
A Formal Framework for ComponentDeployment

Yu David Liu ScottF. Smith
Departmentof ComputerScience

TheJohnsHopkinsUniversity
f yliu, scottg@cs.jhu.edu

Abstract
Softwaredeploymentis a complex process,andindustrial-strength
frameworks suchas .NET, Java, andCORBA all provide explicit
supportfor componentdeployment. However, theseframeworks
are not built aroundfundamentalprinciplesas much as they are
engineeringefforts closelytied to particularsof therespective sys-
tems.Herewe aim to elucidatethefundamentalprinciplesof soft-
ware deployment, in a platform-independentmanner. Issuesthat
needto beaddressedincludedeploymentunit design,when, where
andhow to wire componentstogether, versioning,versiondepen-
dencies,andhot-deploymentof components.We de�ne theappli-
cation buildbox asthe placewheresoftwareis developedandde-
ployed, andde�ne a formal LabeledTransitionSystem(LTS) on
the buildbox with transitionsfor deployment operationsthat in-
cludebuild, install,ship,andupdate.Weestablishformalproperties
of theLTS, includingthefactthatif a componentis shippedwith a
certainversiondependency, thenat run time thatdependency must
be satis�ed with a compatibleversion.Our treatmentof deploy-
mentis bothplatform-andvendor-independent,andwe show how
it modelsthe core mechanismsof the industrial-strengthdeploy-
mentframeworks.

Categoriesand SubjectDescriptors D.3.1 [ProgrammingLan-
guages]: Formal De�nitions and Theory; D.2.7 [Software Engi-
neering]: VersionControl

GeneralTerms Languages,Design,Theory

Keywords ApplicationBuildbox, Deployment,Component,Ver-
sion

1. Intr oduction
In [44], Szyperskipresentsthe threede�ning propertiesof soft-
warecomponents;his �rst propertyis that they serve asunits of
independentdeployment. Thisaspecthasattractedfar lessattention
from the researchcommunitythan his other two properties(that
componentsareunitsof compositionandunitsof stateencapsula-
tion). Make no mistake, componentdeploymentis a complex pro-
cesswhichmustbecarefullythoughtout if correctsoftwarebehav-
ior is to beachieved:anEnterpriseJavaBean[17] might betested
in onecontainerandthendeployed in a differentcontainerthat is
incompatiblewith the bean;the sameJava applicationmight dis-

Permissionto make digital or hardcopiesof all or part of this work for personalor
classroomuseis grantedwithout feeprovided thatcopiesarenot madeor distributed
for pro�t or commercialadvantageandthatcopiesbearthisnoticeandthefull citation
on the�rst page.To copy otherwise,to republish,to poston serversor to redistribute
to lists,requiresprior speci�c permissionand/ora fee.
OOPSLA'06 October22–26,2006,Portland,Oregon,USA.
Copyright c 2006ACM 1-59593-348-4/06/0010.. . $5.00

play different run-time behaviors on siteswith different settings
of CLASSPATHto locatedependency components;updatinga Win-
dows DLL when installing an applicationmight causeother ap-
plicationsdependenton it to exhibit erratic behaviors; and,with
dynamicplugins,componentscanalsobedeployed into a running
application.

Themannerin which industryhasrespondedto theseproblems
is a barometerof real-world needfor elegant and rigorousmod-
els of deployment: numeroustools [18, 40, 12, 25, 10, 11, 43]
have beendesignedto supportcomponentdeployment, and the
.NET, Java and CORBA platformsde�ne how software compo-
nentsshouldbe deployed [32, 17, 36]. Theseindustrialsolutions
provide workablesystemsthat userscan directly use,but along
with this strengthcomesa weakness:to ensurecorrectfunctional-
ity on a particularplatform, thesesolutionsarehighly embedded
in platform-speci�c details,suchas �le systemstructures,envi-
ronmentvariables,scripts,middlewarearchitectures,andprogram-
ming languagemodels.The speci�cationsarealso informal, and
so no propertiescanbe rigorouslyguaranteed.For tool-basedap-
proaches,non-trivial issuessuchasdependency resolutionaresub-
mergedin thecode.Thebestwayto understandthemin somecases
is to run thetoolsandseewhathappens!So,we believe thereis a
realneedfor theformal studyof thecomponentdeploymentprob-
lem.

1.1 This Work

In this paper, we elucidatethe fundamentalprinciplesof software
deployment, in a platform-independentmanner. Despiteits com-
plexity, softwaredeploymentis known to follow a lifecycle where
commonactivities areshared[22, 37]: releasefrom the develop-
ment site (shipping), unpackingat the deployment site (installa-
tion), recon�guring at the deploymentsite in responseto changes
(update), andactivating theapplicationinto a usablestate(execu-
tion). Is therea common“core” that a good deployment system
shouldhaveregardlessof thechoiceof theplatform?Is thereafun-
damentalandprecisenotionaboutwhatashipmentpackageshould
contain,whatit meansto bea goodsoftwareupdate,andwhatde-
ploymentswill not violateversioncompatibility?We answerthese
questionsby comingup with an abstractformalization.Our goal
is for theseresultsto give researchersa basisto reasonaboutde-
ployment,andguidefuturedeploymenttool developersto comeup
with systemswith well-de�ned operationsthathave provablecor-
rectnessproperties.

This paperalso indirectly shedslight on componentdesign,
from the perspective of what kind of componentmodel is best-
suitedfor deployment.By focusingprimarily onthispropertyhere,
this paperextendsour past studies,from different perspectives,
of componentdependency and linking [42, 27, 28]. Linking –
especiallyits theoreticalfoundationsand type properties– has
beenextensively studiedandwell-understood[6, 19, 20, 14, 13].
However, previous studiesdo not adequatelytake into account

the when and where of linking: Does it happenat build time,
installationtime, or run time?Doesit happenon thedevelopment
site or the deployment site? If the software is �rst linked at the
developmentsite,andthensomeof its dependenciesarerelinkedat
the deploymentsite,arethesenew dependenciescompatiblewith
thoseat thedevelopmentsite?

1.2 Goalsand Contrib utions

Themaincontributionsof our framework canbegroupedinto four
categories,eachof which addressesa principal designgoalof the
framework:

� Expressiveness. The framework addressesthe entire lifecycle
of applicationevolution, spanningboth the developmentsite
anddeploymentsite,andcoveringbothhow applicationsevolve
staticallyaswell asdynamically. A moredetaileddiscussionon
theframework featuresis givenin Sec.2.

� Generality. Our treatmentof componentdeployment is both
platform-andvendor-independent,andmodelsthecoremech-
anisms of existing deployment models found in Microsoft
products(DLLs, COM[33], CLI Assemblies[32]), Unix/Linux
(packageinstallers[18, 12, 40]), Java (EJB[17], Classloaders)
andmiddlewareinfrastructures(CORBA CCM[36]). Sec.5 de-
tails how our framework canbe relatedto differentplatforms.
Althoughour framework doesnot captureevery featurein ev-
eryexistingdeploymentmodel,it offersa moreprincipledway
to implementtheir corefeatures.

� Correctness. We give the�rst known proof of versioncompat-
ibility in a softwaredeploymentcontext, which statesthat if a
componentis shippedwith acertainversionrequirementfor its
dependencies,thenat run time the dependency mustbe satis-
�ed with a compatibleversion.Our framework alsoprovides
a formal notion of applicationwell-formedness,andwe prove
the framework is robust enoughto preserve well-formedeness
duringapplicationevolution.This topic is elaboratedin Sec.4.

� Simplicity. Our framework provides a foundationalmodel of
the core issuesof deployment suchasevolution, namingand
versioning.Becauseit is simple,it will bepossibleto useit asa
basisfor studyingmoreadvanceddeploymentfeaturessuchas
securityandtransactioncontrol.

2. Inf ormal Overview
In this section,we informally explain thecoreideasof our frame-
work. A few designdecisionsarealsodiscussed.

2.1 Core Concepts

2.1.1 The ComponentModel: Assemblages

Software componentsin our framework are called assemblages.
Eachassemblageis a named,versioned,independentlyshippable
and independentlydeployable codeunit. This abstractioncan be
mappedto any form of real-world deploymentunit, for examplean
EJBcomponent,a Java .class �le, anEclipseplugin, or a C dy-
namiclinking library. (A non-exampleis thetypicaluseof theC .o
�le onUnix platforms:it is notanindependentunit sinceit relieson
linking at thedevelopmentsite beforeshipmentanddeployment.)
Our goal is to constructa modelwhich elegantlycapturesthekey
featuresof thewidely known deploymentmodels;afterpresenting
thetechnicaldetailswewill makeadetailedcomparisonwith these
modelsto show how we meetthis goal.

Each assemblagemay be equippedwith two kinds of inter-
faces,mixers andpluggers. Both mixersandpluggersarenamed
interfaceswhich can not only export featuresde�ned inside the
assemblageimplementationbody to other assemblages,but also

NetLib

M
v3

Browser

Net Plugins
v2

NetLib

M
v4

Legends

Application
 Buildbox

Assemblage

Mixer Plugger
Mixing
 Wire

Net Pluginsv2

NetLib

M
v1

Browser

Net Plugins
v2

 Flash

Brw

(a)

(b)

(c)

Application
 Runtime

Assemblage
 Runtime

Plugging
 Wire

Browser

v5

Figure1. CoreConcepts(a)An Assemblage(a)A Snapshotof the
ApplicationBuildbox (b) A Snapshotof theApplicationRuntime

canimport featuresfrom otherassemblages.Our framework does
not make assumptionson the format of the featuresthemselves;
they maybefunctions,classes,or otherstructures.For convenience
here,we oftenwill usefunctionsasexamples.We will explain the
differencebetweenmixersandpluggerssoon,in Sec.2.1.2.A sim-
pleassemblagesexampleis givenin Fig. 1(a),showing a browsing
tool that is wrappedup asan independentdeploymentunit. It has
thenameBrowser, andversionidenti�er v2.

Thecomponentmodelintroducedhereis basedon themodule
constructof our previous Assemblages project [27]. Despitethe
sharedstructuralsimilarity, the goal of this work is very different
from theoriginal calculus,wheretypesafetywasthe focus.Since
wehavepreviouslyaddressedtyping issues,we ignorethemin this
paperfor simplicity.

2.1.2 The ComponentWir es:Mixing and Plugging

Component-basedapplicationsarecommonlyviewedasa number
of individual componentswired together[44], wherewiring indi-
catesnamebinding.Whatmattersin adeploymentcontext is when
thewiresareestablished.Thewatershedeventin acomponentlife-
time is load time, whenthecomponentturnsfrom a pieceof state-
lesscodeto a potentiallystatefulandexecutableruntimeform. We
call awire establishedbeforethetwo wiredcomponentsgothrough
thiswatershedeventamixingwire(or sometimessimplyamixing),
andfor a wire establishedafterthata plugging wire (or sometimes
simply a plugging). In Fig. 1(b), thereis a mixing wire between
the networking library NetLib assemblageand the Browser as-
semblage,andits natureindicatesthewire is establishedbefore the
browser is up andrunning1. In Fig. 1(c), thereis a pluggingwire
betweentheBrowser andtheFlash dynamicplugin.Sucha wire
is establishedafter thebrowserhasbeenlaunched.

Fromanassemblagewriter'sperspective,declaringamixersig-
ni�es a willingnessto establisha wire beforeit is loaded,while
declaringa pluggersigni�es a desireto establisha wire after load-
ing. A mixing wire bindstogethera pair of mixers,onefrom each
wired party, sothattheimportsfrom onemixer canbesatis�edby
theexportsfrom theother. A pluggingwire is thesameasamixing
wire, except it bindstogethera pluggerof an assemblagealready
loadedanda mixer of an assemblageto be loadedasa result of
plugging.Theuseof a mixer heremaysoundodd,but it indicates
thedesireof theassemblagebeingpluggedin: Flash asapluginin
factdesiresits namesinsideBrwinterfaceberesolvedtheminuteit
is loaded,notafter.

2.1.3 Evolution and Application Buildbox

Thestudyof deploymentleadsto thestudyof applicationevolution.
Thecomponentsforming theapplicationare�rst deployedoneby
one, then the wires betweenthem are formed,and then perhaps
somecomponentswill be updatedindependently, and eventually
theapplicationis launchedinto theruntimeform.

In our framework, this “applicationin �ux”, i.e. a snapshotof
the evolution processwheresomecomponentsof the application
areyet to bedeployedandsomewiresareyet to beestablished,is
evolving in an imaginary“box” calledanapplicationbuildbox, or
simply a buildbox. The buildbox is illustratedin Fig. 1(b). Three
assemblagesarecurrentlyin thebuildbox,with two of thembeing
two different versionsof the samenamedassemblageNetLib .
When the buildbox containsall the componentsthe application
needsand all the wires are established,we say an application

1 Our term “mixing” is sometimescalled“static linking” in the literature.
We are cautiousin using that term, however, becauseit is overloadedin
the C context, whereit refersto the linking of .o object �les. Mixing is
analogousto the casein C wherean a.out �le is linked to its dynamic
linking library (.so �les), an action – due to the technicalitiesof the
platforms– called“dynamiclinking” in C terminology.

is formed. The buildbox naturally capturesthe evolving nature
of component-basedsoftware developmentand deployment, and
servesasa usefulmechanismfor modelingtheprocess.

