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Abstract

This paper introduces a new language model, Coqa, for deeply embedding

concurrent programming into objects. Every program written in Coqa has the desir-

able built-in behaviors of quantized atomicity, mutual exclusion, and race freedom.

Such a design inverts the default mode of e.g. Java, where such properties have to be

manually coded using primitive language constructs such as synchronized, result-

ing in programs that are vulnerable to surprising run time errors. A key property of

Coqa is the notion of quantized atomicity: all concurrent program executions can be

viewed as being divided into quantum regions of atomic execution, greatly reducing

the number of interleavings to consider. So rather than building atomicity locally,

with small declared zones of atomicity, we build it globally, down from the top. We

justify our approach from a theoretical basis by showing that a formal representation,

KernelCoqa, has provable quantized atomicity properties. Then we extend Kernel-

Coqa with two I/O models in which we conduct an in-depth study on how I/O affects

the atomicity property and establish atomicity theorems with respect to I/O. We

perform a series of benchmarks in CoqaJava, a Java-based prototype implementation
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incorporating all of the KernelCoqa features, to demonstrate the practicability of the

Coqa model. We give concrete CoqaJava examples of various common concurrent

programming patterns which showcase the strength and ease of programming of the

language.
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Chapter 1

Introduction

Today multi-core CPUs have become the general trend in computer hardware.

This technology is transforming the personal computer into a powerful parallel machine and

incents evolutions in every field of computer science, such as operating systems, libraries

and applications. Programming languages are also involved in this architectural evolution

because programming languages have to evolve in order to meet the programming demands

of the times.

Software applications can benefit greatly from multi-core architectures if they are

coded with multi-thread. However, the reality is that most applications are not written to

use parallel threads intensively because developing multi-threaded applications is notori-

ously challenging. Due to the difficulties of thread synchronization and debugging threaded

code, programmers are daunted to take advantage of the computation power of multi-core

CPUs. We think that such a situation is caused by a gap between low level parallel hard-

ware and high level programming languages. Therefore, designing programming languages
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to match the coming ubiquity of concurrent computation becomes an imminent task.

The Coqa project investigates how a concurrent object-oriented language should

be designed in the context of a pervasive concurrent computing environment. The ultimate

goal of the Coqa project serves to reconsider the right concurrency model of a program-

ming language, so that programmers can develop multi-threaded applications more easily.

Consequently, more of the performance gained at the hardware level can be propagated to

the application development level due to increasing usability.

1.1 Concurrent Programming and Correctness Properties

Concurrency is a property of a system in which there can be several tasks making

processes at the same time. A task can be a heavyweight process or a lightweight thread.

Concurrent systems differ from sequential ones in that tasks can potentially interact with

each other [58].

Concurrency improves system responsiveness, maximizes resource usage and hence

greatly increases the throughput of computers. A distinct challenge of concurrent program-

ming is that programs are difficult to reason about due to the nature of non-determinism.

There are an incredibly large number of interleaving possibilities across all possible runs of

a program and how the program runs depends on the actual interleavings at run time. In

this chapter, we review the desirable correctness properties.
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1.1.1 Data Race Freedom

A race condition occurs when a shared field is accessed by two threads at the same

time and at least one of the accesses is a write. Race conditions may lead to timing flaw

in a system because the system behavior would depend on the order of the two accesses to

the field at run time. Inconsistencies in current programs may stem from race conditions

producing storage conflict at the level of the raw memory cell [42] and cause serious damage

to a system.

public class Even {
private int n = 0;
public int next() {

++n;
++n;
return n;

}

Figure 1.1: Race Condition

Thread A Thread B
read 0
write 1

read 1
write 2

read 2 read 2
write 3

write 3 return 3
return 3

Table 1.1: Race Condition Trace

The example in Figure 1.1 from [42] shows how a race condition can lead to dan-
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gerous data inconsistency. The class Even is supposed to return an even number whenever

its next method is called. However, if multiple threads race on mutating the shared vari-

able n, then the output can even be a value that was not ever written by any thread. For

instance, consider the following possible execution trace shown in Table 1.1, in which reads

correspond to getfields of Java bytecode and writes correspond to putfields. At the end

of the invocation on the method next, both threads A and B get 3,a non-even number.

A decade ago, race conditions were a less severe problem because most systems

were sequential programs. But today’s computer hardware has greater concurrency capa-

bility via multi-core technology. Accordingly, multi-threaded applications are becoming the

future of software. Any resource sharing among threads creates possibilities for race condi-

tions. With the ever-growing application sizes, data race is indeed a common vulnerability

in software and it can potentially lead to catastrophic disasters in real world systems. For

instance, the Northeast Blackout of 2003 affected an estimated 50 million people in United

States and Canada and caused around $6 billion in financial losses. This outage was later

found to be caused by a race condition bug in the computer system. This incident warns

us of the harsh reality and challenge we are facing today.

Race conditions can be eliminated by using locks. A thread acquires a lock before

accessing a shared resource and releases the lock when it is done with the resource. Any

multi-threaded programming language must provide language primitives to avoid data races.

Java guarantees methods and statement blocks declared with the synchronized keyword

are accessed exclusively by a single thread at any given time. Theoretically, every Java

object is implicitly associated with a lock. Before entering a synchronized method a thread
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needs to first acquire the lock on the current this object, while a synchronized block can

specify which object’s lock should be acquired before the block can be run. For instance,

adding a synchronized method modifier to the next method in Figure 1.1 successfully

removes the race condition in this particular example.

Not all data races are malicious. There are cases where strict data consistency is

not required and some systems may introduce or leave data races untreated for the purpose

of responsiveness and performance. For instance, a web server may allow users to request

pages undergoing modifications if the completeness of these pages can be tolerated by users.

We are not concerned about these benign data races, but rather those causing unwanted

system behaviors. Data race freedom is a property where race conditions do not arise. In

a race free system, threads compete for shared resources and then use them in a mutually

exclusive way so that when a thread completes its operations on a resource, it leaves it in

a consistent state for other threads.

1.1.2 Mutual Exclusion

Mutual exclusion is a means of making sure multiple threads take turns to access

shared resources. Code executed in such a mutually exclusive way is called a critical section.

As mentioned before, mutual exclusion is commonly used to eliminate race conditions.

However, mutual exclusion can be a property not tied to any specific fields, but a property

of arbitrary code blocks. To avoid data races on a field, all accesses to the field should be

mutually exclusive.

With the synchronized keyword, Java programmers can code their applications

to exclude race conditions, but they have to follow very strict programming discipline to
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make it right. Figure 1.2 shows an example given in the Sun Java thread tutorial [12]. In

this example, a producer thread and a customer thread write and read a CubbyHole object

respectively.

public class CubbyHole {
private int content;
private boolean available = false;

public synchronized int get() {
while(available == false){

try {
wait();

}catch(InterruptedException e){}
}
available = false;
notifyAll();
return content;

}

public synchronized void put(int value){
while(available == true) {

try{
wait();

}catch(InterruptedException e) {}
}
content = value;
available = true;
notifyAll();

}
}

Figure 1.2: CubbyHole

The get and put methods in Figure 1.2 are synchronized and hence at most one

thread can be executing the two methods of a CubbyHole object. Specifically, when the

first thread reaches the program point of method get, it acquires a lock on the this object
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and the lock would be released when the thread exits the method. While the lock on this

object is held by a thread, any other threads requesting the same lock would fail to acquire

it. The wait and notifyall methods are defined by the Java root Object class. They are

used to put a thread into a wait state and to wake up threads that are waiting on an object

respectively. So the code in Figure 1.2 specifies if a thread cannot acquire the lock on a

CubbyHole object, it will wait for the lock to be freed by its owner and then try to acquire

the lock again, until it eventually gets a hold of the lock.

Note that the field content is private and it is accessed only via the get and put

methods. Therefore, declaring the get and put to be synchronized is adequate to make

sure that there is no data race on the field content. If content is a public or protected

field, then there is no such guarantee because threads can access this field without using

the properly synchronized get and put methods. Similarly, if the CubbyHole class has any

unsynchronized method that also accesses the private content field, the same data race

problem would arise. The root of this problem is that the Java synchronized keyword

only ensures a semantics of mutual exclusion. It is the programmers’ full responsibility to

ensure that a shared field is always accessed in a mutually exclusive way.

1.1.3 Atomicity

Data race freedom is important to multi-threaded applications. However, it is

neither a necessary nor a sufficient condition of program correctness [24]. Two examples,

Figure 1.3 and Figure 1.4, illustrate this assertion.

In Figure 1.3, balance is the only object field declared in the Bank class and there

is obviously no race on accessing it. Suppose the initial value for balance is 10 and there
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class Bank {
private int balance;
void synchronized deposit(int n) {

balance = balance + n;
}
int synchronized read(){

int r;
r = balance;
return r;

}
void withdraw(int n) {

int r = read();
synchronized(this) {

balance = r - n;
}

}
}

Figure 1.3: Race Free Is Not Sufficient

are two threads: one calls method deposit(10) and the other calls withdraw(10). The

expected final value of balance is 10. However, it is possible that the final value of balance

turns out to be 0 if the withdraw thread reads the initial value of balance, 10, and stores

the value into the local variable r. Then the deposit thread grabs the lock on the bank

object and increases the value of balance to 20 and releases the lock. Then the withdraw

thread acquires the same lock and resumes its computation of balance based on staled

value stored in r, giving an incorrect result of 0.

On the other hand, Figure 1.4 shows accesses on the field i causing a race condition.

One thread holds the lock object reading and writing i, while another thread reads i via

the method read. However, the program behaves correctly in a multi-threaded context.

The value of i always appears to increase by 1, atomically. This example demonstrates

that race freedom is not necessary for program correctness.
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class Ref {
Lock lock = new Lock();
private int i;

void inc() {
int t;
synchronized (lock) {

t = i;
i = t + 1;

}
}

int read() {
return i;

}
}

Figure 1.4: Race Free Is Not Necessary

These examples clearly demonstrate that data race freedom is not enough to guar-

antee program correctness, a stronger property is needed. The key is atomicity – i.e., the

property that a block of code can always be viewed as being executed sequentially no matter

what interleaving takes place. The common technique to prove the atomicity property of

a code block involves showing that for all execution paths in presence of concurrent execu-

tions, we can find an equivalent serial execution with the same behaviors. We will use the

same technique in proving our theorems in later sections.

1.2 Atomicity in Existing Programming Models

Most existing programming languages provide language primitives/libraries for

programming concurrent applications. But the more interesting question here is if they

have adequate support for atomicity. Here we study this problem in three different language
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models: Java as an example of an object-oriented model, the Actor model, and Software

Transactional Memory systems.

1.2.1 Java Language

Existing object-oriented programming languages fall short of supporting concur-

rent programming because they are primarily designed for sequential programming. For

instance, the focus of Java was originally portable Internet applications. There is no built-

in language support for atomicity in Java. It is the programmers’ sole responsibility to

protect shared data, eliminate harmful interleavings, and build atomicity in their applica-

tions manually.

Figure 1.5 illustrates some subtleties of achieving atomicity in Java. The syn-

chronized declaration of the method foo seemingly always gives us a serial execution.

However, this method is not atomic. In a concurrent context, the two calls to o.read()

can yield different results. The lower part of Figure 1.5 illustrates an interleaving of two

threads which do not have an equivalent serial execution path.

The reality is that it is very difficult to code and debug multi-threaded applications

using programming languages like Java because these languages do not have built-in support

for atomicity. Programmers have to deal with exponentially many interleavings of threads.

For instance, if the field content of the CubbyHole class is public or protected, it is

difficult to locally reason about atomicity properties of code because all classes that are able

to access this field directly or indirectly need to be considered. So getting atomicity correctly

encoded in their applications requires programmers to have an in-depth understanding about

subtle atomicity semantics, a topic we will discuss in Section 1.2.4.
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class A {
void synchronized foo(B ob) {

ob.read();
ob.read();

}
}
class B {

int f = 0;
...
synchronized int read() {

return f;
}
synchronized int write(int v) {

f = v;
}

}

a.foo(b) ob.read() b.write(5) ob.read()A a = new A()
B b = new B()   

 f = 5

output

0 5

output

a.foo(b) ob.read() b.write(5)ob.read()  f = 5

output

0 0

output

a.foo(b) ob.read()b.write(5) ob.read() f = 5

output

5 5

output

thread b

thread a

Figure 1.5: Atomicity in Java
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1.2.2 The Actor Model

The Actor model [1] is a mathematical model of concurrent computation for open

distributed systems. Actors are autonomous components that communicate with each other

asynchronously. Each actor has its own private store. An actor can create another new actor

and send and receive messages. All these operations are asynchronous which means an actor

does not block on any sends waiting for replies. The Actor model makes sense for distributed

programming in which communication is by nature asynchronous.

Actors [1, 2] have atomicity deeply rooted in their model. Due to the fact that

communication among actors is exclusively by asynchronous messaging, atomicity is inher-

ently preserved for every method. Once the execution of a method is initiated, it does

not depend on the state of other actors, and each method is therefore trivially viewed as

executed in one step no matter what interleavings occurred. The Actor model’s per-method

atomicity is a local property in the sense that it neither includes more than one actor nor

other methods invoked by the current method.

Actors are a weak programming model for tightly coupled concurrent code where

synchronized communication is frequently needed. Because the Actor model does not have a

built-in synchronized messaging mechanism, programmers need to code synchronized com-

munication manually. A simple task such as an actor sending a message to another actor

and waiting for a reply to resume its own task becomes a heavy coding job. The common

technique for accomplishing synchronous interaction in an asynchronous model is to use

continuations: the computation scheduled for being executed after receiving a reply would

be wrapped up as a continuation, and then the sender actor waits exclusively for the reply
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from the receiver to trigger the execution of the continuation before it can handle any other

received messages.

1.2.3 Software Transactional Memory

Software Transactional Memory (STM) is a direct application of the commit-

rollback mechanism in database systems to programming languages. Basically, in trans-

actional programming languages, programmers can label code blocks to be “atomic”. Then

it is the language runtime’s responsibility to ensure these labeled code blocks satisfy certain

atomicity semantics by using the rollback mechanism. If data access violations are detected

before a transaction can commit the effects of its computation, the transaction will be aban-

doned and the system rolls back to the initial state before the abandoned transactions start.

An access violation happens if one transaction writes to a memory location while another

transaction reads from the same location. A transaction here is one run time execution

path of a code block labeled as atomic. STM has been adopted by many systems such as

[31, 64, 32, 57, 13, 3, 19]. Because STM systems have the language support for atomicity,

they are a better model for concurrent programming than languages like Java that lack of

any form of atomicity.

In order to make sure that the system can roll back to the state before an aban-

doned transaction, a transactional system needs to do bookkeeping of the initial state of

every transaction. The overhead of such bookkeeping can grow unexpectedly large with an

increasing number of threads and transaction sizes. So STM programmers are encouraged

to limit the size of atomic blocks to avoid large run time overhead.
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1.2.4 Atomicity Semantics

The seemingly straight-forward definition of atomicity conceals different semantics

with subtle differences in various language models. Understanding what atomicity really

means in a system is crucial for writing correct applications.

Ubiquitous Atomicity or Selective Atomicity Different forms of atomicity exist in

the Actor model and STM systems. The Actor model has ubiquitous atomicity : every

method in the Actor model is atomic and it is not possible to code a method in a non-atomic

way. On the other hand, STM systems have selective atomicity in the sense atomicity is

only guaranteed if a code block is explicitly labeled as atomic. Otherwise, no concern for

data access violation ever arises.

Weak Atomicity and Strong Atomicity In a transactional programming language,

an application may include both transactional and non-transactional code. If the system

only considers atomicity among transactions so that it is possible for non-transactional

code interleaving with transactions, then the system has a so-called weak atomicity. Strong

atomicity on the other hand guarantees that atomicity is respected among transactions as

well among transactions and non-transactions. A study of weak and strong atomicity in a

transactional language model can be found in [10].

Weak atomicity, the atomicity semantics supported in most STMs, can be poten-

tially dangerous because it is hard to reason about program correctness if a transaction is

atomic only in respect to other transactions but not other non-transaction executions. It

only gives programmers an illusion of atomicity which could trap them into a hard-to-detect
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bug. The subtlety of weak and strong semantics hinders programmers’ understanding of

STM systems and weakens their capabilities of using these systems correctly.

The Actor model has strong atomicity in the sense that there is no execution step

falling outside an execution of a method while every method is an atomic block.

Shallow Atomicity and Deep Atomicity Although the atomicity supported in the

Actor model is ubiquitous and strong, it is also shallow. Each message is the unit of

atomicity and it only consists of local computation of one actor. Specifically, for a task

involving multiple actors and spanning multiple messages, the best atomicity we can get in

the Actor model is atomicity in the unit of each message. It is not possible to obtain a bigger

zone of atomicity by relying on the language model itself. Such shallow atomicity is limited

in terms of programmability because the demand of atomicity over multiple messages and

objects is not uncommon in object-oriented programming.

Atomicity in many STM systems on the other hand is deep atomicity. It can

span the run time execution of an atomic block which may across object and method

boundaries. Those systems usually dynamically keep track of memory locations that have

been read/written by a transaction till a commit/abort checkpoint is reached.

1.3 Coqa: A New OO Language for Concurrency

In this thesis, we propose a new object-oriented language for concurrent program-

ming that provides strong language support of a desirable atomicity property for all pro-

grams. We name this new object-oriented language, Coqa (for Concurrent objects with

quantized atomicity). We here discuss the rationales of the important design choices we have
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made for Coqa. Coqa is an object-oriented programming language with a so-called atom-

icity by design. Atomicity is built into the language syntax and semantics by proactively

limiting sharing. Coqa also has built-in support for mutual exclusion and race freedom.

With these concurrency properties, Coqa eliminates the need for a complex memory model

like what Java has [48], a cumbersome memory model with a lot of intricate complications.

1.3.1 Quantized Atomicity: Ubiquitous, Strong and Deep

One of Coqa’s main goals is to significantly reduce the number of interleavings

possible in concurrent program runs and to significantly ease the debugging burden for

programmers. If two pieces of code each have 100 steps of execution, reasoning tools would

have to consider interleaving scenarios of 2200 possibilities. However, if the aforementioned

100 steps can be split into 3 atomic zones, there are only 20 possibilities. We call these

atomic zones quanta in Coqa. Steps of each quantum are serializable regardless of the

interleaving of the actual execution.

The concurrency unit in our language is a task. This unit of execution can poten-

tially interleave with other units. Tasks are closely related to (logical) threads, but tasks

come with inherent atomicity properties not found in threads and we coin a new term to

reflect this distinction. A key property of Coqa programs is that object methods will often

have strong atomicity over the whole method by design. A task spanning those methods

is then atomic by default. But, for tasks that simply cannot be atomic, our model allows

programmers to relax the full atomicity by dividing a task into a small number of quanta,

giving a model with quantized atomicity. Because every quantum is delimited by program-

ming points as explicitly specified by programmers, programmers only need to consider
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how to logically partition a program in one or more zones. Coqa guarantees the atomicity

property of those zones.

Quantized atomicity of Coqa is ubiquitous. The default mode of Coqa is that the

overall atomicity is preserved for every task unless programmers explicitly declare otherwise,

which demarcates a task into a sequence of quanta and every quantum is atomic. Quantized

atomicity of Coqa is strong because all code has to be in one atomic zone or another.

Quantized atomicity of Coqa is deep. An application can be divided into multiple quanta,

each of which spans execution steps that may involve many objects and across multiple

methods. So quanta can be much bigger atomic zones than the per-actor-per-message

shallow atomic zones inherent to the Actor model.

1.3.2 Atomicity by Locking vs by Rollbacks

Quantized atomicity gives a programming language model a notion of ubiquitous

atomicity which has very strong reasoning power. In terms of how atomicity can be achieved

in a language model, there are in general two approaches: the pessimistic blocking approach

and the optimistic rollback approach. Coqa takes the first route.

The rollback/commit scheme was first proposed by [40] to increase concurrency

while at the same time preserve the atomicity property of transactions in database systems.

It addresses throughput and deadlock problems in databases. Databases are fundamentally

open systems that need to deal with all possible inputs. A database system cannot predict

with certainty the pattern of how it will be accessed because any application with an

interface to the database can access it and the application could change its access pattern

any time without any notice. So it is impossible to design a general purpose deadlock
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prevention technique for database systems. On the other hand, software applications are

closed systems. The complete code of an application is usually available before it can

be deployed. Therefore, analyzing applications statically for deadlocks is a more realistic

and efficient approach in a programming language system. Coqa is likely to have more

dealocks due the increased amount of mutual exclusion needed for quantized atomicity. It

significantly raises the importance of developing quality static deadlock prevention tools.

There has been extensive research on detecting deadlocks statically as we will discuss as

future work in Section 6.

STM systems directly adopt the rollback/commit mechanism in database systems

into programming languages. It is an approach that applies a solution more suitable to an

open system to a rather closed system. We believe that this approach only offers a partial

solution to achieve atomicity in a programming language because STM systems have not

acknowledged the fundamental differences between a database system and a programming

language. The rollback approach has known difficulties on rolling back certain forms of

computations, I/O in particular. Therefore, the rollback approach is not a general strategy

for achieving ubiquitous atomicity even thought it can be efficiently applied to a small

amount of code blocks in a large application. For instance, the need to roll back a network

message sent across political boundaries opens up a Pandora’s Box of problems. This

fatal shortcoming directly clashes with our proposed quantized atomicity because it is not

possible to have a ubiquitous notion of atomicity in the presence of I/O, if the optimistic

approach is taken. Due to the inherent mutual exclusion between I/O and the rollback

approach, STM systems unavoidably have to exclude I/O programming in atomic blocks.

18



However, as an implementation technique, the rollback approach can be used in Coqa as an

underlying implementation strategy for regions where there is no I/O, just not everywhere.

Section 6 discusses a hybrid approach in more detail.

In realistic STM languages, it is common to support primitives such as what

needs to be compensated at abort time or at violation time (AbortHandler, etc. in [13] and

onAbort etc. methods in [53]) as user-definable handlers. These handlers themselves may

introduce races or deadlocks, so some of the appeal of the approach is then lost [53]. More

importantly, such design blurs the language semantics for atomicity. It makes reasoning

about the correctness of transactional blocks more difficult.

Transaction-based systems do not have deadlock problems but they have to deal

with livelock, the case where rollbacks resulting from contention might result in further

contentions and further rollbacks, etc. How frequently livelocks occur is typically gauged

by experimental methods. Livelocks are less server than deadlocks in the sense that the

possibility of eventually resolving a livelock can be statistically high with multiple retries so

that a sytesm can eventually recover from a livelock and progress, while a deadlock would

cause the system forever.

1.3.3 Integrating Concurrency with Object Interaction

Existing object-oriented languages like Java use a non-object-based syntax and

semantics for concurrent programming. Language abstractions such as library class Thread

and thread spawning via its start method, synchronized blocks and atomic blocks in

various STM extensions of Java are not so different from what was used three decades ago

in non-object-oriented languages [47].
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Coqa however integrates concurrency and object interaction seamlessly. More

specifically, in addition to the familiar o . m(v) message send expression, Coqa provides

two more messaging primitives: o -> m(v) for introducing concurrency into a system and

o => m(v) for explicitly introducing interleavings between concurrent executions for the

purpose of communication. Our goal is to integrate concurrency naturally into an object-

oriented language model that at the same time delivers a powerful atomicity semantics to

programmers so that concurrent applications can be easy to write and easy to understand.

1.4 This Dissertation

In this dissertation, we present a new programming language model for concur-

rent programming called Coqa. Chapter 2 introduces how Coqa takes advantage of basic

object-oriented interactions to express important concurrent programming primitives. In

particular, different forms of message passing are all that are needed to express creating a

separate task, intra-task messaging, and inter-task communication. In this chapter, we also

informally present the implications of different types of message send in terms of atomicity.

We formalize the Coqa model in a core language called KernelCoqa in Chapter 3, and prove

the model has the properties of quantized atomicity, mutual exclusion, and race freedom.

Chapter 4 extends KernelCoqa to a more realistic language model with the capability of

modeling real world I/O. We propose two different I/O models, and rigorously formalize

that desirable concurrency properties still hold with I/O. Chapter 5 describes CoqaJava,

a prototype translator implementing Coqa as a Java extension by simply replacing Java

threads with our new forms of object messaging. The sequential core of the language re-
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mains unchanged. Preliminary benchmarks show that CoqaJava has reasonable overhead

with only basic optimizations applied, which indicates a good performance potential in a

more complete implementation. Chapter 6 studies possible approaches that can further im-

prove the Coqa model in various aspects. Chapter 7 gives concrete CoqaJava code examples

of various concurrency patterns to demonstrate the strength and ease of programming of

the language.
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Chapter 2

Informal Overview

In this chapter, we informally introduce the key features of Coqa in an incremental

fashion, using a simple example of basic banking operations, including account opening and

balance transfer operations. Figure 2.1 and Figure 2.2 give the barebones version of the

source code we start with. Bank accounts are stored in a hash table, implemented in

a standard fashion with bucket lists. For instance, after the three accounts Alice, Bob,

Cathy have been opened via the first four lines of the main method, a possible layout for

objects in the hash table is pictured in Figure 2.3. For brevity here we present simplified

code which omits checks for duplicate keys, nonexistant accounts, and overdrafts.

