
Big Bang
Designing a Statically Typed Scripting Language

Pottayil Harisanker Menon, Zachary Palmer,

Scott F. Smith, Alexander Rozenshteyn

The Johns Hopkins University

June 11, 2012

Scripting Languages

! Terse

! Flexible

! Easy to learn

! Amenable to rapid development

% Dynamically typed

Scripting Languages

! Terse

! Flexible

! Easy to learn

! Amenable to rapid development

% Dynamically typed

Advantages of Static Typing

� Performance

� Debugging

� Programmer understanding

Typing Existing Scripting Languages

� e.g. DRuby, Typed Racket

� Existing language features are hard to type

� DRuby does not typecheck the entire Ruby API
� Typechecking runtime metaprogramming is hard

� These systems require programmer annotation

� Type annotations reduce terseness
� Annotations can be overly restrictive

Typing Existing Scripting Languages

� e.g. DRuby, Typed Racket
� Existing language features are hard to type

� DRuby does not typecheck the entire Ruby API
� Typechecking runtime metaprogramming is hard

� These systems require programmer annotation

� Type annotations reduce terseness
� Annotations can be overly restrictive

Typing Existing Scripting Languages

� e.g. DRuby, Typed Racket
� Existing language features are hard to type

� DRuby does not typecheck the entire Ruby API

� Typechecking runtime metaprogramming is hard

� These systems require programmer annotation

� Type annotations reduce terseness
� Annotations can be overly restrictive

Typing Existing Scripting Languages

� e.g. DRuby, Typed Racket
� Existing language features are hard to type

� DRuby does not typecheck the entire Ruby API
� Typechecking runtime metaprogramming is hard

� These systems require programmer annotation

� Type annotations reduce terseness
� Annotations can be overly restrictive

Typing Existing Scripting Languages

� e.g. DRuby, Typed Racket
� Existing language features are hard to type

� DRuby does not typecheck the entire Ruby API
� Typechecking runtime metaprogramming is hard

� These systems require programmer annotation

� Type annotations reduce terseness
� Annotations can be overly restrictive

Typing Existing Scripting Languages

� e.g. DRuby, Typed Racket
� Existing language features are hard to type

� DRuby does not typecheck the entire Ruby API
� Typechecking runtime metaprogramming is hard

� These systems require programmer annotation
� Type annotations reduce terseness

� Annotations can be overly restrictive

Typing Existing Scripting Languages

� e.g. DRuby, Typed Racket
� Existing language features are hard to type

� DRuby does not typecheck the entire Ruby API
� Typechecking runtime metaprogramming is hard

� These systems require programmer annotation
� Type annotations reduce terseness
� Annotations can be overly restrictive

Let’s try designing a typed scripting
language from scratch

Designing a Typed Scripting Language

� Design type system and execution model
concurrently

� Be minimalistic: most features are encoded

� Use static near-equivalents for dynamic
patterns

� Infer all types: no type declarations

� Use a whole-program typechecking model

� Use type information to improve runtime
memory layout

Designing a Typed Scripting Language

� Design type system and execution model
concurrently

� Be minimalistic: most features are encoded

� Use static near-equivalents for dynamic
patterns

� Infer all types: no type declarations

� Use a whole-program typechecking model

� Use type information to improve runtime
memory layout

Designing a Typed Scripting Language

� Design type system and execution model
concurrently

� Be minimalistic: most features are encoded

� Use static near-equivalents for dynamic
patterns

� Infer all types: no type declarations

� Use a whole-program typechecking model

� Use type information to improve runtime
memory layout

Designing a Typed Scripting Language

� Design type system and execution model
concurrently

� Be minimalistic: most features are encoded

� Use static near-equivalents for dynamic
patterns

� Infer all types: no type declarations

� Use a whole-program typechecking model

� Use type information to improve runtime
memory layout

Designing a Typed Scripting Language

� Design type system and execution model
concurrently

� Be minimalistic: most features are encoded

� Use static near-equivalents for dynamic
patterns

� Infer all types: no type declarations

� Use a whole-program typechecking model

� Use type information to improve runtime
memory layout

Designing a Typed Scripting Language

� Design type system and execution model
concurrently

� Be minimalistic: most features are encoded

� Use static near-equivalents for dynamic
patterns

� Infer all types: no type declarations

� Use a whole-program typechecking model

� Use type information to improve runtime
memory layout

BigBang by Example

BigBang and TinyBang

� BigBang encodes to a core language

� TinyBang has very few features:

� Primitives
� Labels
� Onions
� Scapes
� Exceptions

(and that’s all)

BigBang and TinyBang

� BigBang encodes to a core language
� TinyBang has very few features:

� Primitives
� Labels
� Onions
� Scapes
� Exceptions

(and that’s all)

BigBang and TinyBang

� BigBang encodes to a core language
� TinyBang has very few features:

� Primitives

� Labels
� Onions
� Scapes
� Exceptions

(and that’s all)

