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ABSTRACT
We propose a component programming language that sup-
ports an integrated notion of both compile-time and run-
time component. The centerpiece of this paper is the static,
compile time notion of assembly, complementing our previ-
ous work on the dynamic, runtime notion of cell. An assem-
bly is a declarative, stateless piece of code that facilitates
code combination. It offers explicit typed interfaces to out-
siders, called linkers, which can be used to link smaller as-
semblies into bigger, compound assemblies. Each assembly
may in turn be loaded at run-time, producing a cell in the
runtime environment. A cell is a dynamic, stateful compo-
nent that interacts with other cells via explicit runtime in-
terfaces. Thus, the static assemblies and the dynamic cells
are fully integrated. Assemblies may also be dynamically
linked into a running cell, thereby expanding its code base
on runtime. We present the model and the concepts, and
then go on to define a toy language supporting assemblies
and cells. We precisely define the langauge via a formal
operational semantics and a set of typing rules.

1. INTRODUCTION
Most computer scientists would quickly agree that “component-
based software” is a good thing, but would then likely dis-
agree about what is meant by the term “component-based
software”. Szyperski in his book [17] and language designs
such as Jiazzi [11] emphasize the static, code assemblage
aspects of components. Components in the “real world”—
Corba, COM, and Java Beans—emphasize the dynamic, run-
time services that components offer, as do some other re-
search projects [10, 4, 2]. A main thesis of this paper is that
a language supporting components should explictly address
both the statics and the dynamics of components. The stat-
ics concern code and how code is assembled, and is a topic
related, but not identical to, module systems. The dynam-
ics concern the run-time interface offered by components for
interaction with outsiders.

In this paper we propose the notion of an assembly to model

the static, declarative aspects of components. This comple-
ments our previous work on the notion of a cell [15, 14], a
dynamic, run-time component. We call them “assemblies”
because their purpose is to assemble components. Each as-
sembly is a stateless piece of code that when loaded produces
a cell in the runtime environment. That each assembly is
also a factory for an explicit, stateful, run-time entity—a
cell—is an important difference with most module systems.
These static assemblies fit Szyperski’s concept of a compo-
nent [17]: they are deployable, stateless binary objects with
clear static interfaces for use by third parties. And, the
dynamic cells have explicit run-time interfaces like COM,
Corba and Java Bean components.

Assemblies are for cells what classes are for objects: they
contain definitions for everything that makes up a cell—
classes, connectors, services, and instance variables. In ad-
dition, they have module features: they have fixed link-
ers which may import and export classes from other as-
semblies. Assemblies are separately compilable; this is fa-
cilitated through assembly signatures, which independently
specify class types. Assemblies also compose: they may
be linked together to produce larger, compound assemblies.
These module aspects of assemblies are somewhat similar
to Units/Jiazzi [11, 6]. Assemblies also may be dynamically
linked to a running cell, through an explicit linking interface.

Before going into the features of assemblies in more detail,
we review our previous work on the cell component archi-
tecture.

1.1 Review of Cells
In [15, 14], we defined cells. These cells were, using a
class/object analogy, a prototype-based notion of component
in the spirit of Self [18]. Prototype-based cells model both
code combination and run-time interaction. There is some-
thing to be said for a prototype-based component language,
but we have concluded that a cleaner language design is pos-
sible if the language clearly separates the statics from the
dynamics. Thus in this paper we delegate code combination
to assemblies, and keep cells purely for dynamic interaction.
We now review some key features of cells.

Cells are stateful containers of objects and code, which run
on a Cell Virtual Machine (CVM). A given CVM may have
multiple cells running on it. Cells have explicit interfaces
for interaction: they provide typed connectors for forming
persistent run-time connections with other cells. Connec-



tors carry plugins and plugouts, via which operations may
be invoked on connected cells. Standard client-server style
component interfaces, services, are also provided on cells.

Connectors allow long-term peer-to-peer interactions to be
explicitly expressed in the language; they are analogous to
the cabling of hardware systems running between monitor–
computer, CD player–receiver, or computer–power outlet.
Services, on the other hand, are open interfaces offering ser-
vices to anyone. A good analogy would be the volume con-
trol on the TV, or the keyboard used to type this sentence
on. Continuing the cable analogy, cells are also designed
to allow “hot-plugging”, cables that may be connected and
disconnected while the system is running. We believe that
there is a fundamental reason to have both connector- and
service-type interaction; see [15, 14].

Cells are referenced universally via unique Cell IDentifiers,
CID’s. A CID is a bit string which includes location and
other information. Thus, holding only a CID, a user can in-
teract with that cell, whatever network-accesible node it re-
sides on. CID’s are large and random enough to be unguess-
able, so they also serve as secure capabilities for accessing a
cell. In this regard, they are similar to the object references
of E [13].

Cells are fundamentally distributed in that they may be
linked locally or across the network. They also may be dy-
namically loaded, unloaded, copied, and moved.

A cell is a closed universe of objects: no direct object refer-
ences may leak to other cells. This is achieved by adopting
a by-copy semantics for passing object parameters.

Cells share concepts with existing component run-times such
as CORBA [7] and COM/DCOM: they are larger-grained
than objects, have explicit run-time interfaces for interac-
tion, and support both local and distributed service invoca-
tions. Cells also differ in several ways. Most significantly,
they are designed to make long-term interactions explicit
by forming persistent peer-to-peer connections with other
cells, via the connectors mentioned above. Cells also “own”
a collection of objects, and so are a more explicit part of
the run-time state than CORBA/COM components. And,
capability-based security is built into the design.

Several distributed system frameworks include explicit per-
sistent connections that are something like our cell con-
nectors [10, 4]. ArchJava [2] is a language extension to
Java which also has a feature something like our connec-
tors. ArchJava components have ports, which are similar to
cell plugins and plugouts. Their “components” are however
much more lightweight, they are just objects with connec-
tors on them. In a recent paper they have broadened the
notion of connector supported in ArchJava to include e.g.
distributed connections [1].

We have developed a preliminary implementation of prototype-
based cells on top of the Java JVM [8]. The implementation
supports a cell file format, loading of cells from files, dy-
namic connecting and disconnecting on connectors, opera-
tion invocation between connected cells, and full distributed
functionality, including formation of remote cell connections

and remote service invocation.

2. INFORMAL OVERVIEW
In this section we provide an informal overview of the key
concepts of assemblies and signatures, via a running exam-
ple.

2.1 Defining and Composing Assemblies
Figure 1 shows an example assembly architecture, a peer-to-
peer music sharing system similar to the now-defunct Nap-
ster. The figure shows several assemblies, and assembly link-
ers whereby one assembly can import code from another.

In this example, a central server keeps information on songs,
which are themselves kept on other client computers. Users
access the central server to learn of music held by other
users, and then may download desired songs directly from
them. In addition to the server assembly, the developers
of this system provided end-programmers with a reusable,
middleware client-side assembly. End-programmers use this
middleware assembly to construct their own client-side ap-
plication using the provided song and file transfer utilities.
The end application is responsible for decoding and playing
the mp3 files, constructing a pleasing GUI, etc.

In Fig. 1, MusicServer is the assembly for the central server,
and MusicClient is the client-side assembly. These names
stand for assembly identifiers, AID’s. Each assembly has a
unique AID, which is a long bit string that uniquely and
globally identifies each assembly across the network, in a
manner related to COM UUID’s. As will be seen in the
formal semantics below, the only “true” name of an assem-
bly is its AID. This design builds code versioning fundamen-
tally into the language, avoiding a large source of errors and
ambiguities. In a real implementation, programmers would
likely not specify AIDs directly, but instead use a naming
service to retrieve assemblies by symbolic names.

Now, here is an excerpt from MusicServer’s code:

assembly MusicServer

{
connector SongInfo // For storing and retrieving song info

plugouts
addSong : (s : Song) : void { addSong code . . . }
getSong : (n : String) : Song { getSong code . . . }

. . .
}

The MusicServer assembly contains code defining the tem-
plate for a cell, as depicted in Fig. 1. When loaded, that
cell will carry a connector named SongInfo with two plu-
gouts: addSong, for registering a new song in the central
database, and getSong, for retrieving songs information. A
client’s cell communicates with the server cell via a dual
connector, i.e. one carrying the same operation names, but
as plugins. A given client must be explicitly connected to a
given server via the connector before the client can invoke
the server operations. Since cell references are universal,
such a client could be on any accessible network node.
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Figure 1: Music Sharing Example

The client cell is defined by a compound assembly, Musi-
cApp, illustrating the concept of linking assemblies. It is
defined as follows:

assembly MusicApp
link OurMusicMain MusicClient GUI

i.e. MusicApp is the result of linking three smaller assem-
blies. Compound assemblies are the union of the classes,
services and connectors of the component assemblies. The
manner in which assembly linking unions the cell services
and connectors is analogous to how a mixin of classes pro-
duces objects which have the union of the methods of the
component classes. In case two or more of the linked as-
semblies carry an exporter, an importer, a connector, or a
service by the same name, the link fails, unless they originate
from the same assembly. This case is analogous to Eiffel’s
repeated inheritance. It allows two compound assemblies
containing a common sub-assembly to link.