2.1 The Barebones Model

First we describe a barebones model of Coqa to illustrate basic ideas such as task

creation and object capture.
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class BankMain {
public static void main (String [] args) {

Bank bank = new Bank();
bank.openAccount("Alice", 1000);
bank.openAccount("Bob", 2000);
bank.openAccount("Cathy", 3000);

(M1) bank -> transfer("Alice", "Bob", 300);
(M2) bank -> transfer("Cathy", "Alice", 500);
(M3) bank -> openAccount("Dan", 4000);

}
}

class Bank {
public void transfer (String from, String to, int bal) {

Status status = new Status();
(A1) status. init();
(A2) Account afrom = (Account)htable.get(from);
(A3) afrom.withdraw(bal, status);
(A4) Account ato = (Account)htable.get(to);
(A5) ato.deposit(bal, status);

}
public void openAccount(String n, int bal) {

htable.put(n, new Account(n, bal));
}
private HashTable htable = new HashTable();

}

class Account {
public Account(String n, int b) {name = n; bal = b; }
public void deposit(int b, Status s) {

bal += b;
s.append("Deposit " + b + " to Acc. " + name);

}
public void withdraw(int b, Status s) {

bal -= b;
s.append("Withdraw " + b + " from Acc. " + name);

}
private String name;
private int bal;

}

class Status {
public void init() {statusinfo = some time stamp info; }
public void append(String s) {statusinfo.append(s);}
public void print() {System.out.println(statusinfo); }
private StringBuffer statusinfo = new StringBuffer();

}

Figure 2.1: A Banking Program: Version 1
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class HashTable {
public Object get(Object key) {

(*) // ...
return buckets[hash(key)].get(key);

}
public void put(Object key, Object data) {

buckets[hash(key)].put(key, data);
}
private int hash(Object key) {

return key.hashcode() % 100;
}
private BucketList[] buckets = new BucketList[100];

}

class BucketList {
public Object get(Object key) {

for (Bucket b = head; b!= null; b = b.next())
if (b.key().equals(key))

return b.data();
return null;

}
public void put(Object key, Object data) {

head = new Bucket(key, data, head);
}
private Bucket head;

}

class Bucket {
Bucket(Object k, Object d, Bucket b) {

key = k;
data = d;
next = b;

}
public Object key() {return key;}
public Object data() {return data;}
public Bucket next() {return next;}
private Object key;
private Object data;
private Bucket next;

}

Figure 2.2: HashTable
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htable :  HashTable

buckets :  BucketList[] 

buckets[1] :  BucketList 

: Bucket

“Cathy” : String “Alice” : String

“Bob” : String

: Account

buckets[0] :  BucketList 

: Bucket

: Bucket

buckets

head

head

key

key

keydata data

data

next

: Account

: Account

Figure 2.3: HashTable: a UML Illustration

2.1.1 Task as Concurrency Unit

In Coqa, we model concurrent computation as a number of threads (in our ter-

minology, tasks) competing to “capture” objects, obtaining exclusive rights to them. Since

we are building an object-based language, the syntax for task creation is also object based.

Tasks are created by simply sending asynchronous messages to objects using -> syntax. For

example, in Figure 2.1, the top-level main method starts up two concurrent balance transfers

by the invocations in lines M1 and M2. Syntax bank -> transfer("Alice", "Bob", 300)

indicates an asynchronous message transfer sent to the object bank with the indicated

arguments. Asynchronous message send returns immediately, so the sender can continue,

and a new task then is created to execute the invoked method. This new task terminates

when its method is finished.

Tasks are selfish in Coqa. Figuratively, Java threads selflessly share objects in
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the heap by default. Unfortunately such an idealistic model breaks down in the face of

concurrency: mutual exclusion, race freedom and atomicity, which all require zones of

exclusive use of objects, and thus threads need to be orchestrated carefully to be selfish in

their control of objects. In our language, tasks always selfishly compete for objects in the

heap and such a selfish mechanism better satisfies selfish properties like atomicity.

The basic idea for Coqa tasks to be selfish is simple. Whenever a task accesses

an object which has not yet been captured by other tasks, it selfishly captures it. At any

moment of execution, a task can be viewed as having selfishly captured a set of objects

(we say these objects are in the task’s capture set). There are different modes that a task

may capture an object. But for now, let us assume that when an object is captured by a

task, it becomes exclusively accessible only to this task. We will discuss more details about

different types of capture in the coming sections. Objects in the capture set of a task remain

captured until they are all freed when the task ends. If a task intends to access an object

that has already been captured by some other task, it is blocked at that point of execution

until the needed object is freed and it successfully captures the object.

Capturing is a blocking mechanism, but unlike Java where programmers need to

explicitly specify what to lock, where to lock and when to lock, the capture and blocking

of objects is fundamentally built into Coqa. It is carried out by Coqa automatically and

implicitly for all tasks.

2.1.2 Timing and Scope of Capture

The description of how Coqa tasks capture objects during their execution is not

complete before we specify when an object is captured and how selfish captures are.
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In regard to timing, we could decide to capture an object when a task sends a

message to it, or when the object’s fields are accessed by a task. The first candidate is a more

intuitive choice in that it allows programmers to reason in an object-based fashion rather

than a per-field fashion. The second candidate is more an optimization strategy to improve

performance since it potentially allows more parallelism inside an object. For instance,

consider transfer method of Figure 2.1. When the programmer writes line A2, his/her

intention is to selfishly capture the HashTable object referenced by htable. Synchronous

messaging at a high level expresses the fact that the task will be accessing the receiver.

However, this view is more conservative than is necessary. What really matters is exclusive

access to (mutable) data, i.e. the underlying fields. So, in Coqa we define the capture

points to be the field access points. In the aforementioned example, capture of the htable

by the invoking task occurs in the middle of executing the get method of the HashTable,

when the field buckets is accessed. It is for the same reason that we can have parallelism in

M1 and M2, since the moment of the messaging does not capture the bank object. Running

both concurrently will not lead to competition for it since the transfer method does not

access the bank field at the point when the two messages are delivered to the bank object.

The second question is related to field access itself. The selfish model we have thus

far described treats read and write accesses uniformly. If this were so, any transfer task

must exclusively hold the HashTable object htable in line A2 until the entire transfer task

is completed. If the transfer method also included some other time-consuming operations

after it reads data from the htable object, different tasks of transfer would all block on the

HashTable object and would make it a bottleneck for concurrency. In fact, concurrent read
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accesses alone are perfectly fine, things only become problematic upon field writes. In most

cases, read operations are more frequent than write operations. As a further refinement,

our notion of capture is further developed to use the standard two-phase non-exclusive read

lock and exclusive write lock [28] approach. When an object’s field is read by a task, the

object is said to be read captured by the task; when the field is written, the object is said

to be write captured. The same object can be read captured by multiple tasks at the same

time. When write captured, the object has to be exclusively owned, i.e. not read captured

or write captured by another task.

One possible execution sequence of the task created by line M1 of Figure 2.1 is

illustrated in the first column of Figure 2.4. As the execution proceeds, more and more

accessed objects are captured via field reads (yellow or light grey boxes) or writes (red or

dark gray boxes). For space reasons, we have omitted String objects which are immutable

and thus always read captured.

The two-phase locking strategy increases the opportunity for parallelism, but it

may also cause deadlocks. Consider when tasks M1 and M2 are both withdrawing money

from Alice’s account. Both have read from her Account object the current balance, but

neither has written the new balance yet (the bal += b expression is indeed two operations:

read from bal, then write to bal). The Account object of Alice would have read locks from

both M1 and M2. Neither party can add a write lock to it. So, neither party can proceed. To

solve this matter, our language allows programmers to declare a class with tightly coupled

read/write as an exclusive class. Exclusive classes have only one lock for either read

or write, and parallel read is prevented. For instance, the Account class could have been
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htable :  HashTable

buckets :  BucketList[] 

status :  Status 

buckets[0] :  BucketList[] 
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htable :  HashTable
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status :  Status 
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status :  Status 
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status :  Status 

htable :  HashTable

buckets :  BucketList[] 

buckets[0] :  BucketList[] 

status :  Status 

buckets[1] :  BucketList[] 

htable :  HashTable
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buckets[0] :  BucketList[] 

htable :  HashTable

buckets :  BucketList[] 

buckets[0] :  BucketList[] 

status :  Status 
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Figure 2.4: Execution Sequence for the Task Created by Figure 1 Line M1
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declared as exclusive class Account {...} and that would have prevented deadlock from

arising.

Performance of the two-phrase locking is sensitive to application implementations.

It works more efficiently with certain access patterns such as data objects that are infre-

quently modified. Because Coqa is a model with more pervasive locking, it is important for

Coqa to have an implementation with a performance matching with other object-oriented

programming languages. In practice, we believe the two-phase locking is a better scheme

for Coqa because there are more field reads than writes in most applications. Since extra

syntax is provided to declare objects to be always captured in an exclusive way as discussed

above, Coqa can be very flexible for meeting different programming needs for various data

accessing patterns.

2.1.3 Concurrency Properties

The barebones model has good concurrency properties for tasks running in parallel:

quantized atomicity, mutual exclusion, and race freedom. In this section, we discuss how

these properties are held for tasks informally. Formal proof is given in Section 3.3.

A task creates a new task by a -> message. In the example of Figure 2.1, the

default bootstrapping task tmain starts from the special main method and it creates two

child tasks t1 and t2 in lines M1 and M2. The conflict of interest between t1 and t2 is on

accessing Alice’s Account object. If t1 arrives at the access point and captures the object

first, it would have the exclusive access ownership on this object until it finishes. The later

arriving t2 would have to block until the t1 is done. So, it is easy to see that t1 and t2 can

always be viewed as one executing before the other.
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This example can be easily extended to more general cases. For two tasks t1 and

t2 none of which create other tasks, intuitively, if they do not read/write any shared object

at all, they can be arbitrarily interleaved without affecting each other. If they do access

some shared objects, they then need to compete for them. At any particular time and no

matter how t1 and t2 have interleaved up to the moment for first object contention, we

know the objects t1 have accessed must either be read captured or write captured by t1. It

is obvious that t2 must not have write captured any of these objects due to the fact that t1

is able to capture the objects. In other words, all of these objects are not mutated by t2.

This demonstrates that tasks t1 and t2 has several appealing consequences no matter how

they interleave.

Atomicity : Since t2 has no (mutation) effect on the objects t1 cares about, all computa-

tions performed by t2 can be equivalently viewed as non-existent from t1’s perspective.

Task t1 can then be viewed as running alone. The same can be said about t2. Together

this implies that the execution of t1 and t2 can be serialized. In this case, t1 and t2

are both atomic: each of them has only one quantum, a special case of quantized

atomicity.

Mutual Exclusion : Following the same reasoning, t1 and t2 have no (mutation) effect

on each other’s captured objects.

Race Freedom : The mutual exclusion of t1 and t2 guarantees that there is no race to

access any object field.
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2.1.4 Task Creation as Quantum Demarcation

t1 and t2 in the discussion of the previous section do not create other tasks. This

assumption is needed because an asynchronous message send is a demarcation point where

the current quantum ends and a new one starts.

public class Main {
public static void main (String [] args) {

Foo foo= new foo();
...

(L1) foo -> set(300);
...
foo.set(0);
...

}
}

public class Foo {
private int fd;
public void set(int v) {

...
(L2) fd = v;

...
}

}

Figure 2.5: Task Creation Demarcates Quanta

Consider the example in Figure 2.5 where there are two tasks at runtime: the

bootstrapping main task tmain and t, a child task created by tmain in line L1. Notice that

the two tasks have contention in line L2 since both of them try to write access the same

object foo. If the child task t reaches line L2 before tmain, tmain would have to wait until

t finishes. This would put tmain observably after t. However, the object foo is created by

tmain, in order for t to access this object, tmain has to be run before t. This essentially

means that we cannot serialize tmain and t so that one seemingly happens before the other,
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each as a whole quantum. The reason is that tmain no longer has just one atomic quantum,

but rather two quanta splitting at the point where t is created (line L1). Namely, tmain has

the property of quantized atomicity with two quanta.

It might seem harmless to view that a child task runs before its parent if they do

not access any shared object. However, such a violation of task creation makes a language

model unimplementable because a computer system would have to realize what will happen

in the future before what is happening now.

Now, we can extend the atomicity property of Coqa to a more general case:

Quantized Atomicity: For any task, its execution sequence consists of a sequence of

atomic zones, the atomic quanta, demarcated by task creation points.

The fact that task creation demarcates a quantum of the parent task does not sig-

nificantly reduce the power of the Coqa model. In most concurrent programming patterns,

there are one or a few threads whose main jobs are to create other working threads for

performing real computations. So in practice, the task creation hierarchy is rather shallow

and most tasks we care about are peer tasks. For instance, the tmain running the main

method in Figure 2.1 is split into multiple quanta at program points where new tasks are

spawned. However, tmain simply creates tasks for doing the real work. How many quanta

tmain has is not the focus of the application.

2.1.5 Better Threading Syntax

Task creation via -> is a more natural and flexible syntax than Java’s. There

are two ways to create a new thread in Java. One approach is to define a subclass of the
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java.lang.Thread class, override its run method, and then create an instance of it. The

other way is to instantiate a java.lang.Thread object with a target object whose class

implements the java.lang.Runnable interface in which a single run method is defined.

After a Thread object is created, the start method is invoked so that the Java Virtual

Machine can schedule the thread. Obviously, Java threading requires some explicit coding,

while the only code needed in Coqa is a -> message send. No extra wrapper class or method

declaration is needed.

Moreover, the run method that a Java thread starts from takes no arguments,

which means a Java thread has to get its initialization data in some other ways indirectly,

for instance, by accessing some global fields. In general, such indirect data flow is not a good

programming practice because it encourages data sharing instead of data encapsulation.

Such problem does not exist in Coqa because asynchronous messages can carry necessary

initial values to a new task and types of these arguments are explicitly declared as method

declarations, a much typed way to start a new thread of execution.

2.2 Subtasking: Open Nesting

The barebones model admits significant parallelism if most of the object accesses

are read accesses, as read capture does not prevent concurrent access. Long waits are

possible, however, when frequent writes are needed. For instance, consider the parallel

execution of the two tasks spawned by M1 and M3 in Figure 2.2. Let us suppose when

the account of Dan is added, it will become the head Bucket of bucket[0] in Figure 2.3.

The task started up by M1 will label the object of bucket[0] (of type BucketList) to be
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read captured. This will completely block the task created by M3, since executing it will

demand exclusive write capture on the object of bucket[0]. M3, the task of adding Dan as

a new account, can only be achieved after the completion of M1, although it is a task totally

unrelated to the task of transferring money from Alice to Bob. Intuitively, there at least

should be some parallelism in running the two tasks.

The source of this problem is the transfer task created by M1 always remembers

it has accessed the hash table (and hence bucket[0]) throughout the life cycle of the task.

This only makes sense if the programmer indeed needs to make sure the hash table is never

mutated by other tasks throughout the duration, to guarantee complete atomicity of its

behavior. In the example here, this is hardly necessary. There is nothing wrong with the

fact that when M1 locates the account of Alice, the account of Dan does not exist, but when

later M1 locates the account of Bob, the account of Dan has already been opened.

2.2.1 Subtasking for Intentional Interleavings

To get around the previous shortcoming, our language allows programmers to

spawn off the access of HashTable object (and all objects it indirectly accesses) as a new

subtask. The high-level meaning behind a subtask is that it achieves a relatively independent

goal; its completion signals a partial victory so that the resources (in this case captured

objects) used to achieve this subtask can be freed.

In terms of syntax, we can change the source code of transfer in Figure 2.4 to

the following Figure 2.6 which makes the two HashTable accesses run as subtasks. The

only change is the dot (.) notation for synchronous messaging is changed to => for subtask

creation messaging. To distinguish the two forms of synchronous messaging, the original
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dot-notation is hereafter called local synchronous messaging since its execution stays within

the current task and does not start a new subtask.

public void transfer(String from, String to, int bal) {
Status status = new Status();

(B1) status.init();
(B2) Account afrom = (Account)htable => get(from);
(B3) afrom.withdraw(bal, status);
(B4) Account ato =(Account)htable => get(to);
(B5) ato.deposit(bal, status);

}

Figure 2.6: Bank’s transfer Method: Version 2

Subtasking is still a synchronous invocation. The task executing transfer waits

until its subtask executing get returns a result. But the key difference is the subtask keeps

a separate capture set, and that capture set is freed when the subtask is finished.

The second column of Figure 2.4 illustrates a possible execution sequence for the

same task M1 when the transfer method is changed to the one in Figure 2.6. When

htable => get(from) is invoked, a subtask is created. Internal to the subtask execution,

the subtask still captures objects as a task would do. For instance, in the middle of the get

method during bucket lookup, two separate capture sets are held. The transfer task keeps

its own object Status object, and all HashTable-related objects are put in the capture set

of the subtask. When the method invocation htable => get(from) completes, the task of

opening an account for Dan can now access the HashTable, rather than being required to

wait until M1 has completely finished.

A subtask is also a task in the sense that it prevents arbitrary interleaving and

quantized atomicity is preserved for subtasks. The change in line B2 admits some inter-
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leaving between task M1 and M3 that was not allowed before, but it does not mean that

arbitrary interleaving can happen. For example, if M1 is in the middle of a key lookup, M3

still cannot add a new bucket. We will discuss such concurrency properties in the presence

of subtasking later in this section.

Subtasking is related to open nesting in transaction-based systems [53, 13]. Open

nesting is used to nest a transaction inside another transaction, where the nested transaction

can commit before the enclosing transaction runs to completion. (Nested transactions

that cannot commit before their enclosing transactions are commonly referred to as closed

nesting.) Open nesting of transactions can be viewed as early commit, while subtasking

can be viewed as early release.

2.2.2 Capture Set Inheritance

One contentious issue for open nesting is the case where a nested transaction

and the transaction enclosing it both need the same object. In Atomos [13], this issue is

circumvented by restricting the read/write sets to be disjoint between the main and nested

transaction. When the same issue manifests itself in the scenario of subtasking, the question

is, “can a subtask access objects already captured by its enclosing task(s)?”

We could in theory follow Atomos and add the restriction that a subtask never

accesses an object held by its enclosing tasks. This however would significantly reduce

programmability. First of all, programmers have to keep track of object accesses among

tasks and subtasks. And they have to be concerned about data sharing together with the

relationship between tasks all the time, which we think overloads programmers with an

unnecessary burden. Moreover, disallowing overlap of capture sets between a task and its
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subtask potentially introduces more possibility of deadlock. Let us consider the example

of the Status object in the transfer method. From the programmer’s view, this object

keeps track of the status of account access history. The Status object is captured by the

transfer task via invoking the init method. Suppose the HashTable class also accesses the

Status objects in its get method, for example recording the retrieval time of an account

object. Had we disallowed the access of Status from the HashTable task, the program

would deadlock.

In Coqa, subtasks’ accessing their creating tasks’ captured objects is perfectly

legal. In fact, we believe the essence of having a subtasking relationship between a parent

and a child is that the parent should generously share its resources (its captured objects)

with the child. Observe that the relationship between a task and its subtask is synchronous.

So there is no concern for interleaving between a task and its subtask. The subtask should

thus be able to access all the objects held by its direct or indirect “parent” tasks without

introducing any unpredictable behaviors.

2.2.3 Quantized Atomicity with Subtasking

The presence of subtasking in a method delimits its atomic quanta. The objects

captured by the subtask in fact can serve as a communication point between different tasks

which will split atomic zones of the two. For a more concrete example, consider two tasks

t1 and t2 running in parallel. Suppose task t1 creates a subtask, say t3, and in the middle

of task t3, some object o is read captured by the subtask t3. According to the definition

of subtasking, o will be freed at the end of t3. t2 can subsequently write capture it. After

t2 ends, suppose t1 read captures o. Observe that object o’s state has been changed since
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its subtask t3 had previously read o. Task t1 thus cannot assume it is running in isolation,

and so it is not an atomic unit.

On the other hand, some tasks simply should not be considered wholly atomic

because they fundamentally need to share data with other tasks, and for this case it is simply

impossible to have the whole task be atomic. In fact, the main reason why a programmer

wants to declare a subtask is to open a communication channel with another task. This fact

was directly illustrated in the subtasking example at the start of this section. Fortunately

even in such a situation, some very strong properties still hold, which we will rigorously

prove in Section 3.3:

Quantized Atomicity: For any task, its execution sequence consists of a sequence of

atomic zones, the atomic quanta, demarcated by the task and subtask creation points.

The fact that subtask creation demarcates one atomic quantum into two smaller

ones weakens the quantized atomicity property of the barebones system. But as long as

subtasks are created only when they are really needed, the atomic quanta will still be con-

siderably large zones of atomicity. This is a significant improvement in terms of reducing

interleavings. More specifically, interleavings in Coqa occur in units of quanta, while lan-

guages like Java interleavings by default happen between every single statement. In reality,

what really matters is not that the entire method must be atomic, but that the method

admits drastically limited interleaving scenarios. Quantized atomicity aims to strikes a

balance between what is realistic and what is reasonable. Moreover, mutual exclusion and

data race also hold as in Section 2.1.
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messaging why is it why should you use
o . m(v) intra-task messaging promotes mutual exclusion and atomicity
o -> m(v) task creation introduces concurrency by starting a new task
o => m(v) subtasking promotes parallelism by encouraging early release

Figure 2.7: The Three Messaging Mechanisms and Their Purposes

2.2.4 A Simple Model with Choices

Coqa has a very simple object syntax. The only difference from the Java object

model is a richer syntax to support object messaging, and this new syntax also encompasses

thread spawning. So the net difference in the syntax is near-zero. We summarize the

three different forms of object messaging, along with the cases where they are the most

appropriate for, in Figure 2.7. If we imagine the HashTable object as a service, one feature

of Coqa is how the client gets to decide what atomicity is needed. For instance, both the

transfer methods in Figure 2.1 and in Figure 2.6 are valid programs, depending on what the

programmer believes is needed for the transfer method, full atomicity with one quantum

or quantized atomicity with multiple quanta. As another example, if the programmer does

not need to account for random audits which would sum the balance of all accounts, the

programmer could decide to have withdraw and deposit run as subtasks as well, resulting

the following program in Figure 2.8.

public void transfer (String from, String to, int bal) {
Status status = new Status();
Account afrom = (Account)htable => get(from);
afrom => withdraw(bal, status);
Account ato = (Account)htable => get(to);
ato => deposit(bal, status);

}

Figure 2.8: Bank’s transfer Method: Version 3

40



This version of transfer has more concurrency, as a result of a more relaxed data

consistency need, between tasks created in lines M1 and M2 in Figure 2.1. Right after the

task M1 withdraws from Alice’s account, the account object becomes available for the task

M2 to deposit rather than being blocked until the task M1 completely finishes. In this case,

suppose there is an audit task counting the total balance of all bank accounts. The task

reads Bob’s balance and then Alice’s account after it is freed by the task M1. Then the

audit task might get an incorrect total balance because the balance transfer carried by the

task M1 is only half-way through: some money has been withdrawn from Alice’s account

but not yet deposited to Bob’s.

2.3 I/O Atomicity

It is crucial for a programming language to incorporate a proper I/O model that

reflects a realistic way of interaction with the outside world. We introduce two different

ways to model I/O in Coqa: the fair I/O model and the reserveable I/O model. In both

models, behaviors of I/O are captured by special I/O objects. This is similar to object-

oriented languages such as Java where, for instance, System.in is an I/O object representing

standard input.

I/O objects in the two models differ in the types of message they can receive. In the

fair model, only -> and => messages can be sent to an I/O object, while in the reserveable

model, an I/O object can handle all types of messages including local synchronous (.)

messages. The reserveable I/O model subsumes the fair I/O model. If all I/O objects in

the reserveable model are only sent -> and => messages but never local synchronous (.)
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messages, then the reserveable model is essentially equivalent to the fair model. However, we

believe it is important to study and compare the two models head-to-head because the fair

I/O model is the common I/O abstraction adopted by existing object-oriented languages

such as Java. Yet the reserveable I/O model goes one step further to achieve stronger

atomicity properties in terms of I/O operations.

2.3.1 Fair I/O

I/O objects are built-in system objects in the fair I/O model. They encapsulate

native code to perform I/O requests. Each message sent to an I/O object can be viewed

as one atomic step carried out by the I/O object. This can also be thought of as an I/O

object processing messages it receives one at a time.

The intuition behind a fair I/O model is that I/O objects cannot be captured

by any task. I/O objects always handle requests from tasks in a strict fair way. No task

is guaranteed to get two I/O operations processed consecutively and I/O operations of

different tasks are arbitrarily interleaved.

Here we use a simple example to demonstrate how the fair I/O model works. stdin

in the code segment in upper part of Figure 2.9 is the I/O object representing standard

input. A task t running the code sends two => messages to stdin. If another task t′ is

also executing the same code; the stdin object would receive two => messages from t′ as

well. As shown in lower part of Figure 2.9, each of the four messages fetches a value from

standard input in a separate subtask. So the two reads of t can interleave with those of

t′ arbitrarily. Neither t nor t′ is able to ensure that their two reads from stdin are two

consecutive inputs.
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...
(L1) v1 = stdin => read();
(L2) v2 = stdin => read();

...

.
.
.

.
.
.

values returned
to t and t’by 
their subtasks 

input sequence

1 2 3 4

a subtask reads 
from stdin

.
.
.

.
.
.

t  1 4
t’2 3
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.
.

.
.
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t  2 4
t’1 3
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t  1 3
t’2 4
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.

.
.
.

t  2 3
t’1 4

.
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.
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t  3 4 
t’1 2

.
.
.

.
.
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t  1 2
t’3 4

.
.
.

.
.
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task t task t’

subtasks of t subtasks of t’

a subtask reads 
from stdin

a subtask reads 
from stdin

a subtask reads 
from stdin

parallel
execution

Figure 2.9: A Fair I/O Example
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The fair I/O model is the model adopted by all existing languages. For example,

the Java System.out object is accessible by all Java applications and no thread can lock

System.out for its exclusive use. If multiple Java threads all output data to System.out,

these outputs are arbitrarily interleaved, which is exactly the fair I/O model described here.

