the true
dual of the variant-based encoding presented above; the
variant-encoded message `msg arg, for example, dualizes to
obj -> obj.msg arg in the record-encoded system.

It is also possible to use first-class labels to form a record-
based encoding of objects; first-class messages are then eas-
ily encoded with first-class labels. Fluid object types [13] are
a recent system which uses this approach to infer types in
scripting languages such as JavaScript. (Note that we do in-
tend to investigate in the future whether the addition of first-
class labels to TinyBang will give us additional added flexi-
bility; they should not be theoretically challenging to add.)

We focus on a variant-based encoding because it leads
to a more translucent and direct syntax. For instance, the
variant first-class message `msg arg may be directly pat-
tern matched, but the record-based function representation
is harder to deconstruct. The flexible object operations we
define above are also more opaque in the record-based view.
In the above encoding, one adds a method mthd to an ob-
ject obj simply by writing obj & mthd. In the record-based
view, where methods are labeled functions which are pro-
jected when they are called, one must write the considerably
more cumbersome

1 obj & `mthd (((_ -> mthd) &

2 (`mthd old -> old & mthd)) obj)

to account for the fact that the original object may or may
not already have a `mthd component. The implementation
of a seal method for the record-based view is very complex;
we omit it here for brevity.

Much of the terseness in the TinyBang encoding arises
due to the fact that it cleanly puts fields and methods into
different syntactic sorts: labels and scapes, respectively. It is
possible to get by with only one of these sorts much like it
is possible to use only one of ∧ or ∨ in Boolean logic: De-
Morgan’s law allows one to be written in terms of the other,
but the resulting expressions are opaque and unintuitive. In
this sense, the encoding that we provide is inspired by the
variant philosophy but is in fact a hybrid encoding in which
methods are on the variant side of the record-variant duality
and fields are on the record side. This hybrid view provides
a very natural encoding of self-awareness (in the form of the
seal function) without complicating field access.

3. MicroBang Operational Semantics
We now begin formal discussion of the operational seman-
tics and typing of the language features presented in Sec-
tion 2. Because the language is reasonably complex, we be-
gin our discussion with MicroBang, a simplified TinyBang

e ::= −−−−⇀x = r expressions

r ::= v |x x |x opx redices

v ::= x |Z | lblx |x &x | () |φ -> e values

φ ::= x :ϕ patterns

ϕ ::= int | lblx | any primary patterns

x variables

op ::= + | == operators

lbl ::= ‘[a-zA-Z0-9_]+ label names

π ::= int | lbl | fun projectors

Figure 3.1. MicroBang Syntax

lacking complex patterns, mutable state, and the advanced
onion operators &-, &., and &!. This section defines a small-
step operational semantics for MicroBang and subsequent
sections address typing.

Notation For a given grammatic construct ∗, we let
[∗1, . . . , ∗n] denote a list of ∗’s, often using the equivalent
shorthand

n−⇀∗� ; the “�” indicates which constructs are in-
dexed, and the n and � can be elided when they are obvi-
ous or not needed. Operator ‖ denotes list concatenation.
For sets, we use similar indexing notation:

n⨽−−⨼∗� abbreviates
{∗1, . . . , ∗n}. We only use this notation on finite lists and
sets in this paper.

3.1 MicroBang Grammar
We present the grammar for MicroBang in Figure 3.1.
This grammar is written in A-normal form to sim-
plify the small-step operational semantics presented
below. The A-translation from a more traditional re-
cursive grammar is standard and is not defined here
for sake of brevity. As an example, the expression
4 + 5 == 9 would translate to the A-normal expression
[x1 = 4, x2 = 5, x3 = x1+x2, x4 = 9, x5 = x3==x4]:
each program point is assigned its own variable and variable
names are unique. For the remainder of the paper, we will
assume that we work only over ANF programs e with
unique variable names.

3.2 Operational Semantics
The operational semantics of MicroBang proceed by evalu-
ating each redex in the expression from left to right. Let E
be of the form −−−−⇀x = v; that is, E is the subset of e for which
each redex is already a value.E constitutes both the environ-
ment and the evaluation context in our semantics. For such
an E = −−−−⇀x = v, we define E(x) = v to be a lookup function
defined when x = xi for some 1 ≤ i ≤ n. When vi is a non-
variable value, v = vi; otherwise, v = E(vi) recursively.

Projection The projectors π in the grammar represent the
different outermost value sorts. We use notation v ∈ π to de-
note that the projector π matches the outermost structure of
a given value v; for example, `A x ∈ `A. The special projec-
tor fun matches all scapes (and only scapes). No projector

Types for Flexible Objects 7 2013/5/28

matches onions directly. We then define a simple function
E↓∗π(x) which projects from a given value x all values which
match the projector π; there can be more than one result be-
cause if x is an onion, the result is the list of all values which
match the projector.
Definition 3.1 (Value Projection).

E↓∗π(x) =


[] if E(x) is non-onion, E(x) /∈ π
[E(x)] if E(x) is non-onion, E(x) ∈ π
E↓∗π(x1) ‖E↓∗π(x2) if E(x) = x1 &x2

In most cases, we only need the highest priority (right-
most) value from the onion. For those cases, we define the
following function.
Definition 3.2 (Single Value Projection).

E↓π(x) = vn where E↓∗π(x) =
n−⇀v

Note that the function E↓π(x) is partial because it is unde-
fined for cases in which the value x does not contain any
values which match the projector.

Compatibility The next relation we use in our definition of
MicroBang’s operational semantics is compatibility. Com-
patibility holds only when a given value matches a given pat-
tern. If it does, then the match is with respect to a list of bind-
ings E0 which describes how the contents of the argument
are assigned to the pattern’s variables. For convenience, we
define this relation on both patterns (φ) and primary patterns
(ϕ). We define x �E φ\E0 by cases on the structure of the
pattern as follows:
Definition 3.3 (Value Compatibility).

x1 �E x2 :ϕ\E0 ‖[x2 =x1] if x1 �E ϕ\E0

x1 �E int \[] if E↓int(x1) ∈ Z
x1 �E lblx2\[x2 =x3] if E↓lbl(x1) = lblx3

x1 �E any \[] always

We write x �E φ to indicate that there exists noE0 such that
x �E φ\E0.

We then use the above compatibility relation to define
an application-driven form of compatibility. We write x �E
−−−−−⇀
φ -> e\E0; e to denote that the argument x can be applied
to one of the scapes in

−−−−−⇀
φ -> e; in this case, E0 is the set of

bindings from x to the pattern and e is the body of the scape
to be applied. We define this relation below by induction on
the length of the list of scapes. This definition will always
use the rightmost applicable scape.
Definition 3.4 (Value Application Compatibility).
x �E []\E0; e is false

x �E

−−−−−⇀
φ -> e ‖[φ′ -> e′]\E0; e′ if x �E φ′\E0

x �E

−−−−−⇀
φ -> e ‖[φ′ -> e′]\E0; e′′ if x �E φ′ ∧ x �E

−−−−−⇀
φ -> e\E0; e′′

Small-Step Semantics Using the relations above, we now
define small-step computation for MicroBang. We take α(e)
to be an α-conversion function which renames all bound
variables in e to a fixed set of fresh names relative to the
current context. Our single-step relation is then defined over
closed e with unique variable names as follows; we give
intuitions below.

Definition 3.5 (MicroBang Small-Step Semantics).
E ‖[x =x1 +x2] ‖ e −→1 E ‖[x =n] ‖ e

when E↓int(x1) = n1, E↓int(x2) = n2, n1 + n2 = n
E ‖[x =x1 ==x2] ‖ e −→1 E ‖[x′ = (), x = ‘True x′] ‖ e

when E↓int(x1) = n1, E↓int(x2) = n2, n1 = n2, x
′ fresh

E ‖[x =x1 ==x2] ‖ e −→1 E ‖[x′ = (), x = ‘False x′] ‖ e
when E↓int(x1) = n1, E↓int(x2) = n2, n1 6= n2, x

′ fresh
E ‖[x =x1 x2] ‖ e′′ −→1 E ‖α(E0 ‖ e′ ‖[x′ = r]) ‖[x =α(x′)] ‖ e′′

when E↓∗fun(x1) = −⇀v, x2 �E
−⇀v\E0; e′ ‖[x′ = r]

We then define small-step computation e0 −→∗ en to
hold when e0 −→1 . . . −→1 en for some n ≥ 0. Note that
e −→∗ E means that computation has resulted in a final
value. We write e X−→1 iff there is no e′ such that e −→1 e′;
observe E X−→1 for any E.

Here are some intuitions for the above operational seman-
tics rules. In the first case, we observe that the first unevalu-
ated redex is an addition: x1 +x2. We first use projection to
obtain the integer from each of x1 and x2; we then replace
the redex with the sum of the results. If e.g. x1 is defined
as an integer (or as a variable which is inductively defined
as an integer) in E, then projection is straightforward. If x1

is an onion containing integers, then the rightmost integer is
used; that is, 1 & 2 projects the integer 2 in keeping with the
examples in Section 2. If x1 contains no integers, then pro-
jection is undefined and no small step can occur, leaving the
evaluation “stuck” (that is, e X−→1). The small step evalua-
tion rules for equality use the same approach as addition.

In the final case, the first unevaluated redex is an applica-
tion x1 x2. We begin by projecting all scapes from x1; we
then use the compatibility relation to determine which scape
matches the argument x2 first. If no such scape exists, then
the argument does not match any of the patterns and evalua-
tion is stuck; otherwise, we find the pattern bindings E0 and
the body e′ ‖[x′ = r] of the matching scape. We describe the
body of the scape in this manner because x′, as the last vari-
able in the body, describes the result of the scape. We then
replace the original application expression [x =x1 x2] with
α(E0 ‖ e′ ‖[x′ = r]) ‖[x =α(x′)]: the pattern bindings for the
argument, the body of the matched scape, and a final defini-
tion to copy the result of the scape into x. The variables in
these terms have been freshened by α-conversion wherever
they originated from the body of the scape in order to en-
sure that names in the new expression are still unique; note
that the freshening will freshen both occurrences of x′ to the
same fresh variable here.

We have defined a small-step operational semantics for
MicroBang; we will now discuss how it may be typed.

4. A Monomorphic MicroBang Type System
In order to simplify the presentation of MicroBang’s type
system, we first present a monomorphic type system we call
MicroBang0. The MicroBang0 type system includes all fea-
tures of MicroBang syntax and types except polymorphism.
This allows us to show how scape application is typed with-

Types for Flexible Objects 8 2013/5/28

α type variables

ααα ::= ⨽−−⨼α type variable sets

Γ ::= ⨽−−−−⨼x : α contexts

τ ::= int | lblα |α &α | () | τφ→α \C types

τφ ::= α∼τϕ pattern types

τϕ ::= int | lblα | any primary pattern types

c ::= τ <: α |α <: α |α α <: α |α opα <: α constraints

C ::= ⨽−−⨼c constraint sets

Figure 4.1. MicroBang0 Type Grammar

out the distraction of the complex polymorphism model.
Polymorphic MicroBang is presented in Section 5.

Typechecking in MicroBang0 consists of two phases: ini-
tial derivation, in which the program is translated to a type
variable and a set of initial constraints over that variable; and
closure, during which the initial constraint set is deductively
closed over a logical system and then checked for consis-
tency. We begin our discussion with the type and constraint
grammar shown in Figure 4.1.

The types τ in the type grammar represent concrete
lower bounds in MicroBang0’s type system. They are, in-
formally and respectively, primitives, labels of cells, the
onion of two other types, the empty onion type, and func-
tions. MicroBang0’s constraint grammar is restricted in that
all subtype constraint upper bounds are type variables; this
canonical form is nonetheless complete and facilitates rea-
soning. Note that we use α1 α2 <: α3 which is equivalent to
the more standard notation α1 <: α2 ->α3.

4.1 Initial Derivation
Type checking in MicroBang0 is performed against a fixed,
closed expression e. The first step of typechecking is to
translate e into a type variable and a set of initial constraints.
In order to define this operation concisely, we first give some
supplementary definitions.

Initial type derivation is performed with respect to a con-
text Γ. We still operate under the assumption from Sec-
tion 3.1 that variable bindings in our programs are unique;
thus, new bindings can be safely introduced to a context with
set union. Throughout type derivation, we also require fresh
type variables. We write ?

αi to denote the ith fresh variable
relative to a given point in translation.

We define initial derivation as three functions: JeKΓE ,
Jx = rKΓR , and JφKΓP . These functions define derivation over
expressions, redex definitions, and patterns, respectively.
Note that the letters E, R, and P are not variables; they distin-
guish the sort of initial derivation which is being performed.

We write JeKΓE = 〈α,C〉 to indicate that an expression
e in context Γ translates to the type α constrained by C.
Expressions contain redex definitions; we write Jx = rKΓR = c
to indicate that the redex definition x = r translates to the
constraint c. Because these definitions may contain scapes

J[x = r]KΓE = 〈 ?α1, {Jx = rKΓ∪Γ′

R }〉
where Γ′ = {x :

?
α1}

J[x = r] ‖ eKΓE = 〈α′, {Jx = rKΓ∪Γ′

R } ∪ C〉
where Γ′ = {x :

?
α1}, JeKΓ∪Γ′

E = 〈α′,C〉

Jx =x′KΓR = Γ(x′) <: Γ(x)

Jx = lblx′KΓR = lbl Γ(x′) <: Γ(x)

Jx =x′ &x′′KΓR = Γ(x′) &Γ(x′′) <: Γ(x)

Jx =φ -> eKΓR = τφ→α \C <: Γ(x)

where

{
JφKΓP = 〈Γ′, τφ〉,
JeKΓ∪Γ′

E = 〈α,C〉,
Jx = ()KΓR = () <: Γ(x)

Jx =ZKΓR = int <: Γ(x)

Jx =x′ x′′KΓR = Γ(x′) Γ(x′′) <: Γ(x)

Jx =x′ opx′′KΓR = Γ(x′) op Γ(x′′) <: Γ(x)

Jx1 : intKΓP = 〈{x1 :
?
α1}, ?

α1∼ int〉
Jx1 : lblx2KΓP = 〈{x1 :

?
α1, x2 :

?
α2}, ?

α1∼ lbl ?
α2〉

Jx1 : anyKΓP = 〈{x1 :
?
α1}, ?

α1∼ any〉

Figure 4.2. MicroBang0 Initial Type Derivation

and each scape has a pattern, we write JφKΓP = 〈Γ′, τφ〉 to
indicate that a pattern φ in context Γ translates to another
context Γ′ which contains the bindings for the pattern as well
as a pattern type τφ. Using this notation, we define the initial
type derivation process in Figure 4.2.3

Much of this translation process is direct, substituting
variables with their corresponding type variables and mod-
eling value assignment as a lower bound. The translation of
a scape creates a type which captures the constraints derived
from its body. These constraints are introduced during clo-
sure only if the scape is used; otherwise, they have no effect
on typechecking.

4.2 Constraint Closure
The second step in the typechecking process is to deduc-
tively close over the set of constraints produced by deriva-
tion. To define the closure relation, we must first specify
other relations which mirror those used in the small-step se-
mantics in Section 3. We begin by defining concretization, a
simple relation which locates the lower bounds for a given
type via transitivity chains in the constraint set.
Definition 4.1 (Concretization). τ C<:∗ αn iff {τ <: α0, α0 <:
α1, . . . , αn−1 <: αn} ⊆ C where n ≥ 0.

Unlike the lookup function E(x) from the operational
semantics, concretization is a relation. In cases where the
precise type is not statically known (such as a condition, the
possible types of which are `True () or `False ()), we
approximate it by using a union of the possible types. As a

3 Recall from the top of Section 3 that we use � for indexing positions. For
instance, we would write

n−−−−−⇀
x� + 1 to denote [x1 + 1, . . . , xn + 1].

Types for Flexible Objects 9 2013/5/28

result, a given type variable may have many lower bounds
and so there may be many concretizations for a single αn.

Closure must also create boolean labels which contain
the empty onion () similar to how the operational semantics
create a fresh x′ when a boolean is created. To address this,
we define a mapping ETV(·) to provide fresh variables:
Definition 4.2 (Empty Onion Variables). For all α in the initial
derivation, ETV(α) = α′ where α′ is a fresh type variable not in
the initial derivation.

Projection Next we define projection, a relation which ex-
tracts from a type variable all type lower bounds matching
a given projector. We write C ` α π−_⇀

τ to denote that ⇀
τ are

the non-onion components of the lower-bounding types of α
which match the projector π. Note that this relation is not a
function; if α has multiple lower bounds, for instance, it will
relate multiple type lists. In our definition, we use a relation
τ v π to determine if a non-onion type matches a given
projector. It is true in exactly the following cases:
Definition 4.3 (Projector Match).

int v int

lblα v lbl for any α
τφ→α \C v fun for any τφ, α,C

Using this predicate, we define projection as follows:
Definition 4.4 (Projection).

C ` α′ π−_ [] if τ C<:∗ α′, τ 6v π, τ is non-onion
C ` α′ π−_ [τ] if τ C<:∗ α′, τ v π
C ` α′ π−_⇀

τ1 ‖⇀
τ2 if α1 &α2

C<:∗ α′,
C ` α1

π−_⇀
τ1,C ` α2

π−_⇀
τ2

Projection from a non-onion type is quite simple: produce
a singleton list containing the type if it matches the projector
and produce an empty list if it does not. Projection from an
onion involves concatenating the projection from each side;
the result is a priority-ordered list. This relation is decidable,
although calculating it efficiently is technically challenging
in some rare cases. We discuss this in Appendix B.

We often want only the highest priority (rightmost) type
from an onion which matches a given projector; this reflects
the rightmost priority of onioning. For this purpose, we
overload projection syntax with a single projection relation:
Definition 4.5 (Single Projection).

C ` α π−_ τ ′ holds iff C ` α π−_⇀
τ ‖[τ ′] holds for some ⇀

τ .

Note that this relation is partial; it does not hold when
there are no types in any concrete form of α matching the
projector π.

Compatibility We now define a type-level compatibility
relation to model the compatibility relation of operational
semantics. To do so, we define Ċ to range over “possible
constraint sets”; each Ċ is either a set of constraints C or the
special symbol ˚̌. We define union over possible constraint
sets as Ċ1 ∪ Ċ2 = C1 ∪ C2 when both Ċ1 = C1 and
Ċ2 = C2; we define it as ˚̌ when either Ċ1 or Ċ2 is ˚̌.

We write α �C τφ\Ċ to describe how a type variable
α may match the pattern τφ. When Ċ is C, this relation

indicates that those constraints allow the type information
from α to flow into the variables in τφ (similar to how E0

describes how data flows from an argument x into a pattern
φ in the small-step semantics). When Ċ is ˚̌, this relation
indicates that the argument does not match the pattern. The
˚̌ notation is helpful here becauseαmay have multiple lower
bounds; it is thus possible for one of the forms of α to match
the pattern while another does not.

We define type-level compatibility by casing on the pat-
tern type. As in the operational semantics, we define com-
patibility on both patterns and primary patterns.
Definition 4.6 (Compatibility).