After theapplicationis formed,it canbelaunchedandbeturned
into astatefulandexecutableapplicationruntime. Fig.1(c)showsa
snapshotof anapplicationruntime,which containsa collectionof
runningassemblages,calledassemblage runtimes. Becauseplug-
gingwiresmaybeestablishedafterapplicationruntimesareestab-
lished,applicationexecutioncontinuesto supportlimited applica-
tion evolution.

2.2 The DeploymentLifecycle

A primarygoalof our framework is to modelall of thefundamental
actionsinvolved in the deployment process.To demonstratethis,
wenow describehow thedevelopmentanddeploymentof asimple
browseris modeledin our framework. Thefocusof theframework
is decidedlyondeployment,but to modeldeploymentwemustalso
model fundamentalactionsat the developmentstage,since they
have a major impacton deployment.The importantdevelopment
anddeploymentactionsof our framework areillustratedin detail
in Fig. 2.

ComponentBuild Component-basedsoftwaredevelopmentstarts
by preparingthe componentsthemselves. Thereare two ways a
developercan obtain a component:either by building one from
scratch,or by usingoff-the-shelfcomponentsshippedby third par-
ties.The�rst caseis modeledby anactioncalledcomponentbuild,
in Fig. 2(a).For a concreteanalogy, this stepcanbeviewedasthe
creationof a Java .class �le. After this build step,the Browser
componentis now in thebuildbox. A new browserversionv2 as-
signedto thecomponentanduniquelyidenti�es it. Thesecondway
in whichacomponentcanbeobtained(anoff-the-shelfcomponent
likeNetLib) will beexplainedbelow whencomponentinstallation
is discussed.

ComponentAssembling In Fig. 2(a), thetwo componentsarein
thebuildbox,but thenamespaceshaveyetto bewiredtogether. The
componentassemblingprocessachieves this, by wiring together
the two mixer interfaces,onefrom eachcomponent.Note that the
mixing wire is betweentwo versionsof components,not just two
components.For instancein Fig. 2(b), the framework is not just
awarethata NetLib componentis wired to Browser component,
but alsoit is thatv1 of NetLib is wired to v2 of Browser.

ComponentShipping Whendevelopmentof the browser is �n-
ished,theBrowser componentneedsto bepackedupandshipped.
Thiscomponentshippingprocessis modeledin Fig.2(c).Theresult
of shippingis thepackedform of Browser, a datastructurecalled
packaged assemblage. Whena componentis shipped,theshipper
is giventheoptionof specifyingwhethereachversiondependency
shouldbematchedwhenthecomponentis installedelsewhere.In
theexamplehere,let usassumetheBroswer shipperdoesindeed
careabout the versionof the network library, so that it will not
be installedon a machinewhoseNetLib componenthasan in-
compatibleversionthate.g. might crashthebrowser. Theresulting
packagedassemblageendsup containinga dependencyconstraint
saying“my mixer Net at developmenttime is wired to theMmixer
of versionv1 of NetLib . I will never let myselfbewired to a ver-
sionof NetLib thatis notcompatiblewith v1”. Ontheotherhand,
if theshipperdecidesall thatmattersis thatNetLib hasa mixer M
containingthefeaturesit needs,but nottheversionsof them,he/she
couldalsochooseto leaveout this constraint.

ComponentInstallation Thebrowserentersthedeploymentsite
by the action of componentinstallation, illustrated in Fig. 2(d).
The installationunit is a packagedassemblage.Note that in the
example,the deployment site doesn't happento have a copy of

NetLib

M
v1

NetLib

M
v1

Browser

Net Plugins
v2

Browser

Net Plugins

NetLib

M
v1

Browser

Net Plugins
v2

Browser

Net Plugins

dependency: Net -> NetLib. v1. M

NetLib

v1

Browser

Net Plugins
v2

 Flash
Brw

dependency: Brw->Browser.any.Plugins

NetLib

M
v1

Browser

Net Plugins
v2

 Flash

Brw

(a) Componet Build

(b) Component Assembling

(f) Dynamic Component Deployment

Legends Packaged Assemblage

NetLib

M
v3

Browser

Net Plugins

NetLib

M
v3

Browser

Net Pluginsv2

dependency: Net -> NetLib. v1. M(d) Component Installation

v3 is compatible with v1 v3 is compatible with v1

M

NetLib

M
v1

Browser

Net Plugins
v2

NetLib

M
v1

Browser

Net Plugins
v2

(c) Component Shipping

NetLib

M
v3

Browser

Net Pluginsv2

NetLib

M
v4

NetLib

M
v3

Browser

Net Plugins
v2

NetLib

M
v4

(e) Component Update

v2

v2

v4 is compatible with v3 v4 is compatible with v3

v5 v5

Figure2. SoftwareDevelopmentandDeploymentLifecycle

versionv1 of NetLib , only a compatibleversion.It resultsin a
mixing wire connectingv3 of NetLib andv2 of Browser.

Earlierwhenweexplainedcomponentbuild, weraisedtheques-
tion of how NetLib wasput into thebuildbox.TheBrowser devel-
opercertainlydoesnotwanttobuild it from scratch,andmostlikely
it is preparedby someotherlibrary developer. In our framework,
thewayathird-partycomponentsuchasNetLib is put in thebuild-
box is via componentinstallation. Indeed,thedevelopmentsiteof
abrowseris in factthedeploymentsiteof thenetwork library. This
explainsfrom oneanglethe inseparablerelationshipbetweende-
velopmentanddeployment,andwhy adeploymentframework also
coverstheactionsin development.

ComponentUpdate At somepoint,theremaybeanew, improved
releaseof the NetLib , and the systemadministratorwishes to
updatethebrowserto usethenewer version.This updatingaction
is modeledin Fig. 2(e), where the wiring to the Net mixer of
Browser is now switchedto the new NetLib library of version
v4. A componentupdateis only successfulif theupdatedoesnot
violate versioncompatibility. Our framework doesnot explicitly
supportcomponentremoval, asnon-referencedcomponents(such
asversionv3 of NetLib hereafter the transition)canbe garbage
collectedeasily.

Dynamic ComponentDeployment With the browser now in-
stalled,it will eventually be launched.And, oncethe browser is
launched,ausermightdownloada dynamicplugin suchasFlash .
It will bedesirablefor thebrowserto useFlash withouttheneedto
terminateandrestart.Thisactionis modeledin Fig. 2(f). It is simi-
lar in spirit to componentassembling,but is anactionthathappens
only at run time.Notethata Flash plugin hereis alsoa packaged
assemblage,which shouldcomeas no surprisesinceit is also a
well-encapsulated,independentlydeployableunit. This makesthe
action of enablinga dynamicplugin equivalent to deployment a
componentdynamically, an action sometimesalso calledhot de-
ploymentin thedeploymentcommunity.

FormalismandIts DesignChoices In our formal framework, all
actionsrepresentedin Fig. 2 except the last one are represented
as transitionsin a LabeledTransitionSystem(LTS). Only well-
de�ned transitionsareallowedduringdeployment.Dangerousop-
erationssuchasmanipulatinglow-level �les andsystemregistries
arbitrarily arenot allowed. In the spectrumof formal models,the
LTS approachliesbetweenpurelydeclarative approachesandfull-
�edged procedurallanguages.A purely declarative approachhas
the strengthof being more mathematicallyconcise,but it is too
weak to model the dynamicevolution of the deploymentprocess
as the latter is inherentlydynamic.A full-�edged proceduralap-
proachis maximallyexpressive,but it comeswith thepriceof com-
plexity and greaterdif�culty in veri�cation. We believe an LTS
servesasa goodbalancebetweenformal veri�cation andexpres-
siveness:theimportantoperationsof deploymentarefaithfully and
intuitively modeled,andat thesametime formal propertiesof the
framework can be proved. In this paperwe proved deployment
sitewell-formednesspreservationandversionaccesscompatibility
properties.In fact,out of the traditionalstrengthof LTS, stronger
framework-speci�c temporalpropertiescanalsobeexpressedand
checked,suchasthe fact thatcomponentupdatemusthappenbe-
forecomponentinstallation.

All LTS transitionsare independentof the componentimple-
mentationand are completelylanguage-neutral.As for dynamic
componentdeployment, since it is fundamentallyan operation
after the application is executed,it is modeledas a reduction
stepwithin a minimally de�ned programminglanguage.Indeed,
sincedynamicdeployment fundamentallyrelieson dynamiclink-
ing/loading,someexecution model must be assumed.Modeling
it as a languageexpressionmakes it programmable,so that the

PalmClient

PalmCodeUnit
 V1

IPalm

PalmClientAssemblage
Net

Palm

PalmDriver

PalmCodeUnit
 V2

Palm

PalmDriver

symbol: Palm
symbol: PalmDriver

PalmAssemblage
 V1

Palm

PalmDriver

symbol: Palm
symbol: PalmDriver

(a)

(b)

Mn

Legends

Class Definition

Palm

Name Binding

Figure 3. The Needfor Interfaces(a) The ProblematicCase(b)
TheAssemblageSolution

Browser developerhas the freedomof trigger dynamicdeploy-
mentat any point in theprogram.

2.3 DesignIssues

Thissectionattemptsto elucidatea few designdecisionswe made,
and also introducessomeadvancedfeaturesof the framework.
Among them, an importantdecisionany deployment framework
needsto make is theformatof thedeploymentunit, i.e. thecompo-
nentmodel.In Sec.2.1,we describedour componentmodel;you
mayask,why doesit look theway it is?Thebeginningsubsections
herewill answerthis questionfrom theperspective of how sucha
modelcanfacilitatedeployment.

2.3.1 Why are InterfacesNeededfor Deployment?

Fromtheperspective of encapsulation,thereis universalconsensus
that componentsshouldbe designedwith explicit interfaces.We

Container

IBean

v1
Bean

IContainer

ejbCreate

ejbRemove

dataSource

searchBase
v2

ejbCreate

ejbRemove

dataSource

searchBase

Figure4. TheContainer-BeanInteraction

arguethatuser-de�nable interfacesfor the purposeof deployment
arealsoimportant,for severalreasons.

First, an interfacefor a deploymentunit is usefulto de�ne the
atomic unit of versioning,i.e., all dependenciesin one interface
mustbe satis�ed with the sameversion of the componentwhere
the dependenciesarede�ned. Fig. 3 demonstratesthis point. It is
commonthat a software component,say, PalmClient , contains
two symbolic references,say, Palm andPalmDriver , de�ned in
a differentcomponent,say, PalmComp. A versionof PalmDriver
shouldonly operateupona Palm of the sameversion.A careless
designof a deploymentunit could resultin thedangerousbinding
of Fig. 3(a),andtheapplicationmayexhibit erraticbehaviors.This
problemcanbeavoidedby equippingthecomponentwith explicit
interfaces,illustratedin Fig. 3(b).Here,dependenciesaresatis�ed
on thelevel of interfaces, andnoton thelevel of a singlesymbolic
reference,so that all imports in the sameinterface can only be
satis�ed by oneversionof anothercomponent.Equippinga mixer
with an assemblageexpressesthe desireto de�ne an atomicunit
for versioningdependencies.

Second,explicitly declaringinterfacesondeploymentunitsalso
presentsa cleanersolution for namespacemanagement.This is
especiallytrue whena componentwill be deployed in a different
site,andthecomponentneedsto rebindits dependencies.In Fig. 3,
the namespaceof the two mixersaremergedtogetheronly when
a mixing dependency is present,and there is no global binding
of names.Since the developmentsite and deployment site will
oftendiffer, globalbindingof namescaneasilyleadto accidental
capture/clashof names,and also make deployment sensitive to
platform-speci�c details such as the CLASSPATH. Our approach
hereis similar to Units [19] and Knit [41] (Units' adaptationto
C-like languages).

Third, interfacesalsospecifya component's capabilityfor de-
ployment.Sucha declarative constructis in fact commonin ex-
istingdeploymentframeworks,includingthepackagespeci�cation
usedby Unix/Linux packagemanagers[18, 40, 12], and the De-
ploymentDescriptorsof EJB.