Such an I/O model captures certain common I/O usage patterns. For instance, it is common

for a server to log system events into one log file without the concern for interleavings.

Quantized atomicity holds in the fair I/O model: every I/O operation is performed

by a new task and each task is a quantum because of the assumption that I/O operations are

atomic . However, the fair I/O model is limited because it is impossible for a task to have

bigger atomic zones consisting of multiple I/O operations in a single zone. An oversimplified

example to demonstrate such a demand would be: an I/O sequence consisting of displaying

a question on the screen, getting an input from a user and then replying the user on the

screen should naturally be able to be executed without interleavings. In order to achieve

atomicity on such an I/O sequence, programmers have to code mutual exclusion manually

in the fair I/O model. Again, when we have to rely on programmers programming ability

to ensure atomicity, we fall into all the pitfalls we have discussed in Chapter 1.

Until multiple I/O operations can appear in one quantum, the atomic unit in

quantized atomicity, it is impossible for a task to access an I/O object in a mutually exclusive

way. In the following section, we will discuss how the exact goal is achieved in the reserveable

I/O model.
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2.3.2 Reserveable I/O

Another way Coqa models I/O is to treat I/O objects more or less the same as

common heap objects so they can receive all three types of message send. In such a model,

when an I/O object receives a local synchronous (.) message, it is captured by the requesting

task exclusively. So a task can request exclusive ownership of an I/O object for the duration

of its execution, a stronger atomicity property which allows a task to group multiple I/O

operations in some quanta. For instance, the code snippet in Figure 2.10 includes two reads

from the stdin object via local synchronous messages.

A task t executing the snippet can always get two consecutive inputs from standard

input because with the first (.) message, t captures the stdin object exclusively until it

finishes, which guarantees there is no input between v1 and v2 that might have been stolen by

other tasks. In other words, the two read I/O operations are in one quantum of t. The lower

part of Figure 2.10 shows a concurrent execution of two tasks running the same code. Each

of them is able to perform the two reads without interleaving. The reserveable I/O model is

very useful in practice. For instance, when a task reads a word, character by character from

an I/O object, say the keyboard, it is desirable to read the complete word without missing

any characters. In the reserveable I/O model, this can be easily fulfilled by invoking the

keyboard I/O object via local synchronous (.) messages. Achieving the same goal in Java

on the other hand completely depends on principled programming. Programmers have to

make sure by themselves that no tasks other than the task reading from the keyboard are

accessing the I/O object. Even so, there is no guarantee that other tasks never intentionally

or accidentally steal an input from the keyboard I/O object because I/O objects in Java
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...
(L1) v1 = stdin.read();
(L2) v2 = stdin.read();

...

value
returned
to task 

input sequence
1 2 3 4

read from standin

t  3 4 
t’1 2

.
.
.

.
.
.

t  1 2
t’3 4

.
.
.

.
.
.

.
.
.

.
.
.

task t

task t’

read from standin

read from standin

read from standin

read from standin

read from standin

read from standin

read from standin

Figure 2.10: A Reserveable I/O Example
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are accessible to everyone.

Quantized atomicity holds in the reserveable I/O model because it differs from

the orignal Coqa model only on having I/O objects. Because I/O objects can be treated

as a special type of common heap objects, introducing them into the Coqa does not break

any properties that Coqa has before. The reserveable I/O model has a stronger atomicity

property than the fair I/O model in the sense that a task can have atomicity on multiple

accesses on an I/O object.

2.3.3 Linkage between I/O Objects

Unlike other heap objects, messages sent to these I/O objects are always globally

visible. So I/O objects play a more subtle role in atomicity. Consider the following simple

example. Suppose that an application has two tasks t1 and t2 accessing two different objects

o1 and o2, and only these two objects. No matter how steps of t1 and t2 interleave, they can

be serialized to be either t1 in its totality happening before t2 or the other way around. This

means that the order of t1 accessing o1 and t2 accessing o2 does not affect the atomicity of

t1 and t2.

However, if o1 and o2 are two I/O objects representing the two displays which t1

and t2 output messages to, and there is an observer sits in front of the monitors all the time,

then he can observe the order of the two messages sent to o1 and o2 appearing on the two

monitors. In this case, serializing steps of t1 and t2 has to respect the order of their accesses

on o1 and o2: if t1 sends the message to o1 before t2 accesses o2, t1 has to be serialized so

that it happens before t2, and vice versa. Consider another scenario in which the observer

checks the output to monitors only after t1 and t2 finish. Then, the order of how t1 and
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t2 should be serialized becomes arbitrary again. The root of this problem is the linkage

between I/O objects. In the second case the ordering of outputs to the two monitors are

internal to the application, but in the first case, the observer links o1 and o2 and makes

previously invisible internal message ordering observable. Linkage between two I/O objects

can be any kind of connection that associates the two I/O objects such that the ordering

of messages sent to the two objects becomes visible to the outside.

In general, I/O objects in the reserveable I/O model are assumed to have no linkage

between them. In practice, most I/O objects are indeed independent of each other. For

instance, standard input/output can be successfully modeled as I/O objects without any

linkages to other I/O objects in most programming language systems.

2.3.4 Bigger Atomic Region: Joinable Quanta

As we have discussed in Section 2.1.4, task creations demarcate quanta. How-

ever, in some cases, quanta that are demarcated by task creation can be joined to form

a compound quantum which is in fact a bigger atomic region, a union of all constituent

quanta.

Consider the example in Figure 2.11. The bootstrapping task tmain starts from

the special main method, and it consists of two quanta, qt1 from line L1 to line L2 and

qt2 of L4. The two quanta are delimited by line L3, a task creation for spawning task t.

Besides the fact that t is a child task of tmain, tmain and t are independent of each other

because they do not have any shared object. It is easy to see that no matter how steps of

tmain and t interleave, tmain is always atomic in its totality. This demonstrates a notion of

joinable quanta: the two quanta of tmain, qt1 and qt2, can always join together to form a
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larger atomic region if the child task t shares no object with it.

public class Main {
public static void main (String [] args) {

(L1) Foo foo= new foo();
(L2) int i = 1;
(L3) foo -> compute(300);
(L4) i++ ;

}
}

public class Foo {
public void compute(int v) {

int result = v * v ;
}

}

Figure 2.11: Joinable Quanta

In Chapter 4 we will present a formal system in which we rigorously prove that

certain form of quanta demarcated by task creation can be serialized to be adjacent to each

other to form a larger atomic region. Larger atomic regions are better because there would

be less interleavings, and hence accomplish a stronger atomicity property.
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Chapter 3

KernelCoqa: the Coqa

Formalization

In this section, we present a formal treatment of Coqa via a small kernel language

called KernelCoqa. We first present the syntax and operational semantics of KernelCoqa,

then a proof of quantized atomicity for KernelCoqa using the operational semantics, as well

as other interesting corollaries.

3.1 KernelCoqa Syntax

We first define some basic notation used in our formalization. We write xn as

shorthand for a set {x1, . . . , xn}, with empty set denoted as ∅. −−−−−→xn 7→ yn is used to denote a

mapping {x1 7→ y1, . . . , xn 7→ yn}, where {x1, . . . xn} is the domain of the mapping, denoted

as dom(H). We also write H(x1) = y1, . . . ,H(xn) = yn. When no confusion arises, we drop

the subscript n for sets and mapping sequences and simply use x and x 7→ y. We write

50



P ::=
−−−−−−−−−−−−→
cn 7→ 〈l;Fd;Md〉 program/classes

Fd ::= fn fields
Md ::=

−−−−−−−→
mn 7→ λx .e methods

e ::= null | x | cst | this
| new cn instantiation
| fn | fn = e field access
| e.mn(e) local invocation
| e ->mn(e) task creation
| e =>mn(e) subtask creation
| let x = e in e continuation

l ::= exclusive | ε capture mode
cst constant
cn class name
mn method name
fn field name
x variable name

Figure 3.1: Language Abstract Syntax

H{x 7→ y} as a mapping update: if x ∈ dom(H), H and H{x 7→ y} are identical except that

H{x 7→ y} maps x to y; if x /∈ dom(H), H{x 7→ y} = H,x 7→ y. H\x removes the mapping

x 7→ H(x) from H if x ∈ dom(H), otherwise the operation has no effect.

The abstract syntax of our system is shown in Figure 3.1. KernelCoqa is an ideal-

ized object-based language with objects, messaging, and fields. A program P is composed

of a set of classes. Each class has a unique name cn and its definition consists of sequences of

field (Fd) and method (Md) declarations. To make the formalization feasible, many fancier

features are left out, including types and constructors.

Besides local method invocations via the usual dot (.), synchronous and asyn-

chronous messages can be sent to objects using => and -> , respectively. A class declared

exclusive will have its objects write captured upon any access. This label is useful for

eliminating deadlocks inherent in a two-phase locking strategy, such as when two tasks first
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read capture an object, then both try to write capture the same object and thus deadlock.

3.2 Operational Semantics

H ::=
−−−−−−−−−−−−−→
o 7→ 〈cn;R;W ;F 〉 heap

F ::=
−−−−→
fn 7→ v field store

T ::= 〈t; γ; e〉 | T ‖ T ′ task
N ::=

−−−→
t 7→ t′ subtasking relationship

R,W ::= t read/write capture set
γ ::= o | null current executing object
v ::= cst | o | null values
e ::= v | wait t extended expression

| e ↑ e | . . .
E ::= • | fn = E object evaluation context

| E.m(e) | v.m(E)
| E ->m(e) | v ->m(E)
| E =>m(e) | v =>m(E)
| let x = E in e

o object ID
t task ID

Figure 3.2: Dynamic Data Structures

Our operational semantics is defined as a contextual rewriting system over states

S ⇒ S, where each state is a triple S = (H,N, T ) for H the object heap, N a task ancestry

mapping, and T the set of parallel tasks. Every task in turn has its local evaluation context

E. The relevant definitions are given in Figure 3.2. A heap H is the usual mapping

from objects o to field records tagged with their class name cn. In addition, an object on

the KernelCoqa heap has two capture sets, R and W , for recording tasks that have read-

captured or write-captured this object, respectively. A field store F is a standard mapping

from field names to values. A task is a triple consisting of the task ID t, the object γ this

task currently operates on and an expression e to be evaluated. N is a data structure which
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TContext1
H,N, T1 ⇒ H ′, N ′, T ′

1

H,N, T1 ‖ T2 ⇒ H ′, N ′, T ′
1 ‖ T2

TContext2
H,N, T2 ⇒ H ′, N ′, T ′

2

H,N, T1 ‖ T2 ⇒ H ′, N ′, T1 ‖ T ′
2

Figure 3.3: KernelCoqa Operational Semantics Rules (1)

maps subtasks to their (sole) parent tasks. This is needed to allow children to share objects

captured by their parent. We also extend expression e to include value v and two run time

expressions wait t and e ↑ e.

Figure 3.3 shows the concurrent context for parallel tasks. The complete single-

step evaluation rules for each task are presented in Figure 3.4. In this presentation, we use

e; e′ as shorthand for let x = e in e′ where x is a fresh variable. These rules are implicitly

defined over some fixed program P . Every rule in Figure 3.4 has a label after the rule name.

These labels are used in subsequent definitions and lemmas for proving quantized atomicity

in quantized atomicity.

The Invoke rule is used for local synchronous messaging, signified by dot (.)

notation. Evaluation of a local synchronous message is interpreted a standard function

application of the argument v to the method body of mn.

Rule Task creates a new independent task via asynchronous messaging. The

creating task continues its computation, and the newly created task runs concurrently with

its creating task. It may look like that the message mn is just re-sent to the target object o in

Task. But actually, a new task t′ is created and the asynchronous message send becomes

a local synchronous message in this newly-created task t′. For simplicity, asynchronous

messages sent to an object are handled in a non-deterministic order. However, it is not

technically difficult to enforce the processing order of asynchronous messages sent from a
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Set(t, γ, v)
H(γ) = 〈cn; R; W ; F 〉

H ′ = H{γ 7→ 〈cn; R; W ∪ {t}; F{fn 7→ v}〉} if R ⊆ ancestors(N, t) and W ⊆ ancestors(N, t)

H, N, 〈t; γ;E[ fn = v ]〉 ⇒ H ′, N, 〈t; γ;E[ v ]〉

Get(t, γ, v)
H(γ) = 〈cn; R; W ; F 〉 P (cn) = 〈l;Md;Fd〉

F (fn) = v H ′ =

8<:
H{γ 7→ 〈cn; R; W ∪ {t}; F 〉}, if l = exclusive and

R ⊆ ancestors(N, t) and W ⊆ ancestors(N, t)
H{γ 7→ 〈cn; R ∪ {t}; W ; F 〉}, if l = ε and W ⊆ ancestors(N, t)

H, N, 〈t; γ;E[ fn ]〉 ⇒ H, N, 〈t; γ;E[ v ]〉

This(t, γ)
H, N, 〈t; γ;E[ this ]〉 ⇒ H, N, 〈t; γ;E[ γ ]〉

Let(t, γ)
H, N, 〈t; γ;E[ let x = v in e ]〉 ⇒ H, N, 〈t; γ;E[ e{v/x} ]〉

Return(t, γ, v)
H, N, 〈t; γ;E[ v↑o ]〉 ⇒ H, N, 〈t; o;E[ v ]〉

Inst(t, γ, o)
P (cn) = 〈l;Fd;Md〉 H ′ = H{o 7→ 〈cn; ∅; ∅;

]
fn∈Fd

{fn 7→ null}〉}, o fresh,

H, N, 〈t; γ;E[new cn ]〉 ⇒ H ′, N, 〈t; o;E[ o ]〉

Invoke(t, γ,mn, v)
H(o) = 〈cn; R; W ; F 〉 P (cn) = 〈l;Fd;Md〉 Md(mn) = λx .e

H, N, 〈t; γ;E[ o.mn(v) ]〉 ⇒ H, N, 〈t; o;E[ e{v/x}↑γ ]〉

Task(t, γ,mn, v, o, t′)
t′ fresh

H, N, 〈t; γ;E[ o ->mn(v) ]〉 ⇒ H, N, 〈t; γ;E[null ]〉 ‖ 〈t′; o; this.mn(v)〉

SubTask(t, γ,mn, v, o, t′)
N ′ = N{t′ 7→ t} t′ fresh

H, N, 〈t; γ;E[ o =>mn(v) ]〉 ⇒ H, N ′, 〈t; γ;E[wait t′ ]〉 ‖ 〈t′; o; this.mn(v)〉

TEnd(t)
H ′ =

]
H(o)=〈cn;R;W ;F 〉

(o 7→ 〈cn; R\t; W\t; F 〉) N(t) = null

H, N, 〈t; γ; v〉 ⇒ H ′, N, ε

STEnd(t, v, t′)
H ′ =

]
H(o)=〈cn;R;W ;F 〉

(o 7→ 〈cn; R\t; W\t; F 〉) N(t) = t′ N ′ = N\t

H, N, 〈t; γ; v〉 ‖ 〈t′; γ′;E[wait t ]〉 ⇒ H ′, N ′, 〈t′; γ′;E[ v ]〉

Figure 3.4: KernelCoqa Operational Semantics Rules (2)
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sender object to a receiver object to be the sending order of these messages.

The SubTask rule creates a subtask of the current task via synchronous messaging.

The creating task (the parent) goes in wait state until the newly created subtask (the child)

completes and returns. Therefore, a task can have at most one subtask active at any given

time. The child-parent relationship is recorded in N .

When a task or a subtask finishes, all objects they have captured during their

executions are freed. A subtask also needs to release its parent so it may resume execution

and the mapping from the subtask to its parent is removed from N . The TEnd and STEnd

are rules for ending a task and a subtask, respectively.

Before discussing the rules for object capture, let us first introduce the definition

of the ancestors of a (sub)task, the set consisting of the (sub)task itself, its parent, its

parent’s parent, etc:

ancestors(N, t) =


{t}, if N(t) = null

{t} ∪ ancestors(N, t′), if N(t) = t′

The two capture sets, R and W of an object are checked and updated lazily: when

a task actually accesses a field of an object. The check/capture policy is implemented in

rules Set and Get.

The Set rule specifies that a task t can write capture object γ, the current object

t is operating on, if all write capturers and all read capturers of γ are t’s ancestors. Get

checks the class exclusion label of γ first. If γ requires exclusive capture to access it, task t

has to write capture γ before the read, which is similar to how Set works. If not, only read

capture is needed. Task t can read capture γ if all of γ’s write capturers are t’s ancestors.
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It is worthwhile to emphasize that a subtask can both capture objects independently, and

inherit objects already captured by its ancestors.

When a task cannot capture an object it needs, it is implicitly object-blocked on

the object until it is entitled to capture it—the Set/Get rule cannot progress. The formal

definition of object-blocked will be given in Section 3.3. Note that in this presentation

we will not address the fairness of capture (or other fairness properties), but in a full

presentation and in an implementation the unblocking should be fair so as to never starve a

blocked task where the object was unblocked infinitely often. In reality, fairness comes at a

significant performance cost[26]. The bookkeeping and synchronization required to ensure

fairness means that contended fair locks will have much lower throughput than unfair locks.

In most cases, a statistical fairness in which a blocked thread will eventually proceed is

often good enough, and the performance benefits of nonfair locks outweigh the benefits of

fair ones.

Other rules in Figure 3.4 are standard. For instance, for simplicity reason, object

constructors in KernelCoqa are no much different than common methods except having the

class names and they take no arguments. Accordingly object instantiation rule Inst creates

a new object, initializes all of its fields to be null and its R and W are initialized to ∅.

3.3 Atomicity Theorems

Here we formally establish the informal claims about KernelCoqa: quantized atom-

icity, mutual exclusion in tasks, and race freedom. The key Lemma is the Bubble-Down

Lemma, Lemma 2, which shows that consecutive steps of a certain form in a computation

56



path can be swapped to give an “equivalent” computation path, a path with the same

computational behavior. Then, by a series of bubblings, steps of each quantum can be

bubbled to all be consecutive in an equivalent path, showing that the quanta are serializ-

able: Theorem 1. The technical notion of a quantum is the pmsp below, a pointed maximal

sub-path. These are a series of local steps of one task with a nonlocal step at the end, which

may be embedded (spread through) in a larger concurrent computation path. We prove in

Theorem 1 that any path can be viewed as a collection of pmsp’s, and every pmsp in the

path is serializable and thus the whole path is serializable in unit of pmsp’s.

Definition 1 (Object State). Recall the global state is a triple S = (H,N, T ). H is the

object heap, N a task ancestry mapping, and T the set of parallel tasks. The object state

for o, written so, is defined as H(o) = 〈cn;R;W ;F{fn 7→ v}〉, the value of the object o in

the current heap H, or null if o 6∈ dom(H).

We write step str = (S, r, S′) to denote a transition S ⇒ S′ by rule r of Fig-

ure 3.4. We let change(str) = (so, r, s
′
o) denote the fact that the begin and end heaps of

step str differ at most on their state of o, taking it from so to s′o. Similarly, the change

in two consecutive steps which changes at most two objects o1 and o2, o1 6= o2, is repre-

sented as change(str1str2) = ((so1 , so2), r1r2, (s′o1
, s′o2

)). If o1 = o2, then change(str1str2) =

(so1 , r1r2, s
′
o1

).

Definition 2 (Local and Nonlocal Step). A step str = (S, r, S′) is a local step if r is one of

the local rules: either Get, Set, This, Let, Return, Inst or Invoke. str is a nonlocal

step if r is one of nonlocal rules: either Task, SubTask, TEnd or STEnd.

Every nonlocal rule has a label given in Fig 3.4. For example, the Task rule has
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label Task(t, γ,mn, v, o, t′) meaning asynchronous message mn was sent from object γ in

task t to another object o in a new task t′, and the argument passed was v. These labels

are used as the observable; the local rules also carry labels but since they are local steps

internal to a t so that they are not observable steps. However, when I/O is introduced

to KernelCoqa in Chapter 4, some local steps that perform I/O operations would become

external visible steps, until then, we do not care about labels attached to these local rules.

Intuitively, observable steps are places where tasks interact by making results of

local steps possibly visible to other tasks. For instance, in a Task step, a task t creates a

new task t′ by sending an asynchronous message mn. Along with the message mn, t sends

a parameter v to t′. If v is a value calculated by t’s local steps, then upon the execution of

the Task step, t makes its internal computation visible to the newly created t′.

Lemma 1. In any given local step str, at most one object o’s state can be changed from so

to s′o (so is null if str creates o).

Proof. A local step is step of applying one of the local rules defined in Definition 2. Among

all these rules, only Inst, Get and Set can possibly change object state. Inst creates a

single object. The Get and Set rules each operates on exactly one object and may change

is its state. No other rules change object state.

Definition 3 (Computation Path). A computation path p is a finite sequence of steps

str1str2 . . . stri−1stri such that

str1str2 . . . stri−1stri = (S0, r1, S1)(S1, r2, S2) . . . (Si−2, ri−1, Si−1)(Si−1, ri, Si).

Here we only consider finite paths as is common in process algebra, which simplifies

our presentation. Infinite paths can be interpreted as a set of ever-increasing finite paths.
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For brevity purpose, we use computation path and path in an interchangeable way if no

confusion would arise.

The initial run time configuration of a computation path, S0, always has H = ∅,

N = ∅ and T = {tmain}. tmain is the default bootstrapping task that starts the execution

of a program from the entry main method of a class in the program.

Definition 4 (Observable Behavior). The observable behavior of a computation path p,

ob(p), is the label sequence of all nonlocal steps occurring in p.

Note that this definition can encompass I/O behavior elegantly since the nonlocal

messages are observables. I/O in KernelCoqa can be viewed as a fixed object which is

synchronously or asynchronously sent nonlocal (and thus observable) messages. We call such

an I/O model the global I/O model and details about this model is covered in Section 4.1.

Definition 5 (Observable Equivalence). Two paths p1 and p2 are observably equivalent,

written as p1 ≡ p2, iff ob(p1) = ob(p2).

Definition 6 (Object-blocked). A task t is in an object-blocked state S at some point in

a path p if it would be enabled for a next step str = (S, r, S′) for which r is a Get or Set

step on object o, except for the fact that there is a capture violation on o: one of the R ⊆

or W ⊆ preconditions of the Get/Set fails to hold in S and so the step cannot in fact be

the next step at that point.

Object-blocked state is a state a task cannot make process because it has to wait

for an object becoming available to it.

Definition 7 (Sub-path and Maximal Sub-path). Given a fixed p, for some task t a sub-

path spt of p is a sequence of steps in p which are all local steps of task t. A maximal
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sub-path is a spt in p which is longest: no local t steps in p can be added to the beginning

or the end of spt to obtain a longer sub-path.

Note that the steps in spt need not be consecutive in p, they can be interleaved

with steps belonging to other tasks.

Definition 8 (Pointed Maximal Sub-path). For a given path, a pointed maximal sub-

path for a task t (pmspt) is a maximal sub-path spt with either 1) it has one nonlocal step

appended to its end or 2) there are no more t steps ever in the path.

The second case is the technical case of when the (finite) path has ended but the

task t is still running. The last step of a pmspt is called its point. We omit the t subscript

on pmspt when we do not care which task a pmsp belongs to.

Since we have extended the pmsp maximally and have allowed inclusion of one

nonlocal step at the end, we have captured all the steps of any path in some pmsp:

Fact 1. For a given path p, all the steps of p can be partitioned into a set of pmsp’s where

each step str of p occurs in precisely one pmsp, written as str ∈ pmsp.

Given this fact, we can make the following unambiguous definition.

Definition 9 (Indexed pmsp). For some fixed path p, define pmsp(i) to be the ith pointed

maximal sub-path in p, where all the steps of the pmsp(i) occur after any of pmsp(i + 1)

and before any of pmsp(i− 1).

The pmsp’s are the units which we need to serialize: they are all spread out in the

initial path p, and we need to show there is an equivalent path where each pmsp runs in

turn as an atomic unit.
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Definition 10 (Path around a pmsp(i)). The path around a pmsp(i) is a finite sequence

of all of the steps in p from the first step after pmsp(i− 1) to the end of pmsp(i) inclusive.

It includes all steps of pmsp(i) and also all the interleaved steps of other tasks.

Definition 9 defines a global ordering on all pmsp’s in a path p without concerning

which task a pmsp belongs to. The following Definition 11 defines a task scope index of a

pmsp which is used to indicate the local ordering of pmsp’s of a task within the scope of

the task.

Definition 11 (Task Indexed pmsp). For some fixed path p, define pmspt,i to be the ith

pointed maximal sub-path of task t in p, where all the steps of the pmspt,i occur after any

of pmspt,i+1 and before any of pmspt,i−1.

For a pmspt,i, if we do not care its task scope ordering, we omit the index i and

simply use pmspt.

Definition 12 (Waits-for and Deadlocking Path). For some path p, pmspt1,i waits-for

pmspt2,j if t1 goes into a object-blocked state in pmspt1,i on an object captured by t2 in the

blocked state. A deadlocking path p is a path where this waits-for relation has a cycle:

pmspt1,i waits-for pmspt2,j while pmspt2,i′ waits-for pmspt1,j′.

Hereafter we assume in this theoretical development that there are no such cycles.

In Coqa deadlock is an error that should have not been programmed to begin with, and so

deadlocking programs are not ones we want to prove facts about.