α1 �C α2∼τϕ\{α1 <: α2} ∪ Ċ if α1 �C τϕ\Ċ
α1 �C int \∅ if C ` α1

int−−_ int

α1 �C lblα2\{α3 <: α2} if C ` α1
lbl−_ lblα3

α1 �C any \∅ always
α1 �C int \˚̌ if C ` α1

int−−_ []
α1 �C lblα2\˚̌ if C ` α1

lbl−_ []

Just as in the small-step semantics in Section 3,
we now use this compatibility relation to define an
application-driven form of compatibility. We write α �C(−−−−−−−−−−−−−−⇀
τφ′�→α′� \C′�

)
\α′′; C′′ to indicate that α, the type in the

argument position of an application, is compatible with the
pattern of one of the scape types in the specified scape list.
α′′ and C′′ represent the return type and constraint set of the
matched pattern’s scape. We define this relation as follows:
Definition 4.7 (Application Compatibility).
α �C []\α′′; C′′ is false
α �C

⇀
τ ‖[(τφ′→α′ \C′)]\α′; C′′ ∪ C′ if α �C τφ

′\C′′
α �C

⇀
τ ‖[(τφ′→α′ \C′)]\α′′; C′′ if α �C τφ

′\˚̌,
α �C

⇀
τ\α′′; C′′

Again following the small-step semantics, this relation
will always use the rightmost available scape. We write
α �C

n−−−−−−−−−−−−−⇀
τφ′�→α′� \C′� to denote that ∀i ∈ {1..n}. α �C

τφ′i\˚̌: that is, that every pattern could fail to match α.4

Constraint Closure We are now equipped to define
the constraint closure relation described above. We write
CIN

CL−→1 COUT to denote that a single step of closure maps
CIN onto COUT. The definition of this relation appears in
Figure 4.3, which uses the following notational sugar. In
general, each rule assumes constraint closure to be per-
formed over some set of constraints CIN. We write a con-
straint set CNEW as the conclusion of a rule to abbreviate
CIN

CL−→1 CIN ∪CNEW. We may also write a single constraint c
as the conclusion of a rule to abbreviate {c}. If a constraint c
appears in the premise of a rule, we take it to mean c ∈ CIN.

4 This definition of compatibility is sufficient for soundness but is overly
conservative due to a form of union misalignment; it is possible for each
pattern to fail to match α in a different way but for no single instance of
α to fail to match all patterns. We solve this problem by modifying the
relation to include a fibration, which describes concrete type structure, and
then ensuring alignment between these fibrations. We defer presentation
of this solution until Section 6 to simplify the initial type system we are
describing here.

Types for Flexible Objects 10 2013/5/28

APPLICATION
α1 α2 <: α3 CIN ` α1

fun−−_⇀
τ α2 �CIN

⇀
τ\α4; C′

C′ ∪ {α4 <: α3}

INTEGER ADDITION
α1 +α2 <: α3

CIN ` α1
int−−_ int CIN ` α2

int−−_ int

int <: α3

INTEGER EQUALITY

α1 ==α2 <: α3 α′3 = ETV(α3)
CIN ` α1

int−−_ int CIN ` α2
int−−_ int

{‘True α′3 <: α3, ‘False α′3 <: α3, () <: α′3}

Figure 4.3. MicroBang0 Constraint Closure

Each constraint closure rule’s first premise requires the
presence of a constraint for a particular grammar form. The
Integer Addition rule, for instance, requires a constraint of
the form α1 +α2 <: α3; Figure 4.2 shows us that each redex
of the form e1 + e2 produces such a constraint. We then use
projection to confirm that each type variable has int as a
lower bound; if so, then we can conclude int <: α3, which
indicates that the result also has a lower bound of int. (We
consider type errors, such as when either side has a non-int
lower bound, when we detect contradictions below.) The In-
teger Equality rule works in a similar fashion but produces
two constraints; this is because the result is not known until
runtime and a union of the types is a conservative approx-
imation. In this rule, α′ is the variable associated with α3

which models the fresh x′ in the operational semantics.
The application rule is also similar to the integer rules.

Given a constraint that indicates that a function call oc-
curred, we first use projection to determine which functions
might have been available. We then use the compatibility re-
lation to determine which of the scapes might have been suit-
able for the argument; for such a suitable scape, we conclude
the constraints describing the body of that scape as well as an
additional constraint α3 <: α2 which ensures that the result
type of the scape’s computation flows into the output point
for the call site.

In parallel to the operational semantics, we define a rela-
tion C0

CL−→∗ Cn to hold when C0
CL−→1 . . .

CL−→1 Cn for n ≥ 0.

Contradictions After constraint closure is complete, de-
tecting contradictions simply involves finding inconsisten-
cies in the constraint set. We define such inconsistencies as
follows:
Definition 4.8 (Inconsistency). A set of constraints C is inconsis-
tent iff either

∃α1 α2 <: α3 ∈ C such that C ` α1
fun−−_⇀

τ and α2 �C
⇀
τ , or

∃α1 opα2 <: α3 ∈ C such that C ` αi int−−_ [] for some i ∈ {1..2}

A set of constraints is consistent if it is not inconsistent.

These conditions check for direct conflicts. In the latter
condition, we detect non-integer arguments passed to an

integer binary operation. In the prior, we detect an onion
of scapes α0 for which some portion of its argument α1 is
incompatible with every scape in the onion. Note that this
also detects the application of a non-scape: if α0 contains
no scapes, projection will produce an empty list which then
trivially satisfies the incompatibility condition.

Typechecking is then simple. Given an expression e, we
first calculate the set of constraints C such that JeK∅E =
〈α,C〉 (for some α). We then calculate the closure such that
C

CL−→∗ C′. Finally, we determine if C′ is inconsistent. If it is,
then we reject e; otherwise, e is declared type safe.

Because the polymorphic type system presented in the
next section is a strict generalization of MicroBang0, we
defer discussion of type soundness to the next section.

5. Polymorphism
We now extend MicroBang0 with parametric polymorphism
to create a complete type system for MicroBang. Our poly-
morphism inference system is complex and so is placed in
this separate section for readability. We are designing this
system in the context of scripting languages, so we aim to re-
alize the intuitions of types and subtyping held by program-
mers accustomed to dynamically-typed languages: a method
call which can be understood using the philosophy of duck
typing should simply work. For this reason, we base our sys-
tem on expressive polymorphic set constraint type systems
[3, 12, 14, 24, 31] adding several extensions for greater ex-
pressiveness.

Parametric polymorphism is important for expressive-
ness; we would like to avoid the arbitrary polymorphism cut-
offs found in let-polymorphism and in local type inference.
In order to obtain the maximal amount of polymorphism, ev-
ery scape in MicroBang is inferred a polymorphic type; this
approach is inspired by flow analyses [1, 28] and has pre-
viously been ported to a type constraint context [31]. In the
ideal, each call site produces a fresh instantiation of the type
variables. Unfortunately, this ideal cannot be implemented
since a single program can have an unbounded number of
function call sequences and so produce infinitely many in-
stantiations. A standard solution to dealing with this case
in the program analysis literature is to simply chop off call
sequences at some fixed point. While such arbitrary cutoffs
may work for program analyses, they work less well for type
systems: they make the system hard for users to understand
and potentially brittle to small refactorings.

We have developed an approach here starting from our
previous work on this topic [16, 17, 31] to produce poly-
morphism on functions which is “nearly maximal” in that
common programming patterns have expressive polymor-
phism, suffer no arbitrary cutoffs, and are not too inefficient.
In this approach, a call to a non-recursive function is max-
imally polymorphic. Recursive call cycles are polymorphic
only on the first traversal; type variables are reused when a
recursive cycle is closed. Because scapes are higher-order in

Types for Flexible Objects 11 2013/5/28

MicroBang, it is not known at the start of closure which se-
ries of calls will be cyclic. Instead, the MicroBang type sys-
tem optimistically instantiates fresh variables for each call
sequence it encounters and then merges these variables when
a recursive cycle is discovered.

This section makes adjustments to the MicroBang0 type
system at each step – initial derivation, constraint closure,
and contradiction analysis – to introduce polymorphism. We
explain the mechanism we use to recognize recursive call
cycles and to unify type variables when appropriate. We then
present formal statements about the properties of our type
system and describe our strategy for proving them correct.

5.1 Initial Derivation
To define initial type derivation for the MicroBang type sys-
tem, we must first adjust our view of type variables. Type
variables in MicroBang0, as in most type systems, are un-
interpreted; they are terminal forms in the grammar. In the
full MicroBang type system, however, we need to record
how each variable is polyinstantiated. To do this, we use a
contour, a structure which records a polyinstantiation con-
text. The operations over contours are somewhat complex
and quite difficult to motivate without a usage context; we
therefore defer their presentation until Section 5.2. For now,
we treat contours C as opaque, uninterpreted symbols.

The most direct way to associate a type variable with its
contour information is to assign to it some structure. We
begin by assuming that each redex and each pattern in the
program is associated with some unique identifier ι. With
this notation, our type variable grammar is as follows:
Definition 5.1 (Type Variable Grammar).

Ċ ::= C | ˚̌ possible contours
α ::= 〈ι,Z, Ċ〉 type variables

Each type variable is now a triple between an identifier, an
index, and a possible contour. The identifier names the point
in the program for which the type variable was originally
inferred. The index allows multiple type variables to be
used when inferring a type for a given expression. Type
variables also have a possible contour Ċ: either a contour
C or the special symbol ˚̌ (which we describe here as “no
contour”). The contour of a type variable describes how it
was polyinstantiated; a type variable with no contour has not
been polyinstantiated.

Initially, all type variables are inferred with no contour.
In fact, the definition of initial type derivation given in Fig-
ure 4.2 is still largely suitable for the polymorphic system;
we must make two small adjustments. First, rather than tak-
ing ?

αi to represent an arbitrary fresh type variable, we give
fresh type variables specific structure:
Definition 5.2 (Fresh Variables). In initial expression type deriva-
tion, ?

αi = 〈ι, i, ˚̌〉 where ι is the identifier of the redex for which
we are currently deriving a type. The same is true in initial pattern
derivation, where ι is the identifier of the pattern.

Second, we must capture the free type variables of func-
tions during derivation so that they may be correctly polyin-
stantiated later; this parallels the process of type generaliza-
tion in more traditional type systems. To accomplish this, we
first modify the type grammar of the language so that scape
types take the following form:
Definition 5.3 (Concrete Type Grammar).

τ ::= . . . | ∀ααα.τφ→α \C

The adjustments which appear in Definitions 5.1 and 5.3
are the only changes to the type grammar we must make
for the polymorphic MicroBang type system. Otherwise, the
type grammar we use is the same as in Figure 4.1.

Next, we define derivation over scape expressions, using
FTV(·) as a function calculating free type variables:
Definition 5.4 (Initial Scape Type Derivation).
Jx =φ -> eKΓR = ∀ααα.τφ→α′ \C <: Γ(x)

where


JφKΓP = 〈Γ′, τφ〉,
JeKΓ∪Γ′

E = 〈α′,C〉,
ααα = (FTV(τφ) ∪ FTV(C))− {α′′ | x : α′′ ∈ Γ}

Initial type derivation in MicroBang is then all of the rules
from Figure 4.2 amended with Definition 5.4 and interpreted
using our new definition of ?

αi. The next step in defining our
type system is constraint closure.

5.2 Constraint Closure
The MicroBang0 type system defined several relations to
support its constraint closure process; those relations can be
used in the MicroBang type system with little modification.
We first observe that, because of our new scape type, we
must modify the projection matching of Definition 4.4 to
match against the new scape type syntax:
Definition 5.5 (Polymorphic Projector Match).

∀ααα.τφ→α \C v fun for any ααα, τφ, α,C

We then can directly inherit from MicroBang0 the con-
cretization (Definition 4.1), projection (Definition 4.4), and
compatibility (Definition 4.6) relations.

The empty onion variable mapping ETV(α) must be up-
dated to observe our new type variable model; we use previ-
ously unused index position 0 for this purpose.
Definition 5.6 (Empty Onion Variables).

ETV(〈ι, n, Ċ〉) = 〈ι, 0, Ċ〉.
The application-driven form of compatibility is nearly

identical but must be updated for the new form of scape type
described above. We define this updated relation as follows:
Definition 5.7 (Application Compatibility).
α �C []\α′′; C′′ is false
α �C

⇀
τ ‖[(∀ααα.τφ′→α′ \C′)]\α′; C′′ ∪ C′ if α �C τφ

′\C′′
α �C

⇀
τ ‖[(∀ααα.τφ′→α′ \C′)]\α′′; C′′ if α �C τφ

′\˚̌,
α �C

⇀
τ\α′′; C′′

We write α �C

n−−−−−−−−−−−−−−−−−⇀
∀ααα�.τφ�→α′� \C� to denote that ∀i ∈

{1..n}.α �C τφi\˚̌; that is, every pattern could fail to
match the argument type α. Using this updated notation,

Types for Flexible Objects 12 2013/5/28

APPLICATION
α0 α1 <: α2 CIN ` α0

fun−−_⇀
τ α1 �CIN

⇀
τ\α3; C′

C = CNEW(α2,CIN) C′′ = INST(C′ ∪ {α3 <: α2}, C)

CIN

CL−→1 REPL(CIN ∪ C′′, C)

Figure 5.1. MicroBang Polymorphic Application Rule

inconsistency as in Definition 4.8 is suitable for the full
MicroBang type system.

We are also nearly ready to define the full MicroBang
constraint closure. But while the initial derivation step only
dealt with non-contoured type variables, constraint closure
interacts with type variables containing any form of Ċ. Fortu-
nately, constraint closure only requires three contour-related
functions. We describe them at a high level for now and defer
formal definitions until Section 5.3. These functions are:

• CNEW(α,CIN), a function which creates an appropriate
contour for the call site described by variable α;
• INST(C, C), a function which polyinstantiates the free

variables in a set of constraints C using contour C; and
• REPL(C, C), a function which uses information in C to

unify type variables in recursive call cycles in C.

The Integer Addition and Integer Equality rules from Fig-
ure 4.3, when interpreted under these new definitions, are ap-
propriate for use in the MicroBang type system; the Appli-
cation rule needs to be modified; the revised rule appears in
Figure 5.1. This rule begins much as it did in MicroBang0:
it conditions on the presence of a constraint indicating an
application. It then projects all of the scapes from α0 and
checks their compatibility with the argument α1. The rule
then polyinstantiates the constraints (along with the output
wiring constraint α3 <: α2) and unions them with the orig-
inal constraint set CIN. Finally, contour replacement is used
to unify any cycles which were discovered by this process.

This constraint closure relation together with the initial
derivation function described above provides the powerful
call-site polymorphism that MicroBang requires. We for-
mally define typechecking in Section 5.4. In order to com-
plete the type system, however, we must first provide defini-
tions for the three contour functions described above.

5.3 Contours
We now present the structure of contours and define the op-
erations which closure requires of them. A contour is meant
to track the polyinstantiation of a type variable. More specif-
ically, it is meant to track the polyinstantiation contexts in
which a given type variable is relevant. The type variable
〈ι, 1, ˚̌〉, for instance, is the first type variable inferred at re-
dex (or pattern) ι; the type variable 〈ι, 1, C〉 is a polyinstan-
tiation of that type variable which describes the type of the
redex or pattern ι only in the context represented by C.

We must therefore define contours such that they rep-
resent the contextual information relevant to our polymor-

phism model. A finite approximation of call strings is needed
to avoid the unbounded computation of our operational se-
mantics; to accomplish this, we use a restricted form of reg-
ular expressions over call strings to represent contours. We
motivate our choice of restriction by example, using integers
to represent identifiers and using lists of such identifiers to
represent call strings (where each identifier represents a call
site).

Contours by Example Using the above notation, consider
the call string [1, 2]. This means that function call site 1 is
called which then leads to a call at site 2. This call string can
be represented as the simple regular expression [1, 2] (we
represent the concatenation of regular expressions as a list to
fit with our eventual contour grammar).

When recursion happens, however, the call string will re-
peat a call site (e.g., [1, 2, 3, 2]). To guarantee termination,
we restrict our regular expressions such that any identifier
appears at most once. So, we will represent this call string
using the contour expression [1, {2, 3}], where a set repre-
sents the Kleene closure of its elements, i.e. “1(2 | 3)∗” in
traditional regular expression notation. Note that this expres-
sion also matches the call strings [1], [1, 3, 2, 3], etc. This
information loss only applies to recursive call cycles; we
can still extend the call string and the expression with non-
recursive calls without loss. For instance, we represent the
call string [1, 2, 3, 2, 4] with the expression [1, {2, 3}, 4].

In order to keep our contour expressions manageable and
prevent unnecessary complexity in constraint closure, we
also do not permit their nesting. For instance, the call string
[1, 2, 3, 2, 4, 1] would not extend the expression above to
[1, {2, 3}, 4, 2], nor would it treat the set as an element of a
larger set as in [{1, {2, 3}, 4}]. Instead, we simply merge all
of the elements between the two identical call sites, yielding
[{1, 2, 3, 4}]. While this does represent a loss of information,
we believe the cases in which this information loss is rele-
vant to the programmer are obscure.

Although the expressions here are general enough to de-
scribe each polyinstantiation, constraint closure will occa-
sionally require two contours to be merged, unifying the
variables which exist in each contour with the correspond-
ing variables in the other. In order to support this with no
information loss, we define contours as sets of the restricted
regular expressions presented here; such a contour matches
a given call string if that string is matched by any of the reg-
ular expressions in its set.

Program analyses have previously use regular expres-
sions to abstractly represent arbitrary call strings; see e.g.
∆CFA [20] and citations therein. Our work differs from
existing program analyses because our goals do not match
those of program optimizers. Compared to [20], for exam-
ple, we create contours for each call site (rather than each
function) as this finer granularity adds expressiveness and
limits arbitrary cutoffs. On the other hand, we are not in-

Types for Flexible Objects 13 2013/5/28

P ::= ι |⨽−−⨼ι contour parts

S ::=
−⇀
P contour strands

C ::=
⨽−−⨼
S contours

Figure 5.2. MicroBang Contour Grammar

terested in the precise invariants on variables in the calling
context that are derivable from a ∆CFA analysis.

Contour Grammar We now formalize the grammar of Mi-
croBang contours using the above examples as a guide. Each
term of the restricted regular expressions above was either a
single, literal call site (in the form of an identifier) or a set
of such call sites. We use the term contour part P to refer to
such a term. Each restricted regular expression was a list of
these parts; we refer to these expressions as contour strands
S. As stated above, a contour C is a set of these strands. We
define this grammar in Figure 5.2.

Because contours represent regular expressions over call
strings, it is helpful to formalize the meaning of contours in
terms of the sets of call strings they match:
Definition 5.8 (Contour Meaning).

(Contours) JCK =
⋃
{JSK | S ∈ C }

(Strands) J[]K = {[]}
J
n−⇀
P K = {⇀ι1 ‖ . . . ‖⇀ιn | ∀i ∈ {1..n}.⇀ιi ∈ JPiK}

(Parts) J⨽−−⨼ι K = {
n−⇀
ι′ | ∀i ∈ {1..n}.ι′i ∈ ⨽−−⨼ι }

JιK = {[ι]}
Using the examples from above, we would say that

[1, 2, 3, 2, 4] ∈ JCK where C is the contour containing just
the strand [1, {2, 3}, 4].

Contour Relations In order to define the three contour
functions used in closure above, we require some auxiliary
definitions. The first and simplest of these is contour extrac-
tion, a relation which produces the set of contours found
in a type system grammatic construct such as a constraint
set; we use LCM to denote this. In most cases, this is just
the natural catamorphism which unions results; for instance,
Lα1 <: α2M = Lα1M ∪ Lα2M. The leaf cases are interesting
for contours (LCM = {C}) and non-contours (L˚̌M = ∅); for all
other leaf cases, the extraction yields an empty set.

We next define contour subsumption: a contour C2 sub-
sumes another contour C1 (written C1 ≤ C2) if every call
sequence described by C1 is also described by C2. We also
define contour overlap: a contour C1 overlaps a contour C2
(written C1 G C2) if there is any call sequence represented by
both of them. We define these relations below:
Definition 5.9 (Contour Relations).

C1 ≤ C2 iff JC1K ⊆ JC2K
C1 G C2 iff JC1K ∩ JC2K 6= ∅

Because contours are a restricted subset of regular expres-
sions, subsumption and overlap can be computed efficiently.

Contour Creation The functions for creating new contours
are described in Figure 5.3; we outline their behavior here.

