Higher-Order Demand-Driven Symbolic Evaluation

Zachary Palmer Theodore Park <u>Scott F. Smith</u> Shiwei Weng ICFP 2020, August 24-26, 2020

The Johns Hopkins University and Swarthmore College

Forward vs Demand in Varying Domains

System	Forward	Demand
Logic Programming	Forward-chain	Backward-chain
	(uncommon)	
Tactic-based provers	Forward tactics	Goal-directed tactics
	(uncommon)	
Program Analysis	(most are: kCFA	Reps et al (imperative)
	etc)	DDPA (functional)
Symbolic Execution	(most are)	Snugglebug (imperative)
		Here: DDSE (functional)
Interpreter	(nearly all are)	Here: DDI (functional)
		no substitition, environment
		or closures

Outline

- 1. The language syntax under study here
- 2. DDI, The novel demand-driven functional interpreter
- 3. DDSE, a demand-driven symbolic evaluator built on DDI
- 4. Implementation and evaluation of DDSE

Language Features in this Work

In formal theory functions, integers, booleans, conditionals,
 input (for test generation)

Recursion encoded via self-passing

Also in implementation recursive data structures

ANF Used to expose order of operations

```
e.g. let x = input in let <math>y = x - 1 in let ret = x * y in ret
```

Unique variable names a program point is named by its (unique) defining variable.

The DDI Lookup Function

- Basic idea follows programmer intuition: search upwards in code for variable definitions
- Lookup, $\mathbb{L}([x], @x_{pp}, \underline{\hspace{1pt}}) \equiv v$, means x has value v
- $@x_{pp}$ is the program point to begin (reverse) search from
- 🗀 is a call stack, of program call points.

• L([y], @y, ___) ≡ 1

The DDI Lookup Function

- Basic idea follows programmer intuition: search upwards in code for variable definitions
- Lookup, $\mathbb{L}([x], @x_{pp}, \bot) \equiv v$, means x has value v
- $@x_{pp}$ is the program point to begin (reverse) search from
- 🗀 is a call stack, of program call points.

- $\mathbb{L}([y], @y, \underline{\hspace{1cm}}) \equiv 1$
- $\mathbb{L}([y], @f1, \underline{\hspace{1em}}) \equiv 1$

The DDI Lookup Function

- Basic idea follows programmer intuition: search upwards in code for variable definitions
- Lookup, $\mathbb{L}([x], @x_{pp}, \underline{\hspace{1pt}}) \equiv v$, means x has value v
- $@x_{pp}$ is the program point to begin (reverse) search from
- $\dot{}$ is a call stack, of program call points.

```
let y = 1 in
let f = (fun x ->
let fret = x + 1 in fret) in
let f1 = f y in
let ret = f f1 in ret
```

- $\mathbb{L}([y], @y, \underline{\hspace{1cm}}) \equiv 1$
- $\mathbb{L}([y], @f1, \underline{\hspace{1em}}) \equiv 1$
- $\mathbb{L}([x], 0 \text{fret}, \underline{f1}) \equiv 1$

```
1. L([f1], @f1, ___)
```

- 1. L([f1], @f1, ___)
- 2. $\equiv \mathbb{L}([fret], @fret, \underline{f1})$

```
let y = 1 in
let f =
 (fun x ->
        let fret = x + 1 in fret) in
let f1 = f y in
let ret = f f1 in ret
```

- 1. L([f1], @f1, ___)
- 2. $\equiv \mathbb{L}([fret], @fret, \underline{f1})$
- 3. $\equiv \mathbb{L}([x], 0 \text{fun } x, \underline{f1}) + 1$

```
let v = 1 in
            let f =
                  (fun x ->
                          let fret = x + 1 in fret) in
            let f1 = f y in
            let ret = f f1 in ret
1. L([f1], @f1, ___)
2. \equiv \mathbb{L}([fret], @fret, \underline{f1})
3. \equiv \mathbb{L}([x], 0 \text{fun } x, \underline{f1}) + 1
4. \mathbb{L}([x], 0 \text{fun } x, \underline{f1}) \equiv \mathbb{L}([y], 0 \text{f1}, \underline{\hspace{1cm}})
```

```
let v = 1 in
         let f =
              (fun x \rightarrow
                   let fret = x + 1 in fret) in
     | \Box \rangle let f1 = f y in
         let ret = f f1 in ret
1. L([f1], @f1, ___)
```