Definition 13 (Quantized Sub-path and Quantized Path). A quantized sub-path contained

in p is a pmspt of p where all steps of pmspt are consecutive in p. A quantized path p is a

path consisting of a sequence of quantized sub-paths.
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The main technical Lemma is the following Bubble-Down Lemma, which shows

how local steps can be pushed down in the computation. Use of such a Lemma is the

standard technique to show atomicity properties. Lipton [44] first described such a theory,

called reduction; his theory was later refined by [41]. In this approach, all state transition

steps of a potentially interleaving execution are categorized based on their commutativity

with consecutive steps: a right mover, a left mover, a both mover or a non-mover. The

reduction is defined as moving the transition steps in the allowed direction. The theory

was later formulated as a type system in [23, 25] to verify whether Java code is atomic. In

our case, we show the local steps are right movers; in fact they are both-movers but that

stronger result is not needed.

Definition 14 (Step Swap). For any two consecutive steps str1str2 in a computation path

p, a step swap of str1str2 is defined as swapping the order of application of rules in the two

steps, i.e., apply r2 first then r1. We let st′r2
st′r1

denote a step swap of str1str2.

Definition 15 (Equivalent Step Swap). For two consecutive steps str1str2 in a computation

path p, where str1 ∈ pmspt1, str2 ∈ pmspt2, t1 6= t2 and str1str2 = (S, r1, S
′)(S′, r2, S

′′),if

the step swap of str1str2, written as st′r2
st′r1

, gives a new path p′ such that p ≡ p′ and

st′r2
st′r1

= (S, r2, S
∗)(S∗, r1, S

′′), then it is an equivalent step swap.

Lemma 2 (Bubble-down Lemma). For any path p with any two consecutive steps str1str2

where str1 ∈ pmspt1,str2 ∈ pmspt2 and t1 6= t2, if str1 is a local step, then a step swap of

str1str2 is an equivalent step swap.

Proof. First, observe that if t2 is a subtask of t1, then it is impossible for str1 to be a local

step while str2 is a step of t2. Because according to semantics defined in Figure 3.4 a task
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and its subtask never have their local steps consecutive to each other. Figure. 3.5 illustrates

all possible cases of how steps of a task and steps of its subtask may layout in a path. It

clearly shows that local steps of the task t1 and its subtask t2 always have their local steps

demarcated by some nonlocal steps.

SUBTASK STEND 
t1 creates t2

...... ... ... ... ......

t2 ends

SUBTASK STEND 
t1 creates t2

...... ... ... ... ......

t2 ends

(d)

(c)

SUBTASK STEND 
t1 creates t2

...... ... ... ... ......

t2 ends

... ...(b)

SUBTASK STEND 
t1 creates t2

...... ... ... ... ......

t2 ends

... ...(a)

local step

step of tasks other than t1 and t2...
nonlocal step t2

t1

Figure 3.5: Task and Subtask

According to Definition 4 and 5, ≡ is defined by the sequence of labels of nonlocal

steps occurring in path p, so a step swap of str1str2 always gives a new path p′, p′ ≡ p, since

str1 is a local step by the lemma so that swap str1 with any str2 never changes the ordering
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of labels. Therefore, to show that the step swap of str1str2 is an equivalent step swap we

only need to prove that if str1str2 = (S, r1, S
′)(S′, r2, S

′′), then the step swap of str1str2 is

st′r2
st′r1

= (S, r2, S
∗)(S∗, r1, S

′′).

Because str1 is a local step, it can at most change one object’s state on the heap

H and a local step does not change N according to the operational semantics. So we can

represent str1 as str1 = ((H1, N1, T1), r1, (H2, N1, T2)) where H1 and H2 differ at most on

one object o.

(Case I) str2 is also a local step.

So str2 does not change N either, so str2 = ((H2, N1, T2), r2, (H3, N1, T3)). Because

str1 and str2 are steps of different tasks t1 and t2, str1 and str2 must change different elements

of T (t1 and t2 respectively) by inspection of the rules. This means any change made by

str1 and str2 to T always commute. So in the section of Case I, we focus only on changes

str1 and str2 make on H, and omit N and T for concision.

Suppose change(str1) = (so1 , r1, s
′
o1

) and change(str2) = (so2 , r2, s
′
o2

).

If o1 6= o2, then change(str1str2) = ((so1 , so2), r1r2, (s′o1
, s′o2

)). Swapping the order

of str1 , str2 by applying r2 first then r1 results in the change ((so1 , so2), r2r1, (s′o1
, s′o2

)), which

has the same start and end states as change(str1str2), regardless of what r1 and r2 are.

If o1 = o2 = o, then change(str1) = (so, r1, s
′
o), change(str2) = (s′o, r2, s

′′
o) and

change(str1str2) = (so, r1r2, s
′′
o). Let so = 〈cn;R;W ;F 〉.

By inspection of the rules this case only arises if both of the rules are amongst

Get, Set and Inst.

Subcase a: r1 = Inst.
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change(str1) = (null, r1, so) so r2 cannot be Inst since o cannot be created twice.

And, r2 also cannot be any other local rule: o is just created in str1 by t1. For t2 to be

able to access o, it must obtain a reference to o first. Only t1 can pass a reference of o to

t2 directly or indirectly. As a result, if str2 is a local step of t2 that operates on o, it cannot

be consecutive to str1 , and vice visa. Therefore, r1 Inst is not possible.

Subcase b: r1 = Get.

Trivially, r2 cannot be Inst that creates o because no steps can operate on an

object before it is created.

If the class of o is declared as exclusive, then change(str1) = (〈cn;R;W ;F 〉, r1,

〈cn;R;W ′;F 〉), W ′ = W ∪ {t} if t1 captures o in str1 or W ′ = W if W is a subset of the

ancestors of t1. Either way, there does not exist an consecutive str2 of t2 where r2 is either

Get or Set because if so, firing up str2 would violate the preconditions of the Get or the

Set rule.

If the class of o is not declared exclusive, then change(str1) = (〈cn;R;W ;F 〉, r1,

〈cn;R ∪ {t1};W ;F 〉). If W 6= ∅, then there does not exist a str2 of t2 where r2 is either

Get or Set because if so str2 would violate the precondition of the Get or the Set rule.

In the case of W = ∅, r2 can only be Get on o because if it is Set, firing up str2 would vi-

olate the precondition of Set. In this case, change(str1str2) = (〈cn;R;W ;F 〉, r1r2, 〈cn;R ∪

{t1} ∪ {t2};W ;F 〉). Swapping the application order of r1 and r2 we get change(st′r2
st′r1

) =

(〈cn;R;W ;F 〉, r2r1, 〈cn;R′ ∪ {t2} ∪ {t1};W ;F 〉), which is the same as change(str1str2) be-

cause set union commutes.

Subcase c: r1 = Set.
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Trivially, r2 cannot be Inst that creates o because no steps can operate on an

object before it is created.

Let str1 = (〈cn;R;W ;F 〉, r1, 〈cn;R;W ′;F ′〉) and t1 ∈ W ′. Then r2 cannot be Get

or Set because if so str2 would violate the precondition of the Get or the Set rule. So r1

cannot be Set

(Case II) str2 is a nonlocal step.

Let str1 = ((H1, N1, T1), r1, (H2, N1, T2)) and H2 differs from H1 at most on object

o since str1 is a local step. Because str1 and str2 are steps of t1 and t2 respectively, they

must change different elements of T , i.e., t1 and t2. str2 as a nonlocal step may add a new

fresh element t to T . But str1 and str2 still obviously commute in terms of changes to T .

So in the following proof, we do not need to concern about T commutativity.

Subcase a: r2 = Task.

Let t be the new task created in str2 , then str2 = ((H2, N1, T2), r2, (H2, N1, T2∪ t)).

The final state change of taking str1 and str2 in this order is ((H1, N1, T1), r1r2, (H2, N1, T2∪

t)). Swapping str1 and str2 results consecutive steps st′1 = ((H1, N1, T1), r2, (H1, N1, T1 ∪ t))

and st′2 = ((H1, N1, T1 ∪ t), r1, (H2, N1, T2 ∪ t)), which makes the combined state change of

st′1st
′
2 to be ((H1, N1, T1), r2r1, (H2, N1, T2 ∪ t)), the same state change as that of str1str2 .

Subcase b: r2 = SubTask.

Let t be the new task created in str2 , then str2 = ((H2, N1, T2), r2, (H2, N1∪{t2 7→

t}, T3)). str1str2 = ((H1, N1, T1), r1r2, (H2, N1 ∪ {t2 7→ t}, T3)). If we apply r2 first, we get

st′1 = ((H1, N1, T1), r2, (H1, N1 ∪ {t2 7→ t}, T2)). Then r1 is applied to get st′2 = ((H1, N1 ∪

{t2 7→ t}, T2), r1, (H2, N1 ∪ {t2 7→ t}, T3)). Therefore, st′1st
′
2 results in a transition
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((H1, N1, T1), r2r1, (H2, N1 ∪ {t2 7→ t}, T3) which has the same start and final states as

str1str2 .

Subcase c: r2 = Tend.

Let str2 = ((H2, N1, T2), r2, (H3, N1, T3)), where

H3 =
⊎

H2(o)=〈cn;R;W ;F 〉

(o 7→ 〈cn;R\t2;W\t2;F 〉)). Namely, str2 removes t2 from R and W

sets of all objects in H2. Consider the case when str1 changes an object o’s F but not its R

or W : taking str1 then str2 has the same state change as taking the two steps in reversed

order because the two steps work on different regions of the heap. If str1 also changes R or

W of o, then it can only add t1 to R or W of o, while str2 may only remove t2 from R or

W of o. Consequently, swapping the two steps we still get the same result because the set

operations commute since t1 6= t2.

Subcase d: r2 = STEnd.

Let N(t) 7→ t2, then str2 = ((H2, N1, T2), r2, (H3, N1\t, T3)), where

H3 =
⊎

H2(o)=〈cn;R;W ;F 〉

(o 7→ 〈cn;R\t2;W\t2;F 〉). Namely, str2 removes t2 from R and W

sets of all objects in H2. Consider the case when str1 changes an object o’s F but not its R

or W : taking str1 then str2 has the same state change as taking the two steps in reversed

order because the two steps work on different regions of the heap. If str1 adds t1 to R or W

of o, swapping the two steps we still get the same result because the set operations commute

since t1 6= t2.

Given this Lemma we can now directly prove the Quantized Atomicity Theorem.

Theorem 1 (Quantized Atomicity). For all paths p there exists a quantized path p′ such

that p′ ≡ p.
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Proof. Proceed by first sorting all pmsp’s of p into a well ordering induced by the ordering

of their points in p. Write pmsp(i) for the i-th indexed pmsp in this ordering. Suppose that

there are n pmsp’s in total in p for some n. We proceed by induction on n to show for all

i ≤ n, p is equivalent to a path pi where the 1st to ith indexed pmsp’s in this ordering have

been bubbled to be quantized subpaths in a prefix of pi: p ≡ pi = pmsp(1) . . . pmsp(i) . . .

where pmsp(k) is quantized with k = 1 . . . i . With this fact, for i = n we have p ≡ pn =

pmsp(1) . . . pmsp(n) where pmsp(k) is quantized with k = 1 . . . n, proving the result.

The base case n = 0 is trivial since the path is empty. Assume by induction that

all pmsp(i) for i < n have been bubbled to be quantized subpaths and the bubbled path

pi = pmsp(1) . . . pmsp(i) . . . where pmsp(k) is quantized with k = 1 . . . i, has the property

pi ≡ p. Then, the path around pmsp(i + 1) includes steps of pmsp(i + 1) or pmsp’s with

bigger indices. By repeated applications of the Bubble-Down Lemma, all these local steps

that do not belong to pmsp(i + 1) can be pushed down past its point, defining a new path

pi+1. In this path pmsp(i+1) is also now a quantized subpath, and pi+1 ≡ p because pi ≡ p

and the Bubble-Down lemma which turns pi to pi+1 does not shuffle any nonlocal steps so

pi ≡ pi+1.

Figure 3.6 demonstrates the proof of Theorem 1 Quantized Atomicity. In this

illustration, t1 and t2 are two tasks and t1 creates t2. Once t2 is started, it executes with

t1 in an interleaved way. Figure 3.6(a) shows one instance of execution paths which have

interleaved steps of t1 and t2. TASK is the step t1 sends an asynchronous -> message that

creates t2 and the two TEND steps are the last steps of t1 and t2 respectively. To proceed

with the proof of the Quantized Atomicity, we first need to identify and index all pmsp’s in
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Figure 3.6: Quantized Atomicity in KernelCoqa
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the execution path, as shown in Figure 3.6(b). Each pmsp has a nonlocal step at the end.

These pmsp’s are indexed by their ordering of their nonlocal steps in the execution path.

In this example, t1 has two pmsp’s, pmsp(1) and pmsp(3), while t2 has only one pmsp(2).

Figure 3.6(c)-(f) show how the three pmsp’s are serialized by using the Bubble-down Lemma

repeatedly in the order of the indexed pmsp’s. First, pmsp(1) is already serialzied in the

sense that there is no step that does not belong to this pmsp interleaving with the steps of

pmsp(1). Then, we can proceed to the second pmsp, pmsp(2). As shown in Figure 3.6(d) and

(e), applying the Bubble-down lemma to pmsp(2) requires two step swaps, which results the

pmsp(2) to be sequentialized in (e). At last, the Bubble-down lemma is applied to pmsp(3),

which is a no-op since pmsp(3) becomes sequentialized after the step swaps for pmsp(2).

Finally, we have a quantized path in (f) that is observably equivalent to the original path in

(a). According to the proof, we can conclude that t1 has a quantized atomicity consisting

of two atomic quanta. t2 has one atomic quantum.

We can also show that KernelCoqa is free of data races, and large zones of mutual

exclusion on objects are obtained in tasks.

Theorem 2 (Data Race Freedom). For all paths, no two different tasks can access a field

of an object in consecutive local steps, where at least one of the two accesses changes the

value of the field.

Proof. First, the two tasks cannot be related by ancestry because subtasks never run in

parallel with tasks. To update an object field, a task needs to obtain a write lock which

prevents other tasks from reading or writing the same object. When a field is read by a

task, the task needs to be granted a read lock first which prevents other tasks from writing
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the same object in the next step. Thus if one of the steps is a write of one task, the other

step cannot be a read or write of an unrelated task.

Theorem 3 (Mutual Exclusion over Tasks). It can never be the case that two tasks t1 and

t2 overlap execution in a consecutive sequence of steps str1 . . . strn in a path, and in those

steps both t1 and t2 write the same object o, or one reads while the other writes the same

object.

Mutual exclusion over tasks is a strong notion of mutual exclusion in terms of the

span of the zone of mutual exclusion – it holds over the lifetime time of the whole task.

Java’s synchronized provides mutual exclusion on an object, but it is shallow in the sense

that it only spans the code in enclosed by the synchronized method/block, and not the

methods that code may invoke.
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Chapter 4

Building I/O in KernelCoqa

Section 2.3 gives an informal description of how Coqa models I/O in two different

ways: the fair I/O model and the reserveable I/O model. Both models use special I/O

objects as the abstraction of I/O channels. I/O objects in the two models are different in

types of message they can receive. In the fair model, only nonlocal messages ( -> and =>

messages) can be sent to an I/O object, while in the reserveable model, an I/O object can

handle all types of messages including local (.) messages.

In this chapter, we formally establish the I/O two models as extensions to Ker-

nelCoqa and we call them KernelCoqafio and KernelCoqario respectively. The focus of

this chapter is to study I/O atomicity and implications an I/O module brings to the whole

language system, which have not yet been thoroughly explored in other systems.

KernelCoqafio and KernelCoqario redefine observable behaviors in terms of I/O

objects because with introducing of I/O, systems in interaction with KernelCoqa are inde-

pendent to each other with respect to I/O in the sense that each system can only observe
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the peer system’s I/O actions but not its internal computation. So from other systems’

point of view, all it matters in terms of KernelCoqa’s behavior is its I/O behavior. New

results then are proved based on the new definitions of I/O behaviors in KernelCoqafio and

KernelCoqario respectively.

Similar to the proof techniques used in Section 3.3, the key in proving theoretical

results in KernelCoqafio and KernelCoqario is to show that adjacent steps of a certain

form in a computation path can be swapped to give an “equivalent” path, a path with

the same I/O behavior. The pmsp, the technical notion of a quantum, is still the unit

of path serialization. Like KernelCoqa, KernelCoqafio systematically serializes each pmsp

in a computation path. Once every pmsp of the given computation path is serialize, the

whole path is then quantized. KernelCoqario first shows that every computation path

has an equivalent quantized path that satisfies the I/O equivalence relationship defined in

KernelCoqario, then we prove lemmas which allow certain pmsp’s in an already quantized

path to be shuffled within the path without affecting the path’s I/O observable behavior.

Consequently, certain pmsp’s of a task can be moved to be adjacent to each other, forming

a bigger atomic region.

4.1 Fair I/O Model

In the fair I/O model, I/O is manifested on some fixed objects. Specifically,

KernelCoqafio has a built-in set, denoted by SysIO, of pre-defined I/O objects. Each

object in SysIO represents an I/O channel between the KernelCoqafio system and the

world outside. For instance, there is one object associated with standard input and one
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Task-IO(t, γ,mn, v, o)
o ∈ SysIO

H,N, 〈t; γ;E[ o ->mn(v) ]〉 ⇒ H,N, 〈t; γ;E[null ]〉

SubTask-IO(t, γ,mn, v, v′, γ)
o ∈ SysIO

H,N, 〈t; γ;E[ o =>mn(v) ]〉 ⇒ H,N, 〈t; γ;E[ v′ ]〉

Figure 4.1: Operational Semantics Rules for I/O Objects in KernelCoqafio

with standard output and each file/device is represented by one I/O object. I/O objects

encapsulate native code for channeling data in/out the KernelCoqafio system, so messages

sent to/by them are globally visible system input/output.

KernelCoqafio has the same operational semantics as KernelCoqa except the two

extra rules for handling I/O messages as shown in Figure 4.1. In the Task-IO rule, object

γ in task t sends an asynchronous message to an I/O object o. Notice that there is no new

task created as with the Task rule in Figure 3.4. Similarly, no new subtask is created in the

SubTask-IO rule. The Task-IO rule specifies that no return value is expected from the

I/O object o. The SubTask-IO rule states an arbitrary value v′ is fed back from o because

an I/O input is arbitrary to the receiving system. There are no task end rules corresponding

to the Task-IO and the SubTask-IO rules because no new task is created. To understand

this semantics, we can think of the native operations performed by I/O objects are beyond

the scope of KernelCoqafio operational semantics so they are treated as one message send

step from KernelCoqafio’s point of view.

We here rigorously prove quantized atomicity in KernelCoqafio with respect to I/O

behavior. First, we introduce a new definition of I/O observable equivalence ≡fio. Then,

we show observable equivalence ≡ defined in Definition 5 is a sufficient condition of I/O
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observable equivalence ≡fio: ≡ is a subset of ≡fio. We prove this theorem by demonstrating

that the I/O behavior is a sub-sequence overlapping with the observable behavior defined

in Definition 4.

Definition 16 (Nonlocal Step and I/O-nonlocal Step). A step str is a nonlocal step if r is

one of the nonlocal rules: either Task, SubTask, TEnd, STEnd, Task-IO or SubTask-

IO. str is an I/O-nonlocal step if r is either Task-IO or SubTask-IO.

The nonlocal step defined above is no difference from the one previously defined by

Definition 2 of Section 3.3 except that it distinguishes nonlocal messages sent to I/O objects

from those to common objects. Specifically, the Task-IO rule is a sub-case of the Task rule,

a case when an asynchronous message is sent to an I/O object. Similarly, SubTask-IO is

a special case of SubTask when a subtasking message is dispatched to an I/O object.

Definition 17 (I/O Observable Behavior obfio). The I/O observable behavior of a compu-

tation path p, obfio(p), is the label sequence of all I/O-nonlocal steps occurring in p.

Definition 18 (I/O Observable Equivalence ≡fio). Two paths p1 and p2 are observably

equivalent, written as p1 ≡fio p2, iff obfio(p1) = obfio(p2).

Lemma 3. Lemma 2 (Bubble-down Lemma) holds in KernelCoqafio

Proof. KernelCoqafio extends the operational semantics of KernelCoqa by two nonlocal

rules given in Figure 4.1. To proof that the Bubble-down Lemma still holds in the extended

operational semantics, we only need to extend the proof of Lemma 2 by adding the following

subcase to (Case II) str2 is a nonlocal step.

Subcase e:
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r2 = Task-IO or SubTask-IO. By inspection of Task-IO and SubTask-IO,

str2 does not change S = H,N, T . Obviously, a step swap of str1str2 is an equivalent step

swap.

local step 

nonlocal step

 p’

 Theorem 2

task t1

nio

 p ......

ob(p)

obnio(p)
 Theorem 4

I/O I/O I/O

...... I/O I/O

...... I/O I/O

I/O

......

......

I/O

...... I/O I/O

I/O

 Lemma 3

I/O step on an I/O object

task t2

ob(p’)

obnio(p’)

Figure 4.2: Quantized Atomicity in KernelCoqafio

Theorem 4 (Quantized Atomicity with ≡fio). For all paths p there exists a quantized path

p′ such that p′ ≡fio p.

Proof. By Lemma 3, Quantized Atomicity Theorem (Theorem 1) holds in KernelCoqafio,

so for any path p, there exists a quantized path p′ such that p′ ≡ p. Moreover, all I/O steps

are nonlocal steps, so p′ ≡fio p as well. Theorem 4 directly follows Theorem 1.

Figure 4.2 illustrates how the I/O observable behavior in KernelCoqafio is sub-

sumed by the observable behavior defined in KernelCoqa so that p ≡ p′ implies that
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p ≡fio p′.

...
(L1) v1 = stdin => read();
(L2) v2 = stdin => read();
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Figure 4.3: An Example in KernelCoqafio

Fact 2. I/O operations are atomic.

By inspection of operational semantics rules of KernelCoqafio, every message to an

I/O object is performed by exactly one nonlocal step, a nonlocal TASK-IO/SubTask-IO

step. So every I/O operation is one atomic operation in KernelCoqafio. Data race freedom
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on I/O objects and mutual exclusion over tasks accessing I/O objects directly follow Fact 2.

In KernelCoqafio, it is impossible for a task to have multiple I/O operations to

be processed as one atomic operation because the operational semantics of KernelCoqafio

determines that every I/O operation is performed by exactly one nonlocal step so one pmsp

may include at most one I/O operation.

Figure 4.3 depicts the same example in Figure 2.9: two concurrent tasks t and t′

each send two I/O messages to stdin, the I/O object representing standard input. But

Figure 4.3 more accurately illustrates operational steps according to KernelCoqafio’s se-

mantics. Notice that Figure 4.3 and Figure 2.9 are essentially the same except that steps

of spawning a subtask for an I/O message in Figure 2.9 collapse into a single nonlocal step

in Figure 4.3.

4.2 Reserveable I/O Model

In this section, we describe KernelCoqario, the KernelCoqa with a reserveable

I/O model extension. KernelCoqario gives mutual exclusion on I/O channels which allows

multiple I/O operations to be grouped into one quantum. This is achieved by allowing

I/O objects to receive local synchronous (.) message in addition to nonlocal -> and =>

messages.

Figure 4.4 shows the special pre-defined I/O class in KernelCoqario. Every instance

of I/O resources corresponds to exactly one I/O object. Because I/O objects can receive

local synchronous (.) messages, they can be captured by a task as normal heap objects.

Notice that the I/O class is declared with an exclusive label, which means an I/O object
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template exclusive IOClass {
IOClass() { }
byte read() {

in = rand();
return in;

}
void write(byte v) {

out = v;
}
int random() {
// ... generate and return a random integer

}

byte in; //input value
byte out; //output value

}

Figure 4.4: I/O Class in KernelCoqario

is always write captured upon any access. The IOClass in Figure 4.4 is just an abstraction

of actual I/O and we write it in a Java-alike syntax for easy reading. The IOClass emulates

I/O by sinking data sent to it or returning arbitrary random values computed by the random

method. The two fields in and out are declared for the purpose of causing an I/O object

to be captured by a task. In a real implementation, the IOClass would include native

code that writes data in and out KernelCoqario system which is beyond the scope of the

formalization.

Definition 19 (I/O Class and I/O Objects). I/O class in KernelCoqario is a system defined

class as shown in Figure 4.4. I/O objects are objects on the heap H such that H(o) =

〈cn;W ;R;F 〉 where cn = IOClass.

It is easy to see that I/O objects are treated the same as common heap objects
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in terms of messaging schemes. So KernelCoqario has the same operational semantics as

KernelCoqa as defined in Figure 3.4. However, KernelCoqario has to take labels of the Get

and Set rules into account when they are applied on an I/O object. These labels are used

to define the I/O observable behavior in KernelCoqario. Intuitively, the order of Get/Set

operations on an I/O object is the behavior KernelCoqario manifests itself to the outside

world.

Definition 20 (I/O Step). An I/O step is a local step str with a label Set(t, γ, v) or

Get(t, γ, v) where H(γ) = 〈cn,W, R, F 〉 and cn = IOClass. We use stγr to denote that str

is an I/O step accessing the I/O object γ.

Unlike KernelCoqafio, KernelCoqario’s I/O observable behavior and equivalence

is not a superset of the original formalization established in Section 3.3. This is because

observable behaviors defined in Definition 4 and Definition 17 are not adequate to capture

I/O observable behavior in KernelCoqario: ob(p) does not distinguish I/O objects from

common heap objects so it fails to capture messages sent to I/O objects, those messages

are external visible; obfio(p) is only able to capture certain I/O behavior – ones exhibited

on nonlocal steps. So KernelCoqario needs to redefine observable behavior.

Definition 21 (I/O Observable Behavior obo
rio). Given a path p and an I/O object o,

the I/O observable behavior of p with respect to o, obo
rio(p), is the sequence of labels of

Get(t, o, v) and Set(t, o, v) occurring in p.