Assembly linking occurs through the linkers of each sub-
assembly. A linker is either an importer, which lists classes
being imported, or an exporter, which lists classes being ex-
ported. The matching of importers to exporters is made on

the basis of identical linker names; and similarly, inside a
linker, imports are matched to exports by name. Linking is
a stateless operation that produces a new assembly from the
component ones. This new compound assembly also has a
unique AID, abbreviated MusicApp in this case.

Assembly MusicClient is provided by the middleware de-
velopers. It defines the dual connector needed to communi-
cate with the server, a service for transferring music between
clients, and classes for song manipulation and storage.

Here is an excerpt from MusicClient’s code:

assembly MusicClient

exporter ClientClasses // to be exported to
assembly OurMusicMain

class SongAction // access to cell of MusicServer
class Song // Song details
class Playable // like Song plus mp3 file.
class SongStore // local songs store

{ // assembly body
class SongAction
{ inst . . . meth . . . }

. . . definitions of other classes, including Song, Playable, Song-



Store, PlayerGUI . . .

connector SongInfo // For storing and retrieving song info
plugins
addSong : (s : Song) : void { addSong code . . . }
getSong : (n : String) : Song { getSong code . . . }

. . .

service transferSong (s : Song) : Playable { . . . }
}

The MusicClient assembly has one linker, the exporter Client-
Classes. It exports the classes an end-programmer will need
to share music files. In this example, these classes are im-
ported by the end-progammer’s main-program assembly Our-
MusicMain, providing it with song manipulation and archiv-
ing functionality. The class SongAction provides access to
the connector SongInfo. In particular, it is able to call the
operations addSong and getSong. Song encapsulates all song
information including a reference to the client cell where
that song exists. Song does not contain the mp3 file itself.
Playable is Song plus the mp3 file. SongStore is a song a
archive class for local use by each client.

Here is an excerpt from OurMusicMain:

assembly OurMusicMain

importer ClientClasses
class SongAction
class Song
class Playable
class SongStore

importer GUIClasses
class Window
class Frame
. . .

{ // assembly body

class PlayerEngine . . . this class actually plays a file

}

OurMusicMain contains the logic for the interaction with
human users, the central song server, and other client cells.
To do that, it needs to import music-related classes from
MusicClient and GUI classes from GUI. This is facilitated
by the importers ClientClasses and GUIClasses. As ex-
plained above, the class SongAction provides control over
the connector SongInfo defined in MusicClient. OurMusic-
Main defines the class PlayerEngine, which actually decodes
and plays mp3 files.

To complete the picture, the GUI library assembly looks like
this:

assembly GUI

exporter GUIClasses
class Window
class Frame

. . .

{ class Window { . . . }
. . . other GUI classes . . . }

Figure 2 shows a dynamic, runtime view of the example.
Assemblies are loaded to create cells; the expression syntax

load MusicApp

dynamically loads a given assembly, in this case the one with
AID MusicApp. A loaded assembly is a cell, and a reference
to that cell is the value returned by the load. In the exam-
ple, there are two client cells, MusicApp1 and MusicApp2,
loaded from MusicApp, and one server cell, MusicServer1,
loaded from MusicServer.

Once loaded, cells can connect with one another to form
persistent connections. The syntax for this operation is e.g.

connect MusicServer at SongInfo

Fig. 2 shows the music sharing example after each Musi-
cApp client has connected to the server connector. These
connections are persistent, so once the client is connected
to a particular server, the client can invoke addSong() and
getSong() directly. This example also shows how a conector
plugout can be multiply plugged-in: both MusicApp1 an
MusicApp2 can invoke MusicServer1’s plugout operations
directly. Connections can be broken by the syntax e.g.

disconnect at SongInfo

—if either client or server disconnects at this connector, the
client will no longer be able to invoke addSong() or getSong()
on the server. So, for example if the client-server network
failed, the client could disconnect from its SongInfo server
and reconnect to a different server.

The client cells can transfer songs directly between them-
selves using the cell service transferSong, as indicated by
the dashed line in Fig. 2.

2.2 Dynamic Linking
There are two notions of linking defined for assemblies, one
a compositional, static notion, link, and the other a dy-
namic, run-time notion, dynlink. Compositional linking,
as described in the previous Section, is used to build appli-
cations: it creates a bigger binary out of smaller binaries.
Compositional linking is purely at the assembly level—no
cells are involved. Dynamic linking on the other hand may
be used to extend the codebase of a given cell at runtime.
That is, a dynamic link command

dynlink AID1 . . .AIDn

may be executed within any running cell. It links the as-
semblies AID1, . . .AIDn to that cell, adding the classes in
AID1 . . .AIDn to its code base. No new AID or CID is cre-
ated. As with static link, the matching of linkers is done by
name. The linked assemblies also link among themselves on
identically named linkers.

We illustrate dynamic linking by extending our running ex-
ample. Consider the extension shown in Fig. 3. The as-
sembly OurMusicMain now has an extra importer and an
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Figure 3: Dynamically linking an Assembly

extra exporter. This new pair of linkers allow it to exchange
classes with an assembly defining a skin. The latter will
provide a class for displaying the player with the skin.

Here is the code for the extended OurMusicMain.

assembly OurMusicMain

importer ClientClasses
as before . . .

importer GUIClasses
as before . . .

importer SkinGUI // new importer
class PlayerGUI

exporter AppEngine // new exporter
class PlayerEngine

{ // assembly body

class PlayerEngine . . .

}

OurMusicMain is designed to export its locally defined Play-
erEngine class and to import back a PlayerGUI class, which
will be a customized display, from the skin assembly.

The skin assembly, however, is not statically linked into the
application. Instead, these linkers remain open so that dif-
ferent skins may be dynamically linked at runtime. One
important aspect of dynamic linking in assemblies is it uses
the exact same linkers also used for static linking, so ap-
plications which dynamically link clearly declare what their
open channels of code import and export are. This is one of
the novel aspects of assemblies.



Here is sample code for a particular skin assembly, Bub-
blingSkin:

assembly BubblingSkin // A sample skin which
emits 3D bubbles

exporter SkinGUI
class PlayerGUI . . .

importer AppEngine
class PlayerEngine . . .

importer GUIClasses
class Window . . .

{ // assembly body

class PlayerGUI . . .

}

Assembly BubblingSkin imports the class PlayerEngine and
builds around it a GUI with bubbling graphics, class Play-
erGUI, which it exports back to the main application.

The MusicApp application is defined as before:

assembly MusicApp link OurMusicMain MusicClient GUI

i.e., without a skin assembly. It acquires the linkers Sk-
inGUI and AppEngine from OurMusicMain. After Musi-
cApp is loaded, the resulting cell may dynamically link to
BubblingSkin as shown in Fig. 3, via an execution sequence
of

load MusicApp
.
.
.

dynlink BubblingSkin

The appearance of the player can later be changed by linking
in another skin:

dynlink YellowSnakeSkin

This demonstrates an important property of dynamic link-
ing: if any of the newly linked assemblies carry exporters
that match importers bound by previous dynamic links,
these importers are re-linked to the new exporters. So here,
after linking YellowSnakeSkin, objects instantiated in Mu-
sicApp from PlayerGUI will be from the YellowSnakeSkin
version of that class. Dynamic linking however is a purely
additive operation in terms of code: the BubblingSkin ver-
sion of the class is not explicitly unloaded, so there may be
objects instantiated before the second link still using Bub-
blingSkin code.

Dynamically linked assemblies cannot define connectors or
services. Using the analogy of cells and objects, it would

be like an object adding methods at run-time. Dynamically
adding new connectors or services may in fact be a useful
feature to eventually support, but it is fraught with design
difficulties and we have left this feature out of our current
design.

The information regarding a dynamic link is kept in the cell
performing the link, in its link table. The assemblies them-
selves are not modified, they are stateless and immutable.
This is a primary difference with static linking, were a new
assembly with its own AID is the result of composition.

2.3 Type Signatures
Assembly Signatures
An assembly is a unit of compilation, and to compile an
assembly, the types of all classes it references must thus
be known. While some of them are local and hence fully
defined in the assembly, others will be imported from other
assemblies. The type of such these external classes is made
available to the typechecker through Assembly Signatures.