- 2. $\equiv \mathbb{L}([fret], @fret, \underline{f1}]$
- 3. $\equiv \mathbb{L}([x], @fun x, [f1]) + 1$
- 4. $\mathbb{L}([x], \mathbb{Q}fun \ x, \underline{f1}) \equiv \mathbb{L}([y], \mathbb{Q}f1, \underline{\hspace{1cm}})$
- 5. $\mathbb{L}([y], 0f1, \underline{\hspace{1cm}}) \equiv 1$ so final result is $\mathbb{L}([f1], 0f1, \underline{\hspace{1cm}}) \equiv 2$.

```
let g =
    (fun x ->
    let gret = (fun y ->
    let gyret = x + y in gyret) in gret) in
let g5 = g 5 in
let ret = g5 1 in ret

1. ... L([x], @gyret, ret]) = L([g5, x], @g5, ___):
1.1 find definition site for g5;
```

1.2 then, resume search for x since that is lexical scope of its def'n.

- 1. ... $\mathbb{L}([x], @gyret, \underline{ret}) \equiv \mathbb{L}([g5, x], @g5, \underline{\hspace{1cm}})$:
 - 1.1 find definition site for g5;
 - 1.2 then, resume search for x since that is lexical scope of its def'n.
- 2. $\mathbb{L}([g5,x], @g5, \underline{\hspace{1cm}}) \equiv \mathbb{L}([gret,x], @gret, \underline{g5})$

- 1. ... $\mathbb{L}([x], @gyret, \underline{ret}) \equiv \mathbb{L}([g5, x], @g5, \underline{\hspace{1cm}})$:
 - 1.1 find definition site for g5;
 - 1.2 then, resume search for x since that is lexical scope of its def'n.
- 2. $\mathbb{L}([g5,x], @g5, __) \equiv \mathbb{L}([gret,x], @gret, \underline{g5})$
- 3. $\mathbb{L}([\mathtt{gret},\mathtt{x}],\mathtt{0}\mathtt{gret},\underline{\mathtt{g5}}) \equiv \mathbb{L}([\mathtt{x}],\mathtt{0}\mathtt{fun}\ \mathtt{x},\underline{\mathtt{g5}})$

- 1. ... $\mathbb{L}([x], @gyret, \underline{ret}) \equiv \mathbb{L}([g5, x], @g5, \underline{\hspace{1cm}})$:
 - 1.1 find definition site for g5;
 - 1.2 then, resume search for x since that is lexical scope of its def'n.
- 2. $\mathbb{L}([g5,x], @g5, __) \equiv \mathbb{L}([gret,x], @gret, \underline{g5})$
- 3. $\mathbb{L}([gret, x], @gret, \underline{g5}) \equiv \mathbb{L}([x], @fun x, \underline{g5})$
- 4. $\mathbb{L}([x], 0 \text{fun } x, \underline{g5}) \equiv 5$

```
let g =
  (fun x ->
    let gret = (fun y ->
        let gyret = x + y in gyret) in gret) in
let g5 = g 5 in
let ret = g5 1 in ret
```

- 1. ... $\mathbb{L}([x], @gyret, \underline{ret}) \equiv \mathbb{L}([g5, x], @g5, \underline{\hspace{1cm}})$:
 - 1.1 find definition site for g5;
 - 1.2 then, resume search for x since that is lexical scope of its def'n.
- 2. $\mathbb{L}([g5,x], @g5, __) \equiv \mathbb{L}([gret,x], @gret, \underline{g5})$
- 3. $\mathbb{L}([gret, x], @gret, \underline{g5}) \equiv \mathbb{L}([x], @fun x, \underline{g5})$
- 4. $\mathbb{L}([x], @fun x, \underline{g5}) \equiv 5$

General Lookup signature: $\mathbb{L}([x_{f_1},\ldots,x_{f_n},x], @x_{pp}, \dot{\sqsubseteq}) \equiv v$.