Definition 22 (I/O Observable Equivalence ≡rio). Two paths p1 and p2 are I/O observable

equivalent, written p1 ≡rio p2, iff for any I/O object o, obo
rio(p1) = obo

rio(p2).
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Definition 23 (I/O Equivalent Step Swap). For two consecutive steps str1str2 in a computa-

tion path p, where str1 ∈ pmspt1, str2 ∈ pmspt2, t1 6= t2, and str1str2 = (S, r1, S
′)(S′, r2, S

′′),

if the step swap of str1str2, written as st′r2
st′r1

, gives a new path p′ such that p ≡rio p′ and

st′r2
st′r1

= (S, r2, S
∗)(S∗, r1, S

′′), then we say it is an I/O equivalent step swap.

The following lemma is a strengthened version of the Lemma 2 (Bubble-down

Lemma) in the sense that it states the step swap taken in the Bubble-down Lemma also

preserves I/O equivalence defined by Definition 22. The proof technique and procedure

hence are similar to those of the Bubble-down lemma in Section 3.3.

Lemma 4 (Bubble-down with ≡rio). For any path p with any two consecutive steps str1str2

where str1 ∈ pmspt1, str2 ∈ pmspt2 and t1 6= t2, if str1 is a local step, then a step swap of

str1 and str2 is an I/O equivalent step swap.

Proof. First, observe that if t2 is a subtask of t1, then it is impossible for str1 to be a local

step while str2 is a step of t2. Because according to semantics defined in Figure 3.4 a task

and its subtask never have their local steps consecutive to each other, they are demarcated

by some nonlocal steps as demonstrated in Figure 3.5.

str1 is a local step, it can at most change one object’s state on the heap H

and a local step does not change N according to the operational semantics. So str1 =

((H1, N1, T1), r1, (H2, N1, T2)) where H1 and H2 differ at most on one object o.

(Case I) str2 is also a local step.

According to Definition 21 and 22, ≡rio is defined by the label sequence of I/O

steps on any given I/O object o occurring in path p. So if str2 is also a local step, we need

to show that str1 and str2 cannot be I/O steps on the same I/O object so I/O observable
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equivalence still holds with a step swap of str1str2 .

Because str2 is a local step, it does not change N . Let str2 = ((H2, N1, T2), r2,

(H3, N1, T3)). Because str1 and str2 are steps of different tasks t1 and t2, str1 and str2 must

change different elements of T (t1 and t2 respectively). This means any change made by str1

and str2 to T always commute. So in the remaining proof of Case I, we focus on changes

str1 and str2 make on H, and omit N and T for concision.

Let change(str1) = (so1 , r1, s
′
o1

) and change(str2) = (so2 , r2, s
′
o2

).

If o1 6= o2, then change(str1str2) = ((so1 , so2), r1r2, (s′o1
, s′o2

)). Swapping the order

of str1 , str2 by applying r2 first then r1 results in the change ((so1 , so2), r2r1, (s′o1
, s′o2

)),

which has the same start and end states as change(str1str2), regardless of what r1 and r2

are. Moreover, since o1 6= o2, if any or both of o1 and o2 are I/O objects, the step swap of

str1str2 does not change the I/O observable behavior with respect to o1 or/and o2. Therefore

it is an equivalent step swap.

If o1 = o2 = o, then change(str1) = (so, r1, s
′
o), change(str2) = (s′o, r2, s

′′
o) and

change(str1str2) = (so, r1r2, s
′′
o). Let so = 〈cn;R;W ;F 〉. By inspection of the rules this case

only arises if both of the rules are amongst Inst, Get and Set.

Subcase a: r1 = Inst.

change(str1) = (null, r1, so) so r2 cannot be Inst since o cannot be created twice.

And, r2 also cannot be any other local rule: o is just created in str1 by t1. For t2 to be

able to access o, it must obtain a reference to o first. Only t1 can pass a reference of o to

t2 directly or indirectly. As a result, if str2 is a local step of t2 that operates on o, it cannot

be consecutive to str1 , and vice visa. Therefore, r1 = Inst is not possible.
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Subcase b: r2 = Inst. Trivially, r2 cannot be Inst that creates o no matter what r1 is

because no steps can operate on an object before it is created.

Subcase c: o is not an I/O object.

Because o is not an I/O object, a step swap of str1str2 does not change I/O ob-

servable behavior defined on I/O objects. Hereby to show that the step swap of str1str2 is

an I/O equivalent step swap we only need to show that the step swap is equivalent on H.

Subcase c1: r1 = Get

If the class of o is declared as exclusive, then change(str1) = (〈cn;R;W ;F 〉, r1,

〈cn;R;W ′;F 〉), W ′ = W ∪ {t} if t1 captures o in str1 or W ′ = W if W is a subset of the

ancestors of t1. Either way, there does not exist a consecutive str2 of t2 where r2 is either

Get or Set because if so, firing up str2 would violate the preconditions of the Get or the

Set rule.

If the class of o is not declared as exclusive, then change(str1) = (〈cn;R;W ;F 〉,

r1, 〈cn;R ∪ {t1};W ;F 〉). If W 6= ∅, then there does not exist a str2 of t2 where r2 is either

Get or Set because if so str2 would violate the precondition of the Get or the Set rule.

In the case of W = ∅, r2 can only be Get on o because if it is Set, firing up str2 would

violate the precondition of Set. Therefore, change(str1str2) = (〈cn;R;W ;F 〉, r1r2, 〈cn;R ∪

{t1} ∪ {t2};W ;F 〉). Swapping the application order of r1 and r2 we get change(st′1st
′
2) =

(〈cn;R;W ;F 〉, r2r1, 〈cn;R ∪ {t2} ∪ {t1};W ;F 〉), which has the same start and end states

as str1str2 because set union commutes.

Subcase c2: r1 = Set.

Let str1 = (〈cn;R;W ;F 〉, r1, 〈cn;R;W ′;F ′〉) and t1 ∈ W ′. Then r2 cannot be Get
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or Set because if so str2 would violate the precondition of the Get or the Set rule.

Subcase d: o is an I/O object.

In this subcase, we prove that if str1 is an I/O access on the I/O object o, then

there does not exist a valid str2 such that it also accesses the same object o.

Subcase d1: r1 = Get.

If o is an I/O object, then there does not exist a valid str2 for the same reason

stated in Subcase b1 where the class of o is declared as exclusive. This means that it is

impossible for str2 to be stor2
if str1 is a Get step on o.

Subcase d2: r1 = Set.

Let str1 = (〈cn;R;W ;F 〉, r1, 〈cn;R;W ′;F ′〉) and t1 ∈ W ′. Then r2 cannot be Get

or Set because if so str2 would violate the precondition of the Get or the Set rule. Namely,

it is impossible for str1 and str2 to be two local steps operate on the same I/O object o.

(Case II) str2 is a nonlocal step.

Let str1 = ((H1, N1, T1), r1(H2, N1, T2)) and H2 differs from H1 at most on object

o since str1 is a local step. Because str1 and str2 are steps of t1 and t2 respectively, they

must change different elements of T , i.e., t1 and t2. str2 as a nonlocal step may add a new

fresh element t to T . But str1 and str2 still obviously commute in terms of changes to T .

So in the following proof, we omit T for concision.

Because str2 is assumed to be a nonlocal step, it is impossible to get a different

I/O observable behavior from p by a step swap of a local step str1 and a nonlocal step

str2 . Therefore, to show that the step swap of str1str2 is I/O equivalent we only need to

show that if str1str2 = (S, r1, S
′)(S′, r2, S

′′), then the step swap of str1str2 is st′r2
st′r1

=
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(S, r2, S
∗)(S∗, r1, S

′′).

Subcase a: r2 = Task.

Let t be the new task created in str2 , then str2 = ((H2, N1, T2), r2, (H2, N1, T2∪ t)).

The final state change of taking str1 and str2 in this order is ((H1, N1, T1), r1r2, (H2, N1, T2∪

t)). Swapping str1 and str2 results consecutive steps st′1 = ((H1, N1, T1), r2, (H1, N1, T1 ∪ t))

and st′2 = ((H1, N1, T1 ∪ t), r1, (H2, N1, T2 ∪ t)), which makes the combined state change of

st′1st
′
2 to be ((H1, N1, T1), r2r1, (H2, N1, T2 ∪ t)), the same state change as that of str1str2 .

Subcase b: r2 = SubTask.

Let t be the new task created in str2 , then str2 = ((H2, N1, T2), r2, (H2, N1∪{t2 7→

t}, T3)). str1str2 = ((H1, N1, T1), r1r2, (H2, N1 ∪ {t2 7→ t}, T3)). If we apply r2 first, we get

st′1 = ((H1, N1, T1), r2, (H1, N1 ∪ {t2 7→ t}, T2)). Then r1 is applied to get st′2 = ((H1, N1 ∪

{t2 7→ t}, T2), r1, (H2, N1 ∪ {t2 7→ t}, T3)). Therefore, st′1st
′
2 results in a transition

((H1, N1, T1), r2r1, (H2, N1 ∪ {t2 7→ t}, T3) which has the same start and final states as

str1str2 .

Subcase c: r2 = Tend.

Let str2 = ((H2, N1, T2), r2, (H3, N1, T3)), where

H3 =
⊎

H2(o)=〈cn;R;W ;F 〉

(o 7→ 〈cn;R\t2;W\t2;F 〉). Namely, str2 removes t2 from R and W

sets of all objects in H2. Consider the case when str1 changes an object o’s F but not its R

or W : taking str1 then str2 has the same state change as taking the two steps in reversed

order because the two steps work on different regions of the heap. If str1 also changes R or

W of o, then it can only add t1 to R or W of o, while str2 may only remove t2 from R or

W of o. Consequently, swapping the two steps we still get the same result because the set
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operations commute since t1 6= t2.

Subcase d: r2 = STEnd.

Let N(t) 7→ t2, then str2 = ((H2, N1, T2), r2, (H3, N1\t, T3)), where

H3 =
⊎

H2(o)=〈cn;R;W ;F 〉

(o 7→ 〈cn;R\t2;W\t2;F 〉). Namely, str2 removes t2 from R and W

sets of all objects in H2. Consider the case when str1 changes an object o’s F but not its R

or W : taking str1 then str2 has the same state change as taking the two steps in reversed

order because the two steps work on different regions of the heap. If str1 adds t1 to R or W

of o, swapping the two steps we still get the same result because the set operations commute

since t1 6= t2.

Theorem 5 (Quantized Atomicity with ≡rio). For all paths p there exists a quantized path

p′ such that p′ ≡rio p.

Proof. The proof is similar to that of Theorem 1 but uses Lemma 4 on each induction step

to turn pi to pi+1.

4.3 Getting Bigger Atomic Regions

Stronger atomicity property can be achieved if quanta of a task which may spread

through a computation path can be joined as consecutive pmsp’s. In this section, we

approach this goal via the following steps: Theorem 5 guarantees the existence of a quantized

I/O observably equivalent path for any computation path. This allows us to focus our

discussion on quantized paths in the rest of formalization. Then, we establish an I/O

equivalent quantum swap (Theorem 6) on a quantized path, which allows two disjunctive
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quanta of a task to be able to be moved adjacent to each other. Based on this result, we

further study what types of quanta can possibly form a compound quantum which is a

bigger atomic subpath consisting multiple quanta of a task.

We first define two critical conditions for assuring shuffling pmsp’s in a valid way.

Creation contention describes a contention between a task t and its child tasks created by t.

The creation contention free ensures that any valid computation path should not have steps

of a child task occurring before the step that creates it. Capture contention is a contention

between two tasks t and t′ who compete to access a shared object. If t write captures the

object before t′ in a given computation path, then the capture order has to be respected in

an equivalent computation path.

Definition 24 (Creation Contention Free). Given a path p with two consecutive steps

str1str2 where str1 ∈ pmspt1, str2 ∈ pmspt2, t1 6= t2 and t2 is not a subtask of t1, if it is not

the case that str1 has a label of Task(t1, γ,mn, v, o, t2) (t1 creates t2), then str1 and str2

are creation contention free.

In the above definition, suppose str1 has a label of Task(t1, γ,mn, v, o, t′) or Sub-

Task(t1, γ,mn, v, o, t′), then str1 is the creation step of t′.Any step swap that moves a step

of t′ be in front of str1 cannot be valid.

Definition 25 (Capture Contention Free). Given a quantized path with consecutive steps

str1str2 where str1 ∈ pmspt1, str2 ∈ pmspt2, t1 6= t2, str1 = ((H1, N1, T1), r1, (H2, N2, T2)),

str1 is a nonlocal step and str2 is a local step and change(str2) = (so, r2, s
′
o), then str1 and

str2 are capture contention free if H1{o} = 〈cn;R,W ;F 〉 and t1 /∈ W .

Capture contention free definition means that a local step of t2 cannot operate on
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an object o that has already been write captured by t1, until t1 frees o upon its finish.

Definition 26 (CCC-free). Given a quantized path with consecutive steps str1str2, str1str2

are CCC-free iff they are creation contention free and capture contention free.

Now, we introduce the core Theorem I/O Equivalent Quantum Swap. Figure 4.5

shows the procedure and framework of proving the theorem. First, we prove Lemma 5, a

lemma that allows a nonlocal step of a task to be swapped with the adjacent local step of

another task if the two steps are creation and capture contention free. Figure 4.5 shows

that by repeated application of Lemma 5, str1 can be moved to be in front of str2 to give

a new path p1 such that p ≡rio p1. Then, Lemma 6 is introduced in which a step swap

of two creation contention free nonlocal steps gives a new path that is ≡rio to the original

path. Two nonlocal steps str1 and str2 in p1 are swapped to give p2 by Lemma 6 such that

p1 ≡rio p2. It is easy to see that p2 is not a quantized path any more. However, we have

already proved in Theorem 5 that for any given path we can always find a quantized path

that is I/O equivalent to the original path. Consequently, a quantized p′ can be obtained via

Theorem 5, as shown in Figure 4.5. By transitivity of equivalence, p ≡rio p1 ≡rio p2 ≡rio p′,

so p′ ≡rio p. And by then, the I/O Equivalent Quantum Swap Theorem (Theorem 6) can

be established. Essentially, Theorem 6 states that two consecutive pmsp’s can be swapped

to get an I/O equivalent quantized path under the conditions of CCC-free.

Lemma 5 (Nonlocal-Local Bubble Down). Given any a quantized path with two consecutive

steps str1str2 where str1 ∈ pmspt1, str2 ∈ pmspt2 and t1 6= t2, str1 is a nonlocal step and

str2 is a local step, if str1 and str2 are CCC-free, then a step swap of str1str2 is an I/O

equivalent step swap.
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Proof. First, observe that str1 is a nonlocal step so it does not have an I/O label, while

str2 as a local step may have an I/O label. A step swap of str1str2 does not change the

observable behavior of the original path, however, for the step swap of str1str2 to be an I/O

equivalent step swap, we need to show that the two steps commute on H, N and T .

Because str1 and str2 are steps of different tasks t1 and t2, str1 and str2 must change

different elements of T (t1 and t2 respectively) by inspection of the rules. So str1 and str2

obviously commute in terms of changes to t1 and t2 in T .

(Case I) r1 = Task.

str2 is a local step so it does not change N , but may only change H. Since str1

does not change either N or H. str1 and str2 obviously commute on N and H.

str2 also adds a new fresh element t′ to T . Due to creation contention free, t2 6= t′,

str1 and str2 obviously commute on T because operations on set T commute.

(Case II) r1 = SubTask.

str2 is a local step so it may change H. str1 does not change H, so str1 and str2

obviously commute on H.

str1 also adds a new fresh element t′ to T and new mapping of {t 7→ t′} to N . Due

to creation contention free, t′ 6= t2. Moreover, str2 does not change N and only changes t2

of T . str1 and str2 obviously commute because set operations on set T and N commute.

(Case III) r1 = TEnd.

Let change(str2) = (so, r2, s
′
o). Because str1 and str2 are capture contention free,

they work on different objects on the heap so str1 and str2 commute in terms of H. Neither

str1 nor str2 changes N so str1 and str2 also commute on N . str1 and str2 change different
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elements of T (t1 and t2 respectively) so they commute on T

(Case IV) r1 = STEnd.

Because str1 and str2 are capture contention free, they work on different objects

on the heap so str1 and str2 commute on H. str1 removes a mapping {t1 7→ t′} from N ,

t′ 6= t2 due to creation contention free. Furthermore,str2 does not change N so str1 and str2

also commute on N . str1 and str2 commute on T as well.

Lemma 6 (Nonlocal-Nonlocal Bubble Down). Given any a quantized path p with two con-

secutive steps str1str2 where str1 ∈ pmspt1, str2 ∈ pmspt2 and t1 6= t2 and if str1 and str1

both are nonlocal steps, if str1 and str2 are creation contention free, a step swap of str1str2

is an I/O equivalent step swap.

Proof. First, observe that str1 and str2 are both nonlocal steps so they do not have I/O

labels. So a step swap of str1str2 does affect the I/O observable behavior. To show that

such a step swap is an I/O equivalent step swap, we only need to show that str1 and str2

commute on H, N and T .

Let str1 = ((H1, N1, T1), r1, (H2, N2, T2)) and str2 = ((H2, N2, T2), r2, (H3, N3, T3)).

Because str1 and str2 are steps of t1 and t2 respectively, they must operate on different

elements of T .

(Case I) r1 = Task.

According to the operational semantics defined in Figure 3.4, the Task rule does

not change H and N . So str1 and str2 obviously commute on each of H and N .

The Task rule adds a new element t′ to T so str1 = (H1, N1, T1), r1, (H1, N1, T1 ∪
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{t′}), t′ 6= t2 because str1 and str2 are creation contention free. str2 may add another new

element t′′ to T1 ∪ {t′} but str1 and str2 commute on T due to commutativity of set union

operation.

(Case II) r1 = SubTask.

str1 does not change H, so str1 and str2 commute on H no matter str2 changes H

or not.

Let str1 = ((H1, N1, T1), r1, (H1, N1 ∪ {t1 7→ t′}, T1 ∪ {t′})) , t′ is the new subtask

created by str1 . t′ 6= t2 because str1 and str2 are creation contention free.

Subcase a: r2= Task.

Let t′′ be the new task created by str2 , then str2 = ((H1, N1 ∪ {t1 7→ t′}, T1 ∪

{t′}), r2, (H1, N1 ∪ {t1 7→ t′} ∪ {t2 7→ t′′}, T1 ∪ {t′} ∪ {t′′})). Due to commutativity of set

union operation, str1 and str2 commute on N and T .

Subcase b:r2 = SubTask.

Let t′′ be the new task created by str2 , then str2 = ((H1, N1 ∪ {t1 7→ t′}, T1 ∪

{t′}), r2, (H1, N1 ∪ {t1 7→ t′}, T1 ∪ {t′} ∪ {t′′})). Due to the commutativity of set union

operation, str1 and str2 commute on N and T .

Subcase c: r2 = TEnd.

str2 may change H, but str1 does not. So they commute on H. str2 does not

change N so str1 and str1 commute on N . str2 changes t2 of T , a different element that str1

operates on. Moreover, t′ 6= t2 where t′ is the new element str1 adds to T . Hence str1 and

str2 commute on T as well.

Subcase d:r2 = STEnd.
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str2 takes a mapping {t2 7→ t′′} from N . Because str1 and str2 commute on T and

t1 6= t2, str1 and str2 each removes different element from N . str2 does not affect T . So str1

and str2 commute on H, N and T .

(Case III) r1 = TEnd.

Subcase a: r2 = Task.

str1 and str2 commute on H because only str1 affects H. None of the two steps

affect N so they commute on commute on N as well. str1 and str2 operate on different

elements of T and str2 adds a new element to T . Hence str1 and str2 as well commute on T

Subcase b: r2 = SubTask. The proof is similar to Subcase a.

Subcase c:r2 = TEnd.

Neither str1 nor str2 changes N so they commute on N . str1 and str2 also commute

on T because they change different elements of T . str1 removes t1 from W and R set of all

objects on the heap H, while str2 removes t2 from the W and R of objects. So str1 and str2

also commute on H due to the commutativity of set operations.

Subcase d:r2 = STEnd.

str1 and str2 commute on T because they affect different elements of T . str2 removes

a mapping t2 7→ t′ from N while str1 does not change N . str1 removes t1 from W and R set

of all objects on the heap H, while str2 removes t2 from the W and R of objects. So str1

and str2 also commute on N and H due to commutativity of set operations.

(Case IV) r1 = STEnd.

Subcase a:r2 = Task.

str1 and str2 commute on both H and N because only str1 affects on H and N .
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str1 changes t1 of T while str2 changes t2 of T and adds a new element to T . The

two steps obviously commute on T as well.

Subcase b:r2 = SubTask.

The proof is similar to Subcase a.

Subcase c:r2 = TEnd.

str1 and str2 commute on T because they affect different elements of T . str1 removes

t1 from W and R set of all objects on the heap H, while str2 removes t2 from the W and R

of objects. So str1 and str2 commute on H due to the commutativity of set operations. str1

removes a mapping t1 7→ t′ from N while str2 does not change N so str1 and str2 commute

on N as well.

Subcase d: r2 = STEnd.

str1 and str2 commute on T because they affect different elements of T . str1 removes

a mapping {t1 7→ t′} from N while str2 removes {t2 7→ t′′}, t1 6= t2, so str1 and str2 commute

in terms of N because set operations commute. Moreover, str1 removes t1 from W and R

set of all objects on the heap H, while str2 removes t2 from the W and R of objects. So

str1 and str2 also commute on N and H due to the commutativity of set operations.

Definition 27 (Sequential Steps). Two steps str1 and str2 in a computation path p are

sequential steps if str1 occurs before str2 in p.

Two sequential steps are ordered steps in p but they do not have to be consecutive

to each other.

Theorem 6 (I/O Equivalent Quantum/pmsp Swap). For any quantized path p with two

sequential nonlocal steps str1 and str2 where str1 ∈ pmspt1, str2 ∈ pmspt2 and t1 6= t2. If str1
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and str2 are creation contention free and str1 is also capture contention free with all local

steps of pmspt2, then pmspt1 can be moved to be after pmspt2 by a series of equivalent step

swap to get a quantized path p′ and p′ ≡rio p.

Proof. As demonstrated in Figure 4.5, Theorem 6 directly follows Lemma 5, Lemma 6 and

Theorem 5.

With Theorem 6 certain pmsp’s of a task can be shuffled to be consecutive to

each other to obtain an I/O equivalent path. The sequence of pmsp’s of the same task

forms a bigger atomic region, a union of these consecutive quanta. Now, we study how to

systematically apply the results we have proved so far to achieve a goal of welding disjoint

quanta of a task.

Recall that the nonlocal step at the end of a pmsp is called the point of the pmsp.

Definition 28 (Join Point). Given a quantized path p with pmspt,i and pmspt,i+1, if pmspt,i

and pmspt,i+1 can be moved to be adjacent to each other by a series of I/O equivalent step

swaps, then the point of pmspt,i is a join point.

Definition 29 (Compound Quantum). Given a quantized path p with a sequence of pmspt’s,

pmspt,i . . . pmspt,j, if there is no pmsp’s of other tasks occurring between pmspt,i and pmspt,j,

then pmspt,i . . . pmspt,j form a compound quantum. We use cpt to denote a compound

quantum of t.

If pmspt,i . . . pmspt,j where j > i form a compound quantum, points of pmspt,i

. . . pmspt,j−1 are all join points. A compound quantum has the same atomicity property

as a quantum because it does not interleave with quanta of any other tasks. By the above

definition, a compound quantum is a subpath includes more than one pmsp’s of a task.
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In KernelCoqario, there are four types of nonlocal steps (Task, SubTask, TEnd

and STEnd) that could be a pmsp point. Among the four types of nonlocal step, a

TEnd/STEnd step obviously cannot be a join point because there is no more pmsp’s

of the same task afterwards. So, in the rest of this section, we focus on the SubTask and

the Task steps.

Fact 3 (A SubTask Step is Never a Join Point). Give a quantized path p with pmspt,i

and pmspt,i+1, pmspt,i has str1 as its point and pmspt,i+1 has str2 with its point and r1 =

SubTask, then str1 is never a join step.

According to operational semantics defined in Figure 3.4, when t creates a subtask

t′, it pauses its computation until the subtask t′ finishes. Therefore, there is at least one

pmsp′t between pmspt,i and pmspt,i+1. Suppose the point of pmsp′t is st′r′ , then st′r′ and str2

are not creation contention free so that Lemma 6 can not apply. As a result, there does not

exist p′ such that p′ ≡rio p and pmspt,i and pmspt,i+1 are adjacent to each other in p′.

Corollary 1 (A Task Step Can Be a Join Point). Give a quantized path p with pmspt,i

and pmspt,i+1, with pmspt,i has str1 as its point and pmspt,i+1 has str2 as its point and r1 =

Task, if the nonlocal steps between pmspt,i and pmspt,i+1 are capture contention free with

the local steps of pmspt,i+1, then str1 is a join point.

Proof. We use ps to denote the pmsp sequence between pmspt,i and pmspt,i+1 inclusive.

Suppose there are n pmsp’s of other tasks between pmspt,i and pmspt,i+1. We index those

pmsp’s with their distance with pmspt,i+1 so that ps = pmspt,ipmspn
tk

. . . pmsp1
t1pmspt,i+1,

k ≤ n. We also assume that pmspj
tj

, j = 1 . . . n, has a point st′rj
.
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Start with pmsp1
t1 , st′r1

, the point of pmsp1
t1 , and all steps in pmspt,i+1 are creation

contention free because if otherwise, it is impossible for steps of t, i.e. pmspt,i, to occur

before st′r1
in p. Since st′r1

is also capture contention free with all local steps of pmspt,i+1,

by Theorem 6 we can get a path p1 ≡rio p and p1 is same as p except p1 has ps replaced

with pmspt,ipmspn
tk

. . . pmsp2
tjpmspt,i+1pmsp1

t1 .

