
26 Higher-Order Demand-Driven Program Analysis

A Proof of Equivalence of Operational Semantics

This appendix contains a proof that the two operational semantics systems defined in Sec-
tions 4.1 and 4.2 are equivalent. We begin our discussion by formally distinguishing between
complex clauses which have already been wired and those which have not.

I Definition 1.1. A complex clause a in a graph D is complete iff, for all f , x1, and x2, we
have that D −→1 D∪Wire(a, f, x1, x2) only if D = D∪Wire(a, f, x1, x2). A complex clause
which is not complete is incomplete. Simple clauses are neither complete nor incomplete.

In showing equivalence, we are only concerned with graphs that were evaluated from
an embedding of a real expression. These graphs exhibit certain properties – such as the
uniqueness of active, incomplete clauses – that are important for showing alignment. Essen-
tially, we wish to demonstrate that, up to the point we are currently evaluating, the graph
looks like the expression from which it was embedded except that the graph has “bumps”
where complete clauses were never deleted. We formalize this intuition as the following
well-formedness property:

I Definition 1.2. A graph D is well-formed iff all of the following are true.
1. It contains at most one incomplete clause.
2. All clauses which are not complete (including simple clauses) are totally ordered.
3. For all active clauses a appearing in D and any x, |D(x, a)| ≤ 1.

Of course, embeddings of expressions should be well-formed. Also, well-formedness
should be preserved by evaluation.

I Lemma 1.3. For any e, Embed(e) is well-formed.

Proof. Conditions 1 and 2 follow immediately from Definition 1.1 and the fact that Embed(e)
is totally ordered. The proof of condition 3 follows by induction on the number of nodes
between a and the Start node; we know that such a path must exist and be unique, as
Embed(e) is totally ordered and a is active. J

I Lemma 1.4. If D is well-formed and D −→1 D′ then D′ is well-formed.

Proof. Each rule of Figure 12 conditions upon an active clause a. If that clause is complete,
then D = D′ and this property is trivial. Otherwise, the conditions of well-formedness
can be demonstrated to hold by showing that a′ is unique (i.e. that D cannot step to any
other graph but itself). We observe that a is both active and incomplete; by condition 1 of
well-formedness, it is the only such clause in D. By condition 3, there is at most one way to
satisfy each rule in Figure 12. By inspection, these rules have exclusive premises; thus D′ is
unique.

Using similar logic, a can be shown to be complete in D′. Wiring inserts a totally ordered
sequence of nodes from the predecessors of a (at most one of which is not complete) to the
successors of a (at most one of which is not complete). Thus, condition 2 holds. As a result,
we know by Definition 3.5 that at most one incomplete clause is active (which may have
been in or after the inserted wiring); thus, condition 1 holds.

Demonstrating that condition 3 of well-formedness holds is more tedious but not complex;
it proceeds by case analysis on Definition 4.4 by using the well-formedness of D. J

With the preservation of well-formedness, we can now prove the equivalence of these
operational semantics. Key to this equivalence proof is a bisimulation relation which we

Higher-Order Demand-Driven Program Analysis 27

establish between an expression and its embedding. We can then show that this bisimula-
tion is preserved throughout evaluation. The bisimulation shows that, at a given point in
evaluation, the contents of each variable from the current point of evaluation appear the
same and all future evaluation steps are identical. We formalize this bisimulation as follows:

I Definition 1.5. Let e′ = E || e. Let D be a well-formed graph with a node a which is not
complete and has no active successors. (This is either a unique, active, incomplete node or
the End node, depending on whether D has finished evaluating.) We write e′ ∼= D when the
following conditions are met:
1. For all x = v ∈ E, D(x, a) = {v}.
2. For any path a << a′ << . . . << End in D, we have Embed(e) = {Start << a << a′ <<

. . . << End}.

The first condition of bisimulation ensures that each variable in the environment matches
its lookup value in the graph (and vice versa); the second condition ensures that the un-
evaluated portions of the expression and the graph are identical. We then prove that the
operational semantics are equivalent by showing that evaluation preserves our bisimulation;
this proves Lemma 4.6.

Proof. Each part of the proof proceeds by case analysis on the appropriate relation. In the
first part, for instance, we proceed by case analysis on the rule used to prove e −→1 e′. If
it works on a complex clause, then the corresponding graph evaluation rule can be used to
show that D −→1 D′ using the conditions of bisimulation and well-formedness. If the proof
of e −→1 e′ uses the Variable Lookup rule, then e′ ∼= D (since graph evaluation is lazy in
alias clauses).

The second part of the proof is similar except that the latter relation may take many
steps. For any D −→1 D′, we proceed by case analysis on the rule used and apply the ap-
propriate rule of e −→1 e′′, again satisfying premises from bisimulation and well-formedness.
This step may introduce some number of alias clauses, which we then evaluate (e′′ −→∗ e′)
to reach our result. J