An assembly signature is a collection of class signatures de-
clared by the programmer; it is assigned a unique Assembly
Signature IDentifier, an ASID. ASIDs along with their def-
initions are stored in a global repository, just like AIDs.
Inside an assembly, a list of ASIDs may be specified after
the use keyword. The typechecker must find any non-local
class type among the used assembly signatures.

We illustrate assembly signatures by elaborating on our run-
ning example. Consider for example the end-user’s main
assembly OurMusicMain. It has three importers, each of
which specifies several classes. In order to actually use ob-
jects of these classes in the code, their types must be known.
Therefore the assembly needs to specify assembly signatures
in its use clause. A typical usage is there will be one signa-
ture listed for every assembly it intends to link with, stati-
cally or dynamically.

Here is the code for OurMusicMain:

assembly OurMusicMain
use MusicClientSig GUISig SkinSig

importer ClientClasses
class SongAction
class Song
class Playable
class SongStore

importer GUIClasses
class Window
class Frame
. . .

importer PlayerGUIClass
class PlayerGUI

exporter PlayerEngineClass
class PlayerEngine

{ // assembly body

. . . song = new Song; song.artist := ”Sher”; . . .



}

The assembly signatures MusicClientSig, GUISig, and Skin-
Sig define the class types for the classes defined on the im-
porters ClientClasses, GUIClasses, and PlayerGUIClasses
respectively. These class types enable the typechecking of
references to these classes in the body of the assembly, such
as the sample line shown.

The assembly signature itself simply contains definition of
class types. For example, MusicClientSig is:

assembly signature MusicClientSig
use BasicClassesSig
clsig SongAction {

addSong : (s : Song) : void
getSong : (n : String) : Song
connect : (c : cellsig MusicServerCellSig) : void
disconnect : ( void): void

}
clsig Song {

title: String
...

}

MusicClientSig is the ASID, which realistically would be a
long bit string. Like AIDs, in a real implementation ASIDs
would not be specified directly, but a name service would be
used instead.

The type of class PlayerGUI, to be imported dynamically
from a skin assembly, is defined via one assembly signature
SkinSig, even though many skin assemblies are expected to
be linked.

Assembly signatures may themselves refer to external classes
in fields and method parameters. For that reason, they
may also contain use clauses, listing other ASIDs, providing
these external types. For example, the MusicClientSig uses
a BasicClassesSig signature that defines the type of basic
classes, such as String.

One of the main goals of the type system design is a “de-
clare once” principle which means a given type will only be
written once. This is the reason for managing assembly sig-
natures in a global repository via unique ASIDs. After a
signature has been registered with some ASID, it cannot be
changed. A new signature must be defined if a change is
made.

Typically, each assembly will have a corresponding signature
that declares the types of classes defined in the assembly. So
MusicServer has a corresponding signature MusicServerSig.
But in general, assembly signatures are just a collection of
class type definitions.

Cell Signatures
In MusicClientSig above, the parameter for the connect method
in class SongAction is a cell signature. Cell signatures have
unique identifiers, CSIDs, and are also managed by global

repositories. They are used to declare the type of cell ref-
erences that may be passed, and constitute a collection of
typed connectors and services.

The cell signature MusicServerCellSig used above is:

cell signature MusicServerCellSig
use BasicClassesSig
connector SongInfo // For storing and retrieving song info

plugouts
addSong : (s : Song) : void
getSong : (n : String) : Song

Like assembly signatures, cell signatures specify a list of
used ASIDs, which serve to resolve class types referred to
by name. The global ID principles that apply to assembly
signatures also apply to cell signatures: once they are loaded
they cannot be changed.

3. THE LANGUAGE
In this section we present the language of assemblies and
cells used to code the examples in the previous sections,
and which we give a formal semantics to in subsequent sec-
tions. The language features represent a compromise be-
tween a language too simple to address the difficult issues,
and too complex for formal treatment. Inheritance, excep-
tions, and distributed execution are some features left out
for simplicity. Figure 4 shows the syntax for assemblies and
expressions.

We use the notation X to represent a finite sequence of X’s.
An assembly is defined by the assembly keyword. It can be
either atomic or compound. An atomic assembly specifies
an AID (α), a list of used assembly signatures (δ), a set of
linkers, and a body {inst srvdf cntdf clsdf e}. The body
specifies the elements that make up a cell: instance vari-
ables (fields), services, connectors, class definitions, and an
initialization expression, in this order. Each linker is either
an importer or an exporter. An importer specifies a list of
classes to be imported, defined by the syntax importer ln
class clsn. ln is the linker’s name and clsn is a class name.
Similarly for exporters.

A compound assembly also specifies an AID, a list of as-
semblies to be linked, and a list of linkers on the resulting
compound. In the link, importers are matched to exporters
by name. The linkers in the resulting compound are declared
and must be chosen from the constituent linkers minus those
importers consumed by the link.

A service definition, service srvn {opdf }, specifies a name
for the service (srvn) and a set of implemented operations
(opdf ). A connector definition
connector cntn plugin opsig plugout opdf specifies a
name for the connector, plugins, and plugouts. Plugins are
just operation signatures whereas plugouts are implemented
operations.

The syntax connect e at cntn is used to connect the current
cell to the cell referenced by e at connector cntn. For dis-
connect one need only specify the connector. The syntax
cntn−>opn(e) invokes plugin or plugout opn on connector



asm ::= assembly α use σ lnkr {inst srvdf cntdf clsdf e} atomic assembly
| assembly α link α lnkr compound assembly

srvdf ::= service srvn {opdf } service defn
cntdf ::= connector cntn plugin opsig plugout opdf connector defn
clsdf ::= class clsn {inst inst meth opdf } class defn
opdf ::= opn(x : nτ) : nτ {e} operation defn

x variable
e ::= null | i | b | x | let x = e in e elementary expressions

| this | e.opn(e) | e.instn | e.instn :=e | new clsn object expressions
| thiscell | instn | instn :=e | e..srvn−>opn(e) | cntn−>opn(e) cell expressions
| connect e at cntn | disconnect at cntn cell expressions
| dynlink α | load α assembly expressions

α, σ, ς, θ AID, ASID, CSID, CID

Figure 4: Abstract Syntax

cntn. It may be issued onyl from within the cell having this
connector. The syntax e..srvn−>opn(e) is used to call the
operation opn on the service srvn of cell e. It is used from
outside the cell, hence the need to specify the cell reference
e.

load α loads the assembly with AID α to create a cell in
the runtime environment. dynlink α dynamically links the
assemblies α into the current cell.

Dot notation e.opn(e) etc. is used for object operations:
method call, field access, and field update.

Figure 5 shows the type syntax.

clsn is a class name. It is used to denote both class types on
linkers and object types in fields and operation parameters.
cellsig ς, where ς is a CSID, is the type of a cell. It is
used in instance variables an operation parameters. srvsig
is a service signature—the type of a service. cntsig is a
connector signature—the type of a connector.

Assembly signatures specify an ASID (σ), a set of used
ASIDs (σ), and a list of class types (csln). Cell signatures
specify a CSID (ς), a set of used assembly signatures (σ),
a list of service signatures (srvsig), and a list of connector
signatures (cntsig).

4. THE DYNAMIC SEMANTICS
This section formally defines the dynamics of our language.
We first give some basic mapping definitions we will use
throughout the paper, and then define the structure of cell
states. The bulk of the section defines operational semantics
rules for the language.

4.1 Global Mapping Definitions
The unverse of computation is composed of assemblies, as-
sembly signatures, cell signatures and the running cells. Each
of these entities are identified by their AIDs, ASIDs, CSIDs
and CIDs, respectively. The following mapping exists glob-
ally to map the IDs to the real entities:

A : α 7→ 〈asm, σ, ς〉
AS : σ 7→ asig

CS : ς 7→ csig
S = AS ∪CS

A maps an AID α to its assembly code asm, ASID σ of the
assembly signature it implements, and CSID ς of the cell
signature it implements; Note that each assembly signature
or cell signature can be implemented by many different as-
semblies, but each assembly has a unique assembly signature
and cell signature, which serves as the public information it
communicates to others. AS maps an ASID σ to its assem-
bly signature asig; CS maps an CSID ς to its cell signature
csig.

Although this paper does not deal with security specifically,
some general guidelines on protection of these mappings are
followed when we define semantics and type systems for our
language. AS and CS mappings are public: types are free.
For A, mapping an AID to its ASID or CSID is also public,
while mapping to its code asm may be restricted.