MAKE(〈ι, n, C〉) = {S ‖[ι] | S ∈ C}
SITES(ι) = {ι}
SITES(⨽−−⨼ι) = ⨽−−⨼ι
COLLAPSE(C) = {COLLAPSE(S) | S ∈ C}

COLLAPSE(S) =


COLLAPSE(S1 ‖

(⋃ n−−−−−−−−⇀
SITES(P�)

)
‖ S2)

when
{
S = S1 ‖

n−⇀
P ‖ S2, n > 1,

SITES(P1) ∩ SITES(Pn) 6= ∅
S otherwise

WIDEN(C,C) = C ∪ (
⋃
{C′ | C′ ∈ LCM ∧ C G C′})

CNEW(α,C) = WIDEN(COLLAPSE(MAKE(α)),C)

Figure 5.3. MicroBang Contour Creation

The MAKE function gives a starting contour for a type vari-
able representing a call site; the application rule in Figure 5.1
represents a call site by using the output type variable of the
corresponding application constraint. This starting contour is
the contour of the call site extended with the call site’s iden-
tifier; in essence, the new contour represents pushing the call
site onto a call stack.

The act of adding the call site to the starting contour may
have introduced a cycle. To resolve this issue, the starting
contour is then collapsed. COLLAPSE will find any cycles –
that is, any sequence of contour parts which repeat a given
ι, thus potentially representing call site recursion – and join
them into a single Kleene closure set of ι. This enforces our
invariant that the contour strands in the type system contain
a given ι in at most one position.

By collapsing the contours we use in polyinstantiation,
we guarantee termination; showing a worst case bound in
the permutations of the call sites is trivial. Unfortunately,
contour collapse does not guarantee a constraint set with dis-
joint contours. Closure over a constraint set in which con-
tours overlap is quite involved and is exponentially complex
in common cases. To remedy this problem, we widen the
contour to subsume any contour it overlaps; this is as simple
as unioning the strands of those contours with the strands of
the new one. While the resulting contour still overlaps con-
tours which appear in the constraint set, it can now be used
to replace them. As a result, no overlapping contours exist
after calculating the REPL of the constraint set.

Instantiation and Replacement The INST and REPL func-
tions perform instantiation and replacement, respectively, for
contours. We define here a three-argument version of con-
tour instantiation, INST(∗, ααα, C), where the set represents the
bound variables which should not be instantiated; this is used
when instantiation enters a scape type. The two-argument
version of contour instantiation is defined in terms of this
three-argument form: INST(C, C) = INST(C, ∅, C).

The INST and REPL functions are quite similar in struc-
ture; they are largely the natural homomorphisms over the
type system constructs. For instance, INST(τ <: α, ααα, C) =

Types for Flexible Objects 14 2013/5/28

INST(τ, ααα, C) <: INST(α, ααα, C). The cases for which they are
not naturally homomorphic appear below:
Definition 5.10 (Contour Function Cases).

INST(∀ααα1.τφ→α \C, ααα2, C) =
∀ααα1.τφ→α \ INST(C, ααα1 ∪ ααα2, C)

INST(〈ι, n, Ċ〉, ααα, C) =

{
〈ι, n, C〉 if Ċ = ˚̌ ∧ 〈ι, n, Ċ〉 /∈ ααα
〈ι, n, Ċ〉 otherwise

REPL(〈ι, n, Ċ〉, C) =

{
〈ι, n, C〉 if Ċ ≤ C
〈ι, n, Ċ〉 otherwise

The INST function is simply a capture-avoiding type vari-
able substitution on the first argument. This allows the ap-
plication rule to instantiate the set of constraints in a scape
(which were all inferred with no contour) by giving them the
contour provided by CNEW.

The REPL function performs contour substitution using
a given contour. The contour argument replaces contours
appearing in the constraint set when they are subsumed by
that contour argument; as a result, any two type variables
which are both subsumed by this contour are now unified.
This is the mechanism by which contours are merged to
bound polyinstantiation.

The above definitions provide the three contour functions
which were used in Section 5.2; this completes the definition
of constraint closure.

5.4 Typechecking and Soundness
The relations above are sufficient to define a complete poly-
morphic type system for MicroBang. We formally define
typechecking as follows:
Definition 5.11 (Typechecks). A closed expression e typechecks iff
JeK∅E = 〈α,C〉, C′ = INST(C, {[]}), and for any C′′, C′

CL−→∗ C′′

implies C′′ is consistent.

This definition of typechecking is similar to the descrip-
tion given in Section 4, but includes an additional step. Im-
mediately after derivation, the resulting set of constraints is
instantiated with the initial contour {[]}, which represents a
global, top-level calling context. After this instantiation, we
simply assert that no valid closure of C′ contains inconsis-
tencies.

Typechecking is both sound and decidable.
Theorem 5.1 (Type Soundness). For any closed e such that
e −→∗ e′, e′ X−→1, and e′ is not of the form E, we have that
e does not typecheck.
A full proof of this theorem appears in Appendix A.
Theorem 5.2 (Decidability). Given a closed e, it is decidable
whether e typechecks.
A full proof of this theorem appears in Appendix B.

This completes the MicroBang presentation. In the fol-
lowing two sections, we will extend MicroBang to include
the features of TinyBang not present in MicroBang.

6. Deep and Wide Patterns
We begin extending the MicroBang type system toward
TinyBang by adding deep and wide patterns. Deep patterns
are those which can specify structure beyond a single label
boundary; for instance, the TinyBang scape `A `B x -> x

is a deep pattern. Wide patterns are those which can match
their argument in multiple ways. The only form of wide
pattern in TinyBang is the conjunctive pattern such as
`A x & `B y. Conjunctive patterns only match an argument
if all of their subpatterns match it. Here we extend Mi-
croBang to MicroBangφ, the grammar of which is the same
as Figure 3.1 except for its pattern grammar:
Definition 6.1 (MicroBangφ Pattern Grammar).

φ ::= x : ϕ patterns
ϕ ::= int | lblx :ϕ |ϕ &ϕ | any primary patterns

This grammar supports both the wide and the deep
patterns of TinyBang. Because pattern conjunction
is associative, we will write ϕ1 & . . . &ϕn to denote
ϕ1 & (. . . (ϕn−1 &ϕn) . . .).

This section shows how the polymorphic type system for
MicroBang can be extended to support both wide and deep
patterns. We also provide a solution to the union alignment
problem we mention in Section 4.2, as it is more pronounced
when wide patterns are involved. For sake of brevity, we
do not formally extend the operational semantics of Mi-
croBang.

6.1 Derivation
In order to support the derivation step of type checking, we
must extend derivation to cover our new pattern grammar.
To do so, we must first extend the type grammar to provide
types for the new patterns. The pattern types for MicroBangφ

appear below.
Definition 6.2 (MicroBangφ Pattern Type Grammar).

τφ ::= α∼τϕ pattern types
τϕ ::= int | lblα∼τϕ | τϕ & τϕ | any primary pattern types

Overall, the type grammar for MicroBangφ includes the
changes from Definition 6.2 as well as the changes from the
polymorphic model in Definitions 5.1 and 5.3. Otherwise, it
has the same type grammar as MicroBang0 from Figure 4.1.

Using this type grammar, we can define initial type
derivation. As with the type grammar, initial type deriva-
tion in MicroBangφ is quite similar to the previous systems;
it only changes for the new pattern grammar, the rules for
which appear in Figure 6.1. The expression and redex rules
of MicroBangφ are the same as those shown in Figure 4.2
with the polymorphism adjustments from Definition 5.4.

6.2 Fibrations for Union Alignment
In order to support constraint closure, we must rede-

fine compatibility in terms of these new patterns. How-
ever, conjunctive patterns present difficulty; the union align-
ment problem that we previously overlooked is considerably
worse. For instance, consider (`A x & `B y -> x + y) z

Types for Flexible Objects 15 2013/5/28

Jx : ϕKΓP = 〈{x :
?
α1} ∪ Γ′,

?
α1∼τϕ〉

where JϕKΓP = 〈Γ′, τϕ〉
JintKΓP = 〈∅, int〉

Jlblx : ϕKΓP = 〈{x :
?
α1} ∪ Γ′,

?
α1∼τϕ〉

where JϕKΓP = 〈Γ′, τϕ〉
Jϕ1 &ϕ2KΓP = 〈Γ1 ∪ Γ2, τϕ1∼τϕ2〉

where Jϕ1KΓP = 〈Γ1, τϕ1〉 and Jϕ2KΓP = 〈Γ2, τϕ2〉
JanyKΓP = 〈∅, any〉

Figure 6.1. MicroBangφ Initial Pattern Type Derivation

where argument z has type α and the constraint set contains
{`A int <: α, `B int <: α}. It can be shown that both `A

and `B can be projected from α individually, but we do not
know that a single value will contain both of them.

The root of this problem is that the type variable α rep-
resents a union type and we are not ensuring that we have
a consistent view of it across multiple projections. This so-
called union alignment problem is well-known and invari-
ably arises in union type systems; [11], for example, is a
recent paper reviewing the problem and presenting a sound
union elimination type rule. Unfortunately, sound union
elimination rules in traditional union typing systems usually
end up being weaker than desired: the rule must be syntac-
tically constrained to eliminate only on union-typed expres-
sions which are known to be evaluated only once (and thus
to have made a single choice for which union branch was
taken at runtime).

In a subtype constraint context, where (positive) union
types take the form of multiple lower bounds on a type vari-
able, the union eliminations can be viewed as occurring in
canonical positions: each closure rule propagates per con-
crete lower bound, and thus can be viewed as performing
an implicit union elimination by choosing a particular lower
bound to propagate. For example, the α above is processed
pointwise first as `A int, and then as `B int, fixing the
choice each time. In order to achieve pointwise process-
ing, any union decisions made for a given expression are
marked and we constrain to make the same choices every
time when considering a single function application; this
achieves alignment. To record the particular union elimina-
tion decision(s) made, we introduce type fibrations, formally
described below. We add fibrations to the projection relation,
allowing us to require that multiple projections use the same
fibration. We also add fibrations to the compatibility relation.
The grammar of fibrations is as follows:
Definition 6.3 (Fibration Grammar).

f ::= ˚̌ |〈τ,
−⇀
f 〉 fibrations

Each fibration f is used to describe decisions about a
specific type variable at a specific point in the type. If the
fibration is of the form ˚̌, it indicates that no decisions have
been made about the type variable: it is unconstrained in
context. If the fibration is of the form 〈τ,

−⇀
f 〉, then a specific

C ` α1
int−−_ [int]; 〈int, []〉 if intC<:∗α1

C ` α1
lbl−_ [lblα2]; 〈lblα2, [f]〉 if lblα2

C<:∗ α1

C ` α1
fun−−_ [τ]; 〈τ, [f]〉 if τ C<:∗ α1,

τ = ∀ααα.τφ→α2 \C′

C ` α1
π−_ []; 〈int, []〉 if π 6= int, intC<:∗α1

C ` α1
π−_ []; 〈lblα2, [f]〉 if π 6= lbl, lblα2

C<:∗ α1

C ` α1
π−_ []; 〈τ, [f]〉 if π 6= fun, τ C<:∗ α1,

τ = ∀ααα.τφ→α2 \C′

C ` α1
π−_⇀
τ1 ‖⇀

τ2; 〈α′1 &α′2, [f1, f2]〉
if α′1 &α

′
2

C<:∗ α1,
C ` α′1 π−_⇀

τ1; f1,C ` α′2 π−_⇀
τ2; f2

Figure 6.2. MicroBangφ Projection

lower bound has already been chosen for that type variable
at that location in the type. The associated list of fibrations
describe the decisions for type variables in τ ; it is a singleton
list if τ is a label, for instance, and an empty list if τ is int.

Note that this deep structure is necessary: it is not suffi-
cient to build a mapping between type variables and lower
bounds. For example, consider the type α under {int <:
α, `A α <: α, `B α <: α}; each time the type recurses, the
variable α may be given any of three lower bounds. When
checking compatibility with the pattern `A `B _, this type
would use the fibration 〈`A α, [〈`B α, [˚̌]〉]〉. This fibration
indicates that we chose `A α for the first occurrence α, we
chose `B α for the second occurrence of α, and we did not
make any further decisions. A simple mapping from α to a
single lower bound is unable to express this case.

6.3 Constraint Closure
Using fibrations, we can now adjust the relations used in
constraint closure to integrate deep patterns into the type
system described in Section 5.

Projection We begin by redefining projection to include
fibrations. We now write C ` α π−_⇀

τ ; f to indicate projec-
tion; this new relation simply includes an additional place
for the fibration. For convenience, we elide the fibration f
when it is unimportant. Given this definition, our new pro-
jection relation appears in Figure 6.2. This relation does not
use the projection matching predicate from Definitions 4.3
and 5.5 because each case of projection must relate to a fi-
bration based on the lower bounding type used.

The first two rules of this projection relation correspond
to the first rule of MicroBang’s projection relation from
Definition 4.4; the next two rules correspond to the second
rule of MicroBang’s projection relation; and the last rule
here corresponds to MicroBang projection’s last rule. Note
that the label fibrations above use the unconstrained fibration
variable f; in these cases, any fibration may relate. This is
relevant for deep patterns; if a label `A α′ is successfully
projected from a type variable α, for example, we might later
discover that decisions must be made for α′.

Types for Flexible Objects 16 2013/5/28

α1 �C α2∼τϕ\{α1 <: α2} ∪ Ċ; f if α1 �C τϕ\Ċ; f
α1 �C int \∅; f if C ` α1

int−−_ int; f

α1 �C lblα2∼τϕ\{α3 <: α2} ∪ Ċ; f′ if α3 �C τϕ\Ċ; f,
f′ = 〈lblα3, [f]〉,C ` α1

lbl−_ lblα3; f′

α1 �C τϕ1 & τϕ2\Ċ1 ∪ Ċ2; f if α1 �C τϕ1\Ċ1; f,

α1 �C τϕ2\Ċ2; f
α1 �C any \∅; f always
α1 �C int \˚̌; f if C ` α1

int−−_ ˚̌; f
α1 �C lblα2\˚̌; f if C ` α1

lbl−_ ˚̌; f

Figure 6.3. MicroBangφ Compatibility

As with MicroBang, we often find it useful to discuss
only the highest priority type which is projected from an
onion. We also need to discuss the case in which no types
can be projected from the onion with a given projector. We
define notation for both cases below.
Definition 6.4 (MicroBangφ Single Projection). C ` α π−_ τ ; f
holds when C ` α π−_⇀

τ ‖[τ]; f for some ⇀
τ . Further, C ` α π−_ ˚̌; f

holds when C ` α π−_ []; f.

Compatibility We now define compatibility in
MicroBangφ. As with projection, we simply extend
the previous compatibility relation, writing α �C τφ\Ċ; f.
Compatibility is then defined in Figure 6.3.

The structure of this compatibility rule is slightly differ-
ent from the one presented in Definition 4.6, but the intention
is the same: each rule relates a type variable to a pattern ei-
ther by producing a set of constraints (in the case that a type
represented by the variable matches the pattern) or a ˚̌ (in the
case that a type represented by the variable does not match
the pattern). Because type variables may represent unions,
it is possible for the same type variable and pattern to re-
late in multiple ways. The second rule in Figure 6.3, for in-
stance, indicates that integers match the integer pattern under
no constraints. The third rule indicates that labels match the
pattern containing their label name by allowing the variable
from the label type to flow to the variable in the label pattern.
The last rule indicates that a label pattern does not match a
variable if a label cannot be projected from that variable.

As with projection, we have redefined compatibility to
use fibrations. In the case of compatibility with a conjunctive
pattern (e.g., `A x & `B y -> . . .), note that each compati-
bility relation against one of the subpatterns uses the same
fibration as the other; this ensures union alignment for wide
patterns. Likewise, the rule for label pattern matching en-
forces alignment for deep patterns; the fibration used when
projecting the label type must immediately contain the fibra-
tion used when recursing into the label pattern’s subpattern.

A further advantage of adding fibrations to compatibility
is that it allows us to force union alignment across multi-
ple compatibility relations. We write the application-driven
compatibility relation of MicroBangφ as α �C

⇀
τ\α′; C; f to

indicate that α, fibrated as f, is compatible with some scape
in ⇀
τ . The ααα, α′, and C are the captured variables, return type,

and constraints of the matched scape. We define this relation
as follows:
Definition 6.5 (Application Compatibility).
α �C []\α′′; C′′; f is false
α �C

⇀
τ ‖[(∀ααα.τφ′→α′ \C′)]\α′; C′′ ∪ C′; f if α �C τφ

′\C′′; f
α �C

⇀
τ ‖[(∀ααα.τφ′→α′ \C′)]\α′′; C′′; f if α �C τφ

′\˚̌; f,
α �C

⇀
τ\α′′; C′′; f

Observe that the same fibration is used for all pattern
compatibility checks; this forces application compatibility to
use a consistent representation of the argument type α. For
notational convenience, we omit the fibration when it is not
important which fibration is used.

Finally, we take α �C

n−−−−−−−−−−−−−−⇀
∀ααα.τφ→α′ \C to mean that

∃f.∀i ∈ {1..n}. α �C τφi\˚̌; f. Thus, a pattern match failure
is only valid if it occurs for the same fibration at every pattern
in the list of scapes.

Upgrade Complete! Using fibrations and the notational
updates that appear above, the rest of the MicroBangφ type
system follows in the same fashion as the MicroBang type
system. In fact, the definitions of closure, inconsistency, and
typechecking are syntactically identical; we merely need to
interpret Figure 5.1, Definition 4.8, and Definition 5.11 (re-
spectively) in the context of the definitions presented in this
section. We do not provide proofs of soundness and termi-
nation for this system, but there is little added complexity
beyond fibration bookkeeping.

7. Bridging the Gap
While the previous sections have demonstrated how the most
challenging features of TinyBang can be statically typed,
there are still several language features which appear in
TinyBang but not MicroBangφ. While we do not have the
space to formalize the typing of each of these features, this
section shows several features of interest and discusses them
in varying degrees of formality. In each case, we extend Mi-
croBang (and not MicroBangφ). There are no technical diffi-
culties in extending MicroBangφ with each of these features;
we extend the simpler MicroBang type system for brevity.

7.1 State
The TinyBang language presented in Section 2 includes
state: the construction of a label implies the creation of a
cell, and variables bound to the contents of labels may be
mutated. We now show how the operational semantics and
type system for MicroBang can be amended to include these
state semantics.

Syntax We begin by making changes to the MicroBang
language grammar to accommodate the state semantics.
Rather than treating an expression as a list of redex assign-
ments, we treat an expression as a list of clauses, some of
which are traditional redex assignments and some of which
provide grammar for state operations. The resulting gram-
mar changes appear below:

Types for Flexible Objects 17 2013/5/28

Definition 7.1 (Stateful MicroBang Grammar).
y cell variables

e ::= −⇀s expressions
s ::= x = r | y :=x | y <-x |x <- y | y = y clauses
v ::= x |Z | lbl y |x &x | () |φ -> e values
ϕ ::= int | lbl y | any primary patterns

The full grammar of this stateful MicroBang is the one
appearing in Definition 7.1 along with the original rules for
r, φ, x, op, lbl, and π from Figure 3.1. Although this gram-
mar admits any form of clause at the end of an expression
e, we only consider non-empty e in which the last clause is
of the form x = r. The cell variables y in the new grammar
are the only variables which actually appear in the Tiny-
Bang syntax; the x variables are only necessary for inter-
mediate names induced by our ANF grammar. The stateful
TinyBang syntax translates to this ANF grammar by using
y :=x, . . . to create cells in place of def y = x in . . . and
by using y <-x, . . . to update cells in place of y = x in
Further, all uses of a cell must be captured in an ANF vari-
able; the TinyBang y1 + y2, for instance, is translated as
[x1 <- y1, x2 <- y2, x3 =x1 + x2].