2.3.2 Why are Interfaces Bidir ectional?

Bidirectional dependenciesbetweensoftware componentsare a
naturalresultof softwaredecomposition.For instance,theCORBA
CCM modelallows usersto de�ne four typesof interfaceswhere
two typesof themcanbeanalogouslythoughtof asall-exportmix-
ers in our framework and two asall-import mixers2. In CLI As-
semblies,althoughno explicit bidirectionalinterfacesarede�ned,
it is de facto equivalent to an assemblagewith eachde�ned class

2 The interfacesof concernarecalledports in CORBA, andthe two types
correspondingto all-export mixers are Facet and EventConsumer, and
the other two correspondingto all-import mixers are Receptaclesand
EventPublisher.

representinga one-export mixer, andeachclassdependency asa
one-importmixer.

A more importantquestionto answeris how bidirectionalin-
terfaceshelp model the processof deployment. We will use the
exampleof EJB deployment to show the prevalenceof bidirec-
tional dependency. The primary taskof an EJB deployer is to es-
tablishtheinteractionbetweentheto-be-deployedbeanandits con-
tainerlocatedat thedeploymentsite.Suchaninteractionis funda-
mentallybidirectional:the beandependson the containerto pro-
videcontainer-speci�c environmententriesto customizeits behav-
ior, while the containerdependson the beanto provide call-back
lifecycle-relatedmethods3. Currently, EJB treatstheseasspecial
cases,whereenvironmententriesaredeclaredin anauxiliary data
structurecalled the deploymentdescriptorwith specialtags that
canberecognizedby thecontainer, andcall-backmethodsaresup-
portedby addingsyntacticrestrictionson whata beanclasshasto
satisfy.

Our framework canmodelsucha casemoredirectly, by allow-
ing thebeanto declarea bidirectionalinterfacesignifying how the
beanwill interactwith the container. Fig. 4 demonstratessuchan
interaction.In the�gure, theBeancanaccessits importsto obtain
environmententry informationsetby theContainer , suchasthe
dataSource andsearchBase here.TheContainer canaccessits
importsto invoke thelifecycle-relatedmethodsof theBeansuchas
ejbCreate andejbRemove.

Themeritof ourapproachis ourcoremodelis smaller, environ-
mententryaccessandcall-backmethodsarenothandledasspecial
cases,andthe interfacefor a bean's interactionwith its container
is structurallysimilar to many otherEJBbusinessinterfaces.When
the above Bean is deployed, the only thing that mustbe doneis
to set up a mixing wire betweenthe Bean's IContainer mixer
andContainer 's IBean mixer4. Thismoreuni�ed treatmentgives
thedeploymentmodela morerigorousbasis,andcanhelpdeploy-
ers to focuson the coreaspectsof the deployment task.In addi-
tion, versioncontrol canalsobenaturallysupported,asexplained
in Sec.2.3.1.For instance,a beancanspecifythat it mustbe de-
ployed in someparticularversionof container. The currentEJB
model doesnot supportversioncontrol explicitly, and so sucha
taskwould needspecialhandlingby theprogrammer.

SinceIContainer being de�ned as a distinct mixer, the de-
ployment logic and businesslogic, de�ned on other mixers, are
naturallyseparated.With thisseparationin place,aninterfacesuch
asIContainer couldbewrittenby theEJBdeploymentdescriptor
writer role.

2.3.3 Why Put Pluggersin a DeploymentUnit?

For frameworks supportinghot deployment,issuessuchaswhich
partyshouldinitiatethedeploymentandwhenit shouldbeinitiated
are often a vendor-speci�c decisions.For instance,WebLogic's
implementationof EJB [4] supportshot deployment via a utility
weblogic.deploy . Indeed,sinceWebLogicis acontainervendor,
they know all thedetailsof their containerimplementation,andso
writing a tool of this �a vor is possible.Our approachis to make
minimal assumptionson theunderlyingsoftwarearchitecture,and
providealanguageconstructwhichcanfacilitatethecodingof such
hot-deploymenttools.

3 Different kinds of beans need to implement different sets of call-
back methods. For an entity bean for instance, they include �x ed
name/signaturemethodsejbCreate , ejbPostCreate , ejbActivate ,
ejbPassivate , ejbStore , ejbLoad, ejbRemove, setEntityContext ,
unsetEntityContext .
4 Somevendorsof EJB supportshot-deploying. In that case,the example
will demonstratea pluggingwire; theargumentstaysthesamein termsof
bi-directionaldependency.

menu

start

Brw

Brw

menu

start

start

(a)

Plugins

menu

param

compute

Mn

Mn

param

compute

compute

(b)

AlgmUpdate

param

Browser

AirContr ol

Flash

Shockwave

AlgorithmV1

AlgorithmV2

Figure 5. PluggerRebindability (a) Two Plugins (b) Dynamic
SoftwareUpdating

At a high level, placinga pluggeron an assemblageindicates
its ability to initiate dynamicdeployment.Sinceeachcomponent
in component-basedsoftware developmentis independentlyde-
ployable,suchan interfacedeclarationgivesthedeployer a better
ideawhathot-deploying ability theto-be-deployedcomponentcan
have. For instance,whena Browser componentis deployed, the
deployer knows the buildbox the componentwill enterwill have
somecapabilityfor hot-deployment,andcanthusprepareaccord-
ingly for otherorthogonalandyet importantissues,suchassecu-
rity. Theimport andexport declarationsof thepluggercanfurther
aid the deployer by describinghow the hot-deployed component
needsto interactwith the restof the system,and thuswhat con-
sequencesthepotentialhot-deploying might have. For instance,if
thePlugins pluggerof theBrowser is going to export a method
calledfileWrite , thedeployer of Browser mayhave to becare-
ful aboutsecurityissues.Appletsareananalogoussituationif we
modelappletdownloadasa hotdeployment.

2.3.4 PluggerRebindability and Dynamic Component
Update

Pluggersarerebindablein our framework: a pluggercanbewired
to multiplehot-deployedcomponentsat thesametime.In Fig. 2(e),
we presentedanapplicationruntimewith only oneplugin, Flash .
But as the applicationruntimeevolves, it canhot-deploy another
plugin, say, ShockWave, which would result in the situationcap-
turedby Fig. 5 (a).Sincethereis noway to predictin advancehow
many dynamicpluginsabrowsermighthot-deploy, thereis noway
onecanenumerateall pluggersstatically. Rebindabilityprovidesa
solutionto this problem.

FromtheBrowser's perspective, it needsawayto interactwith
thesetwo plugins individually. Sincehot deployment is modeled

by a languageexpression,we candistinguishdifferentpluginsby
allowing theexpressionto returna handlethatuniquelyidenti�es
the speci�c hot-deployed component.For instance,the setupof
Fig. 5 (a)canbeachievedby thefollowing codefragment:

//hot-deploy Shockwave
h1 = plugin Wshockwave with Plugins >> Brw
//hot-deploy Flash
h2 = plugin Wflash with Plugins >> Brw
//invoke a functionon Shockwave
h1::start ();
//invoke a functionon Flash
h2::start ();

The handlesh1 and h2 can start the Shockwaveand Flash
plugins,respectively.

The rebindability of pluggersgives our framework de facto
supportfor dynamicsoftware updating.Different handlesto the
samepluggercould be viewed as different versionsof the same
component.For instance,supposewe have an air traf�c control
componentenclosedin assemblageAirControl . The software
muststayrunning,but it is usefulto allow someof thecorealgo-
rithmsto periodicallybetunedupandreplacedwith betterversions.
For this purposetheAirControl assemblagecandeclarea plug-
ger AlgmUpdate that imports the main algorithmic function say
compute. Invocationrecent ..compute() will always refersto
themostrecentalgorithmif we declarea mutable�eld recent in
AirControl , andde�ne theupdatelogic asfollows:

//hot-deploy a new algorithm
p = plugin WnewAlgmwith AlgmUpdate>> M
// storethehandleto the�eld
recent = p;

If a hot-deployed componentcannot be reachedfrom all live
variablesit canbe automaticallygarbagecollected,removing the
componentfrom theapplication.

2.3.5 SingletonMixers and RebindableMixers

A mixer is a singletonif thereis at most oneother mixer wired
to it at any point in time. Singletonmixersarethe mostcommon
form of dependency betweencomponents:for exampleif a Java
.class �le containsa symbolic referenceto a classname,this
nameclearly refersto a singleclassde�nition. Most of theexam-
pleswe have shown thusfar usesingletonmixers.Theoneexcep-
tion is theIBean mixerin Fig.4. In theEJBinfrastructure,all beans
in anapplicationin factexchangeinformationwith their container.
For example,if we have a simpleapplicationinvolving two beans,
oneCustomer andoneAgent, bothof themwill needto readen-
vironmententries.Thecontainer-beaninteractionthusformsapic-
tureillustratedin Fig. 6. Notethatin thiscase,althoughtheimport
ejbCreate of Container is currentlyassociatedwith multipleex-
portsfrom differentBeans,thereis no confusionasto which one
a containershouldcall at any given time. This is becausethey are
call-backswhicharenever proactively invokedby theContainer .
Our framework supportsthis style of mixer, andwe call themre-
bindablemixers. We placetheaforementionedrestrictionon their
use:the importsarenever proactively invoked by the rebindable-
mixer-owning party. A precisede�nition of its usewill bedetailed
in Sec.3.4.

One way to help understandthe differencebetweenthe two
stylesof mixers is they representdifferent forms of dependency.

Container

IBean

v1

Agent

IContainer

v3

Customer

IContainer

ejbCreate

ejbRemove

dataSource

searchBase

v2

Legends

Rebindable Mixer Singleton Mixer

Figure 6. RebindableMixers:theContainer-BeanInteractionRe-
visited

Singletonmixers representthe standardone-import-satis�ed-by-
one-export dependency, andrebindablemixersrepresentparamet-
ric dependency. Indeed,parameterizedmodulessuchasML func-
tors expressparametricdependenciesandthey arewell-known to
be useful.However, existing deployment frameworks almostex-
clusively disregard this form of dependency. The consequenceis
thatparameterizedmodulesarenot independentdeploymentunits
andthuscannotbeupdatedindependentlyin thoseframeworks.

2.3.6 On Hierar chical CodeComposition

One designdecisiona typical component/modulesystemneeds
to answeris: shouldcodecompositionbe hierarchical?In other
words, does the systemsupportoperationssuch as A = B + C
whereB and C are components,and A can also be viewed as a
componentusedfor furthercomposition,suchasE = A + D? Hi-
erarchicalcompositionis in factvery commonin moderncompo-
nent/modulesystems,suchasthecompoundsin Units [19] andMJ
[9].

Do assemblagesallow for hierarchicalcodecomposition?The
answeris yesandno:assemblagescanbehierarchicallycomposed,
verymuchin thesamewayasotherrelatedwork,but only thecom-
posedassemblageis consideredan independentdeployment unit.
Theideais thatonthedevelopmentsite,if hierarchicalcomposition
is needed,developerscanfreely usestaticlinking of assemblages
(a topic we have left out of this paperfor brevity—interestedread-
erscanreferto [27]) to achievethisgoal,andshipthecompoundas
onedeploymentunit. Assemblageson thedeploymentsitearenot
hierarchicallycomposable.

The main reasonbehindthis designdecisionis that hierarchi-
cal compositionwill introducecomplexity if every participantis
individually versioned.Take theabove example.If we allow hier-
archicalcompositiononthedeploymentsite,wouldwegivebothA
andEnew versionsif Bwasupdated?Indeed,somesolutionalong
theselineswould probablybepossible,but we feel theexpressive-
nessgainedis outweighedby thecomplexity thatmustbeadded.

It is worth pointing out that even without hierarchicalcode
compositionon thedeploymentsite,sometypical bene�tsof hier-
archicalcompositionarenonethelesspreserved in our framework.
For instance,onesituationhierarchicalcompositionis usefulfor is

for thecasethata parametriccomponentis usedmorethanoncein
forminga full application.For instance,

MyApplication = E + F
E = A + B
F = A + C

If oneinsistsondeploying everycomponentof MyApplication as
an independentunit, a naive non-hierarchicaltreatmentwill have
will have to deploy two distinctversionsof A, asolutionwhichwill
notbeef�cient or elegant.Notethatthisproblemcanbeaddressed
in our framework throughthe useof rebindablemixers,in which
caseonly onecopy of Aneedsto bedeployed.

2.3.7 On Sub-versioning

Our framework doesnot have a �x edde�nition of whentwo ver-
sionsof a componentareconsideredsemanticallycompatible.The
only constraintsour framework assumesfor sub-versioningare
minimal structuralcompatibility, suchasif a versionhasan inter-
facenamedm, thenany subversionshouldhave aninterfaceof the
samename.We will formalizethisnotionin Sec.3.3.1.

Refrainingfrom giving sub-versioninga strongerde�nition is
in fact a featureof the framework: it gives our framework more
generality. In the real world, what is considereda compatiblede-
pendency in thedeploymentcontext varies:in Java dynamicclass
loading,it meanssatisfyingtypeconstraints,while in othercritical
systems,it meansmorerestrictive invariantssuchaspre-conditions
andpost-conditions.Previous approachesto answeringwhat con-
stitutescompatibleversionsincludebehavioral subtyping[26, 30]
and refactorability [2]. In our framework we assumecompatibil-
ity of versionsis declaredby somemeans,e.g., basedon analysis
resultsfrom theaforementionedsystems.