4.2 Cell State
Unlike assemblies, cells are run-time entities and are there-
fore have a state. The universe of cell states is represented
by Σ, which is defined as a tuple:

Σ
def
= 〈Σaid, Σlnk, Σcnt, Σobj, Σins〉

For a specific cell with CID θ, its state Σ(θ) includes the
following parts. Except the first one, all are defined as sets:

• Σaid(θ) is the AID of the assembly (atomic or com-
pound) cell θ is loaded from.

• Σlnk(θ) is the link table of cell θ. Tuple 〈αi, ln, αe,flag〉
denotes the importer ln of αi is currently linked to the
exporter (by the same name) of αe. If an importer is
currently unmatched with any exporter, αe is set to
null; if an exporter is unmatched with any importer,
αi is set to null. Since our language supports both
static linking and dynamic linking, flag differentiates
its nature. If flag is set to s, the link is static; if set to d,
the link is dynamic. Since dynamic linking is possible,
this information must be maintined at run-time.

• Σcnt(θ) is the connection table of cell θ. Tuple 〈α, cntnt , θ〉
denotes connector cntnt with code defined in α is cur-



τ ::= nat | bool | clsn | 〈clsn, σ〉 | cellsig ς user type
inst ::= instn : nτ cell/class instance
opsig ::= opn : nτ → nτ operation sig
srvsig ::= service srvn {opsig} service sig
cntsig ::= connector cntn {plugin opsig plugout opsig} connector sig

lnkr ::= importer ln class clsn | exporter ln class clsn linkers

asig ::= assembly signature σ use σ lnkr {clsig clsn { inst inst meth opsig}} assembly sig
csig ::= cell signature ς use σ {srvsig cntsig} cell sig

Figure 5: Types

rently connected to cell θ. θ is set to null if the current
connector is not connected with any other cell.

• Σobj(θ) is the object store for cell θ. This is the place
a cell stores its locally generated objects during execu-
tion. Tuple 〈α, obt , 〈clsn, IS〉〉 denotes object obt has
its code defined by class clsn from α, and has an object
instance store IS. IS is a simple store mapping object
instance variables to values.

• Σins(θ) is the store for cell instances. Tuple 〈α, instnt , v〉
denotes the instance variable instnt defined in the name
space of α has a value v.

The Link Table
Since a cell might be loaded from a compound assembly
and/or it might be dynamically linked at run-time, its code
may come from many different atomic assemblies. The link
table defines how every building block—atomic assembly—
is linked to one another to eventually form the complete
codebase of the running cell. Because our language has a
strong notion of codebase, the linking process preserves the
identity information of all the linked parties.

Given an assembly, the inital link table, which reflects the
static linking structure of assemblies, is now defined. Future
dynamic linking will modify the table to reflect these new
links. This is achieved by the following function InitLT:

InitLT (α)
def
=

Imp(α) ∪ Exp(α)
α atomic

Scrn(MrgLT (s, {InitLT (α1), . . . InitLT (αn)}), α)
α cmpd of α1 . . . αn

Before giving the formal definitions of the functions used in
the above, we first give an overall explanation. This def-
inition shows that the link table for an atomic assembly
records only importer and exporter information. For an im-
porter iln, tuple 〈α, iln,null, d〉 is entered into the table. For
an exporter eln, tuple 〈null, eln, α, d〉 is entered. Note that
these null importer and exporter entries in the link table
stand for unlinked parties. It is therefore irrelevant whether
d or s should be declared as a flag. We pick d as a conven-
tion. The definitions of Imp and Exp define this precisely:

Imp(α)
def
=

⋃
iln∈s

ilnkα

{〈α, iln,null, d〉}

Exp(α)
def
=

⋃
eln∈s

elnkα

{〈null, eln, α, d〉}

The link table for a compound assembly is the merge of all
link tables of its subparts. During the merge, if one sub-
part has an importer and another subpart has an exporter
and these two share the same name, a link is formed. The
link table records this. Note that exporters do not get ab-
sorbed after being linked, they can be re-exported by the
compound. Function MrgLT (flag , {lt1 , . . . , ltn}) merges link
tables lt1 , . . . , ltn . flag indicates whether the merge is static
or dynamic. The process of computing a link table of a
compound is a static one, which can be realized by function
MrgLT when flag is set to s:

MrgLT (flag , {lt1 , . . . , ltn})
def
=

⋃
t∈{1..n}

ltt ∪ NewL−OldL

where
NewL(flag) = {〈αu, ln, αv,flag〉 | (〈αu, ln, αw, d〉 ∈ ltp)∧

(〈null, ln, αv, d〉 ∈ ltq)∧
((flag = s) =⇒ (αw = null))}

OldL(flag) = {〈αu, ln, αw, d〉 | (〈αu, ln, αw, d〉 ∈ ltp)∧
(〈null, ln, αv, d〉 ∈ ltq)∧

((flag = s) =⇒ (αw = null))}

for some p, q ∈ {1..n}, p 6= q and some w

Dynamic linking, illustrated in MrgLT when flag is set to d,
is slightly different from its static counterpart. For static
linking, to form a link an unlinked importer is assumed
((flag = s) =⇒ (αw = null)). This constraint is loosened
in dynamic linking, where we allow relinking: a formed dy-
namic link can be overrided and the importer can be relinked
to a newly matched exportor.

In our language, a compound assembly also explicitly de-
clares its importers and exporters. This declarative design
is good from a software engineering point of view, and the
explicit declaration can also be used to limit exporters. Mr-
gLT “by default” does not consume exporters and a screen-
ing function Scrn is defined to deal with the issue of limiting
exporters:

Scrn(lt , α)
def
= lt −

⋃
ln /∈s

elnkα

{〈null, ln, αe〉}

The Connection Table and Cell Instance Store
For a cell whose code comes from multiple atomic assem-
blies, its connection table must contain the connector state
of each and every subpart atomic assembly. The connection



table is indexed by both the connector name and the AID
of the atomic assembly defining the connector. When a cell
is loaded, the initial connection table can be computed by
the following simple function InitCT:

InitCT (α)
def
=

⋃
cntn∈s

cntα

{〈α, cntn,null〉} α atomic

InitCT (α1) ∪ · · · ∪ InitCT (αn) α cmpd of α1 . . . αn

Likewise, the function to compute the intial instance store
when a cell is loaded from an assembly α is InitIT:

InitIT (α)
def
=
⋃

instn∈s
cellinstα

{〈α, instn,null〉} α atomic

InitIT (α1) ∪ · · · ∪ InitIT (αn) α cmpd of α1 . . . αn

4.3 Operational Semantics
The Operational sematics of our language is given in Fig.
6, via a small step evaluation relation. Each rule takes the
following form:

A ` 〈e, α, θ, Σ〉 =⇒ 〈e ′, α′, θ′, Σ′〉

where α is the assembly context and θ the cell context of
execution. The assembly context is the assembly in which
code fragment e appears. The cell context keeps track of the
cell in which e is executing.

Our language is rooted in a distributed environment, where
cells and assemblies can be located on different locations.
By nature distributed computation is multi-threaded. In
this presentation, however, our focus is not on distribution
or threads, and therefore we assume a single-threaded model
to avoid distraction. In a single-threaded model we must
context-switch when execution moves from one cell or as-
sembly context to another; we have added a to expression,
described shortly, to explicitly force a context switch.

We extend the original user level expressions with new syn-
tax needed to implement the operational semantics. Values
v and evaluation contexts E are also defined:

e ::= · · · | ob | θ | to(α, θ, e)
v ::= i | b | ob | θ | null

E ::= [ ] | E .opn(e) | v .opn(E)
| instn :=E | E .instn | E .instn :=e | v .instn :=E
| let x = E in e | to(α, v ,E)
| E ..srvn−>opn(e) | v ..srvn−>opn(E)
| connect E at cntn | cntn−>opn(E)

Expression to(α, θ, e) means that after evaluating E, the
assembly context and cell context should be shifted to α
and θ, respectively. The to expression is used to switch from
executing code in one cell to executing code in another, e.g.
when one cell invokes a service on another.

