Higher-Order Demand-Driven Symbolic

Evaluation

Zachary Palmer Theodore Park Scott F. Smith ~ Shiwei Weng
ICFP 2020, August 24-26, 2020

The Johns Hopkins University and Swarthmore College

Forward vs Demand in Varying Domains

System

Forward

Demand

Logic Programming

Forward-chain

(uncommon)

Backward-chain

Tactic-based provers

Forward tactics
(uncommon)

Goal-directed tactics

Program Analysis

(most are: kCFA
etc)

Reps et al (imperative)
DDPA (functional)

Symbolic Execution

(most are)

Snugglebug (imperative)
Here: DDSE (functional)

Interpreter

(nearly all are)

Here: DDI (functional)
no substitition, environment

or closures

The language syntax under study here
DDI, The novel demand-driven functional interpreter

DDSE, a demand-driven symbolic evaluator built on DDI

> O N =

Implementation and evaluation of DDSE

Language Features in this Work

In formal theory functions, integers, booleans, conditionals,
input (for test generation)

Recursion encoded via self-passing
Also in implementation recursive data structures

ANF Used to expose order of operations
€.8. let x = input in let y = x - 1 in let ret = x * y in ret
Unique variable names a program point is named by its (unique)

defining variable.

The DDI Lookup Function

e Basic idea follows programmer intuition: search upwards in
code for variable definitions

e Lookup, L([x], @xpp, 1) = v, means x has value v
° @pr is the program point to begin (reverse) search from
e |, is a call stack, of program call points.

let y = 1 in

let £ = (fun x ->

let fret = x + 1 in fret) in

let f1 = f y in
let ret = f f1 in ret

o L([y]. @y, i) =1

The DDI Lookup Function

e Basic idea follows programmer intuition: search upwards in
code for variable definitions

e Lookup, L([x], @xpp, 1) = v, means x has value v
° @pr is the program point to begin (reverse) search from
e |, is a call stack, of program call points.

let y = 1 in

let £ = (fun x ->

let fret = x + 1 in fret) in

let f1 = f y in
let ret = f f1 in ret

C E&[y]ﬂ@y3L—J)Ezl
o L([y],0f1,) =1

The DDI Lookup Function

e Basic idea follows programmer intuition: search upwards in
code for variable definitions

e Lookup, L([x], @xpp, 1) = v, means x has value v
° @pr is the program point to begin (reverse) search from
e |, is a call stack, of program call points.

let y = 1 in

let £ = (fun x ->

let fret = x + 1 in fret) in

let f1 = f y in
let ret = f f1 in ret

O E&[y]ﬂ@y3L—J)Ezl
o L([y],0f1,_)=1
o L([x],0fret, f1,)=1

Tracing Function Application

Function application requires call-return alignment
let y = 1 in
let £ =
(fun x ->
let fret = x + 1 in fret) in
E> let f1 = f y in
let ret = f f1 in ret

1. L([£f1],0f1,__y)

Tracing Function Application

Function application requires call-return alignment
let y = 1 in
let £ =
(fun x ->

let fret = x + 1 in fret) in
let f1 = f y in
let ret = f f1 in ret

1. L([£1], @f1,__)
2. = L([fret], @fret, f1))

Tracing Function Application

Function application requires call-return alignment

let y = 1 in

let £ =
E> (fun x ->
let fret = x + 1 in fret) in
let f1 = f y in
let ret = f f1 in ret

1 L((¢1], 061,
2. =L([fret], Ofret, f1))
3. =L([x],0fun x,f1,)+1

Tracing Function Application

Function application requires call-return alignment

let y = 1 in
let £ =
(fun x ->

o

let fret = x + 1 in fret) in
let f1 = f y in
let ret = f f1 in ret

- L([£1], @f1,,__)

. = L([fret], @fret,, f1))

. =L([x], @fun x,.f1,)+1

L([x], @fun x,,f1)) =L([y],@f1,__J)

B w N

Tracing Function Application

Function application requires call-return alignment

let y = 1 in
let £ =
(fun x ->
let fret = x + 1 in fret) in
Ii> let f1 = f y in
let ret = f f1 in ret

- L([£1], @f1,,__)

. = L([fret], @fret,, f1))

. =L([x], @fun x,.f1,)+1

. L([x], ©fun x,.£1)) =L([y], @f1,,)

L([y],©f1,__) =1 so final result is L([f1], @f1,,__,) = 2.

o s W N

Non-Local Variables

let g =

(fun x ->

let gret = (fun y ->
let gyret = x + y in gyret) in gret) in
let gb = g 5 in
let ret = gb 1 in ret

Non-Local Variables

let g =
(fun x ->
let gret = (fun y ->
let gyret = x + y in gyret) in gret) in
let gb = g 5 in
let ret = gb 1 in ret

1. ...L([x], @gyret, xet,) = LL([g5, x], @g5,_):
1.1 find definition site for g5;

1.2 then, resume search for x since that is lexical scope of its def’n.