BigBang and TinyBang

� BigBang encodes to a core language
� TinyBang has very few features:

� Primitives
� Labels

� Onions
� Scapes
� Exceptions

(and that’s all)

BigBang and TinyBang

� BigBang encodes to a core language
� TinyBang has very few features:

� Primitives
� Labels
� Onions

� Scapes
� Exceptions

(and that’s all)

BigBang and TinyBang

� BigBang encodes to a core language
� TinyBang has very few features:

� Primitives
� Labels
� Onions
� Scapes

� Exceptions
(and that’s all)

BigBang and TinyBang

� BigBang encodes to a core language
� TinyBang has very few features:

� Primitives
� Labels
� Onions
� Scapes
� Exceptions

(and that’s all)

BigBang and TinyBang

� BigBang encodes to a core language
� TinyBang has very few features:

� Primitives
� Labels
� Onions
� Scapes
� Exceptions

(and that’s all)

Labels and Onions
� Labels simply wrap data

(polymorphic variants)
� Onions combine data
� Data may be unlabeled (vs. extensible records)
� Onion data is projected by type
� Onioning is asymmetric (right-precedence)

� Used to encode overriding
� Important for type checking (later)

`name "Tom"

("Tom" � `name "Tom")

Labels and Onions
� Labels simply wrap data (polymorphic variants)

� Onions combine data
� Data may be unlabeled (vs. extensible records)
� Onion data is projected by type
� Onioning is asymmetric (right-precedence)

� Used to encode overriding
� Important for type checking (later)

`name "Tom"

("Tom" � `name "Tom")

Labels and Onions
� Labels simply wrap data (polymorphic variants)
� Onions combine data

� Data may be unlabeled (vs. extensible records)
� Onion data is projected by type
� Onioning is asymmetric (right-precedence)

� Used to encode overriding
� Important for type checking (later)

`name "Tom" & `age 10

Labels and Onions
� Labels simply wrap data (polymorphic variants)
� Onions combine data
� Data may be unlabeled (vs. extensible records)

� Onion data is projected by type
� Onioning is asymmetric (right-precedence)

� Used to encode overriding
� Important for type checking (later)

`name "Tom" & `age 10 & 3

Labels and Onions
� Labels simply wrap data (polymorphic variants)
� Onions combine data
� Data may be unlabeled (vs. extensible records)
� Onion data is projected by type

� Onioning is asymmetric (right-precedence)

� Used to encode overriding
� Important for type checking (later)

(1 & ()) + 2 =⇒ 3

Labels and Onions
� Labels simply wrap data (polymorphic variants)
� Onions combine data
� Data may be unlabeled (vs. extensible records)
� Onion data is projected by type
� Onioning is asymmetric (right-precedence)

� Used to encode overriding
� Important for type checking (later)

(1 & 4) + 2 =⇒ 6

Labels and Onions
� Labels simply wrap data (polymorphic variants)
� Onions combine data
� Data may be unlabeled (vs. extensible records)
� Onion data is projected by type
� Onioning is asymmetric (right-precedence)

� Used to encode overriding

� Important for type checking (later)

(1 & 4) + 2 =⇒ 6

Labels and Onions
� Labels simply wrap data (polymorphic variants)
� Onions combine data
� Data may be unlabeled (vs. extensible records)
� Onion data is projected by type
� Onioning is asymmetric (right-precedence)

� Used to encode overriding
� Important for type checking (later)

(1 & 4) + 2 =⇒ 6

Scapes

� Scapes are functions

� Onions of scapes apply the first matching scape

� Encodes typecasing

� Refines First-Class Cases [Chae et al. ’06]

x -> x

Scapes

� Scapes are functions with input patterns

� Onions of scapes apply the first matching scape

� Encodes typecasing

� Refines First-Class Cases [Chae et al. ’06]

`A x & `B y -> x + y

Scapes

� Scapes are functions with input patterns

� Onions of scapes apply the first matching scape

� Encodes typecasing

� Refines First-Class Cases [Chae et al. ’06]

(`A x & `B y -> x + y) (`A 1 & `B 2)

=⇒ 3

Scapes

� Scapes are functions with input patterns

� Onions of scapes apply the first matching scape

� Encodes typecasing

� Refines First-Class Cases [Chae et al. ’06]

def list = `Hd 4 &

`Tl `Nil () in

((`Hd h -> h) &

(`Nil _ -> ()))

list

=⇒ 4

Scapes

� Scapes are functions with input patterns

� Onions of scapes apply the first matching scape

� Encodes typecasing

� Refines First-Class Cases [Chae et al. ’06]

def list = `Hd 4 &

`Tl `Nil () in

((`Hd h -> h) &

(`Nil _ -> ()))

list

∼=

def list = `Hd 4 &

`Tl `Nil () in

case list of

`Nil _ -> ()