Some simple containment relations are used in the semantics
rules. clsn ∈s

clsdf α denotes class clsn is locally defined in
assembly identified by α; α1 ∈s

compose α2 denotes α1 is a
subpart (by one or more level composition) of α2; All the

other notations with symbol ∈s share the same pattern, and
are defined in Fig. 10. a ∈s

b c denotes a is declared as a b in
c. “||′′ is an operator used to update cell states defined as
follows:

S ||〈x , y ,newV 〉 def
= (S − 〈x , y , oldV 〉) ∪ {〈x , y ,newV 〉}

〈x , y , oldV 〉 ∈ S

S ||〈x ,newV 〉 def
= (S − 〈x , oldV 〉) ∪ {〈x ,newV 〉}

〈x , oldV 〉 ∈ S

Description of Semantics
The load rule prepares the initial link table, connection ta-
ble and instance store, and the initialization code of the
loaded cell is executed. Because of the compound nature
of assemblies, cell loading triggers the execution of the ini-
tialization code of all atomic assemblies forming the loaded
compound. The process will be multi-threaded in a full
implementation, but we encode them in a single-threaded
model here for simplicity. Init(α, θ) is a function linearizing
the expressions that will be evaluated when α is initialized
in the context of cell θ:

Init(α, θ)
def
={

to(α, θs, e) α atomic, with init code e
Init(α1, θ); . . . ; Init(αn, θ) α cmpd of α1 . . . αn

where e1 ; e2
def
= (let x = e1 in e2 ) and x does not occur

free in e2 .

The dynlink rule dynamically merges the table of all as-
semblies in the parameter list with the table of the current
cell. All the assemblies dynamically linked will be initial-
ized. new rule creates an object, but since the class can
also be imported, the link table may be needed to retrieve a
non-local class. connect and disconnect add and remove
the asociated connections from the connection table.

Invoking an operation on a connector can mean different
things. If the operation is a plugout, it is a local call. If the
operation is a plugin instead, the connection table needs to
be used to locate the plugout operation the connected cell.

Notice we have different ways of handling parameters de-
pending on inter-cell communication and intra-cell commu-
nication. For intra-cell communication, all parameters are
passed as it is, including the objects being passed as refer-
ences. For the former case, if the passed parameter is an
object reference, the deep copy is passed. This is reflected
in the invoke srv op and invoke cnt plugin rules. Deep
copy is defined by function DeepCopy(θsrc, θdst, v , Σ):

DeepCopy(θsrc, θdst, v , Σ)
def
={

〈v , Σ〉 if v is an integer, boolean, CID, or AID
〈v ′, Σ′〉 if v is an object reference

v’ is a fresh object reference held by θdst

Σ′ = Σn+1 except Σ′
obj(θdst) = Σn+1

obj (θdst)||〈α, v ′, 〈clsn, IS ′〉〉
〈v ′

i , Σ
i+1〉 = DeepCopy(θsrc, θdst, vi , Σ

i) for each i ∈ [1..n]
IS ′ = {〈instn1 , v ′

1 〉 . . . 〈instnn , v ′
n〉}

〈α, v , 〈clsn, IS〉〉 ∈ Σobj(θsrc)
IS = {〈instn1 , v1 〉 . . . 〈instnn , vn〉}, Σ0 = Σ



(load)
A ` 〈EJ load α1 K, α0, θ0, Σ〉 =⇒ 〈EJ Init(α1, θ1); to(α0, θ0, θ1) K, α0, θ0, Σ′〉

θ1 is a fresh CID, Σ′ = Σ except Σ′(θ1) = 〈α1, InitLT (α1), InitCT (α1), φ, InitIT (α1)〉
(dynlink)

A ` 〈EJdynlink α1, . . . αn K, α0, θ0, Σ〉 =⇒ 〈EJ Init(α1, θ1); . . . Init(αn, θ1); to(α0, θ0, θ0) K, α0, θ0, Σ′〉
Σ′ = Σ except Σ′

lnk(θ0) = MrgLT (d, {Σlnk(θ0), InitLT (α1), . . . InitLT (αn)})
Σ′

ins(θ0) = Σinst(θ0) ∪ InitIT (α1) · · · ∪ InitIT (αn)

(new)
A ` 〈EJnew clsn K, α0, θ0, Σ〉 =⇒ 〈EJ ob K, α0 , θ0 , Σ ′〉

Σ′ = Σ except Σ′
obj(θ0) = Σobj(θ0)||〈α, ob, 〈clsn, IS〉〉, IS =

⋃
instn∈s

clsinst〈clsn,α〉

{〈instn,null〉}

ob is a fresh object reference, α =

{
α0 clsn ∈s

clsdf α0

α1 clsn ∈s
clsilnkr 〈ln, α0〉, Σlnk(θ0, α0, ln) = α1 for some ln

(connect)
A ` 〈EJ connect θ1 at cntn K, α0, θ0, Σ〉 =⇒ 〈EJ θ0 K, α0, θ0, Σ′〉

Σ′ = Σ except Σ′
cnt(θ0) = Σcnt(θ0)||〈α0, cntn, θ1〉, Σ′

cnt(θ1) = Σcnt(θ1)||〈α1, cntn, θ0〉
cntn ∈s

cnt α1, α1 ∈s
compose Σaid(θ1)

(disconnect)
A ` 〈EJdisconnect at cntn K, α0, θ0, Σ〉 =⇒ 〈EJ θ0 K, α0, θ0, Σ′〉

〈α0, cntn, θ1〉 ∈ Σcnt(θ0), 〈α1, cntn, θ0〉 ∈ Σcnt(θ1)
Σ′ = Σ except Σ′

cnt(θ0) = Σcnt(θ0)||〈α0, cntn,null〉, Σ′
cnt(θ1) = Σcnt(θ1)||〈α1, cntn,null〉

(invoke srv op)
A ` 〈EJ θ1..srvn−>opn(v) K, α0, θ0, Σ〉 =⇒ 〈EJ to(α0, θ0, e[θ1/thiscell, v ′/x ]) K, α1, θ1, Σ′〉

srvn ∈s
srv α1, opn ∈s

srvop 〈srvn, α1〉, e is body of opn, α1 ∈s
compose Σaid(θ1)

〈v ′, Σ′〉 = DeepCopy(θ0, θ1, v , Σ)

(invoke class op)
A ` 〈EJ ob.opn(v) K, α0, θ0, Σ〉 =⇒ 〈EJ e[θ0/thiscell, ob/this, v/x ] K, α1, θ0, Σ〉

〈α1, ob, 〈clsn, IS〉〉 ∈ Σobj(θ0), e is body of opn of clsn of α1

(invoke cnt plugin)
A ` 〈EJ cntn−>opn(v) K, α0, θ0, Σ〉 =⇒ 〈EJ to(α0, θ0, e1 [θ0/thiscell, v ′/x ]) K, α1, θ1, Σ′〉

opn ∈s
plugin 〈cntn, α0〉, 〈α0, cntn, θ1〉 ∈ Σcnt(θ0), α1 ∈s

compose Σaid(θ1)
opn ∈s

plugout 〈cntn, α1〉, e1 is body of opn, 〈v ′, Σ′〉 = DeepCopy(θ0, θ1, v , Σ)

(invoke cnt plugout)
A ` 〈EJ cntn−>opn(v) K, α0, θ0, Σ〉 =⇒ 〈EJ e0 [θ1/thiscell, v/x ] K, α0, θ0, Σ〉 opn ∈s

plugout 〈cntn, α0〉

(get cell instn)
A ` 〈EJ instn K, α0, θ0, Σ〉 =⇒ 〈EJ v K, α0, θ0, Σ〉 〈α0, instn, v〉 ∈ Σins(θ0)

(set cell instn)
A ` 〈EJ instn :=v K, α0, θ0, Σ〉 =⇒ 〈EJ v K, α0, θ0, Σ′〉

Σ′ = Σ except Σ′
ins(θ0) = Σins(θ0)||〈α0, instn, v〉

(get obj instn)
A ` 〈EJ ob.instn K, α0, θ0, Σ〉 =⇒ 〈EJ v K, α0, θ0, Σ〉 〈α1, ob, 〈clsn, IS〉〉 ∈ Σobj(θ0), 〈instn, v〉 ∈ IS

(set obj instn)
A ` 〈EJ ob.instn :=v K, α0, θ0, Σ〉 =⇒ 〈EJ v K, α0, θ0, Σ′〉

〈α0, ob, 〈clsn, IS〉〉 ∈ Σobj(θ0), IS ′ = IS ||〈instn, v〉, Σ′
obj(θ0) = Σobj(θ0)||〈α0, ob, 〈clsn, IS ′〉〉

(let)
A ` 〈EJ let x = v in e K, α0, θ0, Σ〉 =⇒ 〈EJ e[v/x ] K, α0, θ0, Σ〉

(to)
A ` 〈EJ to(α1, θ1, v) K, α0, θ0, Σ〉 =⇒ 〈EJ v K, α1, θ1, Σ〉

Figure 6: Small Step Semantics



5. THE FORMAL TYPE SYSTEM
In this Section we define the well-typed assemblies, classes
and expressions. First a closure conversion process is defined
which resolves type name references, and then the type rules
are given.

5.1 Extended Types
The user-level types presented in Fig. 5 include class/object
types clsn, object closure types 〈clsn, σ〉, and cell signatures
cellsig ς. All of these types share a common trait, they con-
tain type references that need resolving: either class name
references, ASID references, or both.

