
Ensemble: A High Level Language for Sensor
Networks

Yu David Liu
Computer Science Department

Johns Hopkins University

Scott Smith
Computer Science Department

Johns Hopkins University

Andreas Terzis
Computer Science Department

Johns Hopkins University

Abstract— In this paper we describe Ensemble, a
proposed language framework for sensor network
programming. Our goal is to provide a programming
framework to scientists and engineers that will allow
them to directly code sensor network applications,
without the need for expertise in low-level device
programming. The key concepts in Ensemble are
high-level communication protocol connectors, and
the ability for systems programmers to define new
communication protocols as metaprotocol extensions.

I. INTRODUCTION

Sensor networks are an emerging computing plat-
form consisting of large numbers of small, low-
powered, wireless sensor nodes each with limited
computation and communication abilities. Several
studies have been presented that show the feasibility
to use sensor networks for a number of applications
including habitat monitoring [1], [2] and target
tracking [3]. Unfortunately, programming applica-
tions for sensor networks is extremely difficult,
mostly due to the computation and communication
limitations of individual sensor nodes. The low
capabilities of individual sensors force application
developers to write application-specific, low-level
code to perform node coordination, communication
and data collection. This development paradigm has
in turn hindered the development of applicationss-
ince that will realize the full potential of sensor
networks, since only specialists can program the
networks.

Existing projects have required teaming of ap-
plication scientists with computer science experts,
but this requirement significantly limits the growth
potential for sensor network applications. Our goal
is to create a programming framework for sensor
networks which scientists and engineers can di-

rectly use to develop their applications. We believe
such a high-level language will increase by an order
of magnitude or more the number of sensor-based
applications.Our approach is more future-looking in
that it will entail slightly higher runtime overhead,
but at a level we believe will be supported by the
next generation of sensors.

The rest of the paper is structured as follows:
In Section II we explain the philosophy behind En-
semble and give a high level description of the main
language constructs. We use a sample application
to show how these constructs can be used to write
a sample sensor application in Section III. Section
IV explains how metaprotocols are implemented
while Section V describes how Ensemble code is
translated to lower-level code. Finally, in Section
VI we present the related work in this area.

II. ENSEMBLE DESCRIBED

The system architecture that we foresee is an
event-driven, single-process, single-threaded sys-
tem, similar to the one used in TinyOS [4]. Hard-
ware generates events (via interrupt handlers) that
queue up in an event queue; the application-level
code consists of a set of event handlers, each
of which will quickly compute. So, the top-level
activity is to repeatedly pull events off the queue
and invoke the appropriate handler. This event
queue and the notion of these events is not directly
exposed to application programmers; they provide
the event handlers that get automatically called
when a new event arrives.

The intended users of Ensemble are scientists and
engineers (field programmers) with an understand-
ing of basic programming concepts and a high-level
understanding of sensor networks, but without any

knowledge of low-level aspects of sensor imple-
mentations.

Our main design principle is a clear separation of
low-level concerns: the field programmers will not
ever see the low-level code, and they will have a
simple, understandable, high-level interface to this
code.

The field programmers are supported by indepen-
dent systems programmers who can write new low-
level metaprotocols to extend the Ensemble frame-
work. They are called metaprotocols because they
can be viewed as language extensions, enriching the
Ensemble language provided to field programmers.
The Ensemble system will come with a large li-
brary of these protocols that field programmers can
choose from for their particular application; field
programmers that team with systems programmers
can produce new protocols that can be used by
other field programmers. The high-level programs
provided by field programmers and the low-level
programs provided by systems programmers are
semantically linked together, and yet their devel-
opments minimally interfere with each other.