`Hd h -> h

Scapes

� Scapes are functions with input patterns

� Onions of scapes apply the first matching scape

� Encodes typecasing

� Refines First-Class Cases [Chae et al. ’06]

def list = `Hd 4 &

`Tl `Nil () in

((`Hd h -> h) &

(`Nil _ -> ()))

list

∼=

def list = `Hd 4 &

`Tl `Nil () in

case list of

`Nil _ -> ()

`Hd h -> h

Mutation

� Label contents are mutable

� But onioning is functional extension

def y = `A 2 in

(`A x -> x = 5 in y) y

=⇒ `A 5

Mutation

� Label contents are mutable

� But onioning is functional extension

def x = `A 0 & `B 1 in

def y = `B 2 & `C 3 in

def z = x & y in

x

=⇒ `A 0 & `B 1

Mutation

� Label contents are mutable

� But onioning is functional extension

def x = `A 0 & `B 1 in

def y = `B 2 & `C 3 in

def z = x & y in

z

=⇒ `A 0 & `B 2 & `C 3

Expressiveness

Encoding Self

Function self-awareness can be encoded by:

� Adding a `self match to each pattern

� Adding a `self value to each invocation

x -> x

⇓

x:`self self -> x

Encoding Self

Function self-awareness can be encoded by:

� Adding a `self match to each pattern

� Adding a `self value to each invocation

`A a -> e

⇓

`A a & `self self -> e

Encoding Self

Function self-awareness can be encoded by:

� Adding a `self match to each pattern

� Adding a `self value to each invocation

f e

⇓

f (e & `self f)

Encoding Self

def factorial = x: int ->

if x == 0 then 1 else

self (x-1) * x

in self 5

⇓
def factorial = x: int & `self self ->

if x == 0 then 1 else

self (x-1) * x

in factorial (5 & `self factorial)

Encoding Objects

� Objects are encoded as onions

� Each field is a labeled value

� Message handler scapes encode methods

class Point {

int x = 2;

int y = 3;

int l1() {

return x+y;

}

}

Encoding Objects

� Objects are encoded as onions

� Each field is a labeled value

� Message handler scapes encode methods

class Point {

int x = 2;

int y = 3;

int l1() {

return x+y;

}

}

`x 2 &

`y 3

Encoding Objects

� Objects are encoded as onions

� Each field is a labeled value

� Message handler scapes encode methods

class Point {

int x = 2;

int y = 3;

int l1() {

return x+y;

}

}

`x 2 &

`y 3 &

(`l1 () ->

self.x+self.y)

Encoding Objects

� Objects are encoded as onions

� Each field is a labeled value

� Message handler scapes encode methods

class Point {

int x = 2;

int y = 3;

int l1() {

return x+y;

}

}

`x 2 &

`y 3 &

(`l1 () &

`self self ->

self.x+self.y)

Encoding Objects

def o =

`x 2 &

`y 3 &

(`l1 () & `self self ->

self.x + self.y)

in

(`x x -> x) o ∼= o.x

Encoding Objects

def o =

`x 2 &

`y 3 &

(`l1 () & `self self ->

self.x + self.y)

in

o (`l1 () &

`self o)

∼= o.l1()

Encoding Mixins

� Inheritance occurs by onion extension

� Mixins are the extension onion

def mypoint = `x 2 & `y 3 &

(`l1 () -> self.x + self.y)

in def mixinFar =

(`isFar () -> self.l1() > 26)

in def myFpoint = mypoint & mixinFar

in myFpoint .isFar ()

Encoding Mixins

� Inheritance occurs by onion extension

� Mixins are the extension onion

def mypoint = `x 2 & `y 3 &

(`l1 () -> self.x + self.y)

in def mixinFar =

(`isFar () -> self.l1() > 26)

in def myFpoint = mypoint & mixinFar

in myFpoint .isFar ()

Encoding Classes

� Classes are object factories

� Subclass factories instantiate and extend

def Point = `new (`x x & `y y) ->

`x x & `y y &

(`l1 () -> self.x + self.y)

in . . .

Encoding Classes

� Classes are object factories

� Subclass factories instantiate and extend

def Point = `new (`x x & `y y) ->

`x x & `y y &

(`l1 () -> self.x + self.y)

in def Point3D =

`new (a: `x _ & `y _ & `z z) ->

def super = (Point .new a) in

super & `z 0 &

(`l1 () -> super.l1()) + self.z)

in Point3D (`new (`x 1 & `y 2 & `z 3))

Encoding Overloading

� Overloading is trivial with scapes

� Onion extension allows incremental overloading

� Default arguments are easy too

def join =

((`x x:int & `y y:int) -> x + y) &

((`x _:unit & `y _:unit) -> ())

in

join (`x 1 & `y 2) & join (`x () & `y ())