In order to define the well-typed programs, we need to re-
solve these type references. It is not possible to eagerly
resolve all references because there may be recursive ref-
erences and thus an eager approach would yield infinitely
large types. We take a two-pronged approach here: we
define a pre-processing step on types which disambiguates
class/object types clsn by converting them to the object clo-
sure types 〈clsn, σ〉 indicating the assembly signature σ in
which the class type was originally defined. This process we
term closure conversion; it is described in Section 5.2.

Secondly, in type derivations we may lazily replace these ob-
ject closure types with their one-level expansions, by defin-
ing type equivalences between the closure types and their
expansions. For this process to work, we need to add the
one-level expansions to the type grammar:

eτ ::= τ | cellt | clsobt
cellt ::= cellsig { srvsig cntsig inst}
clsobt ::= clsn { inst inst meth opsig}

cellt is a full cell type, and clsobt is a full class/object type.
(Note that since in our type system full object types and
class types do not appear in the same context, we give them
the same form for simplicity.)

The type eqivalences which relate full object types to object
closure types, and full cell types to cellsig ς types are the
subtyping rules (obj eq) and (cellsig eq) of Figure 9, which
we repeat here:

(obj eq)
S = AS ∪CS
S `sub 〈clsn, σ〉 ≡ ObjectT (AS(σ), clsn)

(cellsig eq)
S = AS ∪CS
S `sub cellsig ς ≡ CellT (CS(ς))

S `eq τ ≡ τ ′ denotes two types τ and τ ′ are equal under
assembly signatures S. ObjectT and CellT are the obvious
functions to extract the relevant types from the signatures:

ObjectT (asig , clsn)
def
= clsn { inst inst meth opsig}

asig =s assembly signature σ {ocsig}
clsn { inst inst meth opsig} is an element in ocsig

CellT (csig)
def
= cellsig { srvsig cntsig }

csig = cell signature ς {srvsig cntsig}

5.2 Closure Conversion
In this section we define how every object type of the form
clsn can be converted to an object closure type of the form
〈clsn, σ〉, resolving the type of the class to its defining signa-
ture σ. This type resolution algorithm proceeds with respect
to the assembly, assembly signature, or cell signature where
clsn appears. The basic idea is to see if the class is de-
clared locally, and if not, search through the ASID’s listed
in the use clause to find an assembly signature giving the
type information. After this stage, every class (or object
type) occurence will be explicitly bound to its defining sig-
nature. The use clauses may then be ignored after closure
conversion since they have served their purpose.

Assembly signature closure conversion ⇓as is defined as fol-
lows:

signature σ0 use σ lnkr {clst} ⇓as

signature σ0 lnkr ′ {clst ′}

where lnkr ′, clst ′ are lnkr , clst with each class name oc-
curence clsn replaced by 〈clsn, σ〉, for σ the first ASID in the
sequence σ satisfying clsn ∈t

clsig AS(σ). Here “occurence”
means clsn is used as an object type, or is used as an import
or export declaration in a linker.

Cell signature closure conversion ⇓cs is defined as follows:

AS ` signature ς use σ {cellt} ⇓cs signature ς {cellt ′}

where cellt ′ is cellt with each class name occurence clsn re-
placed by 〈clsn, σ〉, for σ is the first ASID in the sequence
σ1, . . . , σn satisfying clsn ∈t

clsig AS(σ).

Atomic assembly closure conversion ⇓a is defined as follows:

AS, σ0 ` assembly α use σ lnkr {inst srvdf cntdf clsdf e}
⇓a assembly α lnkr ′ {inst ′ srvdf ′ cntdf ′ clsdf ′ e ′}

where lnkr ′, inst ′, srvdf ′, cntdf ′, clsdf ′, e ′ are the same as
their original counterparts except that every class name oc-
curence clsn is replaced with 〈clsn, σ〉, where σ is the first
ASID in sequence σ satisfying clsn ∈t

clsig AS(σ). Here oc-
curence means clsn is used as an object type, or class clsn
is used as an import or export declaration in a linker, or
new clsn expression is used. Compound assemblies closure
convert to themselves.

Globally, the closure conversion of the whole universe of as-
sembly signatures, cell signatures and assemblies is the clo-
sure of all components in the universe, ⇓uconv:

AS =
⋃

i{σi 7→ asigi},AS′ =
⋃

i{σi 7→ asig ′i}
asigi ⇓as asig ′i for each i

CS =
⋃

j{ςj 7→ csigj},CS′ =
⋃

j{ςj 7→ csig ′j}
AS′ `cs csigj ⇓cs csig ′j for each j
A =

⋃
k{αk 7→ 〈asmk , σk, ςk〉}

A′ =
⋃

k{α
′
k 7→ 〈asm ′

k , σ′
k, ς ′k〉}

AS′, σk `a asmk ⇓a asm ′
k for each k

〈AS,CS,A〉 ⇓uconv 〈AS′,CS′,A′〉



The closure conversion process necessitates some small changes
to the syntax used in the typing rules. new clsn becomes
new 〈clsn, σ〉. And, classes class clsn appearing in linkers
become class 〈clsn, σ〉.

5.3 The Type System
Fig. 7 shows the top level typing rules; Fig. 8 shows the
typing rules for expressions. Fig. 9 shows the subtyping
rules.

Some notations with symbol ∈t are used in rules, which are
of a common pattern: a ∈t

b c denotes a is declared as a b in
type c. These relations are defined in Figure 10.

Global Coherence Rule
(global coherence) of Fig. 7 ensures all assemblies in the
universe A are well-typed in the presence of a universe of
signatures S, and thus the whole universe typechecks. For
each (α 7→ 〈asm, σ, ς〉) ∈ A, the rule verifies that assem-
bly asm implements assembly signature σ and cell signature
ς. The Global coherence rule closure converts all items
in the universe, and then ensures each (closure-converted)
assembly in the universe typechecks.

Atomic Assembly Type Rule
The type of an atomic assembly is a pair, composed of its
assembly signature and its cell signature.

For an atomic assembly to typecheck, each operation that
defines services and connector plugouts, each locally defined
class, and the initialization code must typecheck. The types
of thiscell and this need to be handled carefully.

Atomic assemblies must also satisfy a few constraints to be
well-formed. The most important is:

ClassUseValid(α)
def
= for each clsn some σ, ln

clsn ∈s
needed α ⇒ clsn ∈s

clsdf α or 〈clsn, σ〉 ∈t
clsimp 〈ln, σ〉

This asserts that any class name used in assembly α to de-
clare object types, or appearing in a new expression, must
be either defined locally, or imported via an importer. This
constraint ensures every variable declared with an object
type, or every new expression can get obtain its code at
run-time.

Other constraints include:

AtomExpValid(α)
def
= for each clsn some σ, ln

〈clsn, σ〉 ∈t
clsexp 〈ln, σ〉 ⇒ clsn ∈s

clsdf α

AtomImpValid(α)
def
= for each clsn some σ, ln

〈clsn, σ〉 ∈t
clsimp 〈ln, σ〉 ⇒ clsn /∈s

clsdf α

DistinctImp(α)
def
= for each clsn some σ1, σ2, ln1 , ln2

〈clsn, σ1〉 ∈t
clsimp 〈ln1 , σ〉, 〈clsn, σ2〉 ∈t

clsimp 〈ln2 , σ〉 ⇒
ln1 = ln2

AtomExpValid(α) asserts all exported classes must be de-
fined locally; AtomImpValid(α) enforces the fact that im-

ported classes cannot be defined locally; and, DistinctImp(α)
asserts that no single class can be imported on more than
one importer.

Compound Assembly Type Rule
The type of a compound assembly is also a pair, composed
of its assembly signature and its cell signature. The assem-
bly signature must be the merge of the assembly signatures
of its components. The merged assembly signature must
bear the linker information of the compound, and have a
list of class/object type declarations combined from all type
declarations in component assemblies. Similarly, the cell
signature must be the combination of the lists of service sig-
natures and connector signatures of the subpart assemblies.
Function MergeAS(lnkrk , σ, {σ1, . . . σn}) produces a new as-
sembly signature with identity σ by combining assembly sig-
natures identified by σ1, . . . σn, with lnkrk defining linkers of
the new assembly signature. Function MergeCS(ς, {ς1, . . . ςn})
produces a new cell signature identified by CSID by com-
bining cell signatures identified by ς1, . . . ςn. We omit their
formal definitions since they are purely syntactical.

To typecheck a compound assembly α, a set of constraints
must to be satisfied. First, certain linker import and export
conflicts must be avoided.