Peek at Full Rules for Functional Core

$$\text{Value Discovery } \frac{\text{First}(x, \text{CL}(x), \textbf{C})}{\mathbb{L}([x], (x = v), \textbf{C}) \equiv v} \qquad \text{Value Discard } \frac{\mathbb{L}(X, \text{Pred}(x), \textbf{C}) \equiv v}{\mathbb{L}([x] \mid |X, (x = f), \textbf{C}) \equiv v}$$

$$\text{ALIAS } \frac{\mathbb{L}([x'] \mid |X, \text{Pred}(x), \textbf{C}) \equiv v}{\mathbb{L}([x] \mid |X, (x = x'), \textbf{C}) \equiv v}$$

$$\text{FUNCTION } \underbrace{c = (x_r = x_f \ x_v) \quad \mathbb{L}([x_v] \mid |X, \text{Pred}(c), \textbf{C}) \equiv v \quad \mathbb{L}([x_f], \text{Pred}(c), \textbf{C}) \equiv [\text{fun } x \to \text{S}] \mid e}_{\mathbb{L}([x] \mid |X, (\text{fun } x \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun } x'' \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun } x'' \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun } x'' \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun } x'' \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun } x'' \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun } x'' \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun } x'' \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun } x'' \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun } x'' \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun } x'' \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun } x'' \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun } x'' \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun } x'' \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun } x'' \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun } x'' \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun } x'' \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun } x'' \to \text{S}), [c] \mid |\textbf{C})}$$

$$\frac{x'' \neq x \quad c = (x_r = x_f \ x_v)}{\mathbb{L}([x] \mid |X, (\text{fun }$$

```
Symbolic lookup: \mathbb{L}^{\mathbb{S}}([x_{f_1},\ldots,x_{f_n},x],@x_{pp},\underline{\vdots}) \equiv \xrightarrow{\cdot} \text{vor } \Phi
```

- Lookup returns a variable activation now: a pair [∴]x
- Φ equationally constrains variables, must be satisfiable

Symbolic lookup: $\mathbb{L}^{\mathbb{S}}([x_{f_1},\ldots,x_{f_n},x],@x_{pp},\dot{\ }\underline{:}\)\equiv\dot{\ }\underline{:}\ x$ over Φ

- Lookup returns a variable activation now: a pair $\stackrel{:}{\hookrightarrow} x$
- Φ equationally constrains variables, must be satisfiable

Symbolic lookup: $\mathbb{L}^{\mathbb{S}}([x_{f_1},\ldots,x_{f_n},x],@x_{pp},\dot{\perp})\equiv\dot{\perp}x$ over Φ

- Lookup returns a variable activation now: a pair $\stackrel{:}{\sqcup} x$
- Φ equationally constrains variables, must be satisfiable

 $1. \ \mathbb{L}^{\scriptscriptstyle S}([\mathtt{f1}], \mathtt{@f1}, \underline{\hspace{0.3cm}}) \equiv \mathbb{L}^{\scriptscriptstyle S}([\mathtt{fret}], \mathtt{@fret}, \underline{\mathtt{f1}})$

Symbolic lookup: $\mathbb{L}^{\mathbb{S}}([x_{f_1},\ldots,x_{f_n},x],@x_{pp},\dot{\bot})\equiv\dot{\bot}x$ over Φ

- Lookup returns a variable activation now: a pair $\stackrel{:}{\sqcup} x$
- Φ equationally constrains variables, must be satisfiable

- $1. \ \mathbb{L}^{\mathbb{S}}(\texttt{[f1]}, \texttt{@f1}, \underline{\hspace{0.3cm}}) \equiv \mathbb{L}^{\mathbb{S}}(\texttt{[fret]}, \texttt{@fret}, \underline{\texttt{f1}})$
- 2. $\equiv \frac{\text{f1}}{\text{fret}}; (\frac{\text{f1}}{\text{fret}} = \mathbb{L}([x], 0 \text{fun } x, \underline{\text{f1}}) + 1) \in \Phi$

Symbolic lookup: $\mathbb{L}^{\mathbb{S}}([x_{f_1},\ldots,x_{f_n},x],@x_{pp},\dot{\ }\underline{:}\)\equiv\dot{\ }\underline{:}\ x$ over Φ

- Lookup returns a variable activation now: a pair $\stackrel{:}{\hookrightarrow} x$
- Φ equationally constrains variables, must be satisfiable