By repeated application of Theorem 6 to all pmsp’s between pmspt,i and pmspt,i+1

by the order of their indices, we can eventually get a path pn such that pn ≡rio p and pn is

the same as p except that ps is replaced with pmspt,ipmspt,i+1pmspn
tk

. . . pmsp1
t1 . Therefore

str1 is a join point.

A join point connects two pmspt’s to form a compound quantum. And a compound

quantum is a sequence of pmspt,i’s, i = 1 . . . n, n > 2 where the point of pmspt,k, k =

i . . . n− 1 is a joint point.

Definition 30 (Maximal Compound Quantum). Given a quantized path p with cpt, if there

does not exist a pmspt either before or after cpt in p that can be found adjacent to cpt in a

path p′ that p ≡rio p′, then cpt is a maximal compound quantum, written as mcpt.

Figure 4.6 demonstrates the step-by-step procedure for building up a compound

quantum with growing size until a maximal compound quantum reached. In the figure,

every pmsp is represented by a big step consisting of a representative local step and a

nonlocal step, a Task nonlocal step is labeled with “*” and p1 ≡rio p2 ≡rio p3 ≡rio p4.

One application of Theorem 6 takes p1 to p2, with pmspt,i and pmspt,i+1 closer to each

other. The second application of Theorem 6 brings p2 to p3 in which pmspt,i and pmspt,i+1

adjacent to each other to form a compound quantum framed by a dashed box. Corollary 1
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is the corollary established on top of Theorem 6, so it takes p3 to p4 with pmspt,i+2 being

adjacent to pmspt,i+1 which results in an even bigger compound quantum consisting of

pmspt,i, pmspt,i+1 and pmspt,i+2. Notice that we are not able to apply either Theorem 6 or

Corollary 1 to pmspt,i+3 because the point of pmspt,i+2 is not a Task step. If i = 1, then

the compound quantum consisting of pmspt,1, pmspt,2 and pmspt,3 is a maximal compound

quantum there does not exist another pmspt either before or after it can be shuffled to form

an even bigger compound quantum.

The theorem and facts illustrated in this section show that a Task step is the

only type of nonlocal message that could possibly be a join point where two quanta can be

welded to form a bigger compound quantum. This fits our intuition illustrated in earlier

Section 2.3.4: imaging a system with two tasks t1 and t2, t1 creates t2 by an asynchronous

message. After the creation point, the two tasks run independently without sharing any

objects including I/O objects. Then any computation path in the system can be viewed as

t1 runs before t2, which means the t1 as a whole is atomic: it has one compound quantum

consisting of two quanta demarcated by a Task step.

4.4 Atomic Tasks

Tasks with all its quanta in a consecutive sequence are atomic in their totality.

Not all tasks fall in to this category. For instance, tasks with subtasks obviously are not

atomic tasks because the exact purpose of subtasking is to introduce interleavings. However,

atomic tasks are an interesting topic to explore. First of all, atomic tasks are tasks with

the strongest atomicity property. Secondly, by studying atomic tasks, we understand more
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about the similarity and difference between the Coqa model and the Actor model: Coqa

subsumes the Actor model in the sense that the Actor model can be encoded in Coqa, while

Coqa is stronger than the Actor model since the atomicity in Coqais deep while the Actor

model’s atomicity is shallow.

Definition 31 (Creation pmsp of Task t). Given a pmspt′ with a Task step as its point,

if the Task step has a label (t′, γ,mn, v, o, t), then the pmspt′ is the creation pmsp of t,

written as pmspt
t′.

Fact 4. Every task t has exact one creation pmsp except the bootstrapping task tmain which

dose not have a creation pmsp.

We can introduce a nonlocal Task step with a label Task(ε, ε, main, v, ε, tmain)

as the pseudo step creating tmain. And we can safely make the pseudo step as the first

step of every computation path, without bringing any changes to our formalization. Now,

the bootstrapping task tmain also has its creation pmsp, pmsptmain , consisting of only the

pseudo nonlocal Task step.

Definition 32 (Quantum Unit). For a given quantized path p, a quantum unit of a task t

is a sequence of pmsp’s of t, pmspt,i . . . pmspt,j in p, j − i > 0. We use qut to denote the

quantum unit of t.

By the above definition, a quantum unit can be either a quantum or a compound

quantum of a task.

Definition 33 (Singleton Quantum Unit). For a given quantized path p, the singleton

quantum unit of a task t is the sequence of all the pmsp’s of t, pmspt,1 . . . pmspt,n in p,
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n > 1 and there does not exist a pmspt,n+1. We use squt to denote the singleton quantum

unit of t.

Obviously, a task may have at most one singleton quantum unit and not all tasks

have it. For a given task if there exists an equivalent path with its singleton quantum unit,

then the task is atomic as a whole.

Lemma 7. Given a task t in a quantized path p, if t has no SubTask step and for any

consecutive steps str and str′ where str ∈ pmspt, str′ ∈ pmspt′, t 6= t′, str and str′ are capture

contention free, then there exists a quantized path p′ with the squt and p′ ≡rio p.

Proof. Suppose that task t has n pmsp’s in total in p for some n. We proceed by induction

on n to show that for all i ≤ n, p ≡rio pi where pi has a qui
t consisting of pmspt,k, k = 1 . . . i.

With this fact, for i = n, all pmspt’s can be shuffled to form the squt, proving the result.

Let pmspt
t′ be the creation pmsp of t. The base case n = 1 is trivial since t has

only one pmsp which is the squt. Assumed by induction that we can find a path pi such that

p ≡rio pi and pi has one qui
t consisting of pmspt,k, k = 1 . . . i. Notice that qui

t must occur

after pmspt
t′ , the creation pmsp of t, in path pi. Otherwise, pi is not a valid computation

path because no steps in qui
t can be taken before t has been created. Due to this fact, steps

of other tasks between qui
t and pmspt,i+1 can be moved to be after pmspt,i+1 in path pi+1 by

application of Corollary 1 such that pi+1 ≡rio pi ≡rio p and qui+1
t is formed by the sequence

of pmspt,k, k = 1 . . . i + 1 in pi+1. Therefore, when i = n, a new path pn can be defined

such that pn ≡rio p and qun
t consists of pmspt,k, k = 1 . . . n. qun

t is the squt.

Theorem 7 (Atomic Tasks). Given a quantized path p, if there is no SubTask step and

for any consecutive steps str1 and str2 where str1 ∈ pmspt1, str2 ∈ pmspt2, t1 6= t2, str1 and
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str2 are capture contention free, then there exists a quantized p′ such that p′ ≡rio p and p′

consists exact one maximal quantum unit for every task.

Proof. Proceed by first indexing all tasks into a well ordering induced by the ordering of

their creation pmsp’s in p. Write ti as the i-th task in this ordering. Suppose that there are

n tasks in total in p for some n and t1 = tmain if n > 0.

We proceed by induction on n to show for all i ≤ n, p ≡rio pi where t1 to ti

in this ordering have been shuffled to have exact one squti in a prefix of pi: p ≡ pi =

squt1squt2 . . . squti−1
squ(ti) . . . . With this fact, for i = n we have p ≡ pn = squt1 . . . squtn

proving the result.

The base case n = 0 and n = 1 are trivial. When n = 0, the path is empty. When

n = 1, there is only one task tmain in the path and all pmsp’s are adjacent to each other

forming the squtmain
(squt1).

Assume by induction that ti for i < n path pi = squt1 . . . squti . . . such that pi ≡rio

p. Let pmspti+1

t′ to be the creation pmsp of ti+1, then t′ = tk, k ∈ {0, . . . , i}, otherwise pi is

not a valid computation path because no step of a task can be fired before the task is created.

By Lemma 7, pmsps of tv, v > i+1 after squti before the last pmsp of ti on pi can be moved

after the last pmsp of ti, forming a path pi+1 such that pi+1 = squt1 . . . squtisquti+1
. . . and

pi+1 ≡rio pi ≡rio p. So when i = n, we can find a path pn such that pn = squt1 . . . squtn .

Figure 4.7 demonstrates how we prove Lemma 7 and Theorem 7 and their re-

lationship. In the example, there are four tasks in total and the tree on the upper left

corner shows their creation relationship: tmain creates t which in turn creates t′ and t′′. p1

is a complete computation path. First, we index the four tasks according to the order of
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their creation pmsp’s as shown in the indexing table. Then Lemma 7 is applied to tasks

in the indexing order to obtain the singleton quantum unit for each of the tasks, proving

Theorem 7.

It is worth mentioning that for a given infinite computation path, Theorem 7 might

infinitely delay the execution of a task. Imagine that task t in Figure 4.7 has infinite steps

in p1, then steps of both t′ and t′′ would be pushed backward to infinite future in p3. This is

a fundamental problem existing in all concurrency formalization systems and hence is also

beyond the scope of our model.

Theorem 7 states that all tasks can be atomic if none of them are in a task-

subtask relationship and they do not share objects. Technically, even with all the pre-

conditions, KernelCoqario is still a stronger model than the Actor model because atomic

tasks in KernelCoqario are bigger atomic units which could include multiple synchronous

local messages and involve multiple objects. While the Actor model, the atomic unit is

per-message-per-actor. The Actor model can be faithfully implemented in KernelCoqario,

for instance, if actors are realized as objects in KernelCoqario and they communicate only

using nonlocal asynchronous messages, then a task only includes one message of one actor.

So we claim that KernelCoqario subsumes the Actor model.

4.5 Further Discussion

The soundness of KernelCoqario requires one important assumption about I/O

objects: there should no linkage between I/O objects. The two monitors example in Sec-

tion 2.3.3 is a case of two display objects linked by an observer. The other common form of
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linkage is more static, for instance, file aliasing may result in two I/O objects representing

the same file on the disk.

The linkage between I/O objects makes them inapplicable in KernelCoqario and

Figure 4.8(a) explains the reason. The computation path p is I/O equivalent to the quan-

tized path p′ according to Theorem 5. However, if both o1 and o2 are aliased to “log.txt”,

then p and p′ are not equivalent because p has “10” written in the file while p′ would have

“5” as the content of the file. Theorem 5 holds only if there is no intrinsic linkage between

o1 and o2 as shown in Figure 4.8(b).

The linkage between I/O objects is not a provable property in KernelCoqario, so

we have to assume that I/O objects are not linked to each other, which is general the case in

practice. Or, if there is any linkage between any I/O objects, it is known to KernelCoqario

so that linked objects can be treated differently. One simple approach to handle linked

I/O objects is to group them into sets such that objects in different sets are not linked.

A message sent to any I/O object in such a set would result a write capture of all I/O

objects of the set. A wrapper object can also be used to encapsulate linked objects and

redirect messages to those objects. But the set approach is more flexible in the sense

that individual I/O object in a set is still able to receive messages without redirection.

Essentially, KernelCoqario manipulates linked I/O objects as if they are one I/O object.

Read-only files are a special case that do not have to follow the restriction that

every disk file is represented by one I/O object in KernelCoqario. Instead, multiple I/O

objects of one file can exist for input operations. Each of these read-only I/O objects is

able to record its own state (file pointer) so operations performed via it are independent
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from other peers. This can be easily done via adding an instance field to the IOClass.

However, the linkage between I/O objects does not affect KernelCoqafio due to

the fact that the order of I/O operations is always preserved regardless of any linkage, as

shown Figure 4.9.

As we have mentioned in the beginning of this Chapter, KernelCoqario subsumes

KernelCoqafio in expressiveness. An integrated model can be implemented by giving extra

type information to I/O objects. More specifically, an I/O object can have a label indicating

its type: fair or reserveable. A fair I/O object is restricted to receive only nonlocal messages.

Had it receive a local synchronous message, an exception is raised. Such an integrated

system can be more flexible in practice and programmers can benefit from advantages of

both the fair and the reserveable I/O models.
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Chapter 5

CoqaJava: a Coqa Prototype

We have implemented a prototype of Coqa, called CoqaJava, as a Java extension.

Polyglot [55] was used to construct a translator from CoqaJava to Java so that nearly all

of the existing Java syntax and type system can be reused. In this chapter, we describe the

implementation of CoqaJava and benchmarks we have run on it, then we discuss techniques

that may be applied to CoqaJava to further improve its performance.

5.1 CoqaJava Implementation

All language features introduced in Figure 3.1 are included in the prototype. A

CoqaJava program is much like a Java program: the o . m(v) Java syntax represents a

local synchronous message send when used in a CoqaJava program. The main difference

is that CoqaJava includes nonlocal synchronous/asynchronous message sending operators

=> and -> . CoqaJava also discards Java’s threading model in which threads are created

and manipulated explicitly via objects of the java.lang.Thread class. Instead, parallel
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class BankMain extends CObject{
public void main(String [] args) {

...
//Translator-generated code for bank -> (...)

(A1) TransferWrap v 1 = new TransferWrap();
v 1.setTarget(bank);
v 1.setArg0("Alice");
v 1.setArg1("Bob");
v 1.setArg2(300);

(A2) Task.rootExecutor.submit( v 1);
...

}
...
// Translator generated inner class
class TransferWrap implements Runnable {

Bank target;
String arg0, arg1;
int arg2;
void setTarget(Bank target) {

this.target = target;
}
void setArg0(String arg0) {

this.arg0 = arg0;
}
...
public void run(){

(A3) Task t = new Task();
target.transfer(t,arg0,arg1,arg2);

(A4) t.finish();
}

}
}

Figure 5.1: Translation of the Fragment bank -> transfer()
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class Bank extends CObject {
...
public void transfer(Task t, String from, String to, int b){

...
(B1) Account afrom = (Account)htable. get del(t, from);

...
}

}

class HashTable extends CObject {
...
// Translato-generated delegate method
Object get del(Task t, String arg0) {

(B2) Task subTask = new Task();
(B3) Task.record(subTask, t);

Object ret = get(subTask, arg0);
(B4) subTask.finish();

return ret;
}

}

Figure 5.2: Translation of the Fragment htable => get()
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computations are created via asynchronous messaging and concurrently running tasks are

coordinated via the Coqa mechanisms as described in the previous sections. Consequently,

CoqaJava programmers do not need Java’s synchronized method or block to coordinate

threaded computations. Note we do not claim that CoqaJava offers the final set of task

and coordination primitives, just the core ones. There is clearly a need for higher-level

coordination and that is planned as future work in Chapter 6.

Translation Overview In the implementation, we introduce a new Java base class called

CObject. This class is invisible to programmers, and the CoqaJava translator converts all

user classes to subclasses of this base class.

CObject implements the algorithm for checking and updating an object’s cap-

ture sets, which is activated via invoking the readReq/writeReq method provided by the

CObject. The CoqaJava translator enforces that the two methods are invoked whenever an

object field is accessed by a task.

Task is another Java base class that CoqaJava programmers do not directly see.

A Task object represents a task or a subtask created by -> or => . The translator inserts

code for creating a new Task object before a (sub)task starts to run. The Task object

then coordinates the object capture on behalf of the running task and records captured

objects so that they can be freed when the task finishes. Figure 5.1 shows by way of

example how the translator maps an asynchronous message send at bank -> transfer()

of the earlier example in Figure 2.1: it is wrapped up as an instantiation of a translator-

generated inner class TransferWrap (line A1), in which a new Task object is created (line

A3). Similarly, Figure 5.2 gives an example of the translation for a synchronous message
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send at htable => get() of the earlier example in Figure 2.6: it is converted to a call to

a translator-generated delegate method get del (line B1) in the HashTable class, where a

subtask object is instantiated (line B2) and the relationship between the subtask and its

creator is recorded (line B3). When a (sub)task finishes, a call to the method finish is

invoked on its representative Task object (Figure 5.1 line A4 and Figure 5.2 line B4). The

finishing process releases all objects captured by the ending task.

We utilize the new java.util.concurrent package in our prototype implemen-

tation. Every CoqaJava application has a built-in ScheduledThreadPoolExecutor, refer-

enced by rootExecutor. It serves as an execution engine for the tasks of the application.

Figure 5.1 line A2 shows how a task is submitted to the executor for execution. Subtasks

can always be run in the parent thread in CoqaJava because their computations do not

overlap.

Figure 5.3 gives the complete code translation schema describing how CoqaJava

programs are mapped to Java. The remaining Java ones, including the primitive datatypes,

public and private modifiers for methods etc., that are not shown in this table are gen-

erally kept unchanged. We currently leave some other Java language features out of our

implementation, including inner classes, native methods, field uses which are not via ac-

cessors, exceptions, packages for isolated namespaces, and static fields; these features are

not difficult to include. And we will discuss how they can be implemented in CoqaJava in

Section 6.3.

As shown in Figure 5.3, every method is translated to carry an extra parameter,

Task t, that records which task the invocation is in. In CoqaJava, objects are restricted
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CoqaJava Code Java Code
class tn{. . .} class tn extends CObject{. . .}
e.mn(e′) e.mn(t, e′)
τ mn(τ x) {e} τ mn(Task t, τ x) {e}
τ getter() {e} τ getter(Task t) {this.readReq(t); e}
setter(τ e) {e′} setter(Task t, τ e) {this.writeReq(t); e′}
exclusive label a CObject field

e ->mn(e′)

Task t = new MnWrap();
t.setTarget(e);
t.setArg(e′);
Task.rootExecutor.submit(t);

//Translator-generated inner class for τe

class MnWrap implements Runnable{
Task t;
τe target;
τe′ arg;
void setTarget(τe target)

{ this.target = target; }
void setArg(τe′ arg)

{ this.arg = arg; }
public void run()

{ t = new Task();
target.mn(t, arg);
t.finish(); }

}
e =>mn(e′) e.mn del(t, e′)

//Translator-generated method for τe

τ mn del(Task t, τe′ arg)
{ Task nt = new Task();
Task.record(nt, t);
τe ret = mn(nt, arg);
nt.finish();
return ret; }

Figure 5.3: CoqaJava to Java Syntax-Directed Translation
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to have only private fields which are accessed by getters/setters; this restriction is in fact

only there for implementation simplicity and will be lifted in the near future. The CoqaJava

translator translates all getters/setters to capture an object on behalf of a task before it

accesses a field by calling the readReq/writeReq method on the object. For instance, if a

task reads an object field via its getter method, the first thing the getter method does is

to invoke the readReq method provided by the CObject on the current object. If the read

request is granted, the readReq method updates the capture sets of the object, then returns

silently. If the read is not allowed at this moment, the thread running the task will be put

into a wait state on the readReq. The waiting task will be notified when the requested object

becomes available, then its read request can be fulfilled and its computation resumes. The

exclusive label declared in a CoqaJava class is translated to a boolean value in an instance

field of CObject which will be checked first whenever a read request is made by a task.

The CoqaJava compiler only translates user defined classes and leaves library

classes unchanged. Therefore, a user defined class cannot extend a library class because if

it does, then it will not be translated to a subclass of CObject. This is a limitation of the

prototype implementation but not the language model. A full-fledged implementation can

easily extend the prototype to have all classes including library classes to be subclasses of

the CObject as the way that all classes in Java are subclasses of java.lang.Object.

Constructors For simplicity, operational semantics of KernelCoqa does not formalize

constructors: they are treated no different from methods. However, we include constructors

in CoqaJava for ease of programming. A task does not capture the object it creates although

it may initialize fields of the object. This implementation choice is made because a task
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exclusively holds the initial reference of an object it creates anyway, so there is no need to

for the task to capture the object.

5.2 Benchmark Evaluation

CoqaJava preserves quantized atomicity by default in its language model by using

a pessimistic locking scheme implicitly. While it saves programmers from worrying about

how to correctly synchronize shared resource accesses themselves, the approach inevitably

introduces undesirable impact on the performance of the programs written in Coqa. This

motivates us to benchmark CoqaJava. Understanding the performance of CoqaJava helps us

to understand the behavior patterns of concurrent programming and tests the practicality

of the Coqa language itself.

Although there are no standard benchmarks available for evaluating concurrent

languages like CoqaJava on all possible concurrent algorithms or patterns, we can identify

two common tasks of concurrent applications and evaluate CoqaJava on the two. The two

tasks are summarized well in [27] and quoted as follows:

Concurrent applications tend to interleave two very different sorts of work: ac-
cessing shared data, such as fetching the next task from a shared work queue,
and thread-local computation (executing the task, assuming the task itself does
not access shared data). Depending on the relative proportions of the two types
of work, the application will experience different levels of contention and exhibit
different performance and scaling behaviors.

If N threads are fetching tasks from a shared work queue and executing them,
and the tasks are compute-intensive and long-running (and do not access shared
data very much), there will be almost no contention; throughput is dominated
by the availability of CPU resources. On the other hand, if the tasks are very
short-lived, there will be a lot of contention for the work queue and throughput
is dominated by the cost of synchronization.

We used three benchmark programs. The first program is contention-intensive. It
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uses a group of short-lived tasks contending for shared resources. The second and third

benchmarks are programs with a set of computation-intensive tasks coordinating with each

other. The third benchmark is different from the second one in that it involves tens of

thousands of objects in its computation.

The three programs are written in Java, then we modify them in a minimal way

to transfer them into CoqaJava benchmark programs. All the benchmarks were performed

on a Sun Blade 50 running Solaris 2.5. The relative performance of CoqaJava compared

to Java is what we care about in the evaluation. Each benchmark program was run with

7 different thread configurations in which the total number of threads equals to 1, 2, 4, 8,

16, 32 and 64 respectively. With each configuration, the benchmarks of Java version and

CoqaJava version were each run 10 times and the average value of the 10 runs was used.

5.2.1 Benchmarks and Results

Sliding Block. Because there are no ready-to-use benchmark programs available for sim-

ulating a set of short-lived tasks contending for shared resources as we require, we decided

to implement a benchmark program from scratch for the evaluation and we chose the classic

“sliding block” puzzle solver problem. The puzzle game starts with blocks of various sizes

on a board sitting at some initial positions. Then players need to move those blocks to

reach a goal configuration in which blocks all sit at their predefined final positions. Blocks

can only be moved one at a time and one step at a time. Every movement has to be on the

plane of the board.

We used a brute force algorithm in implementing the puzzle solver problem – check-

ing all possible configurations in a breath-first search fashion until the goal configuration is
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Number of Threads
CoqaJava Java

Ratio
Mean(seconds) std Mean(seconds) std

1 0.573 0.001 0.189 0.001 3.030
2 0.532 0.007 0.193 0.005 2.754
4 0.473 0.004 0.200 0.004 2.359
8 0.482 0.005 0.199 0.008 2.417
16 0.504 0.008 0.197 0.008 2.557
32 0.576 0.062 0.237 0.014 2.424
64 0.547 0.030 0.241 0.032 2.265

Table 5.1: Java and CoqaJava on the Puzzle Solver Benchmarks

Figure 5.4: Java and CoqaJava on the Puzzle Solver Benchmarks
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reached. The producer-consumer pattern was used in the program where tasks constantly

take a configuration from a shared queue, check if the configuration is the final goal and

put back to the queue all possible moves from the configuration if it is not the goal yet.

The puzzle solver game was implemented in Java and CoqaJava with minimal difference

in code. The benchmark performance was measured in time that the solver program spent

until it found the goal configuration. The benchmark programs in Java and CoqaJava are

always run with the same initial and final configuration. Table. 5.1 shows the mean values

of the time measurements of Java version and CoqaJava version benchmarks in seconds.

The “std” columns are the standard deviations from the mean values. The last column of

the table lists the ratio of the mean values of the CoqaJava and Java versions.

As we can see from Table 5.1 and Figure 5.4, the CoqaJava benchmark is up to

three times slower than the Java running times. The overhead comes from the fact that

CoqaJava performs implicit object capture to ensure quantized atomicity. Specifically, in

CoqaJava, if any of the fields of any object is accessed, a read or write locking is performed

on the object. There is obviously more locking and unlocking going on in CoqaJava than in

Java in which no lock is used unless programmers explicitly code so. Other factors such as

the length of calling chain and the duration of an object being captured matter tremendously

as well. For instance, locking an object twice is much more expensive than locking it once

for two accesses. If those parts of overhead which both CoqaJava and Java benchmarks have

to pay are outstanding enough, they offset the performance penalty brought by CoqaJava.

Java Grande SOR Benchmark. To evaluate the case of coordinated computation-

intensive tasks, we made a CoqaJava version of the SOR benchmark from the Java Grande
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Number of threads
CoqaJava Java

Ratio
Mean(seconds) std Mean(seconds) std

1 13.910 0.011 13.812 0.016 1.007
2 14.023 0.015 13.927 0.010 1.007
4 14.194 0.020 14.171 0.015 1.002
8 14.403 0.020 14.384 0.022 1.001
16 14.681 0.015 14.650 0.017 1.002
32 15.036 0.015 14.992 0.020 1.003
64 15.568 0.057 15.564 0.021 1.000

Table 5.2: Java and CoqaJava on the SOR Benchmarks

Figure 5.5: Java and CoqaJava on the SOR Benchmarks
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Forum Multi-threaded Benchmarks [38]. And compare its performance against the original

Java version benchmark. The SOR benchmark performs 100 iterations of successive over-

relaxation on a N x N grid (with N = 1000 in our test case), and the algorithm was optimized

for parallelization where only nearest neighbor synchronization is required. The mean time

measurements in seconds are shown in Table. 5.2 together with the standard deviation of

the time measurement for both Java version and CoqaJava version benchmarks. The result

shows that CoqaJava version performed comparable to that of original Java version. The

extensive computation performed in the benchmark made the overhead of locking scheme

introduced in CoqaJava negligible as expected. The last column of the table shows the

ratio of the mean time measurements of CoqaJava benchmark against Java benchmark.

Figure 5.5 depicts this ratio in a more direct way.