Encoding Overloading

� Overloading is trivial with scapes

� Onion extension allows incremental overloading

� Default arguments are easy too

def join =

((`x x:int & `y y:int) -> x + y) &

((`x _:unit & `y _:unit) -> ())

in def x = join (`x 1 & `y 2) &

join (`x () & `y ())

in def join = join &

((`x x:int & `y _:unit) -> x + 1)

in join (`x 5 & `y ())

Encoding Overloading

� Overloading is trivial with scapes

� Onion extension allows incremental overloading

� Default arguments are easy too

def inc = a: `x x ->

def by = ((_ -> 1) &

(`y y -> y)) a

in x + by

in

inc (`x 1 & `y 2) + inc (`x 6)

Metaprogramming

� BigBang uses TinyBang as a core language

� BigBang will provide macros for
syntax/features

� self, class syntax, etc. defined in this way

� User extensions can be specified

� Similar to Racket (Languages as Libraries
[Tobin-Hochstadt et al., 2011])

Metaprogramming

� BigBang uses TinyBang as a core language

� BigBang will provide macros for
syntax/features

� self, class syntax, etc. defined in this way

� User extensions can be specified

� Similar to Racket (Languages as Libraries
[Tobin-Hochstadt et al., 2011])

Metaprogramming

� BigBang uses TinyBang as a core language

� BigBang will provide macros for
syntax/features

� self, class syntax, etc. defined in this way

� User extensions can be specified

� Similar to Racket (Languages as Libraries
[Tobin-Hochstadt et al., 2011])

Metaprogramming

� BigBang uses TinyBang as a core language

� BigBang will provide macros for
syntax/features

� self, class syntax, etc. defined in this way

� User extensions can be specified

� Similar to Racket (Languages as Libraries
[Tobin-Hochstadt et al., 2011])

Metaprogramming

� BigBang uses TinyBang as a core language

� BigBang will provide macros for
syntax/features

� self, class syntax, etc. defined in this way

� User extensions can be specified

� Similar to Racket (Languages as Libraries
[Tobin-Hochstadt et al., 2011])

Typing

Typing Scripting Languages

A scripting language’s type system must be:
8 Expressive

� Duck typing, conditional types
� No arbitrary cutoffs

5 Comprehensible

� Types should be legible
� Sources of type errors must be clear
� Intuitive non-local inference

Z Efficient

� Short compile times for dev. iterations

2 Easy to Use

� Usable to teach introductory courses

Typing Scripting Languages

A scripting language’s type system must be:
8 Expressive

� Duck typing, conditional types

� No arbitrary cutoffs

5 Comprehensible

� Types should be legible
� Sources of type errors must be clear
� Intuitive non-local inference

Z Efficient

� Short compile times for dev. iterations

2 Easy to Use

� Usable to teach introductory courses

Typing Scripting Languages

A scripting language’s type system must be:
8 Expressive

� Duck typing, conditional types
� No arbitrary cutoffs

5 Comprehensible

� Types should be legible
� Sources of type errors must be clear
� Intuitive non-local inference

Z Efficient

� Short compile times for dev. iterations

2 Easy to Use

� Usable to teach introductory courses

Typing Scripting Languages

A scripting language’s type system must be:
8 Expressive

� Duck typing, conditional types
� No arbitrary cutoffs

5 Comprehensible

� Types should be legible
� Sources of type errors must be clear
� Intuitive non-local inference