3. The Formal System
In thissectionwemakerigoroustheideasof theprevioussectionby
presentinga formalLabeledTransitionSystem(LTS) thatcaptures
thekey componentinteractionsduring thedeploymentprocess.In
the following sectionwe establishcorrectnesspropertiesof our
formal framework.

We �rst de�ne basicnotations.x denotesa set f x1 ; : : : ; xpg,
with emptyset; . jSj is thesizeof setS andA � B = A \ B . � � � !x 7! y
is usedto denotea mappingfunction M p mappingx1 to y1 , . . . ,
xp to yp wheref x1 ; : : : xpg is thedomainof thefunction,denoted
asdom(M p). We alsowrite M p(x1) = y1 ; : : : M p(xp) = (yp).
We use; M to denotean empty map.dom(; M) = ; . We write
M p[x 7! y] asa standardmapupdate.M p andM p[x 7! y] are
identicalexceptthatM p[x 7! y] mapsx to y.

3.1 De�nitions

Fig. 7 de�nes thegrammaticstructureof thebuildbox, andFig. 8
givesauxiliary functionsthat areusedin the framework. We now
work throughthesede�nitions stepby step.

Buildbox A buildbox (Abb) is representedasa graph,wherethe
nodes(N) arecomponentsandtheedges(K) arethewiresbetween
them.This is in syncwith thegeneralnotionof component-based
softwaredevelopment:applicationsarecomponentswiredtogether.
Eachnodemight containmultiple versions(V) of componentsof
thesamename(a), andeachversionof thecomponentis identi�ed
by a versionidenti�er (�). Insteadof giving a concreterepresenta-
tion of a versionidenti�er, we only requirethatversionidenti�ers
areuniqueto adegreethataccidentalclashcanbeavoided.In real-
world systems,a versionidenti�er couldberealizedasa meaning-

Abb ::= hN ; K i applicationbuildbox

N ::=
� � � � � � � !
a 7! hV ; Ri buildboxnodes

K ::= a:�:m ^ b:� :n buildboxwires

V ::=
�� � � � � � �!
� 7! hA; Ci componentversions

R ::= � � � compatibilityrelation

A ::= hM ; L i assemblage

C ::= m ^ b:� :n dependencyconstraints

M ::=
� � � � � � � � � � !
m 7! hkd; I ; E i interfaces

I ::= k imports

E ; L ::=
� � � � !
k 7! B exports,locals

B codeblock, seeFig. 10

W ::= ha; � ; A; R; Ci packagedassemblage

a; b;c componentname

m; n interfacename

k feature name

�; � ; versionidenti�er

kd 2 f smixer ;
rmixer ;
plugger g

interfacekind

Figure7. De�nition: Buildbox

ful numberappendedto a veri�able signatureor hash.Othercon-
creteexamplesalongthesamelinesaretheGUID's of COM and
thestrongnamesof CLI Assemblies.

Assemblage Recall from earlier discussionthat componentsin
our framework are realizedas assemblages. Eachassemblageis
formally representedas a list of interfacesM and local internal
de�nitions L . Interfacescaneitherbe singletonmixers(smixer),
rebindablemixers(rmixer) or pluggers(plugger). Eachinterface
is bidirectional,with its imports(I) andexports(E) declared.Note
that for now, we abstractlyrepresentitemsimportedandexported
throughinterfacesasnamed“features”;the concretede�nition of
a codeblock B is not given until Sec.3.4. Before then, all our
discussionis independentof theactualcomponentimplementation,
soit is language-neutralandplatform-neutral.

Wire A wire is representedasa:�:m ^ b:� :n (seede�nition of
K in Fig. 7). It meansthat componenta version� 's interfacem
is wired to componentb version� 's interfacen. Note the wiring
informationis preciseasto whatversionof thenodeis wired. We
equatea:�:m ^ b:� :n andb:� :n ^ a:�:m . On the syntactical
level, wedonot distinguishmixing wiresandpluggingwires.This
taskcanbeeasilyachievedgiventhekindsof interfacesof m and
n.

PackagedAssemblage A packagedassemblage(W) is theshipped
form of componentthatcanbedeployedat a deploymentsite,and
so it serves as the bridge betweenthe developmentsite and the
deploymentsite.It containsthename(a), versionidenti�er (�) of
the assemblageto be shipped(A), togetherwith its dependency
constraints(C) and compatibility information (R). We will next
explain dependency constraintsandpostponetheelaborationof R
until Sec. 3.3.1.

DependencyConstraint A dependency constraintm ^ b:� :n in
C indicatesthatthecurrentassemblage'sm interfaceshouldbesat-
is�ed by an interfacenamedn of assemblagenamedb of version
� . NotethatC is bothpartof apackagedassemblage(W) andpart
of an alreadyinstallednode(V). Onemight be temptedto think
thatdependency constraintsshouldbechecked againstat installa-
tion timeanddeclaredsatis�edor failed,sothatinstallednodesdo
not needto carrysuchinformationany more.But, this is not real-
istic becauseassemblagesmaybemutuallydependent:solvingall
constraintsmight endup leadingto neitherassemblagebeing in-
stalled.In fact,sincethebuildboxatdeploymentsiteis anevolving
system,thereis nothingwrong with recordingsomeof the unsat-
is�ed constraints,the C found in thede�nition of V . In addition,
recordingtheconstraintscanalsohelpwith futureupdates,ruling
out thoseoperationsviolating thedependency constraints.

3.2 Buildbox Well-formednessand Closure

Oneimportantpropertyof our framework is thatnomatterhow the
buildbox evolves, it stays“well-formed” (seeSec.4). We de�ne
the notion of well-formednessin Fig. 8. A buildbox Abb is well-
formed(w�Abb) if all versionsof all nodes,wiresandversioncom-
patibility settingsarewell-formed,representedby w�V er, w�Wire
andw�R respectively. A componentof a speci�c versionis well-
formed if thereis no con�ict betweenits dependency constraints
andtherestof thebuildbox (noconictC), andno import in a sin-
gletonmixer is satis�edby morethanoneexport (noconictImp),
asexplainedearlierin Sec.2.3.5.Wire well-formedness(w�Wire)
dependson the correctmatchingof interfaces:on a per-wire ba-
sis, importsin the interfaceon oneendof the wire mustbe satis-
�ed by exportson the otherend.A well-formedwire alsoshould
notconnecttwo rebindablemixers,becauseotherwiseneitherparty
would initiate any invocationandis defacto futile (recall thecall-
backnatureof rebindablemixers,explainedin Sec.2.3.5).Thelast
constraintprecludestwo pluggersfrom beingconnectedtogether:
pluggersonly declarewhatpluginsmaybepluggedinto thecurrent
runtime.Wewill explainw�R in Sec.3.3.1below.

Note that buildbox well-formednessitself doesnot requireall
importsof installedassemblagesto besatis�edatdeploymenttime,
nor doesit requireall dependency constraintsassociatedwith a
nodeversionto be satis�ed, as we explainedin Sec.3.1. These
extraconditionsarecapturedby de�nition closedAbb.

3.3 The LabeledTransition System

Theevolution of a buildbox is de�ned asa seriesof transitionsin
the LTS of Fig. 9. This LTS is the formalizationof the software
developmentanddeploymentcycle,andrepresentsthegeneraland
formal versionof Fig. 2. All rulesexcepting(ship) areof theform
Abb l�! Abb0, denotinga buildbox transition from stateAbb to
Abb0, via operationl . EachLTS rule de�nes a legal operationthat
canbe performedby a deployer (or by a role appropriatefor the
operation),with valuesin thelabelbeingtheinformationprovided
by the role. Thepre-conditionsof eachrule de�ne whata “good”
operationis. Multi-step evolution Abb l�! � Abb0 is de�ned asthe
transitive closureover thesingle-steptransition.The(ship) rule is
slightly differentbecausewe only careaboutits output(packaged
assemblages).

The focusof this sectionis on how individual componentsare
developedanddeployed (Sec.3.3.1).At this point we assumefor
simplicity that thereis only onebuildbox deployed in the whole
universe.In Sec.3.3.4, we show how a universewith multiple
buildboxscanbemodeledin termsof thissimplernotion.Sec.3.3.2
discussestheimpactof our framework ondistributedapplications.

depends(a; �; m; hN ; K i) def= f b:� :n j a:�:m ^ b:� :n 2 K ; interface(a; �; m; Abb) = hkd; I ; E i ; I 6= ;g

interface(a; �; m; hN ; K i) def= M (m) whereN (a) = hV ; Ri ; V (�) = hA; Ci ; A = hM ; L i

interfaceKind(a; �; m; Abb) def= kd whereinterface(a; �; m; Abb) = hkd; I ; E i

newer(R; �) def= f � g [f � j (� � �) 2 Rg

newer(R; any) def= f � j (� � �) 2 Rg [f � j (� � �) 2 Rg

newest(� ; R; �) def= � ; wherenset = newer(R; �) \ � ; � 2 nset; 8� 0 2 nset:(� 0 6= � =) (� 0 � �) 2 R)

newest(� ; R; any) def= � ; wherenset = newer(R; any) \ � ; � 2 nset; 8� 0 2 nset:(� 0 6= � =) (� 0 � �) 2 R)

newest(� ; R; �) def= unde�nedotherwise

bestChoice(hN ; K i ; b;�) def= � if N (b) = hV ; Ri ; � 2 dom(V)

bestChoice(hN ; K i ; b;�) def= � 0 if � 0 = newest(dom(V); R; �); N (b) = hV ; Ri ; � =2 dom(V)

bestChoice(hN ; K i ; b;�) def= unde�nedotherwise

wrap(a; �; � ; Abb) def=
[

i 2 [1 ::p]

wrapE(a; �; m i ; � ; Abb)

if Abb = hN ; K i ; f m1 ; : : : ; mpg = f m j (a:�:m ^ b:� :n) 2 K g

wrapE(a; �; m; � ; Abb) def= f m ^ b:� :ng
if m 2 � ; f b:� :ng = depends(a; �; m; Abb); interfaceKind(a; �; m; Abb) = smixer

wrapE(a; �; m; � ; Abb) def= f m ^ b:any:ng
if m =2 � ; f b:� :ng = depends(a; �; m; Abb); interfaceKind(a; �; m; Abb) = smixer

wrapE(a; �; m; � ; Abb) def= ; otherwise

hM 1 ; L 1 i < :A hM 2 ; L 2 i def= 8m 2 dom(M 1):(m 2 dom(M 2) ^ M 1(m) < :M M 2(m))

hkd1 ; I 1 ; E1 i < :M hkd2 ; I 2 ; E2 i def= (kd1 = kd2) ^ (8k 2 dom(E1):k 2 dom(E2)) ^ (8k 2 I 2 :k 2 I 1)

Well-formednessand ClosureRelatedPredicates

w�Abb (hN ; K i) def= (8a 2 dom(N):(N (a) = hV ; Ri ^ (8� 2 dom(V):w�V er(a; �; Abb)))) ^
(8a 2 dom(N):(N (a) = hV ; Ri ^ w�R (V; R))) ^
(8lk 2 K :w�Wire (lk; Abb))

closedAbb(hN ; K i) def= (8a 2 dom(N):(N (a) = hV ; Ri ^ (8� 2 dom(V):closedVer(a; �; Abb))))

w�V er(a; �; Abb) def= noconictC (a; �; Abb) ^ noconictImp (a; �; Abb)

closedVer(a; �; Abb) def= satis�edC(a; �; Abb) ^ satis�edImp(a; �; Abb)

noconictImp (a; �; Abb) def= 8m:9I :9E :(interface(a; �; m; Abb) = hsmixer ; I ; E i
=) j depends(a; �; m; Abb) j< = 1)

satis�edImp(a; �; Abb) def= 8m:9I :9E :((interface(a; �; m; Abb) = hsmixer ; I ; E i) ^ (I 6= ;)
=) j depends(a; �; m; Abb) j= 1)

noconictC (a; �; Abb) def= 8(m ^ b:� :n 2 C)
a:�:m ^ b0:� 0:n0 2 K =) N (b0) = hV 0; R0i ^ � 0 � newer(R0; �) ^ n = n0 ^ b = b0

whereAbb = hN ; K i ; N (a) = hV ; Ri ; V (�) = hA; Ci

satis�edC(a; �; Abb) def= noconictC (a; �; Abb) ^ 8(m ^ b:� :n 2 C):9� 0:(a:�:m ^ b:� 0:n 2 K)
whereAbb = hN ; K i ; N (a) = hV ; Ri ; V (�) = hA; Ci

w�Wire (a:�:m ^ b:� :n; Abb) def= (I 1 2 dom(E2)) ^ (I 2 2 dom(E1)) ^
(: (kd1 = rmixer ^ kd2 = rmixer)) ^ (: (kd1 = plugger ^ kd2 = plugger))
whereinterface(a; �; m; Abb) = hkd1 ; I 1 ; E1 i ; interface(b;� ; n; Abb) = hkd2 ; I 2 ; E2 i

w�R (V; R) def= partialOrder(R) ^
8(� � �) 2 R:((V (�) = hA 1 ; C1 i) ^ V (�) = hA 2 ; C2 i) =) A 1 < :A A2)