Sensor network architectures have widely vary-
ing communication layers. The underlying route
paths may be structured in many ways (e.g. a tree
or a general mesh graph). Routing may also be
content-driven in that a request is made just for
data, not connection to a particular node. Further-
more, communication protocols need to deal with
depleted battery lifetimes and network disconnec-
tion scenarios. Nonetheless, a common theme to
all routing protocols is the presence of publishers
(i.e. nodes that generate data) and subscribers,
that is nodes that are interested in receiving this
data. Our idea is to provide a number of meta-
protocols matching the different underlying routing
mechanisms, and field programmers can choose the
most appropriate metaprotocol for their application.

In a content-based model, the publisher publishes
formatted data without specifying who the sub-
scribers are, and the subscriber does not have a
specific fixed publisher; instead, it specifies what
kind of message content it is interested in. On the
other hand, in the node-based model, the publisher
publishes data with a clear set of subscribers in
mind. Although subscriptions could be done via
different ways (static or dynamic, push or pull, one-

to-one or one-to-many), the publisher always has a
clear picture where to send data when publishing
happens.

Another communication dimension is physical-
location-based routing. This can e.g. be used in
tracking moving objects, or by algorithms where
nodes are for example recording temperature at
adjacent nodes. The protocol would operate at a
very high level, and assume there is some algo-
rithm/device in place for pinpointing locations of
all sensors. Connections can then be made to other
sensor(s) in a particular direction, within a certain
radius, etc, all independent of the radio.

Another important dimension of sensor commu-
nications is the need to manage power. What this
means in terms of the communications protocol is
to provide a means to rollback to a less power-
hungry communications mode when the battery
power has been depleted below a certain point.

Along with the need to manage power, in mobile
sensor nets the case of completely disconnected
operation should be supported. A single sensor or
groups of sensors may roam away from the other
nodes, and not be able to communicate data to
the sensorhead. The communications protocol in
this case will want to cache some of the data
observations locally so that not all data is lost.

In the next two sections, we will describe the
Ensemble language through an example.

III. FIELD PROGRAMMING IN ENSEMBLE

Figures 2 and 3 illustrate what engineers and sci-
entists need to write. The code is naturally divided
into two parts: the module to be deployed in sensing
nodes or intermediate aggregating nodes (Fig. 2)
and that to be deployed in the sensor head (Fig. 3).
In this particular example, sensors locally collect
temperature measurements and forward them to the
sensorhead. The forwarding happens over a routing
tree rooted at the sensorhead. The sensorhead relays
collected data measurements back to the scientists
through a long-haul connection. The sensing and
reporting frequencies are variable and can be altered
through commands broadcasted by the sensorhead
over the routing tree.

The basic code unit in Ensemble is an assem-
blage, a form of module.

Like most modules, assemblages have a means
to import and export functions from other mod-

Connector
Parent

Connector
Parent

Child Connector

Sensorhead

Child Connector

SensorNode SensorNode

SensorNode

Record Connector

Fig. 1. Connectors

ules, via its linkers. Linkers are bi-directional in-
terfaces which specify what functions they pro-
vide (export) and what functions they expect
(import). Two assemblages with complementary
linkers can be linked together via the process of
static linking. Linkers in assemblages are similar to
interfaces in NesC: functions defined in linkers
are asynchronous, and cross-linker invocations are
put into an event queue. Functions defined in a
static linker are invoked by the syntax f@v(. . .),
where f is the function name and v is the linker
name importing/exporting the function.

The main novelty of Ensemble is how it provides
an explicit communications interface in assem-
blages, its connectors. Two assemblages running
on different nodes may be connected via their
complementary connectors. For instance in Fig.
2, assemblage TempCollect has two connectors,
Parent and Child. The Parent interface defines
how a running TempCollect assemblage should
communicate with its parent (recall that in a tree-
based routing scheme, a sensor has a unique par-
ent). The process of connection establishment is
achieved by the expression connectParent 7→Child,
which connects the Parent connector of the current
running assemblage with the Child connector of

#define SENSE 0
#define REPORT 1
#define BUF SIZE 10

struct Point {int x, y, z};
struct ReportType {int tm; Point pt};

assemblage TempCollect {
linker Sensor

{
import void getData();
export void dataReady(int tm)
{ store({tm, whereami()}); }