- $1. \ \mathbb{L}^{\mathbb{S}}([\mathtt{f1}], \mathtt{@f1}, \underline{\hspace{0.5cm}}) \equiv \mathbb{L}^{\mathbb{S}}([\mathtt{fret}], \mathtt{@fret}, \underline{\mathtt{f1}})$
- 2. $\equiv \frac{\text{f1}}{\text{fret}}; (\frac{\text{f1}}{\text{fret}} = \mathbb{L}([x], \text{@fun } x, \frac{\text{f1}}{\text{l}}) + 1) \in \Phi$
- 3. $\mathbb{L}([x], \mathbb{Q}fun \ x, \underline{f1}) \equiv \mathbb{L}([y], f, \underline{\hspace{1cm}})$

Symbolic lookup: $\mathbb{L}^{\mathbb{S}}([x_{f_1},\ldots,x_{f_n},x],@x_{pp},\underline{\vdots})\equiv \underline{\ }\ x$ over Φ

- Lookup returns a variable activation now: a pair $\stackrel{:}{\hookrightarrow} x$
- Φ equationally constrains variables, must be satisfiable

- $1. \ \mathbb{L}^{\mathbb{S}}(\texttt{[f1]}, \texttt{@f1}, \underline{\hspace{0.3cm}}) \equiv \mathbb{L}^{\mathbb{S}}(\texttt{[fret]}, \texttt{@fret}, \underline{\texttt{f1}})$
- 2. $\equiv \frac{\text{f1}}{\text{fret}}; (\frac{\text{f1}}{\text{fret}} = \mathbb{L}([x], \text{@fun } x, \underline{\text{f1}}) + 1) \in \Phi$
- 3. $\mathbb{L}([x], @fun x, \underline{f1}) \equiv \mathbb{L}([y], f, \underline{\hspace{1cm}})$
- 4. $\equiv \mathbb{L}([y], @f, \underline{\hspace{1em}}) \equiv \mathbb{L}([y], @y, \underline{\hspace{1em}}) \equiv \underline{\hspace{1em}} y$

Symbolic lookup:
$$\mathbb{L}^{\mathbb{S}}([x_{f_1},\ldots,x_{f_n},x],@x_{pp},\underline{\vdots})\equiv \underline{\ }\ x$$
 over Φ

- Lookup returns a variable activation now: a pair $\stackrel{:}{\hookrightarrow} x$
- Φ equationally constrains variables, must be satisfiable

- $1. \ \mathbb{L}^{\mathbb{S}}(\texttt{[f1]}, \texttt{@f1}, \underline{\hspace{0.3cm}}) \equiv \mathbb{L}^{\mathbb{S}}(\texttt{[fret]}, \texttt{@fret}, \underline{\texttt{f1}})$
- 2. $\equiv \frac{\text{f1}}{\text{fret}}; (\frac{\text{f1}}{\text{fret}} = \mathbb{L}([x], \text{@fun } x, \underline{\text{f1}}) + 1) \in \Phi$
- 3. $\mathbb{L}([x], @fun x, \underline{f1}) \equiv \mathbb{L}([y], f, \underline{\hspace{1cm}})$
- 4. $\equiv \mathbb{L}([y], @f, _) \equiv \mathbb{L}([y], @y, _) \equiv _y$
- 5. Final $\Phi = \{ \frac{f1}{fret} = \frac{y+1}{f}; \text{ satisfiable.}$

Formal Development

• Theorem: Demand operational semantics

=

Forward operational semantics

- Theorem: DDSE is sound and complete with respect to operational semantics
- Several subtle issues had to be skipped in talk:
 - Call stack must be inferred when lookup initiated in middle of program
 - Input order of demand-driven lookup is not forward order; sorting step needed

DDSE Implementation

- Artifact is a test generator: given program and target line, search for inputs which reach the target line of code
- Initial proof-of-concept implementation in OCaml
- Need to dovetail on different search paths

 ⇒ coroutine/nondeterminism monad used
- Successfully solves all benchmarks from Cruanes [CADE '17], a higher-order forward symbolic evaluator implementation; see paper for details

Comparison with Select Related Work

- Snugglebug, PLDI '09: Imperative demand symbolic execution, no correctness
- Cruanes, Satisfiability Modulo Bounded Checking, CADE '17:
 Functional forward symbolic execution, no correctness proof, no input, no unbounded recursion
- Rosette, PLDI '14: a forward symbolic execution framework implementation; bounded datatypes only
- This work: functional, demand, arbitrary datatypes and recursion, proven sound and complete.