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Advantages of Static Typing

� Performance

� Debugging

� Programmer understanding



Typing Existing Scripting Languages

� e.g. DRuby, Typed Racket

� Existing language features are hard to type

� DRuby does not typecheck the entire Ruby API
� Typechecking runtime metaprogramming is hard

� These systems require programmer annotation

� Type annotations reduce terseness
� Annotations can be overly restrictive
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Let’s try designing a typed scripting
language from scratch



Designing a Typed Scripting Language

� Design type system and execution model
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� Be minimalistic: most features are encoded

� Use static near-equivalents for dynamic
patterns

� Infer all types: no type declarations

� Use a whole-program typechecking model

� Use type information to improve runtime
memory layout
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BigBang by Example
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Labels and Onions
� Labels simply wrap data

(polymorphic variants)
� Onions combine data
� Data may be unlabeled (vs. extensible records)
� Onion data is projected by type
� Onioning is asymmetric (right-precedence)

� Used to encode overriding
� Important for type checking (later)

`name "Tom"

("Tom" � `name "Tom")
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� But onioning is functional extension

def y = `A 2 in

(`A x -> x = 5 in y) y

=⇒ `A 5
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Mutation

� Label contents are mutable

� But onioning is functional extension
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def z = x & y in

z
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Expressiveness



Encoding Self

Function self-awareness can be encoded by:

� Adding a `self match to each pattern
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Encoding Self

Function self-awareness can be encoded by:

� Adding a `self match to each pattern

� Adding a `self value to each invocation

f e

⇓

f (e & `self f)



Encoding Self

def factorial = x: int ->

if x == 0 then 1 else

self (x-1) * x

in self 5

⇓
def factorial = x: int & `self self ->

if x == 0 then 1 else

self (x-1) * x

in factorial (5 & `self factorial)



Encoding Objects

� Objects are encoded as onions

� Each field is a labeled value

� Message handler scapes encode methods

class Point {

int x = 2;

int y = 3;

int l1() {

return x+y;

}

}



Encoding Objects

� Objects are encoded as onions

� Each field is a labeled value

� Message handler scapes encode methods

class Point {

int x = 2;

int y = 3;

int l1() {

return x+y;

}

}

`x 2 &

`y 3



Encoding Objects

� Objects are encoded as onions

� Each field is a labeled value

� Message handler scapes encode methods

class Point {

int x = 2;

int y = 3;

int l1() {

return x+y;

}

}

`x 2 &

`y 3 &

( `l1 () ->

self.x+self.y)



Encoding Objects

� Objects are encoded as onions

� Each field is a labeled value

� Message handler scapes encode methods

class Point {

int x = 2;

int y = 3;

int l1() {

return x+y;

}

}

`x 2 &

`y 3 &

( `l1 () &

`self self ->

self.x+self.y)



Encoding Objects

def o =

`x 2 &
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Encoding Objects

def o =

`x 2 &

`y 3 &

( `l1 () & `self self ->

self.x + self.y )

in

o ( `l1 () &

`self o )

∼= o.l1()



Encoding Mixins

� Inheritance occurs by onion extension

� Mixins are the extension onion

def mypoint = `x 2 & `y 3 &

(`l1 () -> self.x + self.y)

in def mixinFar =

(`isFar () -> self.l1() > 26)

in def myFpoint = mypoint & mixinFar

in myFpoint .isFar ()
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Encoding Classes

� Classes are object factories

� Subclass factories instantiate and extend

def Point = `new (`x x & `y y) ->

`x x & `y y &

(`l1 () -> self.x + self.y)

in . . .



Encoding Classes

� Classes are object factories

� Subclass factories instantiate and extend

def Point = `new (`x x & `y y) ->

`x x & `y y &

(`l1 () -> self.x + self.y)

in def Point3D =

`new (a: `x _ & `y _ & `z z) ->

def super = (Point .new a) in

super & `z 0 &

(`l1 () -> super.l1()) + self.z)

in Point3D (`new (`x 1 & `y 2 & `z 3))



Encoding Overloading

� Overloading is trivial with scapes

� Onion extension allows incremental overloading

� Default arguments are easy too

def join =

((`x x:int & `y y:int) -> x + y) &

((`x _:unit & `y _:unit) -> ())

in

join (`x 1 & `y 2) & join (`x () & `y ())



Encoding Overloading

� Overloading is trivial with scapes

� Onion extension allows incremental overloading

� Default arguments are easy too

def join =

((`x x:int & `y y:int) -> x + y) &

((`x _:unit & `y _:unit) -> ())

in def x = join (`x 1 & `y 2) &

join (`x () & `y ())

in def join = join &

((`x x:int & `y _:unit) -> x + 1)

in join (`x 5 & `y ())



Encoding Overloading

� Overloading is trivial with scapes

� Onion extension allows incremental overloading

� Default arguments are easy too

def inc = a: `x x ->

def by = ((_ -> 1) &

(`y y -> y)) a

in x + by

in

inc (`x 1 & `y 2) + inc (`x 6)



Metaprogramming

� BigBang uses TinyBang as a core language

� BigBang will provide macros for
syntax/features

� self, class syntax, etc. defined in this way

� User extensions can be specified

� Similar to Racket (Languages as Libraries
[Tobin-Hochstadt et al., 2011])
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� No arbitrary cutoffs
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� Intuitive non-local inference

Z Efficient

� Short compile times for dev. iterations

2 Easy to Use

� Usable to teach introductory courses
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Typing Scripting Languages

A scripting language’s type system must be:
8 Expressive

� Duck typing, conditional types
� No arbitrary cutoffs

5 Comprehensible
� Types should be legible
� Sources of type errors must be clear
� Intuitive non-local inference

Z Efficient
� Short compile times for dev. iterations
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Typing BigBang

For BigBang, we choose:

8 2 Subtype inference
8 Call-Site Polymorphism
8 5 Path sensitivity
5 2 Flow insensitivity

8 Z Asymmetric concatenation
Z Incremental typechecking

8 Expressive 5 Comprehensible
Z Efficient 2 Easy to Use
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def y = f () in

def z = f (`B 2 & `C 3) in

. . .

x =⇒ `A 0

y =⇒ `A ()

z =⇒ `A (`B 2 & `C 3)



8 Call-Site Polymorphism 8

def f = x -> `A x in

def x = f 0 in

def y = f () in

def z = f (`B 2 & `C 3) in

. . .

x =⇒ `A 0

y =⇒ `A ()

z =⇒ `A (`B 2 & `C 3)



8 5 Path Sensitivity 5 8

� Scape application based on pattern match

� Constraints expanded only if input matches
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8 Z Asymmetric Concatenation Z 8
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Questions?