Semantics The new grammar clauses provide state se-
mantics as described above. We also observe that although
the value and pattern grammars are nearly identical to Mi-
croBang, labels now contain cell variables instead of normal
variables. As a result, label contents are always mutable.

Rather than interpreting E as a list of the form −−−−⇀x = v as
we did before, we now interpret it as a list of clauses where
each clause is of the form x = v, y :=x, or y = y. Note that E
is thus both the environment and the (cyclic) store. Lookup
on a cell variableE(y) is now defined inductively; it isE(x)
when y :=x ∈ E and E(y′) when y = y′ ∈ E.

The projection function E↓∗π(x) from Definition 3.1 can
be used verbatim in this system, but we must redefine the
label clause of compatibility in terms of the above syntax.
This new definition is as follows:
Definition 7.2 (Stateful Value Compatibility).

x1 �E lbl y3\[y3 = y2] if E↓lbl(x1) = lbl y2

The definition of compatibility in stateful MicroBang is
the one appearing in Definition 3.3 with the new clause from
Definition 7.2.

Application Compatibility in Definition 3.4 can also be
used verbatim in this system if interpreted under the new
definition of compatibility. We can now define the new small
step rules for stateful MicroBang:
Definition 7.3 (Stateful Small-Step Semantics).
E ‖[x =x1 ==x2] ‖ e −→1 E ‖[x′ = (), y′ :=x′, x = ‘True y′] ‖ e

when E↓int(x1) = n1, E↓int(x2) = n2, n1 = n2, x
′, y′ fresh

E ‖[x =x1 ==x2] ‖ e −→1 E ‖[x′ = (), y′ :=x′, x = ‘False y′] ‖ e
when E↓int(x1) = n1, E↓int(x2) = n2, n1 6= n2, x

′, y′ fresh
E1 ‖[y :=x1] ‖E2 ‖[y <-x2] ‖ e −→1 E1 ‖[y :=x2] ‖E2 ‖ e
E1 ‖[y :=x1] ‖E2 ‖[x2 <- y] ‖ e −→1

E1 ‖[y :=x1] ‖E2 ‖[x2 =x1] ‖ e

JsKΓE = 〈 ?α1, {JsKΓ∪Γ′

R }〉
where Γ′ = {VAR(s) :

?
α1}

J[s] ‖ eKΓE = 〈α′, {JsKΓ∪Γ′

R } ∪ C〉
where Γ′ = {VAR(s) :

?
α1}, JeKΓ∪Γ′

E = 〈α′,C〉

Jx = lbl yKΓR = lbl Γ(y) <: Γ(x)

Jy :=xKΓR = cell(Γ(x)) <: Γ(y)

Jy <-xKΓR = Γ(y) <: cellS(Γ(x))

Jx <- yKΓR = Γ(y) <: cellG(Γ(x))

Jy = y′KΓR = cell(Γ(y)) <: cell(Γ(y′))

Jx : lbl yKΓP = 〈{x :
?
α1, y :

?
α2}, ?

α1∼ lbl ?
α2〉

Figure 7.1. Stateful Initial Derivation Rules

The small step semantics for stateful MicroBang are then
defined by the application and addition rules from Defini-
tion 3.5 and all of the rules in Definition 7.3.

Initial Derivation The semantics above create a model of
state in which cells cannot directly contain other cells; labels
must be used to nest them. To model this directly in the
type system, we treat cells as a new form of constraint rather
than a type constructor. The cell lower-bounding constraint
carries a type variable representing the type of its contents;
the upper-bounding constraints carry the variables which are
used to read from or write to the cell. This allows us to
incrementally build the type of the cell by adding constraints
to the type carried by the cell lower bound, which in turn
supports our model of flow-insensitive cell types. We specify
the additions to the constraint grammar below:
Definition 7.4 (State Constraint Grammar).

c ::= . . . | cell(α) <: α | cell(α) <: cell(α)
|α <: cellG(α) |α <: cellS(α) constraints

The lower-bounding cell constraint is used to represent
the creation of a cell; the two upper-bounding constraints
represent, respectively, getting a value from and setting a
value into a cell. We make use of these constraints by mod-
ifying the initial type derivation rules. The modified deriva-
tion rules (as well as the rule for assignment) appear in Fig-
ure 7.1. For these rules, we define VAR(s) to be the variable
on the left side of a given s, which is either an x or y; we also
allow bindings for both x and y to appear in Γ. Finally, we
extend the function J·KΓR to operate on all clauses and we as-
sume that all clauses are associated with a unique identifier
ι (not just redices).

The initial type derivation for stateful MicroBang is de-
fined by Figure 4.2 incorporating the changes from Defini-
tion 5.4 and Figure 7.1.

Constraint Closure Our next step in defining state is to
define the operations in constraint closure. The projection,
compatibility, and application compatibility definitions in
Section 5 can be directly inherited for use in this type sys-
tem.

Types for Flexible Objects 18 2013/5/28

INTEGER EQUALITY

α1 ==α2 <: α3 α′3 = ETV(α3) α′′3 = CTV(α3)
CIN ` α1

int−−_ int CIN ` α2
int−−_ int

{‘True α′′3 <: α3, ‘False α′′3 <: α3, cell(α′3) <: α′′3 , () <: α′3}

FORWARD PROPAGATION
cell(α1) <: α2 α2 <: cellG(α3)

α1 <: α3

BACKWARD PROPAGATION
cell(α1) <: α2 α2 <: cellS(α3)

cell(α3) <: α2

ALIAS PROPAGATION
cell(α1) <: cell(α2) cell(α3) <: α4 α3 ∈ {α1, α2}

{cell(α1) <: α4, cell(α2) <: α4}

Figure 7.2. New Stateful Closure Rules

To define the constraint closure rules themselves, we
first must define CTV(·), a type variable function similar to
ETV(·), to model the new fresh variable for cells used in the
operational semantics. This function uses−1, another as-of-
yet unused index:
Definition 7.5 (Cell Variables). CTV(〈ι, n, Ċ〉) = 〈ι,−1, Ċ〉.

Using the above, we define our new constraint closure
rules in Figure 7.2. These rules assume that concretization
is extended to cell lower bounds. The Integer Equality rule
is redefined to ensure that it properly creates cells for labels.
We also add two rules for cell type propagation. The remain-
ing closure rules can be inherited from Figures 4.3 and 5.1.

The propagation rules in this figure propagate types
through cells in a flow-insensitive manner: the static type of
a cell is the union of all of the types which may be assigned
to it. Forward propagation ensures that accessing a cell vari-
able produces the type of its contents. Backward propagation
ensures that any assignment to a cell causes it to be treated
as if it may have had that type all along. Note that this model
of state solves the polymorphic reference problem without a
value restriction or equivalent. Inconsistency and typecheck-
ing definitions are directly inherited from Definitions 4.8 and
5.11, respectively.

7.2 Onion Filtering
The TinyBang language includes onion subtraction (&-) and
onion projection (&.), two features which functionally filter
an onion structure. This filtering allows onions to be taken
apart and recombined. We now introduce these operations
as type constructors in the MicroBang language. We will
use the type grammar from Figure 4.1 with changes from
Definitions 5.1 and 5.3 as well as from Definition 7.6 below:
Definition 7.6 (Onion Filtering Types).

τ ::= . . . |α &-π |α &.π types

Filtering is shallow, so it is described using a projec-
tor. The expressions e &.π and e &-π produce values that

contain only those components which match (resp. do not
match) the projector. Initial derivation over these expressions
is as expected:
Definition 7.7 (Onion Filtering Initial Derivation).

Jx = x′ &.πKΓR = Γ(x′) &.π <: Γ(x)

Jx = x′ &-πKΓR = Γ(x′) &-π <: Γ(x)

In the type system, we view &. and &- as onion con-
structors similar to α1 &α2; as a result, they should not be
included where a non-onion type is expected to appear. To
ensure this, we add the following rules to our definition of
projection from Definition 4.4.
Definition 7.8 (Onion Filtering Projection).

C ` α1
π−_⇀
τ if α2 &-π

′ C<:∗ α1, π 6= π′,C ` α2
π−_⇀
τ

C ` α1
π−_ [] if α2 &-π

′ C<:∗ α1, π = π′

C ` α1
π−_⇀
τ if α2 &.π

′ C<:∗ α1, π = π′,C ` α2
π−_⇀
τ

C ` α1
π−_ [] if α2 &.π

′ C<:∗ α1, π 6= π′

The first two rules deal with onion subtraction. The first
rule requires that the projectors are not equal; this means
that, in this case, the subtraction should not affect the result
of projection. In such a case, projection continues into the
type variable of the onion subtraction type. The second rule
requires that the projector being used is equal to the projec-
tor being subtracted; in this case, we know that any type pro-
jected from the variable in the onion subtraction type would
be subtracted here and so we simply return an empty list.
The third and fourth rule are of the same form but with the
projector conditions reversed.

In this way, we use projection to hide the structure intro-
duced by the filtering types. Every other step in the system
uses projection rather than destructing types directly, so we
can interpret all of the remaining definitions in Section 5 in
terms of this new projection relation in order to provide the
onion filtering features.

7.3 Symmetric Onions
While we have shown that the asymmetric properties of
onions concisely describe overriding behavior, it is some-
times useful to guarantee an override has not occurred. In
Section 2.3, we highlight TinyBang’s symmetric onioning
operator: &!. This operator creates an onion symmetrically,
using the constraint-based nature of our type system to raise
a type error if an override has occurred.

This symmetry requirement is represented by a new form
of constraint – α1 /./ α2 – which indicates that two vari-
ables do not share a common component. This constraint
is introduced whenever a symmetric onion is used; that is,
Jx = x1 &!x2K

Γ
R = {Γ(x1) /./ Γ(x2),Γ(x1) &Γ(x2) <:

Γ(x)}. We then complete type derivation and perform con-
straint closure as before. Implementing the symmetry guar-
antee is as simple as ensuring that no single projector suc-
ceeds in projecting a type on both sides of the symmetric
onion. To accomplish this, we use the following definition
of constraint set inconsistency:

Types for Flexible Objects 19 2013/5/28

Definition 7.9 (Symmetric Onion Inconsistency). C is inconsistent
iff it is inconsistent by Definition 4.8 or the following is true:
∃α1 /./ α2 ∈ C such that ∃π.C ` α1

π−_ τ1 ∧ C ` α2
π−_ τ2

8. Conclusions
We have presented TinyBang, a core language in which a
broad class of flexible object-oriented operations may be
easily encoded and statically typed. Encodable operations
include first-class messages, functional object extension,
mixins, default arguments, and overloading. In particular,
TinyBang’s object extension is more general than in previ-
ous works; an object can be extended even after it has been
messaged without loss of depth subtyping or other critical
properties.

No single feature of the TinyBang language is responsible
for this flexibility. Instead, TinyBang’s novelty lies in the
combination of improvements to the state of the art in type
system design: a more general notion of first-class cases,
simpler typing for asymmetric record concatenation, a more
expressive dependent typing of case/match, concise syntax
via type-indexed records, and a highly flexible method for
inference of parametric polymorphism.

We defined the operational semantics, a type inference
algorithm, and established type soundness for MicroBang, a
subset of TinyBang with the most key features. To make a
useful type theory, we needed to address how to maximally
polyinstantiate functions yet preserve termination; for this,
we defined a notion of polyinstantiation contour denoted by
a form of regular expression. For wide and deep patterns, we
had to introduce fibrations to solve a subtle question of union
type alignment. To prove decidability of type inference, the
issue of non-contractive recursive types had to be addressed.

The TinyBang type inference algorithm and a TinyBang
interpreter have been implemented in Haskell, allowing us
to confirm correctness of the type inference algorithm and
operational semantics on code examples. All examples in
this paper typecheck and run in the current implementation.
The type inference implementation still needs significant
tuning for improved efficiency.

The larger picture In practice, programmers need more
than just the expressiveness of TinyBang; they also need syn-
tactic sugar, an efficient compiler, and a rich set of debug-
ging tools. We are presently working on a realistic language
design and implementation for BigBang [19]; TinyBang is
the core for BigBang. BigBang should be appealing because
it will preserve most of the versatile spirit of dynamically-
typed scripting languages while reaping the scalability and
runtime performance made possible by static types.

Acknowledgments
We thank the ECOOP 2013 reviewers; our effort to improve
the technical presentation was inspired by their thorough
reviews. We also thank Nathaniel (Wes) Filardo for helpful
comments.

References
[1] O. Agesen. The cartesian product algorithm. In Proceedings

ECOOP’95, volume 952 of Lecture Notes in Computer Science, 1995.

[2] G. Agha. Actors: a model of concurrent computation in distributed
systems. MIT Press, 1985.

[3] A. Aiken and E. L. Wimmers. Type inclusion constraints and type
inference. In FPCA, pages 31–41, 1993.

[4] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with
conditional types. In POPL 21, pages 163–173, 1994.

[5] E. Allen, D. Chase, J. Hallet, V. Luchangco, J.-W. Maessen, S. Ryu,
G. L. S. Jr., and S. Tobin-Hochstadt. The Fortress language specifica-
tion, version 1.0. Technical report, Oracle Labs, 2008.

[6] L. Bettini, V. Bono, and B. Venneri. Delegation by object composition.
Science of Computer Programming, 76:992–1014, 2011.

[7] M. Blume, U. A. Acar, and W. Chae. Extensible programming with
first-class cases. In ICFP ’06, pages 239–250, 2006.

[8] V. Bono and K. Fisher. An imperative, first-order calculus with object
extension. In ECOOP’98, pages 462–497. Springer Verlag, 1998.

[9] K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encod-
ings. Information and Computation, 155(1-2):108–133, 1999.

[10] G. Castagna, G. Ghelli, , and G. Longo. A calculus for overloaded
functions with subtyping. Information and Computation, 117(1):115–
135, 1995.

[11] J. Dunfield. Elaborating intersection and union types. In Int’l Conf.
Functional Programming, 2012.

[12] J. Eifrig, S. Smith, and V. Trifonov. Type inference for recursively
constrained types and its application to OOP. In MFPS, Electronic
Notes in Theoretical Computer Science. Elsevier, 1995.

[13] A. Guha, J. G. Politz, and S. Krishnamurthi. Fluid object types.
Technical Report CS-11-04, Brown University, 2011.

[14] N. Heintze. Set-based analysis of ML programs. In LFP, pages 306–
317. ACM, 1994.

[15] B. Jay and D. Kesner. First-class patterns. J. Funct. Program., 19(2):
191–225, 2009.

[16] A. Kulkarni, Y. D. Liu, and S. F. Smith. Task types for pervasive
atomicity. In OOPSLA, pages 671–690. ACM, 2010.

[17] Y. D. Liu and S. Smith. Pedigree types. In International Workshop
on Aliasing, Confinement and Ownership in object-oriented program-
ming (IWACO), 2008.

[18] D. B. MacQueen, G. Plotkin, and R. Sethi. An ideal model for
recursive polymorphic types. Information and Control, 71:95–130,
1986.

[19] P. H. Menon, Z. Palmer, A. Rozenshteyn, and S. Smith. Big Bang: De-
signing a statically-typed scripting language. In International Work-
shop on Scripts to Programs (STOP), Beijing, China, 2012.

[20] M. Might and O. Shivers. Environment analysis via ∆CFA. In
Proceedings of the 33rd Annual ACM Symposium on the Principles of
Programming Languages (POPL 2006), pages 127–140, Charleston,
South Carolina, January 2006.

[21] T. D. Millstein and C. Chambers. Modular statically typed multimeth-
ods. In ECOOP ’99, pages 279–303. Springer-Verlag, 1999.

[22] W. B. Mugridge, J. Hamer, and J. G. Hosking. Multi-methods in a
statically-typed programming language. In ECOOP ’91, 1991.

[23] S. Nishimura. Static typing for dynamic messages. In POPL’98, 1998.

[24] F. Pottier. A versatile constraint-based type inference system. Nordic
J. of Computing, 7(4):312–347, 2000.

[25] D. Rémy and J. Vouillon. Objective ML: a simple object-oriented
extension of ML. In POPL ’97, pages 40–53. ACM, 1997.

[26] J. G. Riecke and C. A. Stone. Privacy via subsumption. Inf. Comput.,
172(1):2–28, Feb. 2002.

Types for Flexible Objects 20 2013/5/28

[27] M. Shields and E. Meijer. Type-indexed rows. In POPL, pages 261–
275, 2001.

[28] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD
thesis, Carnegie-Mellon University, 1991. TR CMU-CS-91-145.

[29] M. Wand. Complete type inference for simple objects. In Proc. 2nd
IEEE Symposium on Logic in Computer Science, 1987.

[30] M. Wand. Corrigendum: Complete type inference for simple objects.
In LICS. IEEE Computer Society, 1988.

[31] T. Wang and S. F. Smith. Precise constraint-based type inference for
Java. In ECOOP’01, pages 99–117, 2001. ISBN 3-540-42206-4.

Types for Flexible Objects 21 2013/5/28

A. MicroBang Type Soundness Proof
We present here a proof for Theorem 5.1, the type sound-
ness theorem for MicroBang. Our proof strategy is to build a
simulation relation between the small step semantics and the
type system. We show that the initial derivation of a program
simulates that program and that the simulation is preserved
as the program executes. Finally, we use this simulation to
show that every stuck program is simulated by an inconsis-
tent constraint set.

Throughout this proof, the following notational sugar is
used. This notation does not add meaning to the operational
semantics or type system; it merely simplifies the presenta-
tion of some of the definitions below.
Definition A.1 (Proof Notation).
• We will write xxx in lieu of ⨽−−⨼x to represent a set of variables.

• We will write CCC in lieu of ⨽−−⨼C to represent a set of contours.

A.1 Variables
In order to define simulation, we must establish a conven-
tion for naming variables similar to the one given in Defini-
tion 5.1 for type variables. We are only concerned with pro-
grams for which small-step semantics are defined; we thus
know that the left-hand side of all variable definitions in the
program will be unique. We therefore define a bijection of
the form x↔ 〈ι,Z, Ċ〉; that is, this bijection maps each vari-
able to a triple between an identifier, an integer, and a possi-
ble contour. This bijection is implicitly parametric in terms
of the expression e that we are typechecking.
Definition A.2 (Variable Bijection). Let xxx = {x′i | e =
m−−−−−⇀
x′� = r′�, 1 ≤ i ≤ m}. For each redex clause x = r identified by ι in
the program we are typechecking, let x↔ 〈ι, 1, Ċ〉 where Ċ = {[]}
when x ∈ xxx and Ċ = ˚̌ otherwise. In a pattern x :ϕ identified by
ι, we let x↔ 〈ι, 1, ˚̌〉. In a pattern x : lblx′ identified by ι, we let
x′ ↔ 〈ι, 2, ˚̌〉.

We leave the rest of this bijection unconstrained. We
choose this bijection because it allows us to align fresh vari-
ables with the type variables that represent them. Through-
out this proof, we will occasionally use a variable’s triple
in place of the variable itself; for instance, we may write
{〈ι, 1, ˚̌〉 : 〈ι, 1, ˚̌〉} to mean {x : 〈ι, 1, ˚̌〉} such that
x↔ 〈ι, 1, ˚̌〉.

We will also need to be more precise in our definition
of the α-conversion function discussed in Section 3.2. We
begin by defining a function BV(e) which produces the set
of variables bound within a given expression e; this function
is only defined over expressions with unique variable names.
We also define this function over patterns and scape values
for convenience.
Definition A.3 (Bound Variables). We define BV(

n−−−−−⇀x� = r�) =
n⨽−−⨼x� .

We let BV(x : lblx′) = {x, x′} and we let BV(x :ϕ) = {x} in all
other cases of ϕ. We let BV(φ -> e) = BV(φ) ∪ BV(e).

This bound variables function produces a set which mir-
rors the purpose of the set of type variables captured by a

function type, but it is easier to compute given the structure
of expressions in the operational semantics.