}
linker Timer

{
import void start(char tp, int itvl);
export void fired(char tp) {
case tp of

SENSE : getData@Sensor();
start@Timer(SENSE, sitvl)

REPORT : phandle . report(aggr());
start@Timer(REPORT, ritvl)

}
}
connector Parent implements ParentInTree

{
import void report(ReportType r);
export void setItvl(int si, int ri){
sitvl := si;
ritvl := ri;
forall c in Child {c . setItvl(si, ri); }

}
}
connector Child implements ChildInTree

{
export void report(ReportType r)
{store(r); }

import void setItvl(int si, int ri);
}
local Parent phandle;
local int ritvl;
local int sitvl;
local ReportType rstore [BUF SIZE];
local Point whereami(){

. . . returns the location of the node itself . . .

}
local ReportType aggr(){

. . . aggregation code over rstore . . .

}
local void store(ReportType r){

. . . selectively stores report r in rstore . . .

}
main{

loc := whereami();
phandle := connectParent7→Child

}
}

Fig. 2. Ensemble Code for Sensing Nodes

#define BUF SIZE 10

struct Point {int x, y, z};

struct ReportType {int tm; Point pt};

assemblage SensorHead {

connector Record implements Satellite

{

import void init(void);

import void process done(ReportType r);

export void setFreq(int si, int ri)

{ forall c in Child {c . setItvl(si, ri); }}

export void report(void)

{ current . process done(aggr()); }

connector Child implements ChildInTree

export void report(ReportType r)

{store(r); }

import void setItvl(int si, int ri);

}

local ReportType rstore [BUF SIZE];

local ReportType aggr(){

. . . aggregation code over rstore . . .

}

local Point store(ReportType r){

. . . selectively stores report r in rstore . . .

}

main{ }

}

Fig. 3. Ensemble Code for Sensor Head

some running assemblage on a different node. The
precise meaning of the connect expression is
defined in its metaprotocol, which will be explained
in Sec. IV below.

In the tree-based routing example, a sensor might
be connected with multiple children at the same
time. The number of children of a given a node
cannot be determined at compile time since it
depends on the physical location of sensors during
deployment. Thus, it is not possible to pre-define a
list of connectors, each for a child. In Ensemble,
the connectors are generative: a connector can
simultaneously support multiple connections. For
instance in Fig. 2, although there is only one con-
nector Child, the parent can have multiple children
connected, and all children communicate with their
parent via the Child connector. To achieve this, the

connect expression returns a connection handle,
and we can distinguish different connections to the
same connector by their unique handles. Invoca-
tions on connectors follow the h . f(. . .) syntax,
where h is the connection handle and f is the
function name.

Other expressions meriting explanation include
forall h in v {e′}, used to obtain all connections
currently connected to a specific connector v. Key-
word current is reserved to mean “the current
connection”, useful for callbacks. Notice in sensor
head’s Record connector, when the aggregation is
done, the sensor head needs to send back the report
to the running assemblage which initiated the report

invocation.

IV. SYSTEMS META-PROGRAMMING

The core Ensemble language contains no con-
crete communication protocol for connectors; it
is only a framework. Systems programmers must
write metaprotocols. This section describes how.

The connectors above have implements quali-
fiers such as implements Satellite for connec-
tor Record in Fig 3; these qualifiers specify the
communication metaprotocol used by that connec-
tor. The low-level details of satellite communica-
tion is not specified by assemblages during field
programming. Instead, the Ensemble architecture
allows systems programmers to define these aspects
at a meta-programming level. Notice that in this
sense the Ensemble architecture is extensible at the
system level: Satellite is not a reserved word of the
language; system programmers could very well de-
fine metaprotocols for Satellite2 at some time, and
field programmers can then qualify their connectors
with implements Satellite2. Even better, if some
version control is allowed, systems programmers
could implement different versions of Satellite con-
nector meta-protocols and field programmers do not
change any of its level of assemblage code but still
change the behavior of the communication.