Non-Local Variables

let g =
(fun x ->
let gret = (fun y ->
let gyret = x + y in gyret) in gret) in

E>1etg5=g5in

let ret = gb 1 in ret

1. ... L([x], @gyret, ret)) = L([g5, x], @g5,__J):
1.1 find definition site for gb;
1.2 then, resume search for x since that is lexical scope of its def’n.

2. L([gb, %], @gb,_) = L([gret, x|, Ogret, £5))

Non-Local Variables

let g =
(fun x ->
let gret = (fun y ->
let gyret = x + y in gyret) in gret) in
let gb = g 5 in
let ret = gb 1 in ret

1. ... L([x], @gyret, ret)) = L([g5, x], @g5,__J):

1.1 find definition site for gb;

1.2 then, resume search for x since that is lexical scope of its def’n.
2. L([gb, %], ©@g5,_) = L([gret, x|, Ogret, &5))
3. L([gret, x|, @gret, . g5,)) = L([x], @fun x,.&5))

Non-Local Variables

let g =
(fun x ->
let gret = (fun y ->
let gyret = x + y in gyret) in gret) in
let gb = g 5 in
let ret = gb 1 in ret

1. ... L([x], @gyret, ret)) = L([g5, x], @g5,__J):
1.1 find definition site for gb;
1.2 then, resume search for x since that is lexical scope of its def’n.
. L([g5, x], @g5,) = L([gret, x|, Ogret, g5))
. L([gret, x], Ogret, &5,) = L([x], @fun x,,85))
. L([x], @fun x,,85,) =5

=W N

Non-Local Variables

let g =
(fun x ->
let gret = (fun y ->
let gyret = x + y in gyret) in gret) in
let gb = g 5 in
let ret = gb 1 in ret

1. ... L([x], Ogyret, xet,) = L([g5, x|, 0g5,_):
1 1 find definition site for g5;
1.2 then, resume search for x since that is lexical scope of its def’n.
L([g5, %], @g5,_) = L([gret, x], Ogret, 85,)
L([gret, x], Ogret, £5,) = L([x], @fun x,,&5,)
L([X], Ofun x,.85)=5

General Lookup signature: L([x, ..., xf,, x], @xpp,;,) =v.

Peek at Full Rules for Functional Core

FIrsT(x, CL(x), C) L(X, PRED(x), C) = v
VALUE DISCOVERY ——————— —— VALUE DISCARD ——M8 —————————
L(IK, (x=v), O) = v LA X, (x=£),C) = v
L([x"] || X, PRED(x), C) = v
ALIAS —

L([x] || X, (x=x"), C) =

Funcrion
ENTER
PARAMETER

c = (Xr=xf xv) L([x/] || X, PrED(c), C) = v L([x¢], PRED(c), C) = [fun x->]|| e
L(x [X, (fun x=>),[c][| ©) = v

e K Ex e = (x=xp)
E;i;;“” L([x¢,] || X, PrED(c), C) = v L([x¢], PrED(C), C) = [fun x'" ->] || e
NON-LOCAL L([x] || X, (fun x"" =>),[c] || C) = v

L([x11] X, (x" =), [CL(x)] || ©) = v
RETCL(e) = (x' = b) L([xf], PRED(c), C) = [fun x”' ->]||
L([x] || X, (x=x¢ xv), C) = v

Funcrion EXiT

X" +# x L([x] || X, PrED(x""), C) = v Jvp. L([x"'], Cr(x""), C) = v

SKiP 7
L([x] || X, (x""=b),C) = v

From Demand Interpreter to Demand Symbolic Evaluation

Symbolic lookup: IL?([X,c17 e Xp, X], @xppy i) = 4 over ®

e Lookup returns a variable activation now: a pair Y
e & equationally constrains variables, must be satisfiable

let y = input in
let £ =
(fun x ->
let fret = x + 1 in fret) in
let f1 = f y in ret
let ret = f f1 in ret