Next we define a function EINST(∗, xxx, C) which freshens
the free variables in the language construct ∗ except those
appearing in xxx. This function is the analogue of INST(∗, ααα, C)
in Definition 5.10 and, as such, is largely the natural ho-
momorphism over the language constructs. The only case
in which this function deviates is shown below:
Definition A.4 (Evaluation Instantiation).

EINST(φ -> e, xxx, C) = φ ->(EINST(e, xxx ∪ BV(φ -> e), C))

EINST(〈ι, n, Ċ〉, xxx, C) =

{
〈ι, n, C〉 if Ċ = ˚̌ ∧ 〈ι, n, Ċ〉 /∈ xxx
〈ι, n, Ċ〉 otherwise

Given the above, we define an α-conversion function
EFRESH(x, e) which freshens variables in the given expres-
sion in the context of call site x. We define this function as:
Definition A.5 (Evaluation Freshening).

EFRESH(〈ι, n, C〉, e) = EINST(e, ∅, C′)
EFRESH(〈ι, n, C〉, x) = EINST(x, ∅, C′)

where C′ = {S ‖[ι] | S ∈ C}
In this function, C′ is analogous to the result of MAKE in

Figure 5.3. We overload EFRESH to be defined over lists of
scapes, which is calculated by applying EFRESH pointwise on
each scape.

Using the freshening function as defined above, we can
now clarify its use in the small step semantics in Defini-
tion 3.5. We do so in the following definition:
Definition A.6 (Clarified Application Semantics).

E ‖[x =x1 x2] ‖ e′′ −→1 E ‖ EFRESH(x,E0 ‖ e′ ‖[x′ = r])
‖[x = EFRESH(x, x′)] ‖ e′′

when E↓∗fun(x1) =
n−−−−⇀
φ -> e, x2 �E

n−−−−⇀
φ -> e\E0; e′ ‖[x′ = r]

Observe that Definition A.6 merely replaces the use of
α(·) with EFRESH(x, ·). For this proof, we take the small-step
semantics of MicroBang to be those in Definition 3.5 except
the application case, which is taken from Definition A.6.
In light of this precise definition of freshening, it is now
possible to define the simulation relation for the soundness
proof.

A.2 Simulation
We now define the simulation relation as a two place relation
defined between a language construct and its corresponding
type system construct. Values, for example, are simulated
by types; redex assignments are simulated by constraints.
We write ∗1 4 ∗2 to denote that language construct ∗1
is simulated by type system construct ∗2. We define this
relation as follows:
Definition A.7 (Simulation). Simulation is defined by the rules in
Figure A.1.

A.3 Contours
We begin constructing the type soundness proof by showing
some properties of contours.
Lemma A.8. Given any contour C 6= ∅, JCK 6= ∅.

Types for Flexible Objects 22 2013/5/28

variables:
˚̌ 4 ˚̌

C 4 C′ iff C ≤ C′
〈ι, n, Ċ〉 4 〈ι, n, Ċ′〉 iff Ċ 4 Ċ′

xxx 4 ααα iff ∀x′ ∈ xxx. ∃α ∈ ααα. x′ 4 α

patterns:
x :ϕ 4 α∼τϕ iff x 4 α ∧ ϕ 4 τϕ
int 4 int

lblx 4 lblα iff x 4 α
any 4 any

values:
x 4 α iff x 4 α
xxx 4 ααα iff ∀x ∈ xxx. ∃α ∈ ααα. x 4 α
n 4 int iff n ∈ Z

lblx 4 lblα iff x 4 α
x1 &x2 4 α1 &α2 iff x1 4 α1 ∧ x2 4 α2

() 4 ()

φ -> e 4 ∀ααα.τφ→α \C iff BV(φ -> e) 4 ααα ∧
φ 4 τφ ∧ e 4 〈α,C〉

redexes:
x = v 4 τ <: α iff x 4 α ∧ v 4 τ

x3 =x1 x2 4 α1 α2 <: α3 iff ∀i ∈ {1..3}.xi 4 αi
x3 =x1 opx2 4 α1 opα2 <: α3 iff ∀i ∈ {1..3}.xi 4 αi
expressions:

[] 4 C
e ‖[x = r] 4 C ∪ {c} iff e 4 C ∧ x = r 4 c
e ‖[x = r] 4 〈α,C〉 iff e ‖[x = r] 4 C ∧ x 4 α

environments:
[] 4 ∅

E ‖[x = v] 4 Γ ∪ {x : τ} iff E 4 Γ ∧ v 4 τ

Figure A.1. Simulation Relation Definition

Proof. Because C 6= ∅, it is sufficient to show that JSK 6= ∅
for any S in C. When S is the empty list, the result is {[]} and
so non-empty. Otherwise, it suffices to show that JPK 6= ∅
for any P, which is immediate by inspection.

Lemma A.9. Suppose C1 ≤ C2 and C1 ≤ C3 and C1 6= ∅.
Then C2 G C3.

Proof. By the definition of subsumption, we have JC1K ⊆
JC2K and JC1K ⊆ JC3K. Thus, JC2K ∩ JC3K ⊇ JC1K. By
Lemma A.8, we have that JC1K 6= ∅ and so C2 G C3 by
Definition 5.9.

Lemma A.10. Contour subsumption is transitive.

Proof. Trivial by definition of contour subsumption: ⊆ is
transitive.

Lemma A.11. LC1 ∪ C2M = LC1M ∪ LC2M

Proof. Trivial by inspection of Definition 5.10.

Lemma A.12. If τ appears in C, then LτM ⊆ LCM. Similar
statements are true about other constructs appearing in C.

Proof. Trivial by inspection of Definition 5.10.

Lemma A.13. JS1K ⊆ JS2K iff JS1 ‖[P]K ⊆ JS2 ‖[P]K; like-
wise, JS1K ⊆ JS2K iff J[P] ‖ S1K ⊆ J[P] ‖ S2K.

Proof. For all of the below, let S1 =
n−⇀
P and let S2 =

n−⇀
P′ .

First, assume JS1K ⊆ JS2K. We intend to show that
JS1 ‖[P]K ⊆ JS2 ‖[P]K. By Definition 5.10, every element in
JS1 ‖[P]K is of the form⇀

ι1 ‖
⇀
ι3 where⇀

ι1 ∈ JS1K and⇀
ι3 ∈ JPK;

we also know that every element of JS2 ‖[P]K is of the form
⇀
ι2 ‖

⇀
ι3 where ⇀

ι2 ∈ JS2K. Because JS1K ⊆ JS2K, we have that
any⇀

ι1 ‖
⇀
ι3 =

⇀
ι2 ‖

⇀
ι3 for some⇀

ι2; thus, JS1 ‖[P]K ⊆ JS2 ‖[P]K.
We next assume JS1 ‖[P]K ⊆ JS2 ‖[P]K with the intent of

proving that JS1K ⊆ JS2K. By Definition 5.10, every element
in JS1 ‖[P]K is of the form ⇀

ι1 ‖
⇀
ι3 where ⇀

ι1 ∈ JS1K and ⇀
ι3 ∈

JPK; we also know that every element of JS2 ‖[P]K is of the
form⇀

ι2 ‖
⇀
ι3 where⇀

ι2 ∈ JS2K. For the first set, we can create a
relation defining each element as equivalent if their values of
⇀
ι1 are equivalent; we can do likewise for the second set and
⇀
ι2. Each equivalence class is of the same size and contains a
number of elements equal to the possible forms of ⇀

ι3, which
is the cardinality of JPK. Since JS1 ‖[P]K ⊆ JS2 ‖[P]K, we
know that there are at least as many elements in the second
set as there are in the first; since all equivalence classes
are the same size, we know that there are at least as many
equivalence classes in the second set as there are in the first.
Because equivalence classes from these sets can be indexed
by ⇀

ι1 and ⇀
ι2 respectively, we know that the set of all ⇀

ι1 is
a subset of the set of all ⇀

ι2. By definition, ⇀
ι1 is an arbitrary

member of JS1K and ⇀
ι2 is an arbitrary member of JS2K; thus,

JS1K ⊆ JS2K.
To prove that JS1K ⊆ JS2K iff J[P] ‖ S1K ⊆ J[P] ‖ S2K, we

use the same approach as above.

Lemma A.14. JC1K ⊆ JC2K iff J{S ‖[P] | S ∈ C1}K ⊆
J{S ‖[P] | S ∈ C2}K; likewise, JC1K ⊆ JC2K iff J{[P] ‖ S |
S ∈ C1}K ⊆ J{[P] ‖ S | S ∈ C2}K.

Proof. In a fashion similar to Lemma A.14. In particular, the
semantics of contours simply expands the number of forms
of ⇀
ι1 and ⇀

ι2; the rest of the proof structure is identical.

A.4 Constraint Set Well-Formedness
The constraint closure process relies on the assumption that
every contour in the constraint set is disjoint; that is, no
two contours found in the constraint set overlap. This is
necessary to ensure that closure is efficient; otherwise, two
premises which share a term might apply at some intersec-
tion of their terms’ contours. Furthermore, it is necessary
to ensure that every constraint is meaningful; therefore, no
constraint may contain the empty contour (∅). We describe
a contour set as well-formed when all of its contours are
disjoint and none are the empty contour. A constraint set
is well-formed when the contours which appear within it
constitute a well-formed set. We formalize this as Defini-
tion A.15.

Types for Flexible Objects 23 2013/5/28

Definition A.15 (Well-Formed Contour Set). A contour set CCC is
well-formed when ∀C1 ∈ CCC.C1 6= ∅ ∧ ∀C2 ∈ CCC.C1 6= C2 =⇒
C1 G� C2. A constraint set C is well-formed when LCM is well-
formed.

We now show some important properties of well-formed
constraint sets.
Lemma A.16. Let C′ = C1∪C2 where C1 and C2 are well-
formed. If LC1M ⊆ LC2M, then C′ is also well-formed.

Proof. By Lemma A.11 and because LC1M ⊆ LC2M, we thus
have LC′M = LC1 ∪ C2M = LC1M ∪ LC2M = LC2M. If C2 is
well-formed, we have that LC2M is well-formed; thus, LC′M is
well-formed and so C′ is well-formed.

Lemma A.17. Let C be a well-formed constraint set and
let C1 be a contour such that C1 ≤ C2, C1 ≤ C3, and
{C2, C3} ⊆ LCM. Then C2 = C3.

Proof. Because C is well-formed, we know that C1 6= ∅. By
Lemma A.9, we have that C2 G C3. Again because C is well-
formed, we have that ∀C, C′ ∈ C.C 6= C′ =⇒ C G� C′. Since
C2 G C3 we must therefore have C2 = C3.

Lemma A.18. Let CCC be well-formed and let CCC′ ⊆ CCC; then
CCC′ is also well-formed. If C and C′ are well-formed and
LC′M ⊆ LCM, then C∪C′ is well-formed. If C is well-formed
and C′ ⊆ C, then C′ is also well-formed.

Proof. Because CCC is well-formed, we have that ∅ /∈ CCC and
that ∀C1, C2 ∈ CCC.C1 ∩ C2 = ∅. Because CCC′ ⊆ CCC, we have that
∅ /∈ CCC′. Likewise, we have that ∀C1, C2 ∈ CCC′.C1 ∩ C2 = ∅.
Thus, CCC′ is well-formed.

If LC′M ⊆ LCM, the fact that C∪C′ is well-formed reduces
to the above.

If C′ ⊆ C, then LC′M ⊆ LCM; this can be established from
Definition 5.9 because L·M is defined pointwise on constraint
sets due to being a natural homomorphism. As a result, that
C′ is well-formed reduces to the above.

A.5 Simulation Properties
We next show useful properties of the simulation relation in
Definition A.7.
Lemma A.19. Suppose

n−−−−−⇀x� = r� 4 C. Then
[x1 = r1, . . . , xi−1 = ri−1, xi+1 = ri+1, . . . , xn = rn] 4 C.

Proof. Immediate from Definition A.7.

Lemma A.20. Suppose
n′−−−−⇀
x′� = r

′
� 4 C′ and

n′′−−−−⇀
x′′� = r

′′
� 4 C′′. Let

n+m−−⇀x� = r� be defined such that the latter list has been interjected
into the former at some position k; that is, for some k in
{0..n}, we have xj = x′j for all j ≤ k, xj = x′j−m for all
j > k + m, and xj = x′′j−k otherwise (and likewise for r).
Let C = C′ ∪ C′′. Then

n−−−−−⇀x� = r� 4 C.
As a corollary, if e 4 C for some e and C, then e 4 C∪C′

for any C′.

Proof. By repeated application of Definition A.7, we have
that [] ‖[x′1 = r′1] ‖ . . . ‖[x′n = r′n] 4 C′′′∪{c′1}∪. . .∪{c′n} for
some C′′′ such that C′′′ ∪{c′1}∪ . . .∪{c′n} = C′. Likewise,
[] ‖[x′′1 = r′′1] ‖ . . . ‖[x′′n = r′′n] 4 C′′′′ ∪ {c′′1} ∪ . . . ∪ {c′′n} for
some C′′′′ such that C′′′′ ∪ {c′′1} ∪ . . . ∪ {c′′n} = C′′. We
choose C′′′ = C′ and C′′′′ = C′′ for convenience.

We aim to show that
n+m−−⇀x� = r� 4 C. Because C = C′ ∪C′′,

we have that C = C′∪C′′∪
n⨽−−⨼
c′� ∪

m⨽−−⨼
c′′� . We can thus show that

[] ‖[x1 = r1] ‖ . . . ‖[xn+m = rn+m] 4 C∪{c1}∪. . .∪{cn+m}
by choosing each c as we chose x: we let cj = c′j for all
j ≤ k, cj = c′j−m for all j > k + m, and cj = c′′j−k
otherwise. By Definition A.7, we are finished.

The corollary can be shown by the degenerate case in
which m = 0.

Lemma A.21. Suppose xxx 4 ααα and xxx′ 4 ααα′. Then xxx ∪ xxx′ 4
ααα ∪ ααα′.

Proof. From xxx 4 ααα we have that for each x in xxx there exists
some α in ααα such that x 4 α; thus, there exists some α
in ααα ∪ ααα′ such that x 4 α. The same argument can be
made regarding xxx′. As a result, every x in xxx ∪ xxx′ has some
α in ααα ∪ ααα′ such that x 4 α. By Definition A.7, we are
finished.

Lemma A.22. If e 4 C, then x2 =x1 ∈ e =⇒
∃α1, α2. α1 <: α2 ∈ C ∧ x2 =x1 4 α1 <: α2. Corre-
sponding statements hold true for the remaining expression
and constraint forms.

Proof. Immediate from Definition A.7.

Lemma A.23. If e 4 C and C is well-formed, then
x2 =x1 ∈ e ∧ x3 =x2 ∈ e =⇒ ∃α1, α2, α3 ∈ C. {α1 <:
α2, α2 <: α3} ∈ C ∧ ∀i ∈ {1..3}.xi 4 αi. Similar state-
ments hold for other sequences of constraints.

Proof. From Lemma A.22, we have that there exist some α1,
α2, α′2, and α3 such that {α1 <: α2, α

′
2 <: α3} ∈ C,

x1 4 α1, x2 4 α2, x2 4 α′2, and x3 4 α3. It remains
to show that α2 = α′2.

Let x2 ↔ 〈ι1, n1, Ċ1〉, let α2 = 〈ι2, n2, Ċ2〉, and let
α′2 = 〈ι′2, n′2, Ċ

′
2〉. From x2 4 α2 and x2 4 α′2, we have

that ι1 = ι2 = ι′2 and that n1 = n2 = n′2. We have two
cases: one in which Ċ1 = ˚̌ and one in which it does not.
If Ċ1 = ˚̌, then x2 4 α2 gives us by Definition A.7 that
Ċ2 = ˚̌; similarly, x2 4 α′2 gives us that Ċ′2 = ˚̌. Thus,
α2 = α′2.

Otherwise, Ċ1 = C1. By x2 4 α2 and x2 4 α2, we have
that Ċ2 = C2 and Ċ′2 = C′2 such that C1 ≤ C2 and C1 ≤ C′2
Because C is well-formed, we know by Lemma A.17 that
C2 = C′2; thus, α2 = α′2.

Types for Flexible Objects 24 2013/5/28

A.6 Initial Derivation Simulation
We now show that the initial type derivation of an expression
simulates that expression. To do so, we begin by defining the
notion of a canonical context.
Definition A.24 (Canonical Context). A context Γ is canonical iff
for all mappings 〈ι, n, Ċ〉 : 〈ι′, n′, Ċ′〉 in Γ, we have ι = ι′, n = n′,
and Ċ = C ≤ C′ = Ċ′.

We now show some lemmas over canonical contexts.
Lemma A.25. If Γ and Γ′ are canonical, then Γ ∪ Γ′ is
canonical.

Proof. Trivial by definition of set union.

Lemma A.26. Given {x : α} ∈ Γ where Γ is canonical,
x 4 α.

Proof. Let x↔ 〈ι, n, Ċ〉. By Definition A.24, Ċ = C and α =
〈ι, n, C′〉 such that C ≤ C′. By Definition A.7, x 4 α.

Our next objective is to show that the type and constraint
set given by initial type derivation simulates the input ex-
pression. We begin by showing the simulation of initial pat-
tern derivation.
Lemma A.27. For any φ and canonical Γ such that JφKΓP =
〈Γ′, τφ〉, we have that Γ′ is canonical, every variable in Γ′

has the non-contour ˚̌, and that φ 4 τφ.

Proof. By case analysis.
If φ = x : int, then JφKΓP = 〈{x :

?
α1},

?
α1∼ int〉.

By Definition 5.2, we have that ?
α1 = 〈ι, 1, ˚̌〉 where ι

identifies this pattern. By Definition A.2, we have that x ↔
〈ι, 1, ˚̌〉. Thus {x :

?
α1} is canonical by Definition A.24.

By Definition A.7, we have that x 4 ?
α1; thus, we have

x : int 4 ?
α1∼ int and we are finished. Because the only

variable appearing in the context is of the form ?
αi and all

such variables have the non-contour ˚̌, the context has only
variables with the non-contour.

Similar arguments hold for the x : lblx′ and x : any
cases.

In order to support the lemmas over initial derivation,
we will need to show some properties that align the bound
variable set of a scape with the bound variable set of its type.
We start by defining a function to retrieve the upper bound
of a constraint; it is also overloaded to find the upper bounds
of a constraint set.
Definition A.28 (Constraint Upper Bounds).

UB(c) =


α when c = τ <: α

α when c = α′ <: α

α when c = α′ α′′ <: α

α when c = α′ opα′′ <: α

UB(C) = {UB(c) | c ∈ C}
We then show the simple property that the upper bounds

of scape type’s constraint set simulate the bound variables of
its scape.

Lemma A.29. For any e such that JeKΓE = 〈α′,C〉, we have
BV(e) 4 UB(C).

Proof. Let e =
n−−−⇀x = r. For all 1 ≤ i ≤ n, let αi = 〈ιi, 1, ˚̌〉

where ιi is the identity of xi = ri. Let Γ′ = {xi : αi |
1 ≤ i ≤ n}. Then by Figure 4.2, we have that α′ = αn
and that C =

n⨽−−⨼c where for all 1 ≤ i ≤ n we have
ci = Jxi = riK

Γ∪Γ′

R .
By Definition A.3, we have that BV(e) = {xi | 1 ≤ i ≤

n}. By Definition A.28, we have that UB(C) = {UB(ci) |
1 ≤ i ≤ n}. By Definition A.7, we have that {xi | 1 ≤ i ≤
n} 4 {UB(ci) | 1 ≤ i ≤ n} if ∀x ∈ {xi | 1 ≤ i ≤ n}. ∃α ∈
{UB(ci) | 1 ≤ i ≤ n}. x 4 α. It is therefore sufficient
to show that ∀i ∈ {1..n}.xi 4 UB(ci). More generally,
it is sufficient to show that for all Jx′ = r′KΓR = c′ we have
x′ 4 UB(c′). This is trivial by case analysis.