We use the Satellite metaprotocol to show how
metaprotocols are implements at the system level.
Each protocol is defined as a library of NesC
functions that must include the following:

• Satellite setup()
• Satellite connect(src cname,
dst cname, node)

• Satellite disconnect()
• Satellite conn invoke(h,
import fname, args[])

The Satellite connect() function is in-
voked to set up the connection to the indicated des-
tination. The argument is optional; if not specified,
the body of the function will lead to some discovery
of the node, which depending on strategies, could
be the closest node, or the node with the strongest
signal, or the most reliable node. This function
defines the semantics of the connectv 7→v

′ e ex-
pression.
Satellite conn invoke(h,

import fname, args[]) defines the low-
level protocol for invoking a particular imported
function with name import fname on a
connection handle h of the Satellite connector. It
includes how such an invocation is packed up in a
message and how the message is sent via low level
system calls. This function at a meta-level defines
the semantics of an h . f(e) expression. The other
two meta-protocol functions Satellite setup
and Satellite disconnect are used to
setup and tear down any required connection state
respectively.

The meta-protocol functions we sketched here
are only part of the communication interface cov-
ering only basic communication between paired
connectors. Other potential communication require-
ments include the need to implement a reliable
channel on top of the unreliable wireless medium,
the need to support dynamic topology change and
the need to support disconnected operations. The
separation between field- and meta-programming
allows Ensemble field programmers to use these
features by using an appropriate meta-protocol, and
not programming them directly themselves.

V. IMPLEMENTATION

Here we briefly describe our proposed implemen-
tation methodology.

At the field-programming level, we plan to trans-
late assemblages to NesC. Assemblage linkers may
be directly translated to NesC interfaces. Con-
nector declarations will not generate code in the
target language, and the added expressions related
to the use of connectors need to be translated
into invocations of the meta-protocols functions, as
defined in the previous section.

The meta-protocols may be programmed directly
in NesC. Each connector meta-protocol, such as
Satellite, ChildinTree, and ParentinTree, can be
implemented by a NesC module. All Ensemble is
doing is providing a uniform interface to commu-
nication protocols, and so there will be very little
additional overhead introduced.

VI. RELATED WORK

The first generation of sensor applications was
written using languages such as NesC [5] and Mate
[6] built on top of TinyOS [4]. While both were
major engineering achievements given the severely
limited resources of current generation sensors,
languages like NesC are low-level and as such are
more suited to systems programmers than field pro-
grammers, who are the intended users of Ensemble.
Recently, Levis et. al. [7] have observed that many
user-level applications are using similar sets of high
level constructs, such as tree routing. This finding
supports our claim that sensor applications share a
set of common characteristics and that application
writers would benefit if these building blocks would
be supported by a high level language that lets them
focus on the application domain.

The need for higher level programming abstrac-
tions has been observed by many researchers, who
have proposed different ways to achieve this goal.
One school of thought, articulated by Madden et.
al. in [8], treats the sensor network as a streaming
database in which sensor measurements correspond
to database tuples. Users can extract different mea-
surements by sending different SQL-like queries
to the sensor network. Ensemble is a lower-level
language abstraction compared to declarative lan-
guages such as SQL, but gives field programmers
the freedom to implement a wide range of applica-
tions. Our work is closer in spirit to the proposal
of Welsh and Mainland in [9], where they propose
the concept of abstract regions. Their basic idea
is that a sensor can define a “neighborhood” of
sensors around it and share data with sensors in
that neighborhood. Culler et al in [10] proposed a
similar concept and showed how it can be useful in
writing sensor applications such as sensor tracking.
Our model supports the concept of neighborhood
communication as one of the many communication
models through the use of meta-protocols.