NoImpConflict(α1, . . . αn)
def
=

ln ∈t
ilnk σi, ln ∈t

ilnk σj , i , j ∈ [1..n], i 6= j ⇒
|Orig({α1 , . . . αn}, ln)| = 1

NoExpConflict(α1, . . . αn)
def
=

ln ∈t
elnk σi, ln ∈t

elnk σj , i , j ∈ [1..n], i 6= j ⇒
|Orig({α1 , . . . αn}, ln)| = 1

Each linker (importer or exporter) defined on a compound
assembly must have been originally defined on one of its
component atomic assemblies. NoImpConflict generally re-
quires none of the linked assemblies to share a linker name,
but linkers of the same name imported in two different com-
ponent assemblies of a compound are allowed if they ul-
timately originated from the same atomic assembly. This
check resembles how Eiffel [12] allows a class to multiply
inherit from two classes, each of which had inherited from
the same class A: only one copy of A is meant. In assem-
blies this case arises if two assemblies each are compounds
including the same assembly α, and those two assemblies
are then compounded. NoExpConflict is similar. Finding
the atomic assembly where the linker was initially defined
is achieved by function Orig(S, ln). It extracts all atomic
assemblies occuring either directly or inside a compound in
an assembly in set S that define ln; if there is only one such
atomic assembly then the definition is unique. Its definition
is as follows given 〈asmi , σi, ςi〉 = A(αi) for each i:

Orig(S, ln)
def
=

φ S = {α}, α atomic, ln /∈t
lnk σ

{σ} S = {α}, α atomic, ln ∈t
lnk σ⋃

i Orig({αi}, ln) S = {α}, α compound of α1 . . . αn⋃
i Orig({αi}, ln) S = {α1 . . . αn}

In exactly the same style, NoSrvConflict, NoCntConflict and
NoClsConflict can be defined. They claim no two subparts of



(global coherence)
S = AS ∪CS, 〈AS,CS,A〉 ⇓uconv 〈AS′,CS′,A′〉, S′ = AS′ ∪CS′

S′,A′, α `a asm : 〈AS′(σ),CS′(ς)〉 for each (α 7→ 〈asm, σ, ς〉) ∈ A′

S,A `g OK

(atomic asm)

ClassUseValid(α), AtomExpValid(α), AtomImpValid(α), DistinctImp(α)

cellt = cellsig {service srvns {opnsw : τsw → τ ′sw }
connector cntnc plugin opncu : τcu → τ ′cu plugout opncv : τcv → τ ′cv instni : τi}

S,A, α, {xsw : τsw , thiscell : cellt} ` esw : τ ′sw for each sw
S,A, α, {xcv : τcv , thiscell : cellt} ` ecv : τ ′cv for each cv

S,A, α, Γ ∪ {thiscell : cellt} `c clsdfr : clstr for each r
S,A, α, {thiscell : cellt} ` e : τ
〈asm, σ, ς〉 = A(α)
asig =s signature σ lnkrm {clstr}
csig =s signature ς {service srvns {opnsw : τsw → τ ′sw }

connector cntnc plugin opncu : τcu → τ ′cu plugout opncv : τcv → τ ′cv }

S,A, α `a assembly α lnkrm

{service srvns {opnsw (xsw : τsw ) : τ ′sw {esw }}
connector cntnc plugin opncu : τcu → τ ′cu plugout opncj (xcv : τcv ) : τ ′cv

{ecv}
instnn : τn clsdfr} e} : 〈asig , csig〉

(cmpnd asm)

NoImpConflict(α1, . . . αn), NoExpConflict(α1, . . . αn), LinkTypeMatched(α1 , . . . αn),
NoSrvConflict(α1, . . . αn), NoCntConflict(α1, . . . αn), NoClsConflict(α1, . . . αn)
CompImpValid(α), CompExpValid(α),
〈asm, σ, ς〉 = A(α), 〈asmi , σi, ςi〉 = A(αi) for each i

S,A, α `a assembly α link αi lnkrk : 〈MergeAS(lnkrk , σ, {σ1, . . . σn}),MergeCS(ς, {ς1, . . . ςn})〉

(class)

obt = clsn { inst instni : τi meth opnj τj → τ ′j }, S,A, α, Γ ∪ {x : τj , this : obt} ` e : τ ′j for each j

S,A, α, Γ `c class clsn { inst instni : τi meth opnj (x : τj ) : τ ′j {e}} :

clsn { inst instni : τi meth opnj τj → τ ′j }

Figure 7: Top-level Typing Rules

the compound assembly can have overlapped services, con-
nectors and class signatures, unless they ultimately come
from the same atomic assembly.

Another important constraint to satisfy is LinkTypeMatched,
which makes sure parties matched by name during linking
have compatible types, in particular export types must be
subtypes of import types. Given an assembly α composed
of α1, . . . αn and 〈asmi , σi, ςi〉 = A(αi) for i ∈ [1..n], the
constraint is defined as:

LinkTypeMatched(α1 , . . . αn)
def
=

ln ∈t
ilnk σi, ln ∈t

elnk σj , i , j ∈ [1..n], i 6= j
{σig} = Orig({α1, . . . αn}, ln)
{σjg} = Orig({α1, . . . αn}, ln)
〈clsn, σ〉 ∈t

clsimp 〈ln, σig〉, 〈clsn, σ′〉 ∈t
clsexp 〈ln, σjg〉 ⇒

S, φ `sub 〈clsn, σ′〉 <: 〈clsn, σ〉

Note that after closure conversion, every type declared in a
linker is also assoicated with an ASID, which represents its
type information. This piece of type information is used to
realize atomic assembly separate compilation, and the goal
of LinkTypeMatched is to preserve type soundness: the type

provided for separate compilation really matches the type
the import/export entity is expected to have during linking.
Also note that a match in our case does not require two
types are exactly the same; we only need the export to have
a type which is a subtype of the corresponding import.

Other constraints include: CompImpValid asserts every im-
porter of the subpart of the compound is either matched
with an exporter from another subpart or redirected to be
the importer of the compound; and, CompExpValid asserts
each exporter of a compound assembly needs to be an ex-
porter of one of its subparts. Their definitions are:

CompImpValid(α)
def
=

ln ∈t
ilnk σi, i , j ∈ [1..n], i 6= j ⇒ ln ∈t

elnk σj or ln ∈t
ilnk σ

CompExpValid(α)
def
= ln ∈t

elnk σ, i ∈ [1..n] ⇒ ln ∈t
elnk σi

Expression Type Rules
Fig. 8 gives the type rules for expressions. Assertion S,A, α, Γ `
e : τ means, given S,A and local type environment Γ, ex-



(int const)
S,A, α, Γ ` c is an integer
S,A, α, Γ ` c : int

(bool const)
S,A, α, Γ ` c is an boolean
S,A, α, Γ ` c : bool

(variable)
S,A, α, Γ ` Γ(x ) = τ
S,A, α, Γ ` x : τ

(new object) S,A, α, Γ ` new 〈clsn, σ〉 : 〈clsn, σ〉

(get obj instn)
S,A, α, Γ ` e : obt , (instn : τ) ∈t

objinst obt
S,A, α, Γ ` e.instn : τ

(set obj instn)
S,A, α, Γ ` e1 : obt , S,A, α, Γ ` e2 : τ, (instn : τ) ∈t

objinst obt
S,A, α, Γ ` e1 .instn :=e2 : τ

(invoke obj op)
S,A, α, Γ ` e1 : obt , (opn : τ ′ → τ) ∈t

objop obt , S,A, α, Γ ` e2 : τ ′

S,A, α, Γ ` e1 .opn(e2 ) : τ

(get cell instn)
{thiscell : cellt} ∈ Γ, (instn : τ) ∈t

cellinst cellt
S,A, α, Γ ` instn : τ

(set cell instn)
{thiscell : cellt} ∈ Γ, S,A, α ` e : τ, (instn : τ) ∈t

cellinst cellt
S,A, α, Γ ` instn :=e : τ

(invoke cnt op)
{thiscell : cellt} ∈ Γ, S,A, α, Γ ` e : τ ′

(opn : τ ′ → τ) ∈t
plugin 〈cntn, cellt〉 or (opn : τ ′ → τ) ∈t

plugout 〈cntn, cellt〉
S,A, α, Γ ` cntn−>opn(e) : τ

(invoke srv op)
S,A, α, Γ ` e1 : cellt , srvn ∈t

srv cellt , (opn : τ ′ → τ) ∈t
srvop 〈srvn, cellt〉, S,A, α, Γ ` e2 : τ ′

S,A, α, Γ ` e1 ..srvn−>opn(e2) : τ

(connect)