We next show some supporting lemmas.
Lemma A.30. If φ 4 τφ then BV(φ) 4 FTV(τφ).

Proof. By case analysis. If φ = x : int then by Defini-
tion A.7 we have τφ = α∼ int such that x 4 α. We have
that BV(φ) = {x} and that FTV(τφ) = {α} and so this case
is finished. A similar argument is made when φ = x : any.

Otherwise, φ = x : lblx′ and by Definition A.7 we have
τφ = α∼ lblα′ such that x 4 α and x′ 4 α′. We have that
BV(φ) = {x, x′} and that FTV(τφ) = {α, α′} and so we are
finished.

We now present the proof that initial derivation simulates
as expected.
Lemma A.31. Let e be an expression

n−−−−−⇀x� = r� with unique
bindings closed over a canonical context Γ1 such that no
variable is bound in both e and Γ1 and all variables in Γ1

have the non-contour ˚̌. If JeKΓ1

E = 〈α,C〉, then e 4 〈α,C〉.
Further, C is well-formed and every type variable in FTV(C)
is either in Γ1 or simulates some variable in

n−⇀x .

Proof. By structural induction on the size of e.
For all 1 ≤ i ≤ n, let αi = 〈ιi, 1, ˚̌〉 where ιi is the

identity of xi = ri. Let Γ2 = {xi : αi | 1 ≤ i ≤ n}. Observe
that Γ2 is canonical by Definition A.24. Let Γ3 = Γ1 ∪ Γ2.
We observe that this context contains only variables with the
non-contour. Also, by Lemma A.25 this context is canonical.
For all 1 ≤ i ≤ n, let ci = Jxi = riK

Γ3

R ; then C =
n⨽−−⨼c and

α = αn.
To show the property that e 4 〈α,C〉, it is thus sufficient

to show that e 4 C. By induction on the length of e using
Definition A.7, it is sufficient to show that xi = ri 4 ci for all
1 ≤ i ≤ n to prove this property. To show the property that
every type variable in FTV(C) is either in Γ1 or simulates
some variable in

n−⇀x , it is sufficient to show that every type
variable in FTV(ci) is in Γ3 for all 1 ≤ i ≤ n. We defer
showing the property that C is well-formed until the end of

Types for Flexible Objects 25 2013/5/28

the proof. We now show each of these properties for every
ci by case analysis on the redex ri for each 1 ≤ i ≤ n.

If ri is x′, then Jxi = riK
Γ3

R = Γ3(x′) <: Γ3(x). By
Lemma A.26, x 4 Γ3(x) and x′ 4 Γ3(x′). It is trivial that
the free type variables for this constraint are in Γ3; they are
retrieved directly from that context. Thus by Definition A.7,
this case is finished. Similar arguments hold when ri is lblx′,
x′ &x′′, x′ x′′, or x′ opx′′.

If ri is (), then Jxi = riK
Γ3

R = () <: Γ3(x). By
Lemma A.26, we have x 4 Γ3(x); by Definition A.7, we
have () 4 (). Thus by Definition A.7, this case is finished.
A similar argument holds when ri is some n ∈ Z.

If ri is of the form φ -> e′, then let
m−−−−⇀
x′� = r

′
� = e′. We have

that Jxi = riK
Γ3

R = ∀ααα.τφ→α′ \C′ such that (1) JφKΓ3

P =

〈Γ4, τφ〉 for some Γ4, (2) Je′KΓ3∪Γ4

E = 〈α′,C′〉, and (3) ααα =
(FTV(τφ) ∪ FTV(C′))− ααα′ where ααα′ = {α′′ | x : α′′ ∈ Γ3}.
By Lemma A.27, we have that Γ4 is canonical and only
contains variables with the non-contour.

Let Γ5 = Γ3 ∪ Γ4; observe that this context contains
only variables with the non-contour and, by Lemma A.25,
is canonical. Because (1) Γ1 contains no variables bound in
e, (2) Γ2 contains only variables bound directly by e, (3) Γ4

contains only variables bound by τφ, and (4) variable bind-
ings are unique in e, we know that Γ5 does not contain any
bindings that appear in e′. Thus by the induction hypothe-
sis we have that e′ 4 〈α′,C′〉 and C′ is well-formed and
every type variable in FTV(C′) is either in Γ5 or simulates
some variable x′j where 1 ≤ j ≤ m. Suppose we were to
show that BV(φ -> e′) 4 ααα; then Definition A.7 gives us that
ri 4 ∀ααα.τφ→α′ \C′, by Lemma A.26 we have x 4 Γ3(x),
and so by Definition A.7 we would have xi = ri 4 ci. So it
remains to show that BV(φ -> e′) 4 ααα and that every free
type variable in ci is in Γ3.

We have from above that free type variable in C′ is either
in Γ5 or simulates some variable x′j . This is to say that the
variable is either in Γ3, in Γ4, or simulates some variable
x′j . The constraint ci contains a type variable known to be in
Γ3 and the type of the scape. The type of the scape captures
every free variable in τφ (those appearing in Γ4) and every
free variable in C′; thus, the scape type has no free variables
and so the only free variable in ci is in Γ3. It remains to show
that BV(φ -> e′) 4 ααα.

By Definition A.3 and the above, BV(φ -> e′) 4 ααα is
equivalent to BV(φ) ∪ BV(e′) 4 (FTV(τφ) ∪ FTV(C′))− ααα′.
By Lemma A.21, it is sufficient to show that BV(φ) 4
FTV(τφ) − ααα′ and that BV(e′) 4 FTV(C′) − ααα′. Because
Γ3 does not contain any variables in φ and because Γ3 is
canonical, it does not contain any variables in τφ; therefore,
the prior condition reduces to BV(φ) 4 FTV(τφ). Because
φ 4 τφ, Lemma A.30 gives us this property.

It thus remains to show that BV(e′) 4 FTV(C′) − ααα′. By
Lemma A.29, it is sufficient to show that FTV(C′) − ααα′ ⊆
UB(C′). From above, we know that every type variable in

FTV(C′) is either in ααα′ or simulates a variable in
m−⇀
x′ , which

is the definition of BV(e′); thus, this case is finished.
We now show the deferred condition that C is well-

formed. Every variable appearing in that constraint set is ei-
ther from the above Γ2 or Γ4 (which have only variables
with the non-contour), from Γ1 (in which every variable has
the non-contour), or is from some induction on this lemma.
Since every variable in C has the non-contour, LCM = ∅ and
so C is well-formed.

A.7 Simulation Preservation
We now show that various relations used during constraint
closure preserve constraint set simulation.
Lemma A.32. If E 4 C, then E(x) = v ∧ x 4 α =⇒
τ C<:∗ α ∧ v 4 τ .

Proof. For E(x) = v to be defined, there must exist some
x = v′ ∈ E. We have two cases: either v′ is of the form x′

or it is not. If it is not, then v = v′ by the definition of E(x).
By E 4 C and Lemma A.22, we know that τ <: α ∈ C
such that x 4 α and v 4 τ . By Definition 4.1, we have that
τ C<:∗ α.

In the case that v′ is of the form x′, then there exists some
x = x′ ∈ E. By E 4 C and Lemma A.22, we have that
there exists some α′ <: α ∈ C such that x 4 α and x′ 4 α′.
By definition of E(x), we know that E(x) = E(x′). By the
induction hypothesis, we have that τ C<:∗ α′ ∧ v 4 τ ; such
induction is sound because we only consider closed e with
unique variable names. Because τ C<:∗ α′ and α′ <: α ∈ C,
we have by Definition 4.1 that τ C<:∗ α.

Lemma A.33. If E 4 C, E↓∗π(x) =
n−⇀v , and x 4 α, then

C ` α π−_
n−⇀τ ∧ ∀i ∈ {1..n}. vi 4 τi.

Proof. First, we observe that the projection matching opera-
tion in Definition 4.3 properly simulates projector matching
in the operational semantics; that is, v ∈ π ∧ v 4 τ iff
τ v π; this is shown by simple case analysis on π. We then
show this lemma by induction on the size of theE preceding
the definition of x (which is sound because e is closed and
has unique variable names).

If E(x) is a non-onion value v′ and v′ ∈ π, then by
Lemma A.32 we have τ ′ C<:∗ α and v′ 4 τ ′ for some non-
onion type τ ′. We also have from the above that π v α′.
By Definition 3.1,

n−⇀v = [v′]; by Definition 4.4,
n−⇀τ = [τ ′].

Because v1 4 τ1 and n = 1, this case is finished.
If E(x) is a non-onion value v′ and v′ /∈ π, then again by

Lemma A.32 we have τ ′ C<:∗ α and v′ 4 τ ′ for some non-
onion type τ ′. We also have from the above that π 6v α′. By
Definition 3.1,

n−⇀v = []; by Definition 4.4,
n−⇀τ = []. Therefore

this case is finished.
If E(x) is an onion value x1 &x2, then

n−⇀v =
n1−⇀
v′ ‖

n2−⇀
v′′

where n1 + n2 = n, E↓∗π(x1) =
n1−⇀
v′ , and E↓∗x2

(=)
n2−⇀
v′′ . By

Lemma A.32 we have α1 &α2
C<:∗α and x1 &x2 4 α1 &α2.

Types for Flexible Objects 26 2013/5/28

By Definition A.7, we have that x1 4 α1 and x2 4 α2. We
therefore induct on this lemma for each side of the onion; the
left induction gives C ` α1

π−_
n1−⇀
τ ′ and ∀i ∈ {1..n1}. v′i 4

τ ′i while the right induction gives C ` α2
π−_

n2−⇀
τ ′′ and ∀i ∈

{1..n1}. v′′i 4 τ ′′i . By Definition 3.1,
n−⇀v =

n1−⇀
v′ ‖

n2−⇀
v′′ ; by

Definition 4.4,
n−⇀τ =

n1−⇀
τ ′ ‖

n2−⇀
τ ′′ . We have from above that

∀i ∈ {1..n}.v 4 τ ; we are therefore finished.

Lemma A.34. If E 4 C, E↓π(x) = v, and x 4 α, then
C ` α π−_ τ ∧ v 4 τ .

Proof. Immediate from Lemma A.33.

Lemma A.35. If E 4 C, x 4 α, ϕ 4 τϕ, and x �E ϕ\E0,
then α �C τϕ\C′ for some C′ such that E0 4 C′.

Proof. By case analysis.
If ϕ = int, then because ϕ 4 τϕ and by Definition A.7

we have that τϕ = int. By Definition 3.3, the only case in
which ϕ = int results in compatibility is when E↓int(x) =
n and n ∈ Z; in this case, E0 = []. Because x 4 α,
Lemma A.34 gives us that C ` α int−−_ τ such that n 4 τ .
Because of this and n ∈ Z, we have by Definition A.7 that
τ = int. By Definition 4.6, we have that α �C int \∅.
Because Definition A.7 gives us that [] 4 ∅, this case is
finished.

If ϕ = lblx′, then because ϕ 4 τϕ and by Definition A.7
we have that τϕ = lblα′ such that x′ 4 α′. By Defini-
tion 3.3, the only case in which ϕ = lblx′ results in compati-
bility is whenE↓lbl(x) = lblx′′; in this case,E0 = [x′ =x′′].
Because x 4 α, Lemma A.34 gives us that C ` α lbl−_ τ
such that lblx′′ 4 τ . By Definition A.7, this gives us that
τ = lblα′′ such that x′′ 4 α′′. By Definition 4.6, we have
that α �C lbl \{α′′ <: α′}. Because x′′ 4 α′′ and x′ 4 α′,
we have by Definition A.7 that [x′ =x′′] 4 {α′′ <: α′}; thus,
this case is finished.

If ϕ = any, then because ϕ 4 τϕ and by Definition A.7
we have that τϕ = any. By Definition 3.3, we have that
E0 = []; by Definition 4.6, we have that C′ = ∅. Because
Definition A.7 gives us that [] 4 ∅, we are finished.

Lemma A.36. If E 4 C, x 4 α, φ 4 τφ, and x �E φ\E0,
then α �C τφ\C′′ for some C′′ such that E0 4 C′′.

Proof. By the grammar of patterns in Figure 3.1, we have
that φ = x′ :ϕ for some ϕ. Because φ 4 τφ, we have that
τφ = α′∼τϕ for some τϕ such that ϕ 4 τϕ and x′ 4 α′. By
Definition 3.3, the only case in which compatibility holds
over φ is when x′ �E ϕ\E′0 for some E′0; in this case,
E0 = E′0 ‖[x′ =x]. By Lemma A.35, we have that α �C

τϕ\C′ such that E′0 4 C′. By Definition 4.6, this gives us
that α �C α

′∼τϕ\C′ ∪ {α <: α′}.
It remains to show that E′0 ‖[x′ =x] 4 C′ ∪ {α <: α′}.

By Lemma A.20 it is sufficient to show that E′0 4 C′ (which
we already know from above) and that [x′ =x] 4 {α <: α′}.

By Definition A.7, this is equivalent to showing that x 4 α
(which is a premise of this lemma) and that x′ 4 α′ (which
we know from the above).

Lemma A.37. If E 4 C, x 4 α,
n−−−−−−⇀
φ� -> e� 4 ⇀

τ , and
x �E

n−−−−−−⇀
φ� -> e�\E0; e′, then there exist some α′ and C′ such

that α �C

⇀
τ\α′; C′ and E0 ‖ e′ 4 〈α′,C′〉.

Proof. By induction on n.
Let ⇀

τ =
n−−−−−−−−−−−−−−−−−−⇀
∀ααα�.τφ�→α′′� \C′′� . If x �E φn -> en\E0, then

by Lemma A.36 we have that α �C τφn\C′′′ such that
E0 4 C′′′. We have from

n−−−−−−⇀
φ� -> e� 4 ⇀

τ and Definition A.7
that en 4 〈α′′n,C′′n〉. By Definition 5.7 we have that α �C
⇀
τ\α′′n; C′′n ∪ C′′′; thus, α′ = α′′n and C′ = C′′n ∪ C′′′.
Because en 4 〈α′′n,C′′n〉, we know that en 4 C′′n; by
Lemma A.20, we have that E0 ‖ en 4 C′′n ∪ C′′′. Because
E0 was prepended (rather than appended) to en, the last
variable in the list is still the last variable in en; thus, we
have E0 ‖ en 4 〈α′′n,C′′n ∪ C′′′〉 and this case is finished.

Otherwise, we simply induct on this lemma. We know
that induction is possible; if n = 0 then the statement that
x �E

n−−−−−−⇀
φ� -> e�\E0; e′ is a contradiction.

Variable instantiation preserves the simulation relation.
To demonstrate this property, we first prove a supplementary
lemma.
Lemma A.38. Suppose that e 4 C, that xxx 4 ααα, and that
C1 4 C2. Then for any x′ appearing in e, there is a cor-
responding α′ appearing in C such that EINST(x′, xxx, C1) 4
INST(α′, ααα, C2).

Proof. For any x′ in e, Lemma A.22 gives us that there is a
corresponding α′ in C such that x′ 4 α′. By Definition A.2,
we have that x′ ↔ 〈ι, n, Ċ1〉 and α′ = 〈ι, n, Ċ2〉 such that
Ċ1 4 Ċ2.

Suppose that x′ ∈ xxx and Ċ1 = ˚̌. In this case,
EINST(x′, xxx, C1) = x′. Because x′ 4 α′, we know that Ċ2
is ˚̌. Because of this and xxx 4 ααα, we also know that α′ ∈ ααα.
Thus, INST(α′, ααα, C2) = α′. Because x′ 4 α′, this case is
finished.

Otherwise, suppose that Ċ1 6= ˚̌. In that case,
EINST(x′, xxx, C1) = x′. Because x′ 4 α′, we also know that
Ċ2 6= ˚̌; thus, INST(α′, ααα, C2) = α′. Thus this case is finished.

Finally, suppose that Ċ1 = ˚̌ but x′ /∈ xxx. In this case,
EINST(x′, xxx, C1) = 〈ι, n, C1〉. Because x′ 4 α′, we know that
Ċ2 is ˚̌. By Definition A.7, the fact that xxx 4 ααα means that
every α′′ ∈ ααα has some x′′ ∈ xxx such that x′′ 4 α′′. For
variables without a contour (such as α′), this implies that
x′′ ↔ 〈ι′, n′, ˚̌〉 such that α′′ = 〈ι′, n′, ˚̌〉. Thus, because
Ċ1 = Ċ2 = ˚̌, x′ ∈ xxx implies α′ ∈ ααα. Using this, we
conclude that INST(α′, ααα, C2) = 〈ι, n, C2〉. Because C1 4 C2
and by Definition A.7, we are finished.

We now show that simulation is preserved through instan-
tiation.

Types for Flexible Objects 27 2013/5/28

Lemma A.39. Suppose that e 4 C, that xxx 4 ααα, and that
C1 4 C2. Then EINST(e, xxx, C1) 4 INST(C, ααα, C2).

Proof. By induction on Definition A.7.
For variables, simulation is demonstrated by

Lemma A.38. For all lower bound types other than
functions and all upper bound types, patterns, constraints
and contexts, simulation is parametric in variables and so is
also demonstrated by Lemma A.38.

For function lower bound types, we must show that for
any v = φ -> e′ appearing in e, there is a corresponding τ =
∀ααα′.τφ→α \C′ appearing in C such that EINST(v, xxx, C1) 4
INST(τ, ααα, C2). For any such v in e, Lemma A.22 gives us
that such an τ exists and that v 4 τ . By Definition A.7, this
means that φ 4 τφ, e′ 4 C′, and that BV(v) 4 ααα. Since each
of these terms are smaller than v or τ accordingly, we induct
on the definition of this lemma and so function lower bound
types are also simulated.

By Definition A.7, we know that for each x = v ∈ e,
there is a corresponding c ∈ C such that x = v 4 c. Sup-
pose that EINST(x = v, xxx, C1) = x′ = v′, INST(c, ααα, C2) = c′,
EINST(e, xxx, C1) = e′, and INST(C, ααα, C2) = C′. Because we
have that simulation of each constraint is preserved by in-
stantiation, we have that x′ = v′ 4 c′. Since this is true for
each x′ = v′ and c′, we have that each x′ = v′ in e′ is simulated
by some c′ in C′; thus EINST(E, xxx, C1) 4 INST(C, ααα, C2).

Lemma A.40. If e 4 C and C1 4 C2, then EFRESH(e, C1) 4
INST(C, C2).

Proof. Immediate from Lemma A.39.

Contour replacement also preserves simulation. We use a
strategy similar to that above.
Lemma A.41. If x 4 α then x 4 REPL(α, C).

Proof. Let REPL(α, C) = α′. Then, let x ↔ 〈ι1, n1, Ċ1〉 and
α = 〈ι2, n2, Ċ2〉 and α′ = 〈ι3, n3, Ċ3〉. Because x 4 α,
we know that ι1 = ι2 and n1 = n2; by Definition 5.10,
contour replacement is naturally homomorphic down to (but
not including) contours and so we know that ι2 = ι3 and
n2 = n3. It remains to show that Ċ1 4 Ċ3.
x 4 α also gives us that Ċ1 = ˚̌ iff Ċ2 = ˚̌. If Ċ1 = ˚̌,

then Ċ2 = ˚̌ and, by Definition 5.10, Ċ3 = ˚̌; this case is
finished.

If Ċ1 6= ˚̌ then Ċ1 = C1 and Ċ2 = C2. By Definition A.7,
it suffices to show that C1 ≤ C3 where C3 = Ċ3. If C2 � C,
then Ċ3 = C2 and so Ċ1 ≤ Ċ3 and this case is finished.

Otherwise, C2 ≤ C. Then Ċ3 = C and it suffices to show
that C1 ≤ C. By Lemma A.10, it suffices to show that C1 ≤ C2
and that C2 ≤ C; the latter we have from this case. We
prove C1 ≤ C2 by Definition A.7 because x 4 α and so
C1 4 C2.