Z Efficient

� Short compile times for dev. iterations

2 Easy to Use

� Usable to teach introductory courses

Typing Scripting Languages

A scripting language’s type system must be:
8 Expressive

� Duck typing, conditional types
� No arbitrary cutoffs

5 Comprehensible
� Types should be legible

� Sources of type errors must be clear
� Intuitive non-local inference

Z Efficient

� Short compile times for dev. iterations

2 Easy to Use

� Usable to teach introductory courses

Typing Scripting Languages

A scripting language’s type system must be:
8 Expressive

� Duck typing, conditional types
� No arbitrary cutoffs

5 Comprehensible
� Types should be legible
� Sources of type errors must be clear

� Intuitive non-local inference

Z Efficient

� Short compile times for dev. iterations

2 Easy to Use

� Usable to teach introductory courses

Typing Scripting Languages

A scripting language’s type system must be:
8 Expressive

� Duck typing, conditional types
� No arbitrary cutoffs

5 Comprehensible
� Types should be legible
� Sources of type errors must be clear
� Intuitive non-local inference

Z Efficient

� Short compile times for dev. iterations

2 Easy to Use

� Usable to teach introductory courses

Typing Scripting Languages

A scripting language’s type system must be:
8 Expressive

� Duck typing, conditional types
� No arbitrary cutoffs

5 Comprehensible
� Types should be legible
� Sources of type errors must be clear
� Intuitive non-local inference

Z Efficient

� Short compile times for dev. iterations

2 Easy to Use

� Usable to teach introductory courses

Typing Scripting Languages

A scripting language’s type system must be:
8 Expressive

� Duck typing, conditional types
� No arbitrary cutoffs

5 Comprehensible
� Types should be legible
� Sources of type errors must be clear
� Intuitive non-local inference

Z Efficient
� Short compile times for dev. iterations

2 Easy to Use

� Usable to teach introductory courses

Typing Scripting Languages

A scripting language’s type system must be:
8 Expressive

� Duck typing, conditional types
� No arbitrary cutoffs

5 Comprehensible
� Types should be legible
� Sources of type errors must be clear
� Intuitive non-local inference

Z Efficient
� Short compile times for dev. iterations

2 Easy to Use

� Usable to teach introductory courses

Typing Scripting Languages

A scripting language’s type system must be:
8 Expressive

� Duck typing, conditional types
� No arbitrary cutoffs

5 Comprehensible
� Types should be legible
� Sources of type errors must be clear
� Intuitive non-local inference

Z Efficient
� Short compile times for dev. iterations

2 Easy to Use
� Usable to teach introductory courses

Typing BigBang

For BigBang, we choose:

8 2 Subtype inference
8 Call-Site Polymorphism
8 5 Path sensitivity
5 2 Flow insensitivity

8 Z Asymmetric concatenation
Z Incremental typechecking

8 Expressive 5 Comprehensible
Z Efficient 2 Easy to Use

8 2 Subtype Inference 2 8

� No programmer type declarations

� Supports duck-typing
� Supports nominal typing (labels as names)

(e.g. `x 1 & `y 2 & ‘Point ())

8 2 Subtype Inference 2 8

� No programmer type declarations

� Supports duck-typing

� Supports nominal typing (labels as names)

(e.g. `x 1 & `y 2 & ‘Point ())

8 2 Subtype Inference 2 8

� No programmer type declarations

� Supports duck-typing
� Supports nominal typing (labels as names)

(e.g. `x 1 & `y 2 & ‘Point ())

8 2 Subtype Inference 2 8

� No programmer type declarations

� Supports duck-typing
� Supports nominal typing (labels as names)

(e.g. `x 1 & `y 2 & ‘Point ())

8 Call-Site Polymorphism 8

� All functions polymorphic; no let restriction

� New contour for each non-recursive call site

� Only one contour for each recursive cycle

� A variant of both nCFA and CPA

8 Call-Site Polymorphism 8

� All functions polymorphic; no let restriction

� New contour for each non-recursive call site

� Only one contour for each recursive cycle

� A variant of both nCFA and CPA

8 Call-Site Polymorphism 8

� All functions polymorphic; no let restriction

� New contour for each non-recursive call site

� Only one contour for each recursive cycle

� A variant of both nCFA and CPA

8 Call-Site Polymorphism 8

� All functions polymorphic; no let restriction

� New contour for each non-recursive call site

� Only one contour for each recursive cycle

� A variant of both nCFA and CPA

8 Call-Site Polymorphism 8

def f = x -> `A x in

def x = f 0 in

def y = f () in

def z = f (`B 2 & `C 3) in

. . .

x =⇒ `A 0

y =⇒ `A ()

z =⇒ `A (`B 2 & `C 3)

8 Call-Site Polymorphism 8

def f = x -> `A x in

def x = f 0 in

def y = f () in

def z = f (`B 2 & `C 3) in

. . .

x =⇒ `A 0

y =⇒ `A ()

z =⇒ `A (`B 2 & `C 3)

8 5 Path Sensitivity 5 8

� Scape application based on pattern match

� Constraints expanded only if input matches

� With polymorphism, gives path sensitivity

� Refines Conditional Types [Aiken et al. ’94]

8 5 Path Sensitivity 5 8

� Scape application based on pattern match

� Constraints expanded only if input matches

� With polymorphism, gives path sensitivity

� Refines Conditional Types [Aiken et al. ’94]

8 5 Path Sensitivity 5 8

� Scape application based on pattern match

� Constraints expanded only if input matches

� With polymorphism, gives path sensitivity

� Refines Conditional Types [Aiken et al. ’94]

8 5 Path Sensitivity 5 8

� Scape application based on pattern match

� Constraints expanded only if input matches

� With polymorphism, gives path sensitivity

� Refines Conditional Types [Aiken et al. ’94]

8 5 Path Sensitivity 5 8

def f = (`A x -> x) &

(`B y -> ()) in

f `A 3

: int

8 5 Path Sensitivity 5 8

def f = (`A x -> x) &

(`B y -> ()) in

f `A 3

: int

5 2 Flow Insensitivity 2 5

� Type of a variable is flow-invariant

� Flow sensitivity:

� Makes variable types less clear
� Brittle to refactoring
� Doesn’t help that much

� Could be added later if needed

5 2 Flow Insensitivity 2 5

� Type of a variable is flow-invariant
� Flow sensitivity:

� Makes variable types less clear
� Brittle to refactoring
� Doesn’t help that much

� Could be added later if needed

5 2 Flow Insensitivity 2 5

� Type of a variable is flow-invariant
� Flow sensitivity:

� Makes variable types less clear

� Brittle to refactoring
� Doesn’t help that much

� Could be added later if needed

5 2 Flow Insensitivity 2 5

� Type of a variable is flow-invariant
� Flow sensitivity:

� Makes variable types less clear
� Brittle to refactoring

� Doesn’t help that much

� Could be added later if needed

5 2 Flow Insensitivity 2 5

� Type of a variable is flow-invariant
� Flow sensitivity:

� Makes variable types less clear
� Brittle to refactoring
� Doesn’t help that much

� Could be added later if needed

5 2 Flow Insensitivity 2 5

� Type of a variable is flow-invariant
� Flow sensitivity:

� Makes variable types less clear
� Brittle to refactoring
� Doesn’t help that much

� Could be added later if needed

8 Z Asymmetric Concatenation Z 8

� In PL design, asymmetry can be good

� Examples of asymmetry:

� Subtyping
� Overriding
� Multiple inheritance
� Evaluation order
� Module dependencies

8 Z Asymmetric Concatenation Z 8

� In PL design, asymmetry can be good
� Examples of asymmetry:

� Subtyping
� Overriding
� Multiple inheritance
� Evaluation order
� Module dependencies

8 Z Asymmetric Concatenation Z 8

� In PL design, asymmetry can be good
� Examples of asymmetry:

� Subtyping

� Overriding
� Multiple inheritance
� Evaluation order
� Module dependencies

8 Z Asymmetric Concatenation Z 8

� In PL design, asymmetry can be good
� Examples of asymmetry:

� Subtyping
� Overriding

� Multiple inheritance
� Evaluation order
� Module dependencies

8 Z Asymmetric Concatenation Z 8

� In PL design, asymmetry can be good
� Examples of asymmetry:

� Subtyping
� Overriding
� Multiple inheritance

� Evaluation order
� Module dependencies

8 Z Asymmetric Concatenation Z 8

� In PL design, asymmetry can be good
� Examples of asymmetry:

� Subtyping
� Overriding
� Multiple inheritance
� Evaluation order

� Module dependencies

8 Z Asymmetric Concatenation Z 8

� In PL design, asymmetry can be good
� Examples of asymmetry:

� Subtyping
� Overriding
� Multiple inheritance
� Evaluation order
� Module dependencies

8 Z Asymmetric Concatenation Z 8

� Onion projection prefers rightmost element

� Not based on row typing
� Only presence information is pushed forward

� Type system can express “α has `A int”
� But not “α only has `A int”

� Upper bounds inferred from usage

� Monomorphic variant of TinyBang closure is
polynomial (vs. previous NP-complete result
[Palsberg et al. ’03])

8 Z Asymmetric Concatenation Z 8

� Onion projection prefers rightmost element

� Not based on row typing

� Only presence information is pushed forward

� Type system can express “α has `A int”
� But not “α only has `A int”

� Upper bounds inferred from usage

� Monomorphic variant of TinyBang closure is
polynomial (vs. previous NP-complete result
[Palsberg et al. ’03])

8 Z Asymmetric Concatenation Z 8

� Onion projection prefers rightmost element

� Not based on row typing
� Only presence information is pushed forward

� Type system can express “α has `A int”
� But not “α only has `A int”

� Upper bounds inferred from usage

� Monomorphic variant of TinyBang closure is
polynomial (vs. previous NP-complete result
[Palsberg et al. ’03])

8 Z Asymmetric Concatenation Z 8

� Onion projection prefers rightmost element

� Not based on row typing
� Only presence information is pushed forward

� Type system can express “α has `A int”

� But not “α only has `A int”

� Upper bounds inferred from usage

� Monomorphic variant of TinyBang closure is
polynomial (vs. previous NP-complete result
[Palsberg et al. ’03])

8 Z Asymmetric Concatenation Z 8

� Onion projection prefers rightmost element

� Not based on row typing
� Only presence information is pushed forward

� Type system can express “α has `A int”
� But not “α only has `A int”

� Upper bounds inferred from usage

� Monomorphic variant of TinyBang closure is
polynomial (vs. previous NP-complete result
[Palsberg et al. ’03])

8 Z Asymmetric Concatenation Z 8

� Onion projection prefers rightmost element

� Not based on row typing
� Only presence information is pushed forward

� Type system can express “α has `A int”
� But not “α only has `A int”

� Upper bounds inferred from usage

� Monomorphic variant of TinyBang closure is
polynomial (vs. previous NP-complete result
[Palsberg et al. ’03])

8 Z Asymmetric Concatenation Z 8

� Onion projection prefers rightmost element

� Not based on row typing
� Only presence information is pushed forward

� Type system can express “α has `A int”
� But not “α only has `A int”

� Upper bounds inferred from usage

� Monomorphic variant of TinyBang closure is
polynomial (vs. previous NP-complete result
[Palsberg et al. ’03])