Figure8. De�nition: Auxiliary FunctionsandPredicates

(build)

� is fresh Abb
install ha ;� ;A ;; ;C i
� � � � � � � � � � � � ! Abb0

Abb
build a;A;C
� � � � � � � � ! Abb0

(assemble)
Abb = hN ; K i

Abb0 = hN ; K [K 0i
8(a:�:m ^ b:� :n) 2 K 0:(w�Wire (a:�:m ^ b:� :n; Abb0) ^ w�V er(a; �; Abb0) ^ w�V er(b;� ; Abb0))

Abb assembleK 0

�� � � � � �! Abb0

(ship)
closedVer(a; �; Abb) Abb = hN ; K i N (a) = hV ; Ri V (�) = hA; C0i C = wrap(a; �; � ; Abb)

Abb
ship a;�; �
� � � � � � � ! S ha; � ; A; R; Ci

(install)

Abb
addN ha;� ;A ;R ;C i
� � � � � � � � � � � ! G Abb00

Abb00 assembleK 0

�� � � � � �! Abb0

K 0 = f a:�:m ^ b:� :n j m ^ b:� 0:n 2 C; � = bestChoice(Abb00; b;� 0)g

Abb
install ha ;� ;A ;R ;C i
� � � � � � � � � � � � ! Abb0

(update)
Abb = hN ; K i N (b) = hV ; Ri

� 0 2 dom(V) hN ; K � K 0 i
assembleK 1� � � � � � � ! Abb0

K 0 = f a:�:m ^ b:� :n j a:�:m ^ b:� :n 2 K for somea; �; m; ng
K 1 = f a:�:m ^ b:� 0:n j a:�:m ^ b:� :n 2 K for somea; �; m; ng

Abb
update b;� ;� 0

�� � � � � � �! Abb0

(set-compatible)
N (b) = hV ; Ri N 0 = N [b 7! hV ; R [rm f � � � 0gi] w�R (V; f � � � 0g)

hN ; K i
setCompb;� ;� 0

�� � � � � � � �! hN 0; K i

(auxiliary - add node)
a =2 dom(N) V = � 7! hA; Ci

hN ; K i
addN ha;� ;A ;R ;C i
� � � � � � � � � � � ! G hN [a 7! hV ; R [rm ;i]; K i

(auxiliary - add version)
N (a) = hV ; Ri V 0 = V [� 7! hA; Ci] w�R (V 0; R0 [rm ;) � =2 dom(V)

hN ; K i
addN ha;� ;A ;R 0;C i
� � � � � � � � � � � ! G hN [a 7! hV 0; R [rm R0i]; K i

Figure9. ApplicationEvolution: theLTS Rules

3.3.1 Component-Level Deployment

Building a Component Building a componentfrom scratchis
coveredby transitionrule (build). It is anoperationtypically per-
formedby aroledifferentfrom adeployer. For instancein theEJB
speci�cation,arolenamedBeanProvideris de�nedfor thisrespon-
sibility. It �rst involvesspecifyingthecomponentwith a name(a),
andits interfacesandtheimplementation(A). Note thata compo-
nentalmostalwaysdependson othercomponents,sincelibraries
arethemselvescomponents.Herewe allow a componentto spec-
ify how suchdependenciesshouldbesatis�ed,in dependency con-
straintsC. Sucha mechanismis not absolutelynecessary, since
a separaterule (assemble) handlesthe wiring of componentsto-
gether, but we feel it is closerto real-world developmentpractice
whenlibrary componentdependenciesareimmediatelyresolvedat
build time.A freshversionidenti�er � is assignedto eachbuild.

AssemblingComponents To form an application,components
needto beassembledtogether. This processin theLTS is modeled
by (assemble). The parameterof the operationis a setof wiring
speci�cations(K 0). Theassemblingprocesscanonly succeedif the
well-formednessof the buildbox is not undermined.For instance,
wiring two mixers with unmatchedimport-export pairs will fail
to transition.As anotherexample, if one componentcontainsa
constraintsayingits mixer m canonly be satis�ed by mixer n of
componentb version� or a compatibleone,thetransitionwill fail
if theattemptis to wire it with componentb version� 0 where� 0 is
not compatiblewith � .

The (assemble) operationis typically performedby the appli-
cationdeveloper:in thespeci�cationof EJB,this is mostly there-
sponsibilityof theAssemblerrole.Somecomponentdependencies
canonly besolvedat deploymenttime, for exampleEJBenviron-
mententries;so,theseoperationscanalsobeperformedby theDe-
ployer.

Shipping a Component Shipping a componentis de�ned in
(ship), and involves specifyingthe namea andversion� of the
componentto beshipped.Userscanalsospecifya setof interface
namesof thecomponent(�), expressingthedesirethattheversion
informationof the dependency to that interfacebe recordedasa
dependency constraintin the packagedassemblage(the C part).
Sucha mechanismgives usersthe freedomto selectively record
versioninformation.For thoseinterfacesnot includedin � but still
dependenton othercomponents,a specialversionidenti�er any is
recorded.Dependency constraintswill affect theversionchecking
whenthecomponentis laterdeployed.

Thekey taskof shippingis to createa packagedassemblage,in
theform asde�ned in Fig. 7. Preparingthedependency constraints
is the coreof this process;this is modeledby the wrap function
de�ned Fig. 8. What makes wrap a non-trivial task is that not
every wire to anassemblageinterfaceis necessarilya dependency;
for instancean all export mixer doesnot dependon assemblages
wired to it (it is the otherway around).The essenceof the wrap
functionis to preciselyidentify therealdependencies.Speci�cally,
it only garnersconstraintsfrom thewireshookedupto its singleton
mixers' imports. No wire to a rebindablemixer will generatea
dependency constraint:rebindablemixersby natureis passive, i.e.
the assemblagewith the mixer can never proactivelyaccessthe
codede�ned in the assemblageit is wired with. (Otherwisethere
would beambiguityasto which dependency is to beusedwhenan
import is accessed.)In termsof dependency, it is the otherparty
thatdependson it but not viceversa.

SettingComponentVersionCompatibility As wehaveexplained
in Sec.2.3.7,our framework providesauserinterfacefor declaring
two componentversionsarebackwardcompatible.In ourtransition
system,this is modeledby rule (set-compatible), and operation

setComp b � � 0 setsversion � 0 of the componentnamedb to
be backward compatiblewith version� . To explain this rule, we
�rst needto explain how backward compatibility information is
recordedin an buildbox, the R of Fig. 7. R is a set of version
identi�er pairsof theform � � � 0, meaningversion� 0 is backward
compatiblewith version� . Sometimeswealsosay� 0 is newer than
� .

We now give a few formal de�nitions relatedto R, including
“merging”. R is well-formed,denotedasw�R (V; R) (seeFig. 8),
if f R is a partial order(the de�nition of partialOrder(R) is stan-
dard)andeachpair of versionsdeclaredascompatibleby R also
satis�esminimalstructuralcompatibility(thede�nition of < :A), as
explainedin Sec.2.3.7.We de�ne merging R1 [rm R2 asthetran-
sitiveclosureoverrelationsetR1 [R2 , andit is unde�nedif R1 or
R2 is not a partialorder, or the resultof transitive closureis not a
partialorder. WhenR is apartialorder, functionnewer(R; �) com-
putesthesetof versions(identi�ers to beprecise)thatarebackward
compatiblewith � , including� itself. When� is thespecialvalue
any, the function degeneratesinto enumeratingall versionidenti-
�ers thatappearin R. Similarly, partial functionnewest(� ; R; �)
�nds outa versionincludedin � thatis the“newest” subversionto
� accordingto R.

(set-compatible) simply recordsthe newly declaredcompati-
bility information. It fails if the merging resultsin a non-partial
order (the [rm part), or � 0 doesnot meetthe minimal structural
requirementto becompatiblewith � (thew�R part).

Installing a Component Componentinstallationis modeledby
the (install) rule. It hastwo key tasks:1) addingthe component
itself to the buildbox (the addN auxiliary transition) 2) adding
wires(theassembletransitiion).Thecorepartof the(install) rule
is to selectacompatibleversionthatresolvesdependencies.This is
achievedby apartialfunctionbestChoice, with its self-explanatory
de�nition foundin Fig. 8.

The installation rule re�ects a “best-effort” strategy: it tries
its best to wire the installedcomponentup with the rest of the
buildbox,basedontheinformationit hasonwhatdependenciesare
expected(C). However, dueto reasonssuchascyclic dependency
(seeSec. 3.1), it is not alwayspossibleto �nd a total orderwhere
all dependencieshave alreadybeenpresentwhen a component
is installed. What (install) can achieve, in an intuitive way, is
whenever it setsupa wire, it is guaranteedto bea “good” one, i.e.
without underminingthe well-formednessof the buildbox. In the
cyclic dependency casewherecomponentsa andbdependoneach
other, theunresolvedconstraintswheninstallinga will besatis�ed
later when b is installed.This late satisfaction will not result in
danglingdependenciesat run time,sinceevery executionwill start
with a checkto make surethebuildbox is closed;seeSec.3.4 for
details.

Explicitly declaringcompatibility relationsin the fashionof
(set-compatible) canbealaborfor deployers,soourtransitionsys-
tem alsoallows packagedassemblagesto carry the compatibility
relationaccumulatedon the developmentsite over to the deploy-
ment site. At the deployment site, the compatibility relation car-
ried over from the developmentsite is “merged” with the relation
recordedby the nodeon the deployment site, an operationreal-
izedby the (auxiliary - add version) rule of Fig. 9. Note thatwe
do not requireall versionidenti�ers appearingin R to have their
correspondingassemblageinstalledin thenode,andthis is in fact
crucial to supportcompatibleinstallation:an installationmay in-
dicateit dependson a componentof version� , but a deployment
sitemaynothave thecomponentof thesameversion.Now, aslong
asthedeploymentsite canrecognizeversionidenti�er � and�nd
somecompatibleversionof it availablethere,installationcanstill
proceed.

Updatinga Component The(update) rulemodelsthecasewhere
acomponentbwouldliketo updateitself from version� to � 0. This
processis modeledby �rst removing the existing wires and then
add new wires in. Note that sucha rule dependson (assemble),
which in turn containswell-formednesschecksto ensureupdating
doesnotsacri�ceenvironmentwell-formedness.Theupdateopera-
tion doesnot requiretheupdatingversionto bea subversionof the
updatedversion.Indeed,all thatmattersis switchingfrom onever-
sionto anotherwouldnotviolateany dependency contraintfor any
involved party, which is guaranteedby (assemble). This morere-
laxedtreatmentis in syncwith real-world scenarios:notall updates
areupgrades.

Removing a Component Componentsareautomaticallygarbage
collectedwhena versionis not wired to the restof the buildbox.
Thecriterionfor garbagecollectionis a very simplewire-counting
basedon thefollowing predicate:

collectable(a; �; hN ; K i) def= (a:�:m ^ b:� :n) =2 K
for all m; b;� ; n

3.3.2 Distrib uted Deployment

Software componentsof a buildbox are not necessarilylocated
on one physicalnetwork node.Distributed deployment hasbeen
a focus of CORBA, and in the EJB case,all beansthat can be
accessedby its naming serviceJNDI may be distributed across
differentnetwork locations.

This framework doesnot attemptto solve all issuesrelatedto
distributed deployment, but we point out that the framework it-
self can serve as a basisfor distributed deployment. The build-
box representedasa graphhN ; K i may have nodesin N located
in differentplaces,andtheK canrepresentthedistributedwiring
amongstnodes.The ideais thatwhenanapplicationis developed
andshipped,all its componentsmayendup beingdeployedin dif-
ferent locations,and their versioncompatibility is still preserved
in a distributedmanner. For instance,whenonecomponentis up-
datedvia (update), thewiresbeingupdatedcouldverywell link to
somecomponentin a differentlocation,so thatwhencomponents
in otherlocationslaterhave accessto theupdatedcomponent,the
new (andcompatible)versionwill beused.