The Ensemble language design has several prece-
dents. Ensemble. Assemblages, with interfaces both
for static linking and inter-node communication,
were developed in [11]. The aforecited project is
a general-purpose language for distributed software
design, and this paper represents a re-targeting of
those general concepts to the specific domain of
sensor applications. Module systems and calculi
with a focus on static linking are numerous, and
many support bi-directional static linking inter-
faces, such as Units [12] and mixins [13]. In these
works, invocations across static linking interfaces
are no different from normal function calls. We take
the approach of NesC, where event queues are used
across module boundaries due to the strong bias
toward hardware of sensor networks. In this sense,
our linkers are very similar to the interface in
NesC. Connectors as a general language construct
have been previously proposed in various forms
including [14], [15]. Metaprogramming is well-
known to serious Lisp or Smalltalk programmers;
it also has been used to allow programmer-based
specification of communications protocols, see e.g.
[?].

This paper proposes a core design of a sensor
programming language that can be directly used by
scientists. Although the language as described will
work, it only represents the first step down a long
path. Connector metaprotocols should be compos-
able, for example composing a tree routing scheme
with a particular low-power rollback protocol to
give a power-aware tree routing protocol. It is not
hard to define a simple composition scheme, but it
is very difficult to deal with potential interference
between the composed protocols.

REFERENCES

[1] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler,
and J. Anderson, “Wireless sensor networks for habitat
monitoring,” in Proceedings of 2002 ACM International
Workshop on Wireless Sensor Networks and Applications,
Sept. 2002.

[2] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton,
and J. Zhao, “Habitat monitoring: Application driver for
wireless communications technology,” in Proceedings of
2001 ACM SIGCOMM Workshop on Data Communica-
tions in Latin America and the Caribbean, Apr. 2001.

[3] K. Pister, “Tracking vehicles with a uav-delivered sensor
network,” Mar. 2001.

[4] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister, “System architecture directions for network
sensors,” in Proceedings of ASPLOS 2000, Nov. 2000.

[5] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler, “The nesc language: A holistic approach
to networked embedded systems,” in Proceedings of Pro-
gramming Language Design and Implementation (PLDI)
2003, June 2003.

[6] P. Levis and D. Culler, “Mate: A tiny virtual machine
for sensor networks,” in International Conference on
Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, USA, Oct. 2002, to
appear.

[7] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk,
A. Woo, E. Brewer, and D. Culler, “The Emergence of
Networking Abstractions and Techniques in TinyOS,” in
Proceedings of NSDI 2004, Mar. 2004.

[8] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong, “The Design of an Acquisitional Query Pro-
cessor for Sensor Networks,” in Proceedings of SIGMOD
2003, June 2003.

[9] M. Welsh and G. Mainland, “Programming Sensor Net-
works Using Abstract Regions,” in Proceedings of NSDI
2004, Mar. 2004.

[10] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler,
“Hood: A neighborhood abstraction for sensor networks,”
in Proceedings of the International Conference on Mobile
Systems, Applications and Services (MOBISYS ’04), June
2004.

[11] Y. D. Liu and S. Smith, “Modules with interfaces for
dynamic linking and communication,” in Proceedings of
the Eighteenth ECOOP, June 2004.

[12] M. Flatt and M. Felleisen, “Units: Cool modules for HOT
languages,” in Proceedings of the ACM SIGPLAN ’98
Conference on Programming Language Design and Im-
plementation, 1998, pp. 236–248.

[13] D. Duggan and C. Sourelis, “Mixin modules,” in Pro-
ceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP ’96), vol. 31(6),
1996, pp. 262–273.

[14] R. Rinat and S. Smith, “Modular internet programming
with cells,” in Proceedings of the Sixteenth ECOOP, June
2002.

[15] J. Aldrich, V. Sazawal, C. Chambers, and D. Notkin,
“Language support for connector abstractions,” in Pro-
ceedings of the Seventeenth ECOOP, June 2003.