Lemma A.42. If E 4 C then E 4 REPL(C, C).

Proof. Because contour replacement is a natural homomor-
phism in all cases not proven by Lemma A.41, this argument
follows in parallel to that of Lemma A.39.

A.8 Contour Properties of Functions and Relations
We now prove contour-related properties about functions
and relations which are necessary to show simulation of
constraint closure.
Lemma A.43. C ≤ COLLAPSE(C)

Proof. This is to show that JCK ⊆ J{COLLAPSE(S) | S ∈ C}K.
By Definition 5.10, this is to show that

⋃
{JSK | S ∈ C} ⊆⋃

{JSK | S ∈ COLLAPSE(C)}, which is equivalent to
⋃
{JSK |

S ∈ C} ⊆
⋃
{JSK | S ∈ {COLLAPSE(S) | S ∈ C}}, which

reduces to
⋃
{JSK | S ∈ C} ⊆

⋃
{JCOLLAPSE(S)K | S ∈ C}.

It is therefore sufficient to prove that JSK ⊆ JCOLLAPSE(()S)K
for all S.

We proceed by strong induction on the number of
cycles in S; by “cycle”, we mean a pair of distinct parts
P1 and P2 in S such that SITES(P1) ∩ SITES(P2) 6= ∅.
The base case is trivial, since in the absence of a cycle
we have COLLAPSE(()S) = S. In the inductive case, let
S =

n−⇀
P . Let cycles in S be represented by pairs of in-

dices (i, j) where i < j and SITES(Pi) ∩ SITES(Pj) 6= ∅;
let

m⨽−−−−−⨼
(i�, j�) be the set of all cycles in S. Finally, let S′ =

m−⇀
P′ =

[P1, . . . ,Pik−1, (SITES(Pik) ∪ . . . ∪ SITES(Pjk)) ,Pjk+1, . . . ,Pn]
for some 1 ≤ k ≤ m. We can construct the set of cycles
in S′ by forming a mapping M from each index in S to
indices in S′ such that all 1 ≤ i′′ < ik map to themselves,
all ik ≤ i′′ ≤ jk map to ik, and all jk < i′′ ≤ n map
to themselves minus jk − ik. For each (i, j) in the cycles
of S, either M [i] = M [j] or (M [i],M [j]) is a cycle in
S′; in particular, we know that M [ik] = M [jk], which
indicates that cycle k has been eliminated. From this,
we have that the set of cycles in S′ is strictly smaller
than the set of cycles in S; thus, it is sufficient by the
induction hypothesis to show that JSK ⊆ JS′K. By repeated
application of Lemma A.13, it remains to show that
J[Pik , . . . ,Pjk]K ⊆ J[SITES(Pik) ∪ . . . ∪ SITES(Pjk)]K.

It is sufficient to show that J
n−⇀
P K ⊆ J[

⋃ n−−−−−−−−⇀
SITES(P�)]K. This

is immediate; the latter contains every call sequence com-
posed of any elements in

n−⇀
P and the prior contains no call

sequences containing elements not in
n−⇀
P .

Lemma A.44. ∀C.C ≤ WIDEN(C,C)

Proof. For any C, we have that WIDEN(C,C) = C′ ⊇ C by
inspection. By definition, C ≤ C′ iff JCK ⊆ JC′K. This reduces
to (
⋃
{JSK | S ∈ C}) ⊆ (

⋃
{JSK | S ∈ C′}). Because C ⊆ C′,

every element in the comprehension on the left also appears
in the comprehension on the right; thus, C ≤ C′.

Lemma A.45. If WIDEN(C,C) = C′, then ∀C′′ ∈ LCM.C′′ G
C′ =⇒ C′′ ≤ C′.

Types for Flexible Objects 28 2013/5/28

Proof. By definition, C′ = C ∪ (
⋃
{C′′ | C′′ ∈ LCM ∧ C G C′′}).

We therefore have for any C′′ in LCM that C′′ ⊆ C′. By
Definition 5.10, we thus have that JC′′K ⊆ JC′K and so
C′′ ≤ C′.

Lemma A.46. If C ` α π−_⇀
τ for some well-formed C, then

L⇀τM ⊆ LαM ∪ LCM.

Proof. By inspection. Each rule produces a type which is
either (1) devoid of contours, (2) constructed from τ , (3)
constructed from constraints found in C, or (4) derived from
another projection.

Lemma A.47. If α �C τφ\C′, then LC′M ⊆ LCM∪ LτφM∪ LαM.

Proof. By inspection. The only cases in which constraints
are added to the constraint set C′ in the compatibility relation
are the cases for α′1∼τϕ and lblα′2. In the prior case, the
added constraint is comprised of α and α′1; in the latter,
it is comprised of α′2 and some α′3 which resulted from
projection. By Lemma A.46, we know that Lα′3M ⊆ LαM ∪
LCM.

Lemma A.48. If INST(C, ααα, C) = C′, then LC′M ⊆ LCM∪{C}.

Proof. Let α′ = INST(α, ααα, C). We first prove that Lα′M ⊆
LαM ∪ {C} by case analysis. If the contour of α is ˚̌ and
α /∈ ααα, then the contour of α′ is C and so Lα′M = {C}. If
the contour of α is ˚̌ but α ∈ ααα, then the contour of α′ is
˚̌ and so Lα′M = ∅. Finally, if the contour of α is C′, then
the contour of α′ is also C′ and so Lα′M = C′ = LαM. Thus,
Lα′M ⊆ LαM ∪ {C}.

Because contour instantiation is largely naturally homo-
morphic, the remainder of this argument proceeds in parallel
to Lemma A.39.

Lemma A.49. If REPL(C, C) = C′, then LC′M ⊆ {C} ∪ {C′ |
C′ ∈ LCM ∧ C′ � C}.

Proof. Let α′ = REPL(α, C). We first prove that Lα′M ⊆
{C} ∪ {C′ | C′ ∈ LαM ∧ C′ � C}. This is done by simple case
analysis. If the contour of α is ˚̌ then contour replacement
is a natural homomorphism and so α′ = α; thus, Lα′M =
∅ ⊆ {C} ∪ ∅. Otherwise, let the contour of α be C′ and let
the contour of α be C′′. If C′ ≤ C, then C′′ = C; thus we have
Lα′M = {C} ⊆ {C} ∪ ∅. If C′ � C, then C′′ = C′; thus we have
Lα′M = {C′} ⊆ {C} ∪ {C′}.

Because contour replacement is largely naturally homo-
morphic, the remainder of this argument proceeds in parallel
to Lemma A.39.

A.9 Closure Simulation
We now show our Preservation Lemma. Informally, this
lemma says that, for any expression e simulated by a con-
straint set C, every legal small step corresponds to some le-
gal type closure step such that simulation still holds over the
new expression and closure set. This is formalized as fol-
lows:

Lemma A.50 (Preservation). If e 4 C, C is well-formed,
and e −→1 e′, then there exists some C′ such that C

CL−→1 C′,
e′ 4 C′, and C′ is well-formed.

We now give a proof of Lemma A.50.

Proof. By case analysis on the operational semantics small
step rule. Our strategy for each case is first to show that at
least one type closure rule applies for each small step. We
then show that the resulting expression is simulated by the
resulting constraint set.

Integer Addition: If e = E ‖[x =x1 +x2] ‖ eREST, then
e′ = E ‖[x =n] ‖ eREST for some n. We also have that
E↓int(x1) = n1, that E↓int(x2) = n2, and that n =
n1 + n2. Because addition is well-defined, we further have
that both n1 and n2 are elements of Z.

We now show that the Integer Addition closure rule ap-
plies in this case. Because x =x1 +x2 appears in e and be-
cause e 4 C, Lemma A.22 gives us that there exists some
α1 +α2 <: α in C such that x1 4 α1, x2 4 α2, and x 4 α.
Because E↓int(x1) = n1 and x1 4 α1, Lemma A.33 gives
us that C ` α1

int−−_ τ1 and n1 4 τ1; the same statement can
be made regarding x2, α2, n2, and τ2.

Because we have shown that the Integer Addition closure
rule applies, we know that C

CL−→1C′ where C′ = C∪{int <:
α}. It remains to show that e′ 4 C′ and that C′ is well-
formed. We first observe that by Lemma A.19 we have
E ‖ eREST 4 C. By Lemma A.20 and [x =n] 4 {int <: α}
(which is immediate from the above and Definition A.7),
we have that e′ 4 C′. To show that C′ is well-formed,
we observe that the only contour appearing in {int <: α}
is that in α, which is a type variable appearing in C; thus
L{int <: α}M ⊆ LCM. By Lemma A.18, we therefore have
that C′ is well-formed.

True Integer Equality: If e = E ‖[x =x1 ==x2] ‖ eREST,
then e′ = E ‖[x′ = (), x = ‘True x′] ‖ e for a fresh x′

chosen such that x′ ↔ 〈ι, 0, Ċ〉 where x↔ 〈ι, n, Ċ〉. We also
have that E↓int(x1) = n and that E↓int(x2) = n for some
n ∈ Z.

We now show that the Integer Equality closure rule ap-
plies in this case. Because x =x1 ==x2 appears in e and be-
cause e 4 C, Lemma A.22 gives us that there exists some
α1 ==α2 <: α in C such that x1 4 α1, x2 4 α2, and x 4 α.
Because E↓int(x1) = n1 and x1 4 α1, Lemma A.33 gives
us that C ` α1

int−−_ τ1 and n1 4 τ1; the same statement can
be made regarding x2, α2, n2, and τ2.

Because we have shown that the Integer Equality clo-
sure rule applies, we know that C

CL−→1 C′ where C′ =
C ∪ {‘True α′ <: α, ‘False α′ <: α, () <: α′}
where α′ = ETV(α). Because x 4 α, we know that
α = 〈ι, n, Ċ′〉 where Ċ′ = ˚̌ if Ċ = ˚̌ and Ċ ≤ Ċ′ other-
wise. By Definition 5.6, we have that α′ = 〈ι, 0, Ċ′〉; thus,
x′ 4 α′. By Definition A.7 and the above, we have that
[x′ = (), x = ‘True x′] 4 {‘True α′ <: α, () <: α′};
by Lemma A.20, we have that [x′ = (), x = ‘True x′] 4

Types for Flexible Objects 29 2013/5/28

{‘True α′ <: α, ‘False α′ <: α, () <: α′}. By
Lemma A.20, we therefore have that e′ 4 C′. It remains
to show that C′ is well-formed; this is demonstrated by
Lemma A.18 as above.

A similar argument is made when e′ = E ‖[x′ = (), x =
‘False x′] ‖ e.

Application: If e = E ‖[x =x1 x2] ‖ eREST, then e′ =
E ‖ EFRESH(x,E0 ‖ e′′′ ‖[x′ = r]) ‖[x = EFRESH(x, x′)] ‖ eREST

where E↓∗fun(x1) =
n−−−−−⇀
φ -> e′′ and x2 �E

n−−−−−⇀
φ -> e′′\E0; e′′′ ‖[x′ = r].

We now show that the Application closure rule applies in
this case. Because x =x1 x2 appears in e and because e 4 C,
Lemma A.22 gives us that there exists some α1 α2 <: α
in C such that x1 4 α1, x2 4 α2, and x 4 α. Because
E↓∗fun(x1) =

n−−−−−⇀
φ -> e′′ and x1 4 α1 and by Lemma A.33,

we have that there exists some ⇀
τ such that

n−−−−−⇀
φ -> e′′ 4 ⇀

τ and
C ` α1

fun−−_⇀
τ . Because x2 �E

n−−−−−⇀
φ -> e′′\E0; e′′′ ‖[x′ = r], the

previous, and by Lemma A.37, we have that there exist some
αLAST and CNEW such that α2 �C

⇀
τ\αLAST; CNEW such that

E0 ‖ e′′′ 4 〈αLAST,CNEW〉. Because CNEW and INST are total
functions, we have shown that the Application closure rule
applies.

Let eNEW = E0 ‖ e′′′ and let xLAST = rLAST be the last el-
ement in eNEW. Then eNEW 4 CNEW and xLAST 4 αLAST. Be-
cause x 4 α, we have by Definition A.7 that [x =xLAST] 4
{αLAST <: α}.

Let C = CNEW(α2,C), let e′NEW = EFRESH(eNEW, C),
and let C′NEW = INST(CNEW, C). By Lemma A.40, we have
e′NEW 4 C′NEW. Let EFRESH(xLAST, C) = x′LAST. Let C′′ =
INST({αLAST <: α}, C). By Definition 5.10, we have that
C′′ = {INST(αLAST, ∅, C) <: INST(α, ∅, C)}. The contour of α
is not ˚̌ as it appears at top level in C ; thus, C′′ = {α′LAST <:
α} where α′LAST = INST(αLAST, ∅, C). By Lemma A.40, we
thus have that [x =x′LAST] 4 C′′; thus by Lemma A.20 we
have that e′NEW ‖[x =x′LAST] 4 C′NEW ∪ C′′. It should be ob-
served that the prior represents the expression which re-
places the application at the call site in the operational se-
mantics; the latter represents the set of constraints after in-
stantiation in the Application Closure rule. We let CNEW ∪
C′′ = C′′′.

By Lemma A.19, we have that E ‖ eREST 4
C; thus by Lemma A.20 we have that
E ‖ EFRESH(x,E0 ‖ e′′′ ‖[x′ = r]) ‖[x = EFRESH(x, x′)] ‖ eREST 4
C ∪ C′′′. Finally, we let C′ = REPL(C ∪
C′′′, C) and by Lemma A.42, we have
E ‖ EFRESH(x,E0 ‖ e′′′ ‖[x′ = r]) ‖[x = EFRESH(x, x′)] ‖ eREST 4
C′.

It remains to show that REPL(C ∪ C′′, C) is well-formed.
We know from premises that C is well-formed. Our strategy
is to use the extractions of the contour sets involved in the
application rule to show that each step in this process is
also well-formed. Because α1 appears in C, we have from

Lemma A.46 that L⇀τM ⊆ LCM. From this, because α2 appears
in C and by Lemma A.47, we have that LCNEWM ⊆ LCM.

By Lemma A.48, we have that LC′NEWM ⊆ LCM ∪ {C}. We
also have that LC′′M ⊆ LCM ∪ {C}. This gives us LC′NEW ∪
C′′M ⊆ LCM ∪ {C} by Lemma A.11, which is equivalent to
LC′′′M ⊆ LCM ∪ {C}. Again by Lemma A.11, we have LC ∪
C′′′M ⊆ LCM∪ {C}, which is equivalent to LC′M ⊆ LCM∪ {C}.
By Lemma A.49, we have that LC′M ⊆ {C} ∪ {C′ | C′ ∈
LC∪C′′′M∧C′ � C}. Because LC∪C′′′M ⊆ LCM∪{C}, this can
be weakened to LC′M ⊆ {C}∪{C′ | C′ ∈ LCM∪{C}∧C′ � C};
since C ≤ C, this simplifies to LC′M ⊆ {C} ∪ {C′ | C′ ∈
LCM ∧ C′ � C}. For notational convenience, let CCC = {C′ |
C′ ∈ LCM ∧ C′ � C}. It remains to show that LC′M is well-
formed; by Lemma A.18 it is sufficient to show that {C} ∪ CCC
is well-formed.

Since CCC is a subset of LCM and C is well-formed, it is
sufficient to show that ∀C′ ∈ CCC.C′ G� C. By Lemma A.45, we
have that for every C′ in LCM, we have either C′ G� C or C′ ≤ C.
By definition, CCC contains only those C′ such that C′ � C; thus,
we know that ∀C′ ∈ CCC.C′ G� C. Therefore, CCC ∪ {C} is well-
formed and so C′ is well-formed.

To complete our simulation of closure, we show stuck
expressions are modeled by simulation as inconsistencies in
the constraint set.
Lemma A.51. If e 4 C, there exists no e′ such that
e −→1 e′, and e is not of the form E, then C is inconsis-
tent.

Proof. We begin by observing that every e not of the form
E must be factorable into some E ‖[x = r] ‖ e′′ where r is
not of the form v. We proceed by case analysis on r and
the conditions of Definition 3.5 which lead to a stuck e. In
each case, we show that the corresponding constraint set is
inconsistent.

If r is of the form x1 opx2, we observe that e is only
stuck when E↓int(xi) is undefined for i = 1 or i = 2.
By Definition 3.2, this implies that E↓∗int(xi) = []. Be-
cause [x =x1 opx2] is in e, Lemma A.22 gives us that
{α1 opα2 <: α} for x1 4 α1, x2 4 α2, and x 4 α. Be-
cause xi 4 αi, Lemma A.33 gives us that C ` αi int−−_ [].
The presence of the constraint α1 +α2 <: α in C such that
C ` αi int−−_ [] is inconsistent by Definition 4.8.

Otherwise, r is of the form x1 x2. Let E↓∗fun(x1) =
n−−−−−−⇀
φ� -> e

′
�. In this case, e is only stuck if there exists no E0

and e′′ such that x2 �E

n−−−−−−⇀
φ� -> e

′
�\E0; e′′. Inspection of

Definition 3.4 reveals that this is only the case if for all
1 ≤ j ≤ n there is noE0 such that x2 �E φj\E0. Inspection
of Definition 3.3 reveals that, for each such φj , this is only
the case under two conditions: either (1) φj = x3 : int

and E↓int(x2) is undefined, or (2) φj = x3 : lblx4 and
E↓lbl(x2) is undefined. Thus, one of these two conditions
must be true for each j in {1..n}.

Types for Flexible Objects 30 2013/5/28

Because [x =x1 x2] is in e, Lemma A.22 gives us that
α1 α2 <: α exists in C such that x1 4 α1, x2 4 α2,
and x 4 α. Because x1 4 α1, Lemma A.33 gives us that
C ` α1

fun−−_
n−−−−−−−−−−−−−−−−−⇀
∀ααα�.τφ�→α′� \C� and, among other things,

that φj 4 τφj for each j in {1..n}.
For each j in {1..n}, we now show that α2 �C τφj\˚̌.

For such a j, one of the two conditions above holds. If
φj = x3 : int, then φj 4 τφj gives us that, for some α3

such that x3 4 α3, τφj = α3∼ int. We also have that
E↓int(x2) is undefined, which by Definition 3.2 gives us
that E↓∗int(x2) = []. Because x2 4 α2, Lemma A.33 gives
us that C ` α2

int−−_ []; as a result, α2 �C τφj\˚̌.
Otherwise, φj = x3 : lblx4; in this case, φj 4 τφj

gives us that, for some α3 and α4 such that x3 4 α3 and
x4 4 α4, τφj = α3∼ lblα4. We also have that E↓lbl(x2) is
undefined, which by Definition 3.2 gives us thatE↓∗lbl(x2) =
[]. Because x2 4 α2, Lemma A.33 gives us that C `
α2

lbl−_ []; as a result, α2 �C τφj\˚̌.
We have thus shown that for all j in {1..n}, α2 �C

τφj\˚̌. Equivalently by notational sugar, we have shown that
α2 �C

⇀
τ given C ` α1

fun−−_⇀
τ for a constraint α1 α2 <: α in

C; by Definition 4.8, C is inconsistent.

A.10 Proof of Soundness
We now prove Theorem 5.1. Our strategy for doing so is
to show that simulation holds after the initial derivation and
after each small step evaluation. Once small step evaluation
is complete, we use this simulation to show that evaluation
can only be stuck if the constraint set is inconsistent.

Proof. Given a closed e with unique variable bindings, we
have by Lemma A.31 that, if JeK∅E = 〈α,C〉, then C is
well-formed and e 4 〈α,C〉; we also have that every type
variable in C has the non-contour ˚̌. As a result, we have that
LCM = ∅. By Definition A.7, we have that e 4 C. Let e′ =
EFRESH(e, {[]}) and let C′ = INST(C, {[]}); by Lemma A.40,
we have that e′ 4 C′. Observe that, by Definition A.5, e′ is
α-equivalent to e.