3.3.3 Deploymentin Batch Mode

Up to now our discussionhasfocusedon how deploymentcanbe
performedat the componentlevel. This is becausesoftwarecom-
ponentsby de�nition arethedeploymentunits,andatomicopera-
tions shouldbe de�ned at this level. In addition,someoperations
suchasupdateare fundamentallycomponent-level operations.In
therealworld, someoperationsmight bemorecommonlyusedon
theapplicationlevel, suchasshippingandinstallation.They donot
introduceextra dif�culty however: whenshippingan application,
it is equivalent to shippingits componentsoneby oneby repeat-
edlyapplyingthe(ship) rule,andwheninstallinganapplication,it
is equivalent to installing its componentsoneby oneby (install).
Notethatbecauseourframework doesnot requireall dependencies
aresatis�ed all at onceat installationtime, the orderingof which
assemblageshouldbeinstalled�rst is not important.

3.3.4 Multiple BuildBoxes

The LTS rules addresshow an assemblageoperatesin a single
buildbox scenario.A softwareenvironmentcomposedof multiple
buildboxes can easily be built up on top of this. Let us consider
componentinstallation,for example.In a multiple buildbox sce-
nario,whenanassemblageprivateto a buildbox is to be installed,
theLTS install operationspeci�c to thatbuildboxwill betriggered
andonly this buildbox will evolve.Whenanassemblagefunction-
ing likea library is to beinstalled,it canbeconceptuallyviewedas

installingthesameassemblagein all buildboxes.Sincethemajority
of the transitionsfor the multiple buildbox scenariois to delegate
themto a singlebuildbox scenario,we do not presenttheserules
in thispresentation.Interestedreaderscanreferto thelongversion
for details[29]. Theprinciplebehindthis treatmentis a conceptual
level of buildbox isolation,whichsimpli�es our formal framework
without lossof generality.

3.4 Execution

Thusfar we have madeno assumptionsaboutthe codeinsidean
assemblage,but the aim of deployment is to eventually run the
application.In this section,we constructa very simpleassemblage
realization,by taking codeblocks to be functions, illustrated in
Fig. 10.

Sincewe areonly interestedin how namesarelinkedandhow
hot deployment is accomplished,the expressionse in Fig. 10 are
very simple. Besidesthe plugin expressionexplained earlier, it
supportsm :: k(e) to invoke a function k de�ned in singleton
mixerm, k(e) to invokeacallbackfunctionk de�nedin thecurrent
rebindablemixer, :: k(e) to invoke a local function,ande::m(e)
to invoke a function de�ned in the plugger. Valuesv are either
constants,or plugin handles:a:�:m � b:�:n is a �rst-class value
denotingthe plugging from pluggerm of nodea's version� , to
themixer n of nodeb's version� . We leave out featuresunrelated
to deployment from the expressions,for instance,mutablestate.
Readersinterestedin a morecompletelanguagespeci�cationcan
referto [27].

Executionstartsby applyingrule (execute). It simply looksfor
a mixer calledMain, andinvokesan export functioncalledmain.
PredicateclosedAppdisallowsdanglingimportsandmakessureall
dependency constraintsaresatis�ed.Fig. 10 de�nesthesmall-step
reductionrelationApp; Stk ; e ! App0; Stk 0; e0, which executes
theexpressionsinsideanassemblage.Stk keepstrackof thefunc-
tion invocations,basedon wherethe currentfunction is de�ned.
A top elementha; � ; mi meansthe currentexpressionis de�ned
in a functioninsidemixer/pluggerm of assemblagenameda, ver-
sion � . m canalsobegiven a specialvaluelocal , in which case
the function is de�ned asa local function: herewe areonly inter-
estedin the scopeup to the level of mixer/plugger(or whetherit
is a local function), but not which function is de�ned. The def-
initions of expressions,valuesand stacksare given in Fig. 10.
top(Stk) returnsthetopelementof thestack.Multi-stepreduction
App; Stk ; e ! � App0; Stk 0; e0 is de�ned asthetransitive closure
over thesmall-stepreduction.

3.4.1 Dynamic Pluginsand Hot Deploying

The processof hot deploying is illustratedby (plugin). Note that
a dynamicplugin in a deployment framework representsan inde-
pendentdeploymentunit, andhenceit is representedasapackaged
assemblage(W), with its dependency informationpacked up. In
our framework, built-in versioncontrolfor dynamicpluginsis pro-
vided,andit is uni�ed with versioncontrolfor non-hotdeployment:
noticethestructuralform of adynamicpluginis nodifferencefrom
regularpackagedassemblagesusedfor non-hotdeployment.

A plugging wire is establishedbetweenthe initiating assem-
blageruntime's pluggerand the mixer of the plugee(seethe as-
semblepart of the rule). The assemblerule will also make sure
all imports from oneparty aresatis�ed by exportsfrom the other
party:nodanglingimport is possible.Theexpressionreturnsaplug
handlewhichexactly recordstheinformationof thepluggingwire.

As the rule suggests,hot deploying needsto install the dy-
namic plugin (seethe install part of the rule). This is obvious;
hot-deploying is installationat runtime.The not-so-obvious issue
is that dependingon the pluggerto export to the dynamicplugin
all functionalitiesis unrealisticin therealworld. Take EJBfor in-

App ::= Abb applicationruntime

B ::= �x:e codeblock

e ::= i j m :: k(e) j k(e) j:: k(e) j e::m(e) j e; e expression
j plugin W with m >> n j return e

v ::= i j a:�:m � b:� :n value

E ::= [] j m :: k(E) j:: k(E) j k(E) j E::k(e) j v::k(E) evaluationcontext
j E; e j v; E j return E

Stk ::= s � Stk j s stack

s ::= ha; � ; mi j ha; � ; local i stack frame

i integer

(execute)
closedAbb(Abb) interface(a; �; Main; Abb) = hrmixer ; ; M ; main 7! �x:e i App = Abb

Abb;executea; � exe� � ! App; ha; � ; maini ; e

(plugin)
top(Stk) = ha; � ; m0i W = hb; � ; hM ; L i ; R; Ci

App install W� � � � � ! App0

App0 assemblef a:�:m^b:� :n g
� � � � � � � � � � � � � � � ! App00

interfaceKind(a; �; m; App) = plugger closedVer(b;� ; App00)

App; Stk ; plugin W with m >> n ! App00; Stk ; a:�:m � b:� :n

(handle invoke - 1)
interface(a; �; m; App) = hplugger ; I ; E i k =2 I E (k) = �x:e
App; Stk ; (a:�:m � b:� :n)::k(v) ! App; ha; � ; mi � Stk ; e[v=x]

(handle invoke - 2)
interface(a; �; m; App) = hplugger ; I ; E i

k 2 I interface(b;� ; n; App) = hsmixer ; I 0; E 0i or hrmixer ; I 0; E 0i
E 0(k) = �x:e

App; Stk ; (a:�:m � b:� :n)::k(v) ! App; hb; � ; ni � Stk ; e[v=x]

(local invoke)
top(Stk) = ha; � ; mi App = hN ; K i N (a) = hV ; Ri V (�) = hA; Ci A = hM ; L i L (k) = �x:e

App; Stk ; :: k(v) ! App; ha; � ; local i � Stk ; e[v=x]

(import invoke)
top(Stk) = ha; � ; m0i interface(a; �; m; App) = hsmixer ; I ; E i k 2 I

depends(a; �; m; App) = f b:� :ng interface(b;� ; n; App) = hsmixer ; I 0; E 0i or hrmixer ; I 0; E 0i E 0(k) = �x:e
App; Stk ; m :: k(v) ! App; hb; � ; ni � Stk ; e[v=x]

(export invoke)
top(Stk) = ha; � ; m0i interface(a; �; m; App) = hsmixer ; I ; E i k =2 I E (k) = �x:e

App; Stk ; m :: k(v) ! App; ha; � ; mi � Stk ; e[v=x]

(rmixer import invoke)
interface(a; �; m; App) = hrmixer ; I ; E i

k 2 I interface(b;� ; n; App) = hsmixer; I 0; E 0i or hplugger; I 0; E 0i E 0(k) = �x:e
App; ha; � ; mi � hb; � ; ni � Stk ; k(v) ! App; hb; � ; ni � ha; � ; mi � hb; � ; ni � Stk ; e[v=x]

(return)
App; ha; � ; mi � Stk ; return v ! App; Stk ; v

Figure10. ApplicationExecution:De�nitions andReductionRules

stance,ahot-deployedbeanmight notonly needto interactwith its
container, but also interactwith other beans,and also systemli-
braries,to make it work. This is supportedby theinstall partof the
rule,sinceall dependency requirementsC thatW containswill be
solved by install. Someelementsin C cancertainlyspecifyhow
someof themixersof thedynamicplugin canbesatis�edby other
assemblagesin theapplicationApp.

3.4.2 NameBinding Rules

All the other ruleshandlesomeform of namebinding; studying
linking in the context of componentdeployment is a goal of this
paper. Readersshouldpay attentionto the (import invoke) rule,
whereit needsto readfrom the applicationgraphto �nd the cor-
rectfunctionto invoke. Dueto thestructuralchoiceof our formal-
ism,this lookupprocessmight look inef�cient, but in realityall the
functionsin the rule canbeprecalculated:theassemblageof con-
cerncanbeassociatedwith a symboltableandthe functionentry
canbeobtainedwithout indirectlookup.

4. Formal Properties
Oneimportantevaluationof any formal framework is whatproper-
tiesmaybeprovenrigorously. In thissection,westatethreeimpor-
tant formal properties.Informally, they arethatany buildbox cre-
ated,deployedandany applicationruntimeexecutedin our frame-
work will staywell-formed,andany well-formedapplicationrun-
time will accessfeatureswithout violating versioncompatibility.
Theproofsof thesetheoremsaredetailedin thelong version[29].

THEOREM 1 (Well-FormedEvolutionover LTS). If w�Abb (Abb)

andAbb l�! � Abb0, thenw�Abb (Abb0).

THEOREM 2 (Well-FormedRun-timeEvolution). If w�Abb (App)
andApp, Stk , e ! � App0, Stk 0, e0, thenw�Abb (App0).

Thm.1 statesthatall operationsde�ned by theLTS– including
componentbuilding, assembling,installation,update– do not turn
awell-formedbuildboxinto anill-formed one.Notethatsinceeach
labeledtransitioncan be analogouslythoughtof as a command
issuedby componentdeployers,providersandassemblers,sucha
theoremensuresthatour framework is robust enoughtto fend off
misusesof thecommands(suchasproviding specialparameters)to
underminebuildboxwell-formedness.

Thm. 2 statesthat runningan applicationalsodoesnot affect
applicationwell-formedness;for instance,hot-deploying will not
changea well-formedapplicationinto anill-formed one.

Togetherwith thetrivial factthatthebootstrappingprocess(see
the (execute) rule in Sec.3.4) doesnot affect well-formedness
and h;M ; ;i is trivially well-formed,we know that the buildbox
createdanddeployed,andtheapplicationruntimelaunchedfrom it
in our framework arealwayswell-formedat any givenpoint of its
evolution.

We now studyversioncompatibility. Beforewe statethemain
theorem,we �rst de�ne a relation ,! to capturewherea feature
implementationwill belookedfor at run time.

DEFINITION 1 (Run-timeFeatureAccess).App; a; �; m; k ,!
App0; b;� ; n holdsiff

� w�Abb (App).
� App = hN ; K i ; N (a) = hV ; Ri ; � 2 dom(V) for someN ,

K , V , R.
� App; executea0 ; � 0

exe� � ! App0; Stk 0 ; e0 for somea0 , � 0 ,
App0, Stk 0 , e0 .

� App0; Stk 0 ; e0 ! � App00; ha; � ; pi � Stk 00; E[m :: k(v)] for
someApp00, Stk 00, p, v, E.

� App00; ha; � ; pi � Stk 00; E[m :: k(v)] ! App0; hb; � ; ni �
Stk 0; e for somee.

THEOREM 3 (CompatibleCodeAccess).Given

A1: App0
ship a;�; �
� � � � � � ! S W

A2: m 2 �

A3: h;M ; ;i
l 1� ! : : : install W� � � � � ! : : :

l p
� ! App0

0

A4: App0; a; �; m; k ,! App1; b;� ; n
A5: App0

0; a; �; m; k ,! App0
1; b0; � 0; n0

A6: App0
1 = hN 0; K 0i ; N 0(� 0) = hV 0; R0i

thenb = b0, n = n0 and� 0 2 newer(R0; �)

This is the main theoremaddressingthe correctnessof our
framework in termsof versioncompatibility. It is nottrivial because
it spansthe lifecycle of thecomponent,from componentdevelop-
menttime(shipping)to itsdeployment(installation)to therun-time
accessto its features. It statesthat if a componentis shippedfrom
thedevelopmentsite(A1), andits mixerm is speci�edby theship-
per to considerversioncompatibility (A2), thenno matterwhere
the packagedcomponentis installed(A3) andthenexecuted,any
accessto thefeaturesinsidem (eitherasanimport or anexport)at
run time will alwayslocatea versionof thecomponent(A5) com-
patiblewith theversionlocatedat thedevelopmentsiteif thesame
applicationis test-run(A4).