Java Grande Raytracer Benchmark This benchmark measures the performance of a

3D raytracer that involves intensive computations on tens of thousands of objects. The

original benchmark operates on a scene containing 64 spheres with a resolution of 150 x

150. We reduced the scene to contain 8 spheres with a resolution of 64 x 32 pixels to lower

the memory requirement on our testing machine.

As shown in Table 5.3 and Figure 5.6, the slowdown of CoqaJava is huge, 17.9

times slower than Java on average. The overhead comes from the fact that there are

around 60 thousands local objects created in the benchmark execution. Accessing these

local objects leads to vast numbers of method invocations on their getter/setter methods

and accompanying locking procedure, while the Java version defines almost all the instance

object fields as public and accesses them directly. However, because those temporary objects
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Number of threads
CoqaJava Java

Ratio
Mean(seconds) std Mean(seconds) std

1 4.907 0.013 0.224 0.018 21.935
2 4.757 0.008 0.235 0.100 20.269
4 4.399 0.017 0.237 0.147 18.553
8 4.330 0.010 0.241 0.069 17.989
16 4.558 0.008 0.253 0.128 18.002
32 4.772 0.012 0.295 0.094 16.165
64 5.025 0.010 0.406 0.264 12.371

Table 5.3: Java and CoqaJava on the Raytracer Benchmarks

Figure 5.6: Java and CoqaJava on the Raytracer Benchmarks
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are all local to their creating tasks and never shared, the locking of those objects are

unnecessary. As we will see from the following discussion, the overhead can be greatly

reduced with application of some simple optimization techniques.

5.2.2 Optimization

In this section, we optimize CoqaJava with some straightforward strategies and

show that those preliminary optimizations can greatly reduce the overhead of CoqaJava.

Number of Threads
CoqaJava Java

Ratio
Mean(second) std Mean(second) std

1 0.374 0.002 0.189 0.001 1.980
2 0.379 0.005 0.193 0.005 1.959
4 0.435 0.007 0.200 0.004 2.171
8 0.430 0.011 0.199 0.008 2.156
16 0.428 0.022 0.197 0.008 2.173
32 0.412 0.017 0.237 0.014 1.736
64 0.472 0.009 0.241 0.032 1.956

Table 5.4: Java and Optimized CoqaJava(1) on the Puzzle Solver Benchmarks

Optimized CoqaJava(1) In the original CoqaJava prototype implementation, each ob-

ject field access is guarded either by a read lock or by a write lock, which may not be

necessary all the time. For example, if a field is defined as final, then its value is guaran-

teed to stay the same, so we can remove the locking procedure on the access of the field

without sacrificing the correctness of the program and reduce the overhead in the same

time. Another straightforward optimization of the prototype lies in subtask creations. For

example, if there is a code snippet in a program as follows:

for(i = 0; i < 100 ; i++) {
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o=>doSomething();

}

then 100 subtasks will be created within the for loop despite the fact that the 100 subtasks

are the exact same Task objects. We can optimize this behavior by maintaining a ready-

to-use Task object pool, and re-initialize the object as necessary when a new subtask is

required instead of allocating a new Task object from heap each time. We applied these

two optimization strategies to the CoqaJava and name it optimized CoqaJava(1). Then,

we measured the performance of the sliding block puzzle solver again on optimized Coqa-

Java(1). The result is shown in Table. 5.4 which illustrates the slowdown of the puzzle

solver benchmark in optimized CoqaJava(1) is up to 2.2 times, compared to the maximum

of 3 times slowdown in CoqaJava.

However, optimized CoqaJava(1) has negligible performance gain on the raytracer

benchmark. The obvious reason is that the overhead of raytracer benchmark comes from

locking/unlocking massive number of, tens of thousands of, local objects and method invo-

cations on their accessor methods needed for accessing these objects. Such overhead can not

be addressed by using the final modifier and a Task object pool. Fortunately, most of the

objects in the raytracer benchmark are created and used by only a single one task so they

do not incur any access contention among concurrent threads. Removing locking/unlocking

operations on these local task objects is therefore safe and reduces the overhead.

Optimized CoqaJava(2) In order to benchmark a performance improvement over re-

moval of locks on task-local objects, we can add an extra flag to all objects indicating they

are task local objects or not. A task can always access its local objects without locking
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them. In theory, marking objects as local ones can be successfully done by analyzing Co-

qaJava programs statically. For instance, there are static analysis tools such as [60] that

explore the shared/unshared objects among multiple threads. Unfortunately, we did not

find off-the-shelf versions of such static analysis tools to apply to CoqaJava directly. So

we decided to emulate such an analysis manually: getting rid of locking operations on ob-

vious task-local objects by hand. And we conducted these manual changes on top of the

CoqaJava(1) and call it optimized CoqaJava(2). We believe benchmarking optimized Co-

qaJava(2) would help us to understand the performance overhead of CoqaJava deeply. The

manual annotation we performed is straightforward. We anticipate it can be easily replaced

by an automatic static annotation later and we leave it as our future work because it is not

technically difficult.

Table 5.5 lists the benchmark results of the sliding block puzzle solver benchmark

in optimized CoqaJava(2). The CoqaJava(2) has now around 70% more overhead than

Java.

Number of threads
CoqaJava Java

Ratio
Mean(second) std Mean(second) std

1 0.290 0.001 0.189 0.001 1.536
2 0.337 0.006 0.193 0.005 1.744
4 0.354 0.018 0.200 0.004 1.765
8 0.344 0.006 0.199 0.008 1.727
16 0.368 0.011 0.197 0.008 1.867
32 0.395 0.016 0.237 0.014 1.662
64 0.418 0.034 0.241 0.032 1.732

Table 5.5: Java and Optimized CoqaJava(2) on the Puzzle Solver Benchmarks

Figure 5.7 puts the puzzle solver benchmark results on CoqaJava (Table 5.1),
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Figure 5.7: Summary of the Puzzle Solver Benchmarks

optimized CoqaJava(1) (Table 5.4) and optimized CoqaJava(2) (Table 5.5) head to head

for easy comparison.

Now let see a more interesting case: testing the Java Grande raytracer benchmark

in optimized CoqaJava(2). As we had expected, the overhead is greatly reduced after

removal of unnecessary locking/unlocking on task-local objects. Table 5.6 and Figure 5.8

show the result of the benchmark on optimized CoqaJava(2), in which overall overhead is

reduced to be less than 15% percent, an average of 1.1 times slower than Java. It is a

significant improvement compared to that optimized CoqaJava(1) is 17.9 times slower than

Java on average.

CoqaJava serves as a proof of concept. It unavoidably suffers extra overhead be-

cause it is implemented directly on top of Java. For example, every object capture operation
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Number of threads
CoqaJava Java

Ratio
Mean(seconds) std Mean(seconds) std

1 0.253 0.013 0.224 0.016 1.133
2 0.251 0.008 0.235 0.002 1.070
4 0.262 0.017 0.237 0.012 1.107
8 0.267 0.010 0.241 0.004 1.111
16 0.286 0.008 0.253 0.005 1.129
32 0.339 0.012 0.295 0.011 1.147
64 0.435 0.010 0.406 0.023 1.071

Table 5.6: Java and Optimized CoqaJava(2) on the Raytracer Benchmarks

Figure 5.8: Java and Optimized CoqaJava(2) on the Raytracer Benchmarks
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in CoqaJava goes through a method invocation. The overhead brought by those method

invocations can be huge when a large number of capture operations are involved. However,

for such a preliminary implementation, the performance of CoqaJava still comes close to

Java, we are optimistic that we can have a more efficient implementation in the future, for

instance by building object capture into the lower level Virtual Machine. Section 6.1 gives

a more detailed plan on making CoqaJava more efficient.
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Chapter 6

Towards a Realistic Language

The focus of the Coqa project is primarily foundational, with more emphasis here

on theoretical properties than on implementation features and efficiency. Still, the Co-

qaJava implementation does show the model is directly implementable and the overhead

is not unreasonable. In this chapter, we address some potential extensions which would

help to make Coqa a production-quality language. Some of the extensions are specific to

the completeness of the language implementation CoqaJava such as library support, while

others constitute extensions to the language model itself, such as language constructs for

synchronization constraints.

6.1 Tuning Performance

The current implementation CoqaJava is not yet efficient enough since it is still

a direct mapping from CoqaJava to Java without serious optimizations. There are many

ways that we can further optimize it. For instance, equipping CoqaJava with the ability

129



to detect immutable objects statically can be very helpful. Immutable objects are objects

whose states do not change in their life time once they have been initialized. So immutable

objects are always read-only and it is safe to allow concurrent reads on them without locking.

Pushing CoqaJava object capture process into bytecodes is a key long-term plan

since that would circumvent the overhead introduced by using Java as an intermediate layer

improve the overall performance of CoqaJava.

Currently, Coqa tracks read/write ownership at the object level and every object

can be captured by a task individually. In some cases, such an ownership granularity may in

fact be too fine-grained. For instance, for a clustered data structure consisting of multiple

objects, it is more efficient to use a single set of capture flags for the whole structure.

Clustering locks into regions so that few actual locks are needed could improve system

performance because less locks means less ownership checking and updating.

Many program analysis techniques can also be used in reducing number of locks

used in Coqa. [35] develops a mutex inference algorithm efficiently infers a set of locks for

shared memory locations. Extending such an algorithm to Coqa will enable the system to

be able to distinguish objects that are not accessed by multiple tasks; therefore do not need

to be protected by putting them into a task’s capture sets. [20] introduces an automatic

technique that infers a lock assignment for shared variables and it has an optimization

scheme that tries to minimize the conflict cost between atomic sections and the number of

locks.

Ownership type systems [54, 17, 46] also can be used to cluster objects and hence

reduce the number of locks. The whole-part tree relationship enforced by ownership types
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enable a node on the tree to be representative of the subtree rooted from the node. Locking

a root is sufficient to lock the whole subtree.

Recent research [7, 56] has developed techniques to avoid using “heavyweight”

operating system mutex and condition variables to implement Java monitors, instead they

apply more efficient “lightweight” locks whenever possible. Their results show that it is

possible to make locking/unlocking of an object fast. Some of those techniques have been

implemented and benchmarked on the Java Virtual Machine (JVM). CoqaJava therefore

can potentially benefit from a JVM with such an optimized locking scheme indirectly by

running as an Java extension or directly by implementing a virtual machine for Coqa.

Clik [16] has a novel work-stealing scheduler in which each processor maintains a

work deque of ready threads, and it manipulates the bottom of the deque like a stack. When

a processor runs out of work, it steals a thread from the top of a random victim’s deque.

This greedy scheduling of Clik explores thread locality to achieve substantial performance

gain. In Cilk, the average cost of a spawning a thread is only 2-6 times the cost of an

ordinary C function call. Currently, tasks in CoqaJava are submitted to a pool of Java

threads and CoqaJava does not have control on how a task is scheduled. We believe that

CoqaJava can adopt Clik’s scheduling algorithm to greatly improve the system performance

of CoqaJava.

Task Parallel Library (TPL) by Microsoft [43] provides more expressive parallelism

syntax than Cilk via library support. It enables programmers to conveniently express

potential parallelism in existing sequential code, where the exposed parallel tasks will be

run concurrently on all available processors. Usually this results in significant speedups.
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Like Cilk, TPL does not help to correctly synchronize parallel code that uses shared memory.

It is still the programmer’s responsibility to ensure that certain code can be safely executed

in parallel or to use mechanisms such as locks to correctly coordinate parallel computations.

6.2 Exploring a Hybrid System

Coqa uses the pessimistic locking approach to enforce atomicity because it is simply

impossible for the optimistic transactional approach to model I/O using a rollback/commit

mechanism. However, the choice of applying the locking mechanism on the language se-

mantics level does not mean that the Coqa design rules out transactional approach of STM

systems. In fact, we believe it is possible for Coqa to have an underlying implementation

which incorporates both locking and rollback techniques.

The reason for exploring a hybrid system is a potential performance gain. The

optimistic approach has an advantage in the case where locks are overly conservative, e.g.,

rollbacks in the optimistic system only happen when contentions actually take place, while

the pessimistic system has to block on possible contentions that may not in fact occur at

runtime. However, there have been no clear studies that we know of comparing the two

different approaches in terms of performance. Generally there is a close correspondence

between when transaction-based systems will need to rollback and when Coqa will need

to block: rollback and blocking happens only in cases where there is contention. Different

programming patterns may work better in one system or the other. This is analogous to

the relationship between busy-waiting and blocking methods on implementing monitors;

although the blocking approach is generally considered to be more efficient, busy-waiting
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can be a preferable choice in some cases, for instance, when scheduling overhead is larger

than expected wait time or in OS kernels where schedule-based blocking is inappropriate.

A good overview of the pros and cons of blocking and rollback appears in [63].

There are many criteria such as the frequency/likelihood of contention that can

be used in determining which one is the better choice for implementing a language runtime.

For instance, the rollback approach has the advantage of resovling a livelock with high

probability after multiple retries. So it can potentially be applied to code blocks that

cannot be statically verified to be deadlock free. It would be interesting to consider using

static analysis or dynamic profiling techniques to explore structure of a program and then

having the compiler or language runtime to choose if an optimistic or a pessimistic approach

should be applied.

6.3 Completing CoqaJava

The current CoqaJava implementation is not yet working on all Java features.

Moreover, it needs rich libraries to support easy programming. Various engineering efforts

that can be applied to CoqaJava to achieve production-level performance were discussed in

Section 6.1.

The features left out of CoqaJava for simplicity include static fields, implicit get-

ters/setters, inner classes, and exceptions. None of these are horribly difficult to implement.

Here is an outline how some of the more challenging features can be implemented.

Static fields can be added to CoqaJava by treating their accessor methods differ-

ently from ones of an instance field: a task needs to capture the Class object of the class
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where the static field is declared (In Java, every class is associated with a Class object at

run time). The restriction of having explicitly coded getters/setters can be eliminated by

letting the CoqaJava translator automatically generate them for public fields. The Coqa-

Java translator then can convert all field accesses to method invocation of these generated

getter/setters. This way, normal Java field access expressions can be used in CoqaJava.

Exceptions are not supported in the prototype, but they are not a particular challenge—

unlike optimistic transaction systems where exception handling within a transaction that

must rollback is extremely tricky [30], our pessimistic blocking approach can always preserve

the exception semantics of an execution. To extend CoqaJava with exception handling, the

most crucial thing is to ensure that tasks free their captured objects when they are termi-

nating due to an exception.

Library support is an important aspect of a programming language, and CoqaJava

currently lacks such support. Concurrency control classes such as semaphores would enable

programmers to do more fine-grained explicit task synchronization.

6.4 Improving Expressiveness

Immutable Objects Section 6.1 discusses using static analysis techniques to detect im-

mutable objects in a program for performance purposes. However, static tools are unavoid-

ably conservative. It is certainly beneficial to enable programmers to declare immutability

of an object, especially in Coqa where more lock/unlock operations are performed in order

to preserve quantized atomicity. Moreover, allowing programmers to declare immutability

of objects can prevent these objects from being accidentally modified at run time. In gen-
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eral, it should always be encouraged to make object immutable for safety and performance

benefits, especially in a concurrent context. Figure 6.1 gives an extended syntax of Coqa

in which a read-only label is used to mark immutable objects. Accordingly, with such an

extension, the operational semantics handles immutable object differently so that they are

always free and ready to be used by any task.

µ ::= r | w mutability label
e ::= new µ cn(e) | . . . instantiation
H ::=

−−−−−−−−−−−−−−−→
o 7→ 〈cn;µ;R;W ;F 〉 heap

Figure 6.1: Dynamic Data Structures for Mutability

The object immutability in Coqa is shallow: fields of an immutable object are

immutable, while other objects referenced by the immutable object do not need to be im-

mutable. The semantics of shallow object immutability encourages programmers to declare

immutable objects whenever possible. Because to declare an object o immutable, they do

not have to ensure immutability of a whole object graph rooted from o. Such an shallow

immutability is adequate for Coqa because tasks capture objects one by one, a mutable

object referenced by an immutable one cannot escape from being captured even if a task

accesses it via the immutable object.

Notification Language-level support for inter-task notification has proved to be useful

in practice. Examples along this line include Conditional Critical Regions (CCR) [36],

wait and notify/notifyAll primitives in Java, CCR support in STM [31], and yield r in

AtomCaml [57].

Coqa does not have such an explicit signal mechanism so concurrent constructs
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like semaphores have to use a busy-waiting scheme. Fortunately, it is not very difficult

to incorporate a notification protocol into Coqa. The most direct way is to port Java’s

implementation for these language constructs: the built-in wait and notify/notifyAll

methods for all Java objects. In Chapter 7, we will use the Java’s wait/notify protocol

directly in CoqaJava as its extension.

Advanced synchronization constructs Coqa can be extended to support synchroniza-

tion constraints declared as part of a method signature. For instance in the classic buffer

read/write example [9], we can constrain the get method of the Buffer to be enabled only

when the internal buffer is not empty. Invocations of get are blocked (and the Buffer

object is be captured) until the constraint is satisfied. This extension is not conceptually

difficult, and synchronization constraints on objects are also a well studied area, originally

in Actors [1, 2] and later in Polyphonic C# [9]. Adding synchronization constraints does

complicate matters on systems with class inheritance, but standard solutions do exist. [50]

gives an in-depth overview of this topic.

6.5 Deadlock Discovery

Deadlocks are undeniably the biggest disadvantage of the locking approach, and

Coqa unavoidably runs into this problem because Coqa uses the locking mechanism to

ensure atomicity. First of all, Coqa still largely reduces programmers’ burden of developing

concurrency applications in spite of the deadlock issue, because it has shifted tasks of

dealing with all different types of problems in a concurrent context to just focusing on

deadlock detection and the code refactoring needed to fix it. For instance, using Java to
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program a multi-threaded application means that programmers need to take care of data

races, mutual exclusion, atomicity and deadlocks all by themselves. In Coqa all other issues

besides deadlocks are addressed, and so programmers can tightly focus on deadlocks.

There are two forms of deadlock arising in Coqa. The first form was described in

Section 2.1: the deadlock inherent in two-phase locking. The second form is the standard

cyclically dependent deadlock. The first form of deadlock can be avoided by declaring a

class exclusive, while the second form of deadlock can be removed by using subtasking to

break a deadlock cycle.

Developing quality deadlock discovery tools for Coqa for both compile time and

run time analysis is important to alleviate a programmer’s debugging burden. There has

been a great deal of research focusing on solving the deadlock problem using various ap-

proaches. Deadlock avoidance avoids actions that may lead to a deadlock state. To make

correct decisions, a system must know in advance at any time the number and type of avail-

able/allocated resources. However, most practical systems do not have such preconditions.

For instance, it is generally impossible for Coqa, an object-oriented language model, to know

in advance how many objects will be created at run time. Runtime deadlock detection usu-

ally involves a system tracking resource allocation and processing state and determining if

there is a deadlock in the system. But it is impossible to design and implement a general

recovery strategy when a deadlock is detected at run time.

It is our belief that deadlocks can be addressed by deadlock prevention, a static

approach preventing deadlock conditions from holding. Hence, deadlocks in Coqa can be

thought as type errors and static deadlock prevention algorithms work like a type system
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to catch these errors before run time. So static analysis techniques and tools that ensure

deadlock freedom in Coqa are an important component to the success of Coqa.

There has been extensive research on detecting deadlocks statically and we plan to

explore the possibility of porting existing techniques to Coqa. [11] proposed an ownership

type system to ensure locks can only be acquired in a non-cyclic way. Equipping Coqa with

such a type system can help programmers to type-check deadlocks in their applications.

Model checking systems such as Bandera [18] and SPIN [37] have been used to verify

deadlock freedom and they could be used by Coqa as well. Coqa can also utilize the

lock-order graph commonly used for static deadlock detection systems. Jlint [39] is one of

the pioneering works in this field. [62, 65] extend the method to use a lock-order graph

and context-sensitive lock sets, which makes the analysis more sophisticated and complete.

RacerX [21] is a flow-sensitive, context-sensitive interprocedural analysis to detect both

race conditions and deadlocks for C and requires explicit programmer annotations. These

techniques should be applicable to Coqa.
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Chapter 7

Concurrent Programming in

CoqaJava

In this chapter, we demonstrate the ease of programming of CoqaJava via common

concurrent programming patterns. Java programmers should be able to adapt to the Co-

qaJava programming environment easily because CoqaJava has nearly identical syntax as

Java except the different semantics of the three types of message send. Recall that methods

in CoqaJava can be either public or private. The two method modifiers have the same

meaning as in Java. Instance fields in CoqaJava are always accessible only via their get-

ters/setters. In order to give clear and concise code examples, the programming patterns

discussed in this chapter are coded in CoqaJava with a few minor syntax abbreviations.

Field access can be performed as in Java, without using getter/setter methods. A field with

no access modifier is by default a private field with private getter/setter, while a field

declared as public is a private field with public getter/setter methods. We also borrow
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some data structure classes such as ArrayList from Java for easy programming.

7.1 Powerful Built-in Atomicity in CoqaJava

In Section 1.1.3, we used an example of race-free but incorrect program (Figure 1.3)

to explain the importance of atomicity. We use the same example in this section to show how

program correctness can be easily guaranteed in CoqaJava because of its built-in atomicity.

Consider the Java example below; there is no data race here. However, erroneous

output can be generated if one thread, td1, executes line L2 and L3, then another thread,

td2, executes L1, then when td1 continues with line L4, the value of balance has already

been changed by td2 and therefore it would write an inconsistent value to the balance field.

It is not to hard to see that this can be a hard-to-detect bug in a real application especially

when the size of the application is big.

class Bank { //Java code
int balance;
void synchronized deposit(int n) {

(L1) balance = balance + n;
}

void withdraw(int n) {
(L2) int r = read();

synchronized(this) {
(L4) balance = r - n;

}
}
int synchronized read(){

int r;
(L3) r = balance;

return r;
}

}

Porting the above Java example into CoqaJava yields the following nearly identical
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code with only Java’s synchronized keywords removed. The buggy execution path cannot

happen in this CoqaJava program. Assume that we have two concurrent tasks t1 and t2

corresponding with the td1 and td2 in the Java example. When t1 executes line L2 and L3,

the task will capture the current Bank object. At this point, if t2 reaches line L1, it cannot

proceed and has to block on the same Bank object until t1 finishes executing line L4 and

frees the Bank object. As a result, the field balance will never be left in an inconsistent

state.

template Bank { //CoqaJava code
int balance;

void deposit(int n) {
(L1) balance = balance + n;

}
void withdraw(int n) {

(L2) int r = read();
(L4) balance = r - n;

}
int read(){

int r;
(L3) r = balance;

return r;
}

}

CoqaJava eliminates these types of bugs in a very elegant way. In Section 7.3.2

we will discuss how a data race bug is nicely handled in CoqaJava.

7.2 Built-in Concurrency in CoqaJava

ConcurrentHashMap in the java.util.concurrent package uses fine-grained lock-

ing to support full concurrency of retrievals to minimize unnecessary lockings. Since

CoqaJava has the read/write locking scheme built-in, such maximal concurrency can be
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easily coded in CoqaJava without explicit use of locking or synchronization which Java

library programmers have to deal with. The following code gives an illustration how

ConcurrentHashMap could be implemented in CoqaJava. HashTable used here is given

in Figure 2.2. The basic strategy is to keep a set internal hash tables, each of the internal

hash table is itself a concurrently readable table. No concurrent tasks would block in line

L1 since they all read the ConcurrentHashMap. There is no explicit lock acquire/release in

method put as required by Java, but tasks will be blocked in L2 when they try to write an

internal hash table.

template ConcurrentHashMap {
HashTable[] hashtables ;
ConcurrentHashtable(int n) {

hashtables = new HashTable[];
for(int i =0 ; i < n ; i++) {

hashtables[i] = new HashTable();
}

}

public Object get(Object key) {
int hash = this => hash(key);

(L1) return hashtableFor(hash) => get(key);
}

public void put(Object key, Object value) {
int hash = this => hash(key);

(L2) return hashtableFor(hash) => put(key,value);
}
int hash(int x) {

int h = x.hashCode();
//compute h;
return h;

}
Hashtable hashtableFor(int hash) {

int index = ... //compute index
return (HashTable) hastables[index];

}
}
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The ConcurrentHashMap example shows CoqaJava has natural expressiveness for

concurrency that is needed for implementing many high throughput concurrent data struc-

tures.

7.3 Concurrent Programming Patterns

While coding common concurrent patterns in CoqaJava produces code very similar

to Java code, the newly introduced operators -> and => have nontrivial implications in

program design and performance. We first use a CoqaJava implementation of the classic

producer/consumer pattern to illustrate the usage of the two new operators, and then give

actual coding examples of various common concurrent programming patterns including

oneway messages, completion callbacks, futures, fork/join, concurrent control utilities such

as semaphore, and barriers [42]. All the CoqaJava implementations of the patterns are based

on the Java implementation described in [42]. The examples in this chapter are intended

to serve as illustration only, and are not production quality programs. For example, we

omit exception handling code, and may use infinite loops where necessary for simplicity.

Some patterns discussed in [42] are trivial in CoqaJava. For instance, fully synchronized

objects and synchronized aggregate operations are patterns built into CoqaJava. From these

examples, we can see that adapting from Java programming to CoqaJava programming is

relatively straightforward transition.
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7.3.1 Producer/Consumer

Below we give a CoqaJava implementation of the common producer/consumer

pattern: producers place dummy objects into a shared queue, consumers remove objects

from the same shared queue, and they run concurrently in separate tasks. A Semaphore

object is used to keep consumers wait if the queue is empty. Let us assume for now that

the Semaphore object used in this example is a native object that no task can capture and

which provides the functionality of a counting semaphore. We will discuss how a Semaphore

can be implemented in CoqaJava in Section 7.3.6.