We next induct on the length of constraint closure. Let
e0 = e′ and let C0 = C′. Further, let e0 −→1 . . . −→1 en
for some n ≥ 0. We start with the base case that e0 4 C0

and that C0 is well-formed. We use Lemma A.50 to prove
our inductive step: if ei 4 Ci and Ci is well-formed, then
there exists some Ci

CL−→1 Ci+1 such that ei+1 4 Ci+1 and
Ci+1 is well-formed. We therefore have by induction that
en 4 Cn and that Cn is well-formed.

We have by premise that en X−→1 and that en is not of the
form E. By Lemma A.51, we have that Cn is inconsistent.
By Definition 5.11, e does not typecheck.

B. MicroBang Termination
We show here that the MicroBang typechecking definition
presented in Section 5 is decidable. We first present a proof
of decidability via a counting argument. We then informally

discuss how typechecking can be made computationally fea-
sible.

B.1 Proof of Termination
We begin by showing each relation used in defining the type
system is decidable, and each function is computable. We
then show that the number of constraints which may appear
in any closure is bounded in terms of the size of the original
program and that the number of closure steps necessary to
decide typechecking is finite.

Lemma B.1. Given a closed e, JeK∅E is a computable func-
tion.

Proof. By direct induction on the definition in Figure 4.2.

Lemma B.2. Relation τ C<:∗ α is decidable.

Proof. By enumeration of the possible chains τ <:
α0, . . . , αn−1 <: α. Each cyclic chain (a chain where the
same type variable occurs more than once) has the same
lower bounds as the acyclic chain obtained by pruning the
cycle, and so it suffices to consider acyclic chains only. Be-
cause there are is a fixed, finite number of constraints in C,
there is a fixed number of acyclic chains which means the
fixed set of all possible lower bounds can be computed and
the relation holds iff τ is in that set.

The decidability of the projection relation and com-
putability of a function which finds all ⇀

τ that can be pro-
jected are complex. This is due to the (rare in practice) case
where onions can directly recurse without an intervening la-
bel. Since onioning is a form of type intersection, such re-
cursions are non-contractive and are usually syntactically
ruled out as they have no well-defined semantics [18], but we
support non-contractive recursions. The following series of
Definitions and Lemmas give us this decidability and com-
putability result.

We begin by defining a relation similar to the projection
shown in Definition 4.4 and then align this new definition
with the old version to show the decision procedure. The
definition below uses the notation επ(α) to indicate that a
type variable α is nullable: it may produce an empty list for
the given projector π.
Definition B.3 (Nullable). επ(α) if and only if either (1) there
exists a non-onion τ such that τ C<:∗ α and τ 6v π or (2)
α1 &α2

C<:∗ α and inductively both επ(α1) and επ(α2) hold.

Lemma B.4. Relation επ(α) is decidable.

Proof. By Lemma B.2, we have that concretization is decid-
able. There are finitely many & constraints in C and it suffices
never to visit the same & constraint twice by analogy with the
cycle pruning in Lemma B.2.

Types for Flexible Objects 31 2013/5/28

Definition B.5 (Modified Projection).
C `ε0 α′ π−_ [τ] if τ C<:∗ α′, τ v π
C `ε0 α′ π−_

⇀
τ1 ‖⇀

τ2 if α1 &α2
C<:∗ α′,

C `ε0 α1
π−_⇀
τ1,C `ε0 α2

π−_⇀
τ2

C `ε0 α′ π−_
⇀
τ2 if α1 &α2

C<:∗ α′, επ(α1),
C `ε0 α2

π−_⇀
τ2

C `ε0 α′ π−_
⇀
τ1 if α1 &α2

C<:∗ α′, επ(α2),
C `ε0 α1

π−_⇀
τ1

C `ε α π−_⇀
τ if C `ε0 α π−_⇀

τ or επ(α) and ⇀
τ = []

Lemma B.6. Relation C ` α π−_⇀
τ is decidable.

Proof. We first show that the modified projection relation
C `ε α π−_⇀

τ at the bottom of Definition B.5 is equivalent to
the original projection relation C ` α π−_⇀

τ in Definition 4.4.
The modified definition C `ε0 α π−_⇀

τ at the top of Definition
B.5 by inspection inlines the empty list clause (the first
clause) of the original definition into the & clause, and that
constructively produces a non-empty list in each case. Thus,
the only case where C ` α π−_⇀

τ / C `ε0 α π−_⇀
τ differ is

where the [] clause is the top-level result, and C `ε α π−_⇀
τ

explicitly aligns that top-level behavior.
The modified relation C `ε α π−_⇀

τ is now shown to be
decidable, and by the above equivalence, the original relation
is decidable. Observe that the list ⇀

τ is divided into two non-
empty sublists in any use of the & clause, so it is possible to
exhaustively test each of the n possible factorings of a length
n list, and επ(α) was shown decidable in Lemma B.4. At the
leaf case, we rely on concretization and projection matching;
the latter is trivially decidable and the prior was shown to be
decidable via Lemma B.2.

Now we show that the set of all possible ⇀
τ that project

from a given type variable is computable. We show this by
showing how the equivalent set of lists with duplicate types
in each list removed, is computable. DEDUP is a function
which removes all duplicate types in a list of types, preserv-
ing the rightmost occurrence in the list only. Formally:
Definition B.7 (Deduplication).

DEDUP(
⇀
τ) = DEDUP(∅,⇀τ)

DEDUP(⨽−−⨼τ , []) = []

DEDUP(⨽−−⨼τ ,
⇀
τ ‖[τ ′]) =

{
DEDUP(⨽−−⨼τ ,

⇀
τ) when τ ′ ∈ ⨽−−⨼τ

DEDUP(⨽−−⨼τ ∪ {τ ′},⇀τ ‖[τ ′]) otherwise

Lemma B.8. There is a computable function which takes a
C, π, and α as argument and returns a set

⨽−−⨼⇀
τ such that for all

⇀
τ ′ we have DEDUP(

⇀
τ ′) ∈

⨽−−⨼⇀
τ if and only if C ` α π−_⇀

τ ′.

Proof. The core of the algorithm is to perform non-
deterministic disjunctive computation on each lower bound
encountered (subject to some restrictions for termination). If
we encounter a non-onion type under no other restrictions,
computation is simple: we produce the singleton list contain-
ing that type.

If we encounter an onion type, we first explore the right
side and then explore the left, concatenating the resulting
type list sets pointwise. As we explore the left side, we
maintain knowledge of the types which appeared in the right
side’s list and do not select proof subtrees which include
them; this prevents generation of duplicates and is also key
to termination: every non-onion expansion makes some form
of progress.

For the case onions recurse into themselves without an in-
tervening label, special care is needed. For instance, consider
the constraint α1 &α2 <: α2. In order to prevent divergence
in such a case, we track each type variable and the number
of times we have expanded it to an onion lower bound in
this proof tree branch. After this number of passes reaches a
certain threshold, we replace all expansions of onion lower
bounds on that variable with [], pruning off that branch. We
assert that the number of times a given onion is expanded
can be conservatiely be set to the number of distinct (onion
and non-onion) lower-bounding types in C.

We first observe that this choice ensures decidability and
then defend that it is sufficient for correctness. Because of
this decision, there is now a maximum size to the proof
tree; each variable with an onion lower bound is only ex-
panded a fixed number of times and there are finitely many
such variables. Because non-onion cases are always leaves
and because each variable has finitely many lower bounds,
the number of proof trees is finite and can be exhaustively
checked.

We next assert that it is sufficient to build any proof tree
described by the recursive onions to be large enough to hold
any legal permutation of the lower-bounding types in C. This
is because additional onion structure exploration will never
yield more legal variable positions, there are only finitely
many types that can be placed in any position.

Lemma B.9. The function which given some C, α, and π
returns the set of all τ in C such that C ` α π−_ τ is a
computable function.

Proof. By Lemma B.8, there is a computable function which
produces the set of deduplicated lists such that the original
lists were the result of projection. Because deduplication
never removes the rightmost element of a list (trivial by
inspection of Definition B.7), the set of rightmost types from
the lists is equal to the set of rightmost types from the lists
produced by projection.

Lemma B.10. Relation α �C τφ\Ċ is decidable.

Proof. Inspection of Definition 4.6 reveals that compatibility
is syntax-directed with leaf cases being either axiomatic or
relying on single projection. By Lemma B.9, we have that
single projection is decidable.

Lemma B.11. Relation α �C

⇀
τ\α′; C′ is decidable.

Types for Flexible Objects 32 2013/5/28

Proof. By induction on the length of ⇀
τ . Inspection of Defini-

tion 4.7 reveals that the truth of this term is either axiomatic
(when the length of ⇀

τ is zero), reliant upon compatibility
(shown to be decidable in Lemma B.10), or defined in terms
of a smaller list.

Lemma B.12. Relations C1 ≤ C2 and C1 G C2 are decidable.

Proof. The grammar and meaning of contours is a subset of
regular expressions and subsumption and overlap on regular
expressions is well-known to be computable.

Lemma B.13. The contour extraction (L·M), instantiation
(INST), and replacement (REPL) are decidable.

Proof. These functions are trivially computable by induction
on their respective first arguments. Each step not defined as
a natural homomorphism is trivially computable. For instan-
tiation, the scape case calculates a finite union and the vari-
able case performs a presence test on a finite set. For re-
placement, the variable case performs subsumption testing
(decidable by Lemma B.12). The leaf cases of extraction are
constant.

Lemma B.14. The functions used in contour creation –
CNEW, COLLAPSE, and WIDEN – are decidable.

Proof. CNEW is trivially decidable. COLLAPSE(C) is trivially
decidable if each COLLAPSE(S) is decidable for each S ∈ C.
COLLAPSE(S) is computable given someS by induction on the
number of cycles in S. WIDEN(C,C) is decidable given C and
C because contour extraction and overlap are known to be
decidable from Lemmas B.12 and B.13.

Lemma B.15. Given C and C′, C
CL−→1 C′ is decidable.

Proof. We proceed by showing that there is a computable
function from C to

m⨽−−⨼
C′′ such that C

CL−→1C′′i for all i ∈ {1..m}
and that there exists no other C′′′ such that C

CL−→1 C′′′; that
is, the set of possible next steps is computable and finite.
Inspection of the closure rules reveals that the first premise
of each rule tests for the presence of a constraint in C of a
certain form; because C is finite, we can enumerate all such
constraints. For each such constraint, the remainder of the
premises in each rule are computable by one of the above
lemmas. For application, we use Lemma B.8 to produce the
set of possible ⇀

τ scapes that may apply; this Lemma pro-
duces a list without duplicates, and it is clear that the pres-
ence of duplicates is irrelevant to the result of application
compatibility, Definition 5.7. Because each rule has finitely
many preconditions, this process is computable. Thus we
can compute the set of constraints

m⨽−−⨼
C′′ ; because each rule

only adds finitely many constraints, each C′′i is finite. This

relation is then determined simply by C′ ∈
m⨽−−⨼
C′′ .

Lemma B.16. It is decidable whether a given C is inconsis-
tent.

Proof. By inspection of Definition 4.8, each condition of
inconsistency first checks for a constraint of a given form;
this check can be achieved by enumeration because C is
finite. For each such constraint, it then performs a series of
checks known to be decidable from the above lemmas.

We now prove Theorem 5.2.

Proof. The proof proceeds by showing that each closure rule
can only introduce constraints drawn from an initial fixed
finite set of possible constraints.

Given a closed e, computing JeK∅E = 〈α,C〉 is decidable
from Lemma B.1.

Clearly a fixed set of identifiers ι exist in e (and thus
in C) and no type system rule introduces new identifiers.
Additionally, new contours are only created by CNEW. This
function guarantees that (1) all contour strands contain a
given identifier only once and that (2) no contour strands
contain an empty set as a part. As a result, there is a fixed,
finite number of unique contour strands that could ever occur
in any closure sequence of C and thus there is a fixed bound
on the number of distinct contours possible in any closure.
Because the initial expression e is fixed, there is also a fixed
number of variable indices that could be used in a given
closure sequence. These facts together give us that, given a
C, we can define a fixed, finite set of type variables which is
a superset of any variable that could arise during any closure
sequence.

Since the possible contours in any closure sequence are
fixed in advance, there a fixed finite set can be defined which
bounds all of the τ that could occur in any constraint over
any closure sequence: by inspection of the closure rules, no
new non-scape types τ are created in new constraints which
are not just substitutions on types already occurring in C.
The number of possible patterns τφ is also fixed because new
constraints added in closure contain no new patterns. Finally,
function types contain a constraint set and all substitutions
on such a set are fixed and finite since the number of possible
substitutions is bounded by the above and so the number
of constraints that could be added to closure via application
have a fixed bound.

Since given initial e the possible type variables and types
have a fixed bounded size, there is also a fixed, finite set
bounding the constraints which may appear in any closure;
let C∗ be that set. Therefore, any C′ such that C

CL−→1 C′ must
be in the power set of C∗; because C∗ is finite, its power set
is also finite. Let this power set be denoted 2C∗ and let n be
the size of this set.

The set
m⨽−−⨼
C′ such that for all i ∈ {1..m}we have C

CL−→∗C′i
is also decidable. We know this set to be a subset of 2C∗ and
that any acyclic chain of closures C

CL−→1 C′j1
CL−→1 . . .

CL−→1

C′i (for i ∈ {1..m} and jk all in {1..n}) has at most n
steps (since there are only n such sets in 2C∗). Because the
relation holds over the first and last sets and is not based
on the intervening sets, any cyclic chain of closures need

Types for Flexible Objects 33 2013/5/28

not be considered as it is equivalent to some acyclic chain.
Because these acyclic chains are all composed of elements
of 2C∗ , the number of such acyclic chains is at most the sum
of the permutations of the subsets of 2C∗ , which is finite.
By enumeration of these permutations, we can exhaustively
determine which elements of 2C∗ are in

m⨽−−⨼
C′ and which are

not; therefore,
m⨽−−⨼
C′ is decidable.

Finally, for each such C′i, Lemma B.16 gives us that it
is decidable whether or not that set is inconsistent. Since it
is decidable whether any of these sets is inconsistent, it is
decidable whether or not e typechecks.

B.2 Efficient Typechecking
The proof of Theorem 5.2 in the previous section used a
counting argument for sake of simplicity. While this shows
that the MicroBang type system is decidable, it does not
show that it is computationally feasible. Because our objec-
tive is to produce a usable, highly flexible scripting language,
we will now informally discuss how the complexity of type-
checking is tractable.

Constraint Closure Confluence The first reduction in
complexity starts with the way typechecking is phrased. A
program e is typesafe only if, given its initial constraint C,
every C′ for which C

CL−→∗ C′ is consistent; computing ev-
ery such constraint set would require considerable effort.
This could be avoided if constraint closure were confluent;
then, the closure work would be reduced to a computable,
deterministic function. The constraint closure relation is not
trivially confluent; the contours which it produces will vary
based upon the order in which the constraint closure rules
are used. This is, in particular, due to the unioning of con-
tours in the widening step of contour creation. Up to contour
meaning (J·K), however, these contours are equivalent. It is
therefore sufficient to close over the initial constraint set to
any of its fixed points and simply determine if that constraint
set is inconsistent.

Projection Lemma B.8 shows that the set of orderings
of scapes which will project from a type variable is com-
putable, but it uses an excessively complex algorithm. Al-
gorithms for projecting the single highest priority element
from a type variable are quite simple, but – due to onion
types which recurse directly and not under a label – the task
of projecting multiple types in priority order is difficult in
some corner cases. This is because immediately recursive
onions are a form of non-contractive type because & shares
enough similarity with intersection type, and intersection is
not a contractive type operator [18]. It is well known that
working with non-contractive recursive types is difficult [18]
and, for that reason, it is standard to work only with con-
tractive types. While eliminating non-contractive types from
TinyBang would be as simple as a syntactic check prohibit-
ing immediately recursive onion types, we believe that non-

contractive types will make it possible to statically type cer-
tain higher-order object programming patterns.

There are only two places that our priority-based projec-
tion is used. The first is in the definition of single projec-
tion which, as mentioned above, can be implemented with
simple, efficient algorithms. The second is in the Applica-
tion closure rule, where it is used to determine the order in
which scapes are applied. Observe that the use of priority-
based projection here is inefficient; the projection tries to
model each and every concrete type tree and individually
determine the priority list which results from it, and there
are many more such type trees than there are priority lists in
every case. Furthermore, the set of priority-ordered lists con-
tain significant redundancies, since the ordering only matters
in cases where the types matched by scape patterns overlap.

In order to correct both sources of inefficiency, we plan
to specialize an operation to address the behavior of the
application rule over an onion of scapes. We rely on the
fact that all types expressible in our constraint-based system
can be expressed in a regular tree algebra and we can use
operations over regular trees to calculate how much of the
argument type is matched at any given point during the
process. By defining the operation to handle all lower bounds
at a given call site simultaneously, we effectively group the
application cases into equivalence classes and process each
equivalence class only once. This approach also allows us
to consider each recursive onion type only once; because
it considers all lower bounds of the recursive type variable
simultaneously, we know that no further information can be
gained by exploring it again.

Contours The only remaining concern regarding the com-
plexity of the TinyBang type system is the generation of type
contours. As with any polymorphic system, the polyinstan-
tiation of variables gains expressiveness at the cost of com-
plexity and, as with any interesting polymorphic type system
(such as those in the ML family of languages), typechecking
TinyBang is exponentially complex in pathological scenar-
ios. We have attempted to ensure, however, that TinyBang
typechecking will be polynomial in practice.

The manner in which contours are created, for instance, is
intended to prevent exponential complexity. Since contours
on type variables represent (often infinite) sets of calling
contexts, it is not impossible to imagine that a closure rule
may fire for some intersection of two variables’ calling con-
texts. In that case, constraints would need to be constructed
over the intersection of these calling contexts and propa-
gated appropriately. This deep reasoning about type prop-
agation is only helpful in very specific cases of overlapping
recursive call cycles where the relevant input types are stat-
ically known; such reasoning also generates exponentially
many constraints in the size of the program. Because this
precision is costly and not very useful, we choose to com-
pletely unify the variables involved in any call cycle; this is
accomplished at the end of the contour creation process by

Types for Flexible Objects 34 2013/5/28

the WIDEN function, which ensures that any new contour will
be unified with a contour it overlaps (even partially). This
ensures that each contour in constraint closure represents a
disjoint calling context, significantly reducing the complex-
ity of closure.

In general, we expect that a polynomial-in-practice im-
plementation of the TinyBang typechecker is feasible, but
we concede that it will take more theoretical effort than
other, more traditional typecheckers due to subtle issues like
those mentioned above.

Types for Flexible Objects 35 2013/5/28

	Introduction
	Overview
	Language Features for Flexible Objects
	Self-Awareness and Resealable Objects
	Flexible Object Operations
	A Record-Based Comparison

	MicroBang Operational Semantics
	MicroBang Grammar
	Operational Semantics

	A Monomorphic MicroBang Type System
	Initial Derivation
	Constraint Closure

	Polymorphism
	Initial Derivation
	Constraint Closure
	Contours
	Typechecking and Soundness

	Deep and Wide Patterns
	Derivation
	Fibrations for Union Alignment
	Constraint Closure

	Bridging the Gap
	State
	Onion Filtering
	Symmetric Onions

	Conclusions
	MicroBang Type Soundness Proof
	Variables
	Simulation
	Contours
	Constraint Set Well-Formedness
	Simulation Properties
	Initial Derivation Simulation
	Simulation Preservation
	Contour Properties of Functions and Relations
	Closure Simulation
	Proof of Soundness

	MicroBang Termination
	Proof of Termination
	Efficient Typechecking