5. Discussion
An importantaspectof any formal framework is how well it mod-
els the problemdomain.This sectionis aimedat elucidatinghow
our platform-independentframework can be mappedonto differ-
entplatforms,how it relatesto existing real-world deploymentap-
proaches,and/orwhatinsightsit canprovidefor theirimprovement.
It servesbothasa validationof our framework andasa summary
of relatedwork.

5.1 Deploymenton Micr osoftPlatforms

Over theyearsseveral differentsoftwarecomponentmodelshave
beende�ned on Microsoft platforms,andeachof themaddresses
theissueof deployment.

5.1.1 Dynamic Link Libraries (DLLs)

An applicationon earlierWindows platformsis deployed asa set
of �les in .exe and.dll formats.The .dll �les arecommonly
sharedby multiple applications,and many of them are provided
by theoperatingsystemitself. Thenotoriousproblem[39] related
to DLL deploymentis updatingwithoutversioncontrol: whenthe
installationof oneapplicationinvolvesinstallinga new versionof
an existing .dll �le, the new copy will overwrite the old copy
andaffect all otherapplicationsthat dependon the library. If the
new copy happensto be backward incompatible,the affectedap-
plicationsmight behave erratically. This can happenweeksafter
thedamagewasdoneand,andis thusvery hardto trackdown the
cause.The DLL model is a very weakmodelof deployment that
we donot feel a needto contrastwith.

5.1.2 COM

COM [33] asa componentmodelstronglypromotestheuseof in-
terfaces,a featurealsosharedby assemblages.COM components
aretypically deployed in an environment,calledcontext in which
they run.A COM componentdevelopercanspecifyhow a particu-
lar componentshouldbehave by modifying speci�c attributesthat
de�ne the component's behavior within a context, a featurecom-
monly known as “attribute-basedprogramming”.Sucha feature
canbemodeledin ourframework by usingbidirectionalinterfaces,

in thesameway asmodelingEJBenvironmententries,elaborated
in Sec.2.3.2.

COM addressesversioningby usingimmutableinterfaces:after
onepublishesan interfacein a COM componentwith a universal
ID, it shouldnever bechanged.Newer versionsof thesamecom-
ponentshouldcreateadditionalinterfacesto thecomponent.Such
a solutioncaneasilysolve theproblemof versionbackward com-
patibility, but in reality is proneto interfaceproliferation[21].

COM alsoinheritedsomeolderproblemsof theWindows plat-
form, suchasthe requirementthat all componentmetadatainfor-
mationbestoredin acentralizedrepository, theWindowsRegistry.
Theprincipleof applicationisolationis not supported.

5.1.3 CLI Assemblies

CLI Assemblies[16] de�ne avendor-independentcomponentstan-
dard,whichalsohadasamajorgoalthesolutionof thedeployment
problemwith DLLs ontheWindowsplatform.Thebestknown im-
plementationof it is .NET CLR Assemblies[32] by Microsoft.

Eachassemblyasadeploymentunit containsversion-awarede-
pendency informationin amanifest�le, whichispreciselymatched
againstat deploymenttime.SincesolvingtheDLL problemwasa
primary aim, only sharedlibrariesareversioned,andthey areal-
waysreferredto by strong names, which containrich versionin-
formation to avoid accidentalnamematches.Sincedifferentver-
sionsof thesameassemblydonothavethesamestrongname,they
can co-exist (so-calledside-by-sidedeployment). Updatinga de-
pendency to a newer versionis allowedby addinga versionpolicy
�le to anassembly, which claimsto redirectthedependency to the
new version.Wesharethesefeatureswith Assemblies.

Sinceapplication-speci�cassembliesarenot accessedby glob-
ally uniquestrongnames,the correctnessof locating the correct
assemblyis still subjectto the lookup pathsetting,an issuevery
similar to the CLASSPATHissueof Java. Assemblylookup paths
happento betheleaststablepartof CLI speci�cation,anddifferent
vendorshave chosendifferentstrategies(for instance.NET CLR
andMono [34] have differentpriorities on which pathshouldbe
lookedat �rst). In our framework, all assemblagesareconsistently
accessedvia its versionidenti�er, sono nameconfusioncanarise.

Assembliesareknown to have dif�culty in handlingcyclic ver-
siondependencies.This doesnot look thatbadin thespeci�c do-
mainAssembliesaimto haveanimpacton:Assemblieshistorically
have a strongfocuson solving DLL-relatedproblems,so compo-
nentswithin an applicationarenot versionedandtheir dependen-
cies– wherecyclic dependenciesaremost likely to happen– are
notconsidered.In generalcomponent-basedsoftwaredevelopment,
however, eachindividual componentmight be subjectto version
control. In fact,even on theCLI platform, two corelibrary DLLs
arestill known to becyclically dependent:thereis a cyclic depen-
dencebetweenSystem.dll and System.Xml.dll that requires
specialhandling.Interestedreaderscanreferto thesourcecodeof
anopensourceCLI implementation,Rotor[35].

The Assembliesframework doesnot considerthe deployment
siteasa runningevolvablesystem,anddoesnot preciselyspecify
thedeploymentactionasa process.

5.1.4 Installers

On the Windows platform,many programsexist to addressappli-
cationshippingandinstallation.Thesetoolsaretypically notmore
thana compressiontool with a friendly userinterface(the “wiz-
ard”),andthey heavily dependonplatform-dependentenvironment
variablesandscriptsto con�gurepackagesinside.A betterinstaller
in thiscategory is InstallShield. Its recentreleaseshave conformed
to theCLI Assembliesstandard.

5.2 Deploymenton the Java Platform

Java's componentmodelis JavaBeans.The deploymentmodelon
the Java platform is mostly speci�ed for a variant of the model,
EJB. In this section,we will alsoconsiderhow .class �les are
deployed.

5.2.1 EJB

The J2EEsolution for componentdeployment is detailedin the
speci�cation for EnterpriseJavaBeans(EJB) [17]. It revolves
arounda data structurecalled the DeploymentDescriptor 5 as-
sociatedwith eachto-be-deployedbean,which describestheinter-
actionsthebeanmayengagein at thedeploymentsite.Theprimary
taskof a deployer is to establishtheinteractionbetweentheto-be-
deployedbeanandits container. Theway in which this interaction
canbe modeledin our framework wasexplainedin Sec.2.3.2.In
addition,abeancanrarelyachieveataskwithoutcollaboratingwith
otherbeans,andit supportsinter-beandependency by introducing
extra syntax(< ejb-ref>). In our framework, this is analogousto
declaringa bidirectionalmixer. EJBdoesnot explicitly modelver-
sioning,andalsodoesnot de�ne the build evolution processthat
theapplicationbuildboxmodels.

5.2.2 DeployingJava Programs

In a Java context, each.class �le can serve as an independent
deploymentunit. It is commonthata Java programis testedon the
developmentsitewith oneversionof theclassasthedependency,
andthen is installedon the deploymentsite with anotherversion
of theclass.This is becauseCLASSPATHsettingsmaybedifferent
betweenthe developmentsite and the deployment site, and so
programbehavior is vulnerableto thesettingsof the CLASSPATH.
This problemdoesnot arisein our framework, sincecomponents
arereferredto by their uniqueID, not just by their name.

Thisissuealsoaffectsthewaytypesafetyis ensured.Considera
simpleJava programwhereclassArefersto classB. Supposeclass
B at the deployment site is different from the versionusedwhen
A was compiled.Type safetywould be jeopardizedif the B with
an incompatibletype was loadedat run time. Java addressesthe
issueby performingload-timere-typecheckingaspartof bytecode
veri�cation. In our framework, if wemakesuretheBreferredto by
A is thesameversion(or a compatibleversion)of theoneusedby
A, sucha re-typecheckingprocesswill beunnecessary.

5.3 Deploymentin CORBA

OMG hasreleaseda Deployment& Con�guration (D & C) spec-
i�cation [36] for the CORBA ComponentModel (CCM). In
Sec.2.3.2,we have demonstratedhow to model its bidirectional
interfaces,and its deployment time attribute-rebindingis similar
to EJB environmententries.D & C allows componentsto be as-
sembledtogetherto form anassembly. This canbemodeledin our
framework by the(assemble) rule.

Onefocusof thispaper, versioning,is left outof D & C.Sincea
CCM componentdoesdependonotherCCM components(attested
by its < dependsOn> tag), it is unclearwhat will happenwhen
differentversionsof thesamecomponentsaredeployed.This will
especiallyaffect componentupdate,which is left out in thecurrent
speci�cation.The CORBA namingmechanismis alsochallenged
in [44].

Sinceit is alignedwith thegeneralrationaleof CORBA, theD
& C framework focusesondistributeddeployment,wheredifferent
CCM componentsin oneassemblycan be deployed on different

5 In EJB 3.0 (the latestversion),metadataannotationsareusedto record
deploymentinformation,but its differencefrom deploymentdescriptorsis
only syntactic.

network nodes.Our framework asan abstractstudydoesnot ex-
plicitly modeldistribution, but it canbe soundlyre-interpretedif
differentcomponentsof theapplicationlie ondifferentnodes.This
topic was discussedin Sec.3.3.2.CORBA relieson its underly-
ing bus to look up distributedcomponents.We do not have such
a mechanism,but notethattheglobally uniqueversionID ensures
nameconfusionwill notbeanissuein thedistributedcontext.

5.4 Deploymenton Unix/Linux Platforms

5.4.1 PackageManagers

Modernoperatingsystemscomewith package managers and in-
stallers to assistin installingandupgradingsoftware.OntheLinux
platform,well-known examplesincludeRedHat's RPM [18], De-
bian's Dpkg [12] andGentoo's Portage [40]. Despitedifferences
in usability, the underlyinggoal of the threesystemsis the same:
to installpackageswith thecorrectdependenciessatis�ed.How de-
pendenciesarecreated,checkedandresolvedis toospeci�c in these
systems.For instance,RPM is known to becomplicatedandweak
in its supportfor dependency resolution.For cyclic dependencies,a
tool likeDpkg will rely onaspecialspeci�cationfrom thepackage
developerto breakthecycle (declaringoneof thedependenciesto
be a post-depends). In Portage, cyclic dependenciesinducefail-
ure,andtheresultingpackageswill notbeinstalled.Broadly, pack-
agemanagersdo not take into accountthe executionphaseof the
deployment lifecycle: the contentin packagesmight not be exe-
cutablecodeatall. Theresultingmodelis weakto treatthedeploy-
mentof codecomponents:thedeclaredpackagedependenciescan
bearbitrary, andnotnecessarilyre�ect inherentcodedependencies;
satisfyingall packagedependenciesdoesnotguaranteeany correct
behavior whencodeis executed.The populararchive distribution
systemsCPAN [10] (for Perl programs)andCTAN [11] (for TeX
documents)can also be includedin this category; thesesystems
have a strengthon how to locatepackageson the Internet.There
arealsopackagemanagersfor speci�c languageenvironments,in-
cludingRubyGems[43] andScalaBazaar[3].

5.4.2 Deploying C Programs

C compilersonmodernplatformsalmostalwaysusedynamiclink-
ing for library access.A directconsequenceis whenabinaryappli-
cationis created(theonewith defaultnamea.out), it rarelyforms
aclosurein termsof namebinding.WhenshippingaC application
usingfunctionstrlen, theimplementationof strlen is only de�ned
by thelibrary at thedeploymentsite.

If appliedto our framework, a deploymentunit for C programs
caneitherbe the non-closedapplicationcode(with default name
a.out) or thesharedlibrary code(theonede�ning strlen , com-
monlyrepresentedas�les with suf�x .so onUnix-compatibleplat-
forms).Whatour framework canhelpavoid is to createanapplica-
tion dependingon oneversionof the library with strlen, andthen
beingdeployed at a deploymentsite with a different(andincom-
patible)versionof the library. Our framework canalsomake sure
multiple versionsof the samelibrary canbe installed,with some
applicationsuseone,andotherapplicationsusetheother.

5.5 Hot Deployment

A numberof researchprojectsaddressthe ability to dynamically
load/link/updatesoftware components,which in variousdegrees
overlapwith ourdiscussionon dynamiccomponentdeployment.

Dynamic linking/loading of codefragmentsprovides a foun-
dational layer of this problem.Existing approachescomparable
to our plugin expressionare thoseprogrammabledynamiclink-
ing/loading mechanisms.Well-known examples include Java's
ClassLoader , Assemblies'Assembly.Load, and Unit's invoke
[19] expression.Fromalanguageconstructperspective,ourplugin

expressiondiffersfrom theseapproachesasit respectsthebidirec-
tional contractof the interactionsbetweenthe link/load initiating
componentand the linked/loadedcomponent,whereboth of the
partiesprovide aninterface(a pluggeror mixer) to specifywhat it
needsandwhat it requires.Declaringthepluggeron the link/load
imitatingcomponentgivesthecomponentamoredeclarativespeci-
�cation onits ability to performdynamiclinking, andin thecontext
of componentdeployment,it providesanexplicit declarationof the
factthata form of dynamicdeploymentis supported.MagicBeans
[7] providesa library to helpdevelopdynamicpluginswith theuse
of theObserver pattern,andour plugin coversthatmodel.Typing
issuesof dynamiclinking have beenwell studied,suchaslinking
of assemblycode[20] andC# andJava's dynamiclinking [13]. In
our previous work [27] a deploymentunit mustbe type-safe,and
sofor simplicity we have left out typing issueshere.