Asynchronous messages sent at L1 and L2 via -> create tasks that run producer

and consumer code respectively. The -> invocation is non-blocking and encapsulates a

series of operations such as task creation and task initialization internally. Note that no

synchronized keyword is used anywhere in the code, even though producers and consumers

access the shared Queue objects. This is because synchronization is provided implicitly by

CoqaJava: internal locking is performed when the Queue object is actually accessed in

method get (line L5) and put (line L6). Lines L3 and L4 are the programming points where

=> is used to create subtasks that access the shared Queue object.

As we can see from this example, coding in CoqaJava and in Java are not so dif-

ferent in syntax, but we have to make conscious choice about using regular (.) invocation

and => invocation on shared objects. For example, a consumer task uses a subtask created

in line L3 to access the shared queue object so that the object would be freed when the

subtask returns. If a (.) invocation were used here, the queue object would be captured by

the current consumer task until the whole work method finishes.
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template ProducerConsumerBench {
...
public void main(String[] args) {

int numOfProducer = ...;
int numOfConsumer = ...;
Queue queue = new Queue(10);
Producer p = new Producer(queue);
for(int i=0; i < numOfProducer; ++i) {

(L1) p -> work();
}
Consumer c = new Consumer(queue);
for(int i=0; i < numOfConsumer; ++i) {

(L2) c -> work();
}

}

}

template Consumer {
Queue queue;
...
public Consumer(Queue queue) {

this.queue = queue;
...

}
public void work() {

while(1) {
(L3) Item item = queue => get();

// ... do someting with item
}

}
}

template Producer {
Queue queue;
...
public Producer(Queue queue) {

this.queue = queue;
...

}
public void work() {

while(1) {
int value = compute();
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(L4) queue => put(value);
}

}
public int compute() {

int value;
...
return value;

}
}

template Item {
public int value;
public Item(int v) {

value = v;
}

}

template Queue {
ArrayList<Item> contents;
Semaphore guard;
Queue(int init) {

contents = new ArrayList<Item>(init);
guard = new Semaphore(0);

}
(L5) Item get() {

guard.acquire();
Item item = contents.remove(0);
return item;

}
(L6) void put(int value) {

Item item = new Item(value);
contents.add(item);
guard.release();

}
...

}

7.3.2 Oneway Messages

An oneway message is a pattern in which a host object issues a message to one

or more recipients without depending on the consequences of that message [42]. Open calls
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and thread-per-message are examples of this pattern.

As stated in [42], the use of open calls does not address how to introduce concur-

rency into a system but rather eliminates bottleneck points surrounding a giving host. As

in the following Java code, the request acceptance rate of the OpenCallsHost is bounded

only by the time it takes to update local state so that the host can accept requests from

clients running in different threads even if the helper.handle call is time-consuming.

class State { //Generic Java code sketch
private long x;
private long y;
public void update(...) {

x = ...;
y = ...;

}
}

class OpenCallsHost {
protected State localState;
protected Helper helper = new Helper();
...
public synchronized void updateState(...) {

...
localstate.update(...) ;
...

}
public void req(...) {

this.updateState(...);
helper.handle(...);

}
}

Notice that although the Java code above looks correct even to an experienced

Java programmer, there is a serious trap hiding in the snippet, which can manifest it-

self as a hard-to-detect bug later in a concurrent context. Specifically, the updateState

method is declared as synchronized so only one thread can call the update method on the
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localState object. However, the fact that the localState field is declared as protected

opens a door to threads that have access to the object but not necessarily access it via the

provided synchronized updateState method. Instead, these threads can directly call the

update method on the localState object. Because the update method is not synchro-

nized, it is possible for two threads to enter this method, leading to inconsistent values of

x and y, a typical data race bug.

Coding the same open calls example in CoqaJava looks like the following. It

achieves the same goal of the Java code snippet by using => to update the local state,

but it avoids the potential race condition. According to the semantics of CoqaJava, tasks

arriving at the update method of the localState object, no matter whether via calling

the updateState method of the OpenCallsHost or by directly calling the update method

on the localState object, execute the method atomically, which always leaves x and y

with consistent values. This shows the strength of Coqa: the atomicity property is always

guaranteed for all objects directly or indirectly accessed at run time by a method.

template OpenCallsHost { //Generic CoqaJava code sketch
State localState;
Helper helper = new Helper();

public void updateState(...) {
...
localState.update();
...

}
public void req(...) {

this => updateState(...);
helper.handle(...);

}
}
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In the Java thread-per-message example below, concurrency is introduced by is-

suing a message in its own Java thread. In the CoqaJava code, -> is instead used for the

equivalent task-per-message. This example shows how CoqaJava has simpler syntax than

Java.

template ThreadPerMessageHost { //Generic Java code sketch
protected long localState;
protected Helper helper = new Helper();

public synchronized void upateState(...) {
localState = ...

}
public void req(...) {

updateState(...);
new Thread(new Runnable() {

public void run() {
helper.handle(...);

}
}).start();

}
}

template ThreadPerMessageHost { //Generic CoqaJava code sketch
long localState;
Helper helper = new Helper();

public void upateState(...) {
localState = ...

}
public void req(...) {

this => updateState(...);
helper -> handle(...);

}
}
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7.3.3 Completion Callbacks

Completion callbacks are a pattern where a host requests a worker to do something

concurrently and requires the notification of the worker’s completion. An example of how

this pattern works in CoqaJava is given below. The host task creates a worker task at

L1 using asynchronous operator -> . The Worker calls back Host at L2 using synchronous

operator => . The => is recommended here if the callback method in Host accesses (reads

or writes) its instance fields so the Worker task can release the capture of the Host object

right after the completion of the callback method instead of the completion of the worker

task.

interface CallCompletionInterface {
void callback(...);

}
template Host implements CallCompletionInterface {

Worker worker;
public Host() {

worker = new Worker();
}
public void start(...) {

...
(L1) worker -> doSomething(this);

...
}
public void callback(...) {

...
}

}
template Worker {

CallCompletionInterface observer;
public void doSomething(CallCompletionInterface c) {

observer = c;
(L2) observer => callback(...);

...
}

}
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7.3.4 Futures

Essentially, futures are place holder objects for some unknown data. The data is

unknown because the process of computing the data has not yet completed. With the use of

futures, a task can start some other tasks for doing concurrent computations and then fetch

results of those tasks later when the results are actually needed for its own computation. If

at the fetching point, the data is still not ready, the calling task must block until the data

become available.

Futures are a useful pattern in CoqaJava. Recall that there is no return value for

sending an asynchronous message using -> syntax. This means in CoqaJava a child task

cannot return a value to its parent task directly. With the help of futures, a return value

from a child task can be encoded.

Below shows an example implementation of futures in CoqaJava. A Result object

encapsulates the data of a Future object. The Worker class is responsible for computing

the data of a Result object. The task starting from the start method of a Host object

first creates a worker task executing on a Worker object with a reference of a Future object

(line L1). Then, the worker task captures the future object after calling the set method on

the object at L3 using a (.) invocation. The worker task keeps its ownership of the Future

object until its completion. The (.) invocation at L3 is crucial here to force the host task to

block at L2.1 or L2.2. The difference between L2.1 and L2.2 is that the Future object will

be released by the host task after the statement of L2.2 so that it can be passed to other

worker tasks if necessary, but it will remain captured by the host task with the execution

of L2.1.
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template Result {
public int value1;
public float value2;
...

}

template Future {
Result result;
public Result get() {

//the host task blocks here until
//the worker task finishes with this object
return result;

}
public void set(Result v) {

// the worker task calls this to
// get a write lock on this object
// until its completion
result = v;

}
}

template Host {
Future future;
public Host() {

future = new Future();
}
public void start(...) {

...
Worker worker = new Worker(future);

(L1) worker -> work(...);
//...do some other work

(L2.1) Result r = future.get();
// or

(L2.2) Result r = future => get();
//...continue with the result

}
}

template Worker {
Result result;
...
public Worker(Future future) {

result = new Result();
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(L3) future.set(result);
}
public void work(...) {

int v1;
float v2;
// ... compute v1 and v2
result.value1 = v1;
result.value2 = v2;

}
}
template Main {

public void main(String[] arg) {
(new Host()).start();

}
}

Using Java to realize futures requires programmers to use the explicit wait/notify

scheme with extra coding as shown below.

class Future { //Java code
Result result;
boolean ready;

public synchronized Result get() {
while (!ready)

wait();
return result;

}
public synchronized void set(Result v) {

ready = true;
result = v;
notifyAll();

}
}

7.3.5 Fork/Join

The fork/join pattern is often used to exploit the parallelization of task solving

algorithms – a task is decomposed into a set of child tasks and the results are later combined
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to reach the solution to the original task.

The following example uses the futures pattern and refers to the classes such as

Future, Result and Worker defined in the previous section. The host task creates a worker

task for each problem in line L1 and then collects results computed by the worker task in

line L2 where the host task blocks on each Future object until the associated worker task

finishes its computation.

template Host {
...
public void compute(Set<Param> problemSet) {

ListSet<Future> futures = new ListSet<Future>();
Iterator it = problemSet.iterator();
while(it.hasNext()) {

// create a task for each problem
Param problem = it.next();
Future future = new Future();
Worker worker = new Worker(future);

(L1) worker -> work(problem);
futures.add(future);

}
combineResults(futures);

}
private void combineResults(Set<Future> futures) {

ListSet<Result> results = new ListSet<Result>();
Iterator it = futures.iterator();
while(it.hasMore()) {

Future future = it.next();
(L2) Result r = future.get();

results.add(r);
}
// we have all the results now
// do something with the results ...

}
}
template Main {

public void main(String[] arg) {
(new Host()).compute();

}
}

154



7.3.6 Concurrent Control Utilities

In this section, we take a in-depth look at the patterns of some low-level synchro-

nization utilities such as Semaphore, CountDownLatch and CyclicBarrier. They encapsu-

late certain intra-tasking synchronization protocols with various convenient features.

Semaphore Below, we give an illustration how such a Semaphore class would be imple-

mented using a busy-waiting scheme.

template Semaphore {
int permits;

public Semaphore(int permits) {
this.permits = permits;

}

public void acquire() {
boolean success = false;
while(success == false) {

(L1) success = this => dec();
}

}
private boolean dec() {

if(permits > 0) {
permits = permits - 1;
return true;

}else {
return false;

}
}

public void release() {
(L2) this => inc();

}
private void inc() {

permits = permits + 1;
}

}
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The important property of a Semaphore object is that it is essentially a shared

object whose internal state is the channel for intra-task communication. Therefore, the

implementation should prevent a Semaphore object from being captured by one task ex-

cept for a short duration of updating the state of the object. As shown in the above

implementation, the Semaphore class makes sure that a Semaphore object’s permits field

is updated in a mutually exclusive manner by subtasks in line L1 and L2. With such an

implementation, a Semaphore object can be properly invoked via (.) notation, as shown in

the producer/consumer example at the beginning of this chapter.

Busy-waiting semaphore wastes system resources. A more efficient Semaphore

class can be implemented if there is an intra-task notification mechanism in CoqaJava. For

now, we directly adopt wait and notify (or notifyAll), the two signal primitives provided

by Java into CoqaJava: like objects in Java, every object in CoqaJava has built-in methods

wait and notify/notifyAll. When a task calls wait, it goes into a blocking state waiting

for being notified by other tasks via notify, at the same time, it relinquishes its ownership

of the object it calls wait on.

The new implementation of the Semaphore class below does not differ much from

a Java one. The Semaphore class is actually a wrapper class enclosing a SemaphoreImpl

object named impl. The actual semaphore protocol is realized in the SemaphoreImpl class.

The Semaphore class delegates calls to the inner impl object via => which ensures the impl

object is not captured by a single task so multiple tasks can interact via mutating the state

of the impl.

template Semaphore {
SemaphoreImpl impl;
public Semaphore(int permits) {
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impl = new SemaphoreImpl(permits);
}

public void acquire() {
impl => acquire();

}
public void release() {

impl => release();
}

}
template exclusive SemaphoreImpl {

int permits;
public SemaphoreImpl(int permits) {

this.permits = permits;
}

void acquire() {
while(permits <= 0) wait();
--permits;

}
public void release() {

++permits;
notify();

}
}

CountDownLatch and CyclicBarrier A latch variable is one that eventually reaches

a value from which it never changes again. It enables a task to wait for signals from a set

of other tasks. By calling the await method of a CountDownLatch object, a task enters

a wait state until a pre-defined number of tasks each call the countdown method of the

same CountDownLatch object. The CountDownLatch observes the same implementation

technique used in Semaphore class.

template CountDownLatch {
LatchCounter lc;
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public CountDownLatch(int c) {
lc = new LatchCounter(c);

}

public int countdown() {
lc => countdown();

}
public int await() {

ls => await();
}

}

template exclusive LatchCounter {
int parties;
public LatchCounter(int parties) {

this.parties = parties;
}

public void countdown() {
--parties;
if(parties == 0) notify();

}
public void await() {

if(parties != 0) wait();
}

}

A cyclic barrier is a more advanced concurrent device that can be used to syn-

chronized tasks to proceed together from a pre-set starting point in a cyclic way. It is

initialized with a fixed number of parties that will be repeatedly synchronized. The fol-

lowing CyclicBarrier shows a simple implementation of this type of control scheme. By

calling the await method of a CyclicBarrier object, each task will be forced to wait until

a pre-defined number of tasks have invoked the method, then, the CyclicBarrier object

resets itself for the next iteration.

template CyclicBarrier {
CBInternal cbi;
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public CyclicBarrier(int c) {
cbi = new CBInternal();

}

private int await() {
return cbi => await();

}
}
template exclusive CBInternal {

int parties;
int count; //parties currently being waited for
int resets; //times barrier has been tripped

public CBInternal(int c) {
count = parties = c;
resets = 0;

}

public int await() {
int index = --count;
if(index > 0) { //not yet tripped

int r = resets; //wait until next reset
do { wait();} while (resets == r);

}else { //trip
count = parties; //reset count for next time
++resets;
notify(); //cause all other parties to resume

}
return index;

}
}

7.3.7 Barriers

In this section, we demonstrate a more complex pattern that takes advantage of

the CountDownLatch and CyclicBarrier we just discussed.

In this pattern, a set of tasks work together on an iterative algorithm. Tasks enter

each iteration together and wait for all tasks to complete at the end of the iteration. The
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algorithm usually finishes at some predefined number of iterations or when some convergence

condition is reached.

In the following example, the host task starting from the start method of the

Host object divides a given problem into a given number of segments and uses -> in line

L1 to create child tasks for each of the segments. Each segment task runs concurrently

and waits for others to finish at L3 before entering the next iteration. A segment task may

access some shared objects during each iteration, and such accesses are recommended to

use => operator as what the example does at L2.

template Segment {
CountDownLatch done;
public Segment(CountDownLatch done) {

this.done = done;
}
public void update(CyclicBarrier bar, Problem p, int itr) {

bar.await(); // start together
for(int i =0; i < itr; i++) {

...
(L2) p => dosomething();

...
(L3) bar.await();// iterate together

}
done.countDown();// exit together

}
}

template Host {
public void start(Problem p, int numOfSegt, int numOfItr) {

CountDownLatch done = new CountDownLatch(numOfSegt);
Segment s = new Segment(done);
CyclicBarrier bar = new CyclicBarrier(numOfSegt);
for(int i = 0; i < numOfSegt; i++) {

(L1) s -> update(bar, p, numOfItr);
}
done.await();

}
}

160



template Main {
public void main(String[] arg) {

(new Host()).start();
}

}
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Chapter 8

Related Work

We now review related work, with a focus on how atomicity is supported, and how

concurrent object models are constructed.

8.1 Actors-Like Languages

Actors [1, 2] provide a simple concurrent model where each actor is a concurrent

unit with its own local state. Over the decades, Actors have influenced the design of many

concurrent object-oriented programming models, such as ABCL [66], POOL [4], Active

Objects [14], Erlang [6, 22], the E language [51], and Scala [29].

As discussed in Section 1.2.2, Actors are a model more suited to loosely-coupled

distributed programming, not tightly coupled concurrent programming. So, when Actor

languages are implemented, additional language constructs (such as futures, and explicit

continuation capture) typically are included to ease programmability, but there is still a

gap in that the most natural mode of programming, synchronous messaging, is not fully
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supported, only limited forms thereof. Moreover, in contrast to Coqa’s ubiquitous and deep

atomicity, Actors have ubiquitous but shallow atomicity as discussed in Section 1.2.4 in the

sense that atomicity is a per-actor-per-message property in the Actor model.

In Scala [29], asynchronous messaging is provided via the o!m(e) syntax, and at

the same time one can use expression receive{p} to wait for messages where p is a pattern

matching of messages. The latter construct indeed makes declaring a method for each return

value unnecessary. Consider a programmer intends to model the following Java code:

x = o.m1(v);

y = o.m2(x);

...

the typical code snippet in [29] would look like:

o!m1(v)

receive {

case x => o!m2(x);

receive {

case y => ...

}

}

Note that by doing such a transformation, a few invariants which held in Java are now not

preserved. For instance, when the first receive matches the result of x, x might not be

a return value from the actor o. Due to concurrency, such a message in fact might come

from any actor. In addition, the receive construct is required to never return normally
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to the enclosing actor (no statement should be following a receive block). This requires

programmers to wrap up all continuations in the receiver blocks. If a Java program is

meant to have 10 method invocations, the resulting actor-based program would have to

have nested receive blocks of depth 9. Lastly, the introduction of receive is essentially

a synchronization point. It will make the model loses the theoretical properties the pure

Actor model has, atomicity and deadlock freedom.

Erlang [22] is a concurrent programming language following the Actor model. Its

main strength is to support distributed applications in which asynchronous messaging is a

natural fit. Similar to [29], Erlang programmers have to encode the Pid (process identifier)

in messages in order to properly simulate synchronous message passing.

E language [51] has an actor-based messaging. It also shares the local synchronous

messaging (immediate calls in E) and asynchronous nonlocal messaging (eventual send in E)

aspect of Coqa, with the nonlocal messaging being distributed. The when-catch construct

of E provides an elegant continuation capture syntax which allows continuation of futures

(promises in E) to nest within a method instead of being written as a distinct new method.

Each object in E belongs to exactly one vat (analogous to a process). Each vat has a single

thread of execution, a stack frame, and an event queue. Arriving messages are placed into

the vat’s event queue and then processed one by one atomically. However, this indeed

shows that E language is essentially a single-threaded language model in which atomicity

is achieved at expense of a loss of expressivity of multithreaded programming.
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8.2 Software Transactional Memory

The property of atomicity is commonly discussed in various STM systems: systems

with optimistic and concurrent execution of code that should be atomic, and the ability to

rollback when contention happens. Early software-only systems along this line include

[59, 33]. Programming language support for STM started with Harris and Fraser [31], and

then appeared in many languages and language extensions, such as Transactional Monitors

[64] for Java, Concurrent Haskell [32], AtomCaml [57], Atomos [13], X10 [15], Fortress [3]

and Chapel [19].

STM systems vary on the atomicity semantics they support: weak atomicity and

strong atomicity [13]. As we have discussed in Section 1.1.3, in proposals with weak atomic-

ity, transactional isolation is only guaranteed between code running in transactions, but not

between transactions and non-transactional code. Such a strategy can lead to surprising

results if non-transactional code reads or writes data that is part of a transaction’s read or

write set, and also dwindles the appeal of the atomicity property in the first place: reasoning

about atomic blocks of programs is sound only if transactional code and non-transactional

code are perfect disjoint on shared resources. A large number of transactional memory

systems [34, 5, 59, 33, 31, 64] and languages [15, 3, 19] only conform to the semantics of

weak atomicity. Strong atomicity is supported by [32, 57, 13]. In Coqa, since all method

invocations are either part of a task (o .m(v)), starting up a new task (o ->m(v)), or starting

up a new subtask (o =>m(v)), no code is ever running in a non-atomic mode, and hence

strong atomicity is trivially preserved.

From the language abstraction perspective, the common abstraction for atomicity
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support in OO languages using the STM approach is to define a program fragment as an

atomic block. As we discussed earlier, this abstraction does not align well with the fact

that the base language is an OO language. In Coqa language, quantized atomicity is built

deeply into the object model and guaranteed for every complete execution of every method.

Subtasking in Coqa is similar to the open nesting supported by Atomos. But their

semantics are not exactly the same. In Atomos, a child transaction is able to commit all

objects it has written. If we ignore the difference between the optimistic vs. pessimistic

approach, then Atomos’s open nesting strategy could be viewed as a subtask in our model

that early releases all objects it has worked on, including those belonging to all its parents.

This obviously would lead to surprising results. Indeed, the Atomos authors claimed (in

Section 3.3 of the same paper): “... changes from the parent transaction can be committed

if they are also written by the open-nested child transaction, seemingly breaking the atom-

icity guarantees of the parent transactions. However, in the common usage of open-nested

transactions, the write sets are typically disjoint. This can be enforced through standard

object-oriented encapsulation techniques.” In other words, the open nesting mechanism of

Atomos in itself is unsound, and it relies on either “typical” programming patterns or extra

language enforcement. In fact, we have show in Section 2.2.2, the disjoint assumption is

unnecessarily too strong in Coqa.

Open nesting as a language feature is studied in [52, 53]. In [53], open nesting is

linked to a notion of abstract serializability : a concurrent execution of a set of transactions

is viewed as abstractly serializable if the resulting abstract view of data is consistent with

some serial execution of those transactions. It remains to be seen how open nesting can be
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rigorously stated or proved as a property dependent on the semantics of data. Quantized

atomicity however clearly defines what is preserved and what is broken, regardless of the

program semantics. As another difference, [53] asks the method writer to decide whether

the method should be invoked as an open nesting or not. Coqa however gives the decision

making to the method invoking party. Such a design gives flexibility to programming.

STM systems have different philosophy on the default atomicity mode a system

should have: atomicity is selective and should only be applied to some specific fragment of

a program. Taking such a standpoint is an unavoidable choice as to the STM methodology

itself. First, I/O is impossible to be rolled back as an transaction and the overhead of

logging the state of transactions makes the system suffer increasing number and size of

transactions.

8.3 Other Language Models

Argus [45] pioneered the study of atomicity in object-oriented languages. Like

actors it is focused on loosely coupled computations in a distributed context, so it is quite

remote in purpose from Coqa but there is still overlap in some dimension. Argus is a

transaction-based system in that actions can rollback, but unlike STM systems they use

a combination of locking and rollback. Argus objects are local except for special objects

called guardians, placed one per distributed site. Only invocation of guardian methods can

lead to parallel computation (called atomic actions), while in our language, an asynchronous

invocation to any object can lead to parallel computation. Argus has a subaction mechanism

which is a form of closed nesting. Unlike our subtasking, when a subaction ends, all its
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objects are merged with the parent action, instead of being released early to promote

parallelism as a Coqa subtask does. Subactions of Argus can only inherit read/write locks

from its ancestors but are not able to acquire extra locks on their own.

The Java language has a language construct synchronized to enforce only shallow

mutual exclusion, as discussed Section 1.1.3. It expects great efforts from programmer to

ensure atomicity, a property better captured by atomicity [23]. Java 1.5 provides a new

package java.util.concurrent.atomic allows programmers to access low-level data types

such as integers in an atomic fashion. This effort does not overlap with our desire of building

high-level programming constructs with atomicity properties.

Guava [8] was designed with the same philosophy as Coqa: code is concurrency-

aware by default. The property Guava enforces is race freedom, which is a weaker and more

low-level property than the quantized atomicity of Coqa. JShield [49] is a similar design in

spirit.

In [61], a data-centric approach is described for programmers to express their

needs for data race and atomicity. Programmers add annotations to group a set of fields,

indicating that the elements of such as set must be updated atomically by a unit of work

coinciding with method bodies. This approach can be elegant in expressing single-object

properties, but if many objects are involved, programmers need to have a clear picture

about field aliasing among all those objects.
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Chapter 9

Conclusion

Coqa is a foundational study of how concurrency can be built deeply into object

models; in particular, our target is tightly coupled computations running concurrently on

multi-core CPUs. Coqa has a simple and sound foundation – it is defined via only three

forms of object messaging, which account for (normal) local synchronous message send via

(.), concurrent computation spawning via asynchronous message send by -> and subtasking

via synchronous nonlocal send using => . We formalized Coqa as the language KernelCoqa,

and proved that it observes a wide range of good concurrency properties, in particular

quantized atomicity : each and every method execution can be factored into just a few

quantum regions which are each atomic. Quantum of a task is demarcated by task/subtask

creation via -> / => . As long as programmers use them consciously in their programs, the

number of interleavings among concurrent tasks is reduced significantly, which facilitates

reasoning concurrent applications tremendously.

We then extend the study of quantized atomicity to I/O in KernelCoqafio and
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KernelCoqario. KernelCoqafio is the common way how I/O is modeled in existing language

systems and it has the limited form of quantized atomicity for I/O operations: one quantum

per I/O operation. While the KernelCoqario illustrates a stronger atomicity property: a

series of I/O steps of a task can be grouped into one atomic quantum and be guaranteed to

happen without interleavings. Furthermore, we demonstrate that in KernelCoqario certain

form of quanta can be joined together to form a bigger atomic zone, resulting an even

stronger atomicity property. Moreover, we give an in-depth analysis of how the inter-

relationship between I/O objects affects atomicity, an interesting problem that has not

been carefully studied before as to our knowledge.

We justify our approach by implementing CoqaJava, a Java extension incorpo-

rating all of the KernelCoqa features. A series of benchmarks were conducted to test the

performance of CoqaJava. With these benchmark results, we believe the overhead of Coqa

for performing more object locking/unlocking can be minimized and does not seriously

affect the practicability of Coqa as a general programming language model.
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