From Demand Interpreter to Demand Symbolic Evaluation

Symbolic lookup: IL?([X,c17 e Xp, X], @xppy i) = & over ®

e Lookup returns a variable activation now: a pair Y
e & equationally constrains variables, must be satisfiable

let y
let £ =

(fun x ->

input in

let fret = x + 1 in fret) in
E> let f1 = f y in ret
let ret = f f1 in ret

1. L'([f1],0£1,,_)

From Demand Interpreter to Demand Symbolic Evaluation

Symbolic lookup: IL?([X,c17 e Xp, X], @xppy i) = & over ®

e Lookup returns a variable activation now: a pair Y
e & equationally constrains variables, must be satisfiable

let y = input in
let £ =
(fun x ->
I:> let fret = x + 1 in fret) in
let f1 = f y in ret
let ret = f f1 in ret

1. E([£1], @£1,,) = L([fret], @fret, £1))

From Demand Interpreter to Demand Symbolic Evaluation

Symbolic lookup: IL?([X,c17 e Xp, X], @xppy i) = & over ®

e Lookup returns a variable activation now: a pair =

e & equationally constrains variables, must be satisfiable

let y = input in
let £ =
(fun x ->
I:> let fret = x + 1 in fret) in
let f1 = f y in ret
let ret = f f1 in ret

I ([£1], @1,) = L([fret], @fret, £1))

1.
£1 Cf B)
2. =1—fret; (—fret=L([x], @fun x,£f1))+1)e

From Demand Interpreter to Demand Symbolic Evaluation

Symbolic lookup: IL?([X,c17 e Xp, X], @xppy i) = & over ®

e Lookup returns a variable activation now: a pair Y
e & equationally constrains variables, must be satisfiable

let y = input in
let £ =
ﬁ> (fun x ->
let fret = x + 1 in fret) in

let f1 = f y in ret
let ret = f f1 in ret

1. I([£1], @£1,,_) = I([fret], @fret, £1))
2. =t lret; (‘ﬁ'fretﬂ[d([x], Ofun x,fl)+1)ec®
3. L([x], @fun x,.£1,) = L([y], £,)

From Demand Interpreter to Demand Symbolic Evaluation

Symbolic lookup: IL?([X,c17 e Xp, X], @xppy i) = & over ®

e Lookup returns a variable activation now: a pair Y
e & equationally constrains variables, must be satisfiable

let y = input in
let £ =
(fun x ->
let fret = x + 1 in fret) in
let f1 = f y in ret
let ret = f f1 in ret

1. L'([£1], 051,) = L([fret], @fret, f1))

2. =t lret; (‘ﬁ'fretﬂ[d([x], Ofun x,fl)+1)ec®
3. L([x], @fun x,.£1,) =L([y],£,)
4

. = L([y], 0f,) = L([y], @y, L) =—¥

From Demand Interpreter to Demand Symbolic Evaluation

Symbolic lookup: IL?([X,c17 e Xp, X], @xppy i) = & over ®

e Lookup returns a variable activation now: a pair Y
e & equationally constrains variables, must be satisfiable

let y = input in
let £ =
(fun x ->
let fret = x + 1 in fret) in
let f1 = f y in ret
let ret = f f1 in ret

S

. L([£1], @1,) = L([fret], @fret, £1))

= Eliret; (Pleret=L([x], Ofun x,,£1) + 1) € @

. L([x], @fun x,.£1,) = L([y], f,)
- =L([y], ©f,) = L([y], @y,L) =—¥

Final ® = {'ﬁtfret =L—k 4 1}, satisfiable.

ISLEE - RO SR e

Formal Development

e Theorem: Demand operational semantics

Forward operational semantics
e Theorem: DDSE is sound and complete with respect to
operational semantics
e Several subtle issues had to be skipped in talk:

1. Call stack must be inferred when lookup initiated in middle of
program

2. Input order of demand-driven lookup is not forward order;
sorting step needed

10

DDSE Implementation

e Artifact is a test generator: given program and target line,
search for inputs which reach the target line of code

e Initial proof-of-concept implementation in OCaml

e Need to dovetail on different search paths
= coroutine/nondeterminism monad used

e Successfully solves all benchmarks from Cruanes [CADE '17],
a higher-order forward symbolic evaluator implementation;
see paper for details

11

Comparison with Select Related Work

e Snugglebug, PLDI '09: Imperative demand symbolic
execution, no correctness

e Cruanes, Satisfiability Modulo Bounded Checking, CADE '17:
Functional forward symbolic execution, no correctness proof,
no input, no unbounded recursion

e Rosette, PLDI '14: a forward symbolic execution framework
implementation; bounded datatypes only

e This work: functional, demand, arbitrary datatypes and
recursion, proven sound and complete.

12