EJB hot-deployment is not de�ned the EJB speci�cation,and
it is supportedonly in a vendor speci�c manner. For example,
Weblogic[4] supportshotdeploymentvia severalcustomtools.

A well-known exampleof plugin-basedsoftwareisEclipse[15].
Therecentrelease(3.0)hasalsoincludedtheability to addplugins
atrun time,i.e. dynamicplugins,basedontheOpenServicesGate-
way Initiative (OSGi) [37] speci�cation.OSGionly provideslim-
itedsupportfor handlingdependencies.Theirconsistency checking
is optionalandnotrigorouslyde�ned,especiallyfor theversionsof
dependencies.

Someprojectshave addressedissuesrelatedto dynamicupdat-
ing andrecon�gurationof software.TheDynamicSoftwareUpdat-
ing system[23] focusesoncorrectness,usabilityandtypesafety. It
doesnot focusonsoftwaredeployment,anddoesnotconsiderver-
sioncontrol.OpenRec[24] is a softwarearchitectureeffort focus-
ing on how to designdynamicallyrecon�gurablesystems.In [8],
a few morepracticalissuesrelatedto dynamicrecon�gurationof
distributedsystemsareconsidered,suchasthe handlingof stubs.
Ourabstractframework doesnotaddressthis issue.

5.6 Deployment-RelatedFormalisms

Formal frameworks that addresscomponentdeployment in a
vendor-independentmannerarerare.CLI Assemblies'namebind-
ing mechanismwasrecentlyformalizedby Buckley [5]. Thefocus
of thatwork wasto demonstratetheuseof strongandsimplenames
in the framework. No formal propertywasproved,andthe frame-
work doesnot addressapplicationevolution in the deployment
lifecycle. The linking of DLLs wasformalizedin [14], wherethe
focuswason typesafety.

A conceptualframework for component-basedsoftwaredeploy-
mentwasproposedin [38]. As aresultof ahighly conceptualtreat-
ment,inter-componentdependency – arguablythecentralissuein
modelingcomplex processof deployment– wasnot modeled.No
formal rulesweregivento describethedeploymentprocessor ap-
plicationexecution.

5.7 ComplementingModule/ComponentSystems

Assemblages,the abstractcomponentconstructusedby our de-
ployment framework, was �rst describedin [27]. This previous
work hadadifferentgoal:equippingmixin-likemoduleswith inter-
facesto directly supportInternet-eraconcepts,suchasdistributed
communicationanddynamiclinking. Deploymentandversioning
were not consideredin that paper. In this work, we have reused
theassemblageconstructitself, but almostevery structuralchoice
wasrejusti�ed in adeploymentcontext, suchaswhy weneedbidi-
rectionalinterfacesandwhy weneedpluggersfor hot-deployment.
Put together, they paint a completepictureto justify the needfor
an assemblage-like constructin componentdesign:1) it is �t for
modelmodernprogrammingconceptssuchasdistributedcommu-

nicationanddynamiclinking (thethesisof [27]); and2) it is �t for
componentdeployment(this work).

Mostof thestructuralassumptionswe have madeaboutourde-
ployment units arecommonto many modernmodule/component
systems.The generalitymakes our deployment framework use-
ful for studyingdeployment in a variety of next-generationmod-
ule/componentsystems.Module systemswith bidirectionalinter-
facesincludeUnits [19] andJiazzi[31]. In MJ [9], theJava class-
loaderis replacedwith a compile-timenotionof module,in which
module dependenciesare separatedinto two categories: static
dependencies(import and export) and dynamic dependencies
(dynamic export). Thesetwo notionscanbemodeledasmixing
andpluggingin our framework, respectively. In Fortress[1], pro-
gramfragmentsareorganizedinto componentswith interfacesof
explicit import andexport declarations,andareorganizedinto
a persistentstorecalleda fortress, wherea few pre-de�nedlibrary
operations(calledtargets) arede�ned suchaslink , upgrade, and
execute . A fortresscan analogouslybe thoughtof as a deploy-
mentsite in our framework, wherethe targetscanmappedto our
LTS operations.The Fortressspeci�cation only speci�es signa-
turesfor the targetsandallows differentvendorsto provide their
own implementations.Our framework can be thoughtof as pro-
viding aguidelinefor whata“well-formed” fortressshouldbe,and
how differentimplementationsshouldabidesothatgoodproperties
of a fortresswill not be undermined.In Fortress,becausethereis
no supportfor multiple interfaces,clashingof namesarecommon
at link time, andFortresshasto resortto specialrulesto handle
them.

6. Conclusion
In this paperwe showed how the complex, ad hoc software de-
ploymentcycle couldbe reducedto a calculuswith a small setof
platform-independent,vendor-independentoperationsthat de�ne
how thedeploymentsiteshouldevolve.It elucidatesthesubtlerela-
tionshipsbetweenpre-runtimeapplicationbuildbox evolution and
run-timeapplicationevolution,andprovesformal propertiesabout
applicationwell-formedednessandversioncompatibility through-
outtheevolutionprocess.It alsoservesasastudyof componentde-
signfrom theperspectiveof thedeploymentunit,wherecomponent
dependency in termsof timing andlocationis studied.Expressive
formsof dependency suchasparametricandcyclic dependency be-
tweencomponentsarealsoaddressed.

With this foundationalframework de�ned, we would like next
to investigatehow moreadvancedfeaturesimportantin component
deploymentcanbeexpressedontopof it, for instancesecurity, dis-
tribution, andtransactioncontrol.A formal treatmentof theseis-
sueswithin thedeploymentlifecycleshouldgiveusdeeperinsights
into thesehardproblems.

References
[1] ALLEN, E., CHASE, D., LUCHANGCO, V., RYU, J. W. M. S.,

STEELE, G., AND TOBIN-HOCHSTADT, S. TheFortressLanguage
Speci�cation(Version0.618),April 2005.

[2] BALABAN, I ., TIP, F., AND FUHRER, R. RefactoringSupportfor
ClassLibrary Migration. In OOPSLA'05 (2005),pp.265–279.

[3] TheScalaBazaarSystem,
http://scala.epfl.ch/down loa ds/s baz.htm l .

[4] BEA. BEA WebLogicServer EnterpriseJavaBeans1.1,
http://www.weblogic.com/d ocs51/c las sdocs/A PI ejb/ .

[5] BUCKLEY, A . A modelof dynamicbindingin .NET. In Proceedings
of 3rd InternationalWorking Conferenceon ComponentDeployment
(2005),pp.149–163.

[6] CARDELLI , L . Programfragments,linking, andmodularization.In
POPL'97 (1997),pp.266–277.

[7] CHATLEY, R., EISENBACH, S., AND MAGEE, J. Magicbeans:a
platformfor deploying plugin components.In SecondInternational
Working Conferenceon ComponentDeployment(2004),vol. 3083,
pp.97–112.

[8] CHEN, X ., AND SIMONS, M. A componentframework for dynamic
recon�gurationof distributedsystems.In Lecture Notesin Computer
Science, Volume2370(Jan2002),vol. 2370.

[9] CORWIN, J., BACON, D. F., GROVE, D., AND MURTHY, C. MJ: a
rationalmodulesystemfor java andits applications.In OOPSLA'03
(2003),pp.241–254.

[10] Comprehensive perl archive network, http://www.cpan.org .

[11] Comprehensive tex archive network, http://www.ctan.org .

[12] Debianpackagemanagement,http://www.debian.org .

[13] DROSSOPOULOU, S., LAGORIO, G., AND EISENBACH, S. Flexible
modelsfor dynamiclinking. In Proceedingsof the 12th European
SymposiumonProgramming(2003).

[14] DUGGAN, D. Type-safelinking with recursive DLLs andshared
libraries. ACM Transactionson ProgrammingLanguages and
Systems24, 6 (2002),711–804.

[15] Eclipse,http://www.eclipse.org .

[16] ECMA. StandardECMA-335: CommonLanguageInfrastructure,
2002.

[17] EJB 3.0 EXPERT GROUP. JSR220:EnterpriseJavaBeansVersion
3.0,June2005.

[18] EWING, M., AND TROAN, E. The RPM packagingsystem. In
Proceedingsof the1stConferenceonFreelyRedistributableSoftware
(1996).

[19] FLATT, M., AND FELLEISEN, M. Units: Cool modulesfor HOT
languages.In PLDI'98 (1998),pp.236–248.

[20] GLEW, N., AND MORRISETT, G. Type-safelinking andmodular
assemblylanguage.In POPL'99 (1999),pp.250–261.

[21] GORDON, A . The .NET and COM Interoperability Handbook.
PearsonEducation,Inc.,UpperSaddleRiver, NJ,USA, 2003.

[22] HALL , R. S., HEIMBIGNER, D. M., AND WOLF, A . L . Evaluating
software deployment languagesandschema. In ICSM '98: Pro-
ceedingsof the InternationalConferenceon Software Maintenance
(Washington,DC, USA, 1998),IEEEComputerSociety, p. 177.

[23] HICKS, M. W., MOORE, J. T., AND NETTLES, S. Dynamicsoftware
updating.In PLDI'01 (2001),pp.13–23.

[24] HI LLMAN, J., AND WARREN, I . An OpenFramework for Dynamic
Recon�guration.In ICSE'04(2004),pp.594–603.

[25] Installshield,http://www.installshie ld.c om.

[26] L ISKOV, B., AND WING, J. A behavioral notionof subtyping.ACM
Transactionson ProgrammingLanguagesandSystems16, 6 (Nov.
1994),1811–1841.

[27] L IU, Y. D., AND SMITH, S. F. ModulesWith Interfacesfor Dynamic
Linking andCommunication.In ECOOP'04(2004),pp.414–439.

[28] L IU, Y. D., AND SMITH, S. F. Interaction-basedProgrammingwith
Classages.In OOPSLA'05 (2005),pp.191–209.

[29] L IU, Y. D., AND SMITH, S. F. A FormalFramework for Component
Deployment(LongVersion),
http://www.cs.jhu.edu/ ~yli u/d eplo y/ . Tech.rep.,TheJohns
HopkinsUniversity, Baltimore,Maryland,March2006.

[30] MCCAMANT, S., AND ERNST, M. D. Early identi�cation of
incompatibilitiesin multi-componentupgrades.In Proceedingsof
the18thECOOP(2004),pp.440–464.

[31] MCDIRMID, S., FLATT, M., AND HSIEH, W. Jiazzi: New-Age
Componentsfor Old-FashionedJava. In OOPSLA'01 (2001),
pp.211–222.

[32] MEIJER, E., AND GOUGH, J. TechnicalOverview of theCommon
LanguageRuntime,2000.

[33] M ICROSOFT. ComponentObjectModelTechnologies,
http://www.microsoft.com/ com/ .

[34] Mono,http://www.mono-projec t.c om.

[35] MSDN. SharedSourceCommonLanguageInfrastructure1.0
Release,http://msdn.microsoft. com/net /ssc li/ .

[36] OBJECT MANAGEMENT GROUP. DeploymentandCon�gurationof
Component-basedDistributedApplicationsSpeci�cation,July2003.

[37] OSGI. Openservicesgateway initiative serviceplatform,release4
core,availableat http://www.osgi.org , 2005.

[38] PARRISH, A ., DIXON, B., AND CORDES, D. A conceptual
foundationfor component-basedsoftwaredeployment. Journal of
SystemsandSoftware 57, 3 (2001),193–200.

[39] PIETREK , M. Avoiding DLL hell: Introducingapplicationmetadata
in the microsoft .NET framework. MSDNMagazine, availableat
http://msdn.microsoft. com(2000).

[40] Portage,http://www.gentoo.org .

[41] REID, A ., FLATT, M., STOLLER, L ., LEPREAU, J., AND EIDE, E.
Knit: Componentcompositionfor systemssoftware. In Proc. of the
4th Operating SystemsDesignandImplementation(OSDI)(October
2000),pp.347–360.

[42] RINAT, R., AND SMITH, S. F. Modular internetprogrammingwith
cells. In Proceedingsof the16thECOOP(2002),pp.257–280.

[43] Rubygems,http://rubyforge.org/proj ect s/ru bygems/.

[44] SZYPERSKI , C. ComponentSoftware: Beyond Object-Oriented
Programming. Addison-Wesley LongmanPublishingCo., Inc.,
Boston,MA, USA, 2002.