Z Incremental Typechecking Z

� For scripts, edit-compile-debug must be fast

� Type constraint closure can be slow
� Solution:

� Track differences between software versions
� Delete constraints for removed code
� Include constraints from new code
� Perform closure again

Z Incremental Typechecking Z

� For scripts, edit-compile-debug must be fast

� Type constraint closure can be slow

� Solution:

� Track differences between software versions
� Delete constraints for removed code
� Include constraints from new code
� Perform closure again

Z Incremental Typechecking Z

� For scripts, edit-compile-debug must be fast

� Type constraint closure can be slow
� Solution:

� Track differences between software versions
� Delete constraints for removed code
� Include constraints from new code
� Perform closure again

Z Incremental Typechecking Z

� For scripts, edit-compile-debug must be fast

� Type constraint closure can be slow
� Solution:

� Track differences between software versions

� Delete constraints for removed code
� Include constraints from new code
� Perform closure again

Z Incremental Typechecking Z

� For scripts, edit-compile-debug must be fast

� Type constraint closure can be slow
� Solution:

� Track differences between software versions
� Delete constraints for removed code

� Include constraints from new code
� Perform closure again

Z Incremental Typechecking Z

� For scripts, edit-compile-debug must be fast

� Type constraint closure can be slow
� Solution:

� Track differences between software versions
� Delete constraints for removed code
� Include constraints from new code

� Perform closure again

Z Incremental Typechecking Z

� For scripts, edit-compile-debug must be fast

� Type constraint closure can be slow
� Solution:

� Track differences between software versions
� Delete constraints for removed code
� Include constraints from new code
� Perform closure again

Limitations

� Typical type system limitations

� Recursion limits contour creation
� Flow-insensitivity

� Syntactic limitations

� No string-to-label functionality

Limitations

� Typical type system limitations
� Recursion limits contour creation

� Flow-insensitivity

� Syntactic limitations

� No string-to-label functionality

Limitations

� Typical type system limitations
� Recursion limits contour creation
� Flow-insensitivity

� Syntactic limitations

� No string-to-label functionality

Limitations

� Typical type system limitations
� Recursion limits contour creation
� Flow-insensitivity

� Syntactic limitations

� No string-to-label functionality

Limitations

� Typical type system limitations
� Recursion limits contour creation
� Flow-insensitivity

� Syntactic limitations
� No string-to-label functionality

Compilation

Compilation

What will we want out of a compiler?

� Compiles scripts to native binaries (via LLVM)

� Optimizes layout using type information

� No unnecessary boxing
� Reduce pointer arithmetic
� Definitely no runtime hashing

� Still path-sensitive across modules

How do we get this?

Compilation

What will we want out of a compiler?

� Compiles scripts to native binaries (via LLVM)
� Optimizes layout using type information

� No unnecessary boxing
� Reduce pointer arithmetic
� Definitely no runtime hashing

� Still path-sensitive across modules

How do we get this?

Compilation

What will we want out of a compiler?

� Compiles scripts to native binaries (via LLVM)
� Optimizes layout using type information

� No unnecessary boxing

� Reduce pointer arithmetic
� Definitely no runtime hashing

� Still path-sensitive across modules

How do we get this?

Compilation

What will we want out of a compiler?

� Compiles scripts to native binaries (via LLVM)
� Optimizes layout using type information

� No unnecessary boxing
� Reduce pointer arithmetic

� Definitely no runtime hashing

� Still path-sensitive across modules

How do we get this?

Compilation

What will we want out of a compiler?

� Compiles scripts to native binaries (via LLVM)
� Optimizes layout using type information

� No unnecessary boxing
� Reduce pointer arithmetic
� Definitely no runtime hashing

� Still path-sensitive across modules

How do we get this?

Compilation

What will we want out of a compiler?

� Compiles scripts to native binaries (via LLVM)
� Optimizes layout using type information

� No unnecessary boxing
� Reduce pointer arithmetic
� Definitely no runtime hashing

� Still path-sensitive across modules

How do we get this?

Compilation

What will we want out of a compiler?

� Compiles scripts to native binaries (via LLVM)
� Optimizes layout using type information

� No unnecessary boxing
� Reduce pointer arithmetic
� Definitely no runtime hashing

� Still path-sensitive across modules

How do we get this?

Whole-Program Compilation!

Whole-Program Compilation

Why do we need a whole-program view?

� No declarations of types or module signatures

� General layout for extensible data structures is
inefficient

� So we must know what could arrive at each
call site

Whole-Program Compilation

Why do we need a whole-program view?

� No declarations of types or module signatures

� General layout for extensible data structures is
inefficient

� So we must know what could arrive at each
call site

Whole-Program Compilation

Why do we need a whole-program view?

� No declarations of types or module signatures

� General layout for extensible data structures is
inefficient

� So we must know what could arrive at each
call site

Whole-Program Compilation

How can we live with ourselves?