{thiscell : cellt1} ∈ Γ, S,A, α, Γ ` e : cellt2 , cntn ∈t
cnt cellt

S,A, α, Γ ` (opsig ∈t
plugout 〈cntn, cellt1 〉) ⇒ (opsig ∈t

plugin 〈cntn, cellt2 〉) for each opsig
S,A, α, Γ ` (opsig ∈t

plugin 〈cntn, cellt1 〉) ⇒ (opsig ∈t
plugout 〈cntn, cellt2 〉) for each opsig

S,A, α, Γ ` connect e at cntn : cellt1

(disconnect)
{thiscell : cellt} ∈ Γ, cntn ∈t

cnt cellt
S,A, α, Γ ` disconnect at cntn : cellt

(dynlink)
NoImpConflict(α, α1, . . . αn), NoExpConflict(α, α1, . . . αn), LinkTypeMatched(α, α1 , . . . αn)
NoClsConflict(α, α1, . . . αn), NoSrv(αi), NoCnt(αi) for each i ∈ [1..n], 〈asm, σ, ς〉 = A(α)
S,A, α, Γ ` dynlink α1, . . . αn : cellsig ς

(let)
S,A, α, Γ ` e1 : τ ′, S,A, α, Γ ∪ {x : τ ′} ` e2 : τ
S,A, α, Γ ` let x = e1 in e2 : τ

(load)
〈asm ′, σ′, ς ′〉 = A(α′)
S,A, α, Γ ` load α′ : cellsig ς ′

(sub)
S,A, α, Γ ` e : τ , S, {} `sub τ <: τ ′

S,A, α, Γ ` e : τ ′

Figure 8: Expression Type Rules



pression e found in assembly α has type τ . Of these rules,
(connect) checks to make sure thiscell has matched plugins
and plugouts with its communicating counterpart. (dyn-
link) resembles the static compound checking rule, where
conflicts among imports, exports and class signatures are
checked, the type matching is also ensured. Unlike static
compound checking, we disallow the dynamically linked as-
semblies have services and connectors, which can be repre-
sented by two simple constraints:

NoSrv(α)
def
= srvn /∈t

srv ς for any srvn

NoCnt(α)
def
= cntn /∈t

cnt ς for any cntn

From inspection of the rules it can be seen that atomic
assemblies may be typechecked (and thus compiled) seper-
ately: the general A is only used in the (dynlink) rule, and
all constraints associated with dynlink are functions solely
depending on the universe of assembly signatures, not the
universe of assemblies.

Subtype and Type Equivalence Rules
The subtyping rules are define in Fig. 9. We allow subtyping
on cell types, full object types and object closure types.
Subtyping for cell types are purely extensional, while objects
are subtypes if they are structurally subtypes and share the
same name.

Object and cell types may be recursive or mutually recur-
sive. Our subtyping system can handle recursive types cor-
rectly in the standard style [3]; C is the set of subtyping
assumptions.

We have two rules to handle cell type subtyping. The com-
plexity arises partly because the type of thiscell is handled
uniquely in our type system, which allows internal instances
to be part of the type.

6. CONCLUSIONS
The main contribution to this paper is the development of
a component programming langauge which has integrated
notions of both run-time (cell) and compile-time (assembly)
component. In this regard we know of no other peer re-
search. There is a substantial body of research in module
systems, which we now briefly compare assemblies to.

6.1 Related Module Systems
Our notion of module and linking starts from the classi-
cal one found in languages such as Modula-2, where there
is a notion of module linking defined, and imports and ex-
ports are matched. Cardelli [5] first formalized this linking
process. Units and Jiazzi [6, 11] extend this core to in-
clude other features. The module aspects of assemblies are
most closely related to these latter systems. Abstractions for
components have been studied in the framework of a formal
calculus in [16]. Standard ML modules [9] take a different
approach, modelling linking as function (functor) applica-
tion. The topic of contrasting ML-style modules with the
more standard style is a fairly involved topic and enough of
a tangent that we will not pursue it here. It should be said
that ML modules, in the form of structures, do have an ex-
plicit run-time presence, but it is relatively weak compared
to a cell.

So, we will focus our comparisons on classic module sys-
tems and Units/Jiazzi. Many of our design constraints are
ones found in classic module systems. We guarantee one
assembly need not be recompiled if an assembly it is linked
with, but not its signature, changes. We support recursive
references between assemblies. Like Units and Jiazzi, we
support a compositional notion of linking, i.e. linking is a
compositional operator and partial linking is possible, pro-
ducing an assembly which can be further linked. One of
the main differences between assemblies and these existing
systems is our use of explicit interfaces for dynamic linking:
the same assembly linkers may be used for either static or
dynamic links. Units do support dynamic linking through
an interface, but the running code does not itself present
an interface to the dynamically-linked code, only vice-versa.
Our dynamic link is more symmetric: a running program
must still present a linker to which the new assembly is dy-
namically linked.

We aim to more directly model the software lifecycle in the
language, further “typechecking” programmers into good
practice: AID, ASID, and CSID identifiers give universal
names to immutable code objects.

6.2 Future Topics
There are several features we have left out of this presen-
tation to keep the details down. There is no class inheri-
tance, and no notion of module-level field/method hiding in
classes, analogous to the package-protected fields and meth-
ods of Java. Currently there is no general type parametric-
ity; classes and their types can be imported, but from a fixed
source only. We expect it will not be hard to add paramet-
ric class imports to assembly linkers, and hope to be able to
squeeze them into the final version.

There are several other topics specific to our language design
which we plan on tackling. Our signatures are designed to
be inferred, generally preventing duplication of information
in the assembly and signature definitions. But, we present
no inference algorithm here. We plan on focusing more ex-
plicitly on the compilation process: build scripts (makefiles)
should be more tightly integrated into the language, and we
plan on incorporating build targets explicitly into assembly
definitions: assemblies should know everything it takes to
get themselves up and running.
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(these definitions are implicitly parameterized by AS and A)

ln ∈s
ilnk α Linker with name ln is declared as an importer in assembly α

ln ∈s
elnk α Linker with name ln is declared as an exporter in assembly α

clsn ∈s
clsilnkr 〈ln, α〉 Class clsn is in importer ln of assembly α

cntn ∈s
cnt α Connector with a name cntn is declared in assembly α

srvn ∈s
srv α Service with a name srvn is declared in assembly α

opn ∈s
srvop 〈srvn, α〉 Operation with name opn is declared in a service srvn of assembly α

opn ∈s
plugin 〈cntn, α〉 Operation with name opn is declared as a plugin in connector cntn of assembly α

opn ∈s
plugout 〈cntn, α〉 Operation with name opn is declared as a plugout in connector cntn of assembly α

(instn) ∈s
cellinst α Instance variable instn is declared as a cell instance in assembly α

(instn) ∈s
clsinst 〈clsn, α〉 Instance variable instn is declared in class clsn of assembly α

clsn ∈s
needed α Class clsn is used as an object type or appears in new expression

clsn ∈s
clsdf α Class with name clsn is defined in assembly α

α1 ∈s
compose α2 Assembly α1 is a subpart of α2

ln ∈t
ilnk σ Linker with name ln is declared as an importer in AS(σ)

ln ∈t
elnk σ Linker with name ln is declared as an exporter in AS(σ)

ln ∈t
lnk σ ln ∈s

ilnk σ or ln ∈s
elnk σ

〈clsn, σ′〉 ∈t
clsimp 〈ln, σ〉 Class clsn with sig declared in σ′ is in importer ln of AS(σ)

〈clsn, σ′〉 ∈t
clsexp 〈ln, σ〉 Class clsn with sig declared in σ′ is in exporter ln of AS(σ)

clsn ∈t
clsig σ Class sig with name clsn is declared in assembly sig σ

cntn ∈t
cnt cellt Declaration of connector cntn appears in cell sig cellt

srvn ∈t
srv cellt Declaration of service srvn appears in cell sig cellt

opsig ∈t
objop obt Operation sig opsig is declared in object sig obt

opsig ∈t
plugin 〈cntn, cellt〉 Operation sig opsig is declared as a plugin in declaration of connector cntn of cell sig cellt

opsig ∈t
plugout 〈cntn, cellt〉 Operation sig opsig is declared as a plugout in declaration of connector cntn of cell sig cellt

opsig ∈t
srvop 〈srvn, cellt〉 Operation sig opsig is declared in declaration of service srvn of cell sig cellt

(instn : τ) ∈t
objinst obt Instance variable instn with a type τ is declared as an object instance in object sig obt

(instn : τ) ∈t
cellinst cellt Instance variable instn with a type τ is declared as a cell instance in cell sig cellt.

Figure 10: Simple Containment Relations