� Intermediate work (constraint sets, etc.) can
be stored and reused

� Coding to a module signature is limited; not all
interface semantics are typeable

� Vast layout optimization potential

� Shared libraries are still possible

Whole-Program Compilation

How can we live with ourselves?

� Intermediate work (constraint sets, etc.) can
be stored and reused

� Coding to a module signature is limited; not all
interface semantics are typeable

� Vast layout optimization potential

� Shared libraries are still possible

Whole-Program Compilation

How can we live with ourselves?

� Intermediate work (constraint sets, etc.) can
be stored and reused

� Coding to a module signature is limited; not all
interface semantics are typeable

� Vast layout optimization potential

� Shared libraries are still possible

Whole-Program Compilation

How can we live with ourselves?

� Intermediate work (constraint sets, etc.) can
be stored and reused

� Coding to a module signature is limited; not all
interface semantics are typeable

� Vast layout optimization potential

� Shared libraries are still possible

Layout

� Standard approach: common layout form (as
C++)

� Existing work handles flexible data structures

� A Calculus with Polymorphic and Polyvariant Flow
Types [Wells et al. ’02]

� A Polymorphic Record Calculus and Its
Compilation [Ohori ’95]

� Onions: more flexible, new problems

� Whole-program types will help us!

Layout

� Standard approach: common layout form (as
C++)

� Existing work handles flexible data structures

� A Calculus with Polymorphic and Polyvariant Flow
Types [Wells et al. ’02]

� A Polymorphic Record Calculus and Its
Compilation [Ohori ’95]

� Onions: more flexible, new problems

� Whole-program types will help us!

Layout

� Standard approach: common layout form (as
C++)

� Existing work handles flexible data structures
� A Calculus with Polymorphic and Polyvariant Flow

Types [Wells et al. ’02]

� A Polymorphic Record Calculus and Its
Compilation [Ohori ’95]

� Onions: more flexible, new problems

� Whole-program types will help us!

Layout

� Standard approach: common layout form (as
C++)

� Existing work handles flexible data structures
� A Calculus with Polymorphic and Polyvariant Flow

Types [Wells et al. ’02]
� A Polymorphic Record Calculus and Its

Compilation [Ohori ’95]

� Onions: more flexible, new problems

� Whole-program types will help us!

Layout

� Standard approach: common layout form (as
C++)

� Existing work handles flexible data structures
� A Calculus with Polymorphic and Polyvariant Flow

Types [Wells et al. ’02]
� A Polymorphic Record Calculus and Its

Compilation [Ohori ’95]

� Onions: more flexible, new problems

� Whole-program types will help us!

Layout

� Standard approach: common layout form (as
C++)

� Existing work handles flexible data structures
� A Calculus with Polymorphic and Polyvariant Flow

Types [Wells et al. ’02]
� A Polymorphic Record Calculus and Its

Compilation [Ohori ’95]

� Onions: more flexible, new problems

� Whole-program types will help us!

Where Are We?

We have:

� A TinyBang interpreter

� A TinyBang type system and soundness proof

� Effective encodings for language features

We need:

� A TinyBang-to-LLVM compiler

� A BigBang metaprogramming system

� A layout calculus and optimization tool

...

Where Are We?

We have:

� A TinyBang interpreter

� A TinyBang type system and soundness proof

� Effective encodings for language features

We need:

� A TinyBang-to-LLVM compiler

� A BigBang metaprogramming system

� A layout calculus and optimization tool

...

Where Are We?

We have:

� A TinyBang interpreter

� A TinyBang type system and soundness proof

� Effective encodings for language features

We need:

� A TinyBang-to-LLVM compiler

� A BigBang metaprogramming system

� A layout calculus and optimization tool

...

Where Are We?

We have:

� A TinyBang interpreter

� A TinyBang type system and soundness proof

� Effective encodings for language features

We need:

� A TinyBang-to-LLVM compiler

� A BigBang metaprogramming system

� A layout calculus and optimization tool

...

Where Are We?

We have:

� A TinyBang interpreter

� A TinyBang type system and soundness proof

� Effective encodings for language features

We need:

� A TinyBang-to-LLVM compiler

� A BigBang metaprogramming system

� A layout calculus and optimization tool

...

Where Are We?

We have:

� A TinyBang interpreter

� A TinyBang type system and soundness proof

� Effective encodings for language features

We need:

� A TinyBang-to-LLVM compiler

� A BigBang metaprogramming system

� A layout calculus and optimization tool

...

Where Are We?

We have:

� A TinyBang interpreter

� A TinyBang type system and soundness proof

� Effective encodings for language features

We need:

� A TinyBang-to-LLVM compiler

� A BigBang metaprogramming system

� A layout calculus and optimization tool

...

Where Are We?

We have:

� A TinyBang interpreter

� A TinyBang type system and soundness proof

� Effective encodings for language features

We need:

� A TinyBang-to-LLVM compiler

� A BigBang metaprogramming system

� A layout calculus and optimization tool

...

Questions?

