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Abstract. The success of Java in recent years is largely due to its targeting
as a language for the Internet. Many of the network-related features of Java
however are not part of the core language design. In this paper we focus on
the design of a more parsimonious Internet programming language, which
supports network integration smoothly and coherently as part of its core
specification.
The key idea is to center these extensions around the unified notion of a cell.
Cells are deployable containers of objects and code, which may import (plu-
gin) and export (plugout) classes and operations. They may be dynamically
linked and unlinked, locally or across the network. Cells may be dynami-
cally loaded, unloaded, copied, and moved, and serve as units of security.
At first approximation, cells can be thought of as a hybrid between modules
and components. Here we concentrate on the design of JCells, a language
which builds cells on top of the fundamental Java notions of class, object,
and virtual machine.

1 Introduction

In the history of programming languages, fundamentally new concepts have never
been implemented correctly the first time or even the first several times. FORTRAN
was very difficult to parse because parsing theory was not developed. Lisp first
implemented higher-order functions, but with dynamic scoping; Scheme was created
partly to correct this flaw in the Lisp design. In a similar spirit, our goal is to take
a second look at important new features that have arisen in the Java JDK, and
to create a more parsimonious language expressing these features smoothly and
coherently as part of the core specification. Features of Java which are relatively
new include explicit dynamic class loading, object serialization and RMI, an explicit
security architecture, Java Bean components, and mobile Applet code.

At the core of our quest for an improved language platform is the concept of a
cell. Here is a brief definition.

Cells are deployable containers of objects and code. They expose typed
linking interfaces (connectors) that may import (plugin) and export (plu-
gout) classes and operations. Via these interfaces, cells may be dynamically
linked and unlinked, locally or across the network. Standard client-server
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style interfaces (services) are also provided for local or remote invocations.
Cells may be dynamically loaded, unloaded, copied, and moved. Cells serve
as principals to which security policies may be applied.

In terms of existing concepts, cells can be thought of as an internet-aware, security-
geared hybrid between the concepts of component and module.

In this paper we define JCells, a language which builds cells on top of the
fundamental Java notions of class, object, and virtual machine. We build on top of
Java here for two purposes: we need not detail many aspects of JCells since it is
identical to Java; and, by implementing on top of Java we can more easily get a
prototype. We aim to get to examples as quickly as possible to define what is meant
by the above description. First we help set the stage by relating cells to known
concepts.

1.1 Relating Cells to Existing Concepts

Cells combine ideas from disparate domains of research, so they need to be viewed
from several angles to see their merit. As already mentioned, cells aim to capture
aspects of existing module and component systems, but also aspects of distributed
object systems, mobile code systems, persistent object systems, and distributed
security architectures.

Cells are similar to some module interface designs [MFH01,FF98,CDG+88]. Like
modules, cells have fixed interfaces (“connectors”) to the outside which import and
export (“plug-in” and “plug-out”) items, and cells are persistently linked to one
another. However, unlike modules, cells separate the notions of loading and linking.
Cells are loaded in unlinked form, and then are explicitly linked by the JCells link
...at ... command. They may also later be unlinked and unloaded. Cells may
link across the network; module linking is confined to a single process. Cells may
contain objects and so have state and thus a run-time presence; modules are purely
code with little if any run-time presence. The module aspects of cells were partly
inspired by Units [FF98], which recently have been implemented for Java as Jiazzi
[MFH01].

Cells are related to component systems [Szy98] such as Corba [Gro01] and
COM/DCOM: they are larger-grained than objects and have run-time interfaces
(connectors and services) for interaction. Like Corba and COM/DCOM objects,
cells support local and distributed service invocations, a client-server mode of in-
teraction. Unlike components, they are designed to make long-term interactions
explicit by forming persistent peer-to-peer links with one another, via connectors.
Cells also “own” a collection of objects and thus have state; components don’t.
Several considerations led us to make cells stateful. Cells can dynamically link and
unlink, and as such must have the state of the connections kept at run-time. The
modularity of components and module systems is “shallow” in the sense that it
exists at compile-time only; cells are “deeply” modular in that run-time objects are
also grouped. We believe that when engineering software, this extra dimension of
modularity will help factor functionality and clarify meaning. Lastly, migrating cells
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can directly “walk to” their new locations without the need for an additional pro-
tocol to move their state; this is similar to the design of other mobile code systems,
discussed next.

Cells support a notion of mobile code which is a generalization of Java Applets:
mobile code packages are serialized cells, which may include objects as well as code,
and cells may actively migrate from one host to another. Here we have been inspired
by the numerous mobile object systems also aimed to support such generalized
functionality [JLH90,Car95,Whi94,VT97,LO98]. Third-party references to a cell are
maintained after a cell moves.

Cells support a clean messaging protocol between virtual machines; in this sense
they are related to Java’s RMI [Sun] and other research in distributed object-passing
systems [JLH90,BNOW93,Gro01]. In contrast to RMI, we believe that remote ob-
jects should not generally be used to support services invoked by non-local users:
objects are too light-weight to support the sizable burden of remote invocation. In-
stead we advocate the use of cells in the place of remote objects: one cell may easily
invoke a service on a remote cell to which it holds a reference. In this sense cells act
like a distributed Corba or DCOM component. We still support the notion of object
method invocation across the network (via what we call a modulated reference) for
cases of lightweight servers implemented as objects.

Security is a main focus in the cell architecture. First, the act of bringing cells
together—linking—is subject to a runtime authentication protocol. Secondly, cells
aim to isolate objects that should not directly interact with one another. Our ap-
proach to object isolation is related to J-Kernel [HCC+98]; other related work
includes [BR00,WCC+74]. Cells also support a capability-based layer of security
across the network, as in [vDABW96]. The goal of object isolation inside a cell
wall also has parallels in several abstract theories of distributed system security
[Car99,VC99].

Cells are designed to cleanly support persistence: cells own their objects, and
so a cell can be archived by serializing it and all of “its” objects. Persistent object
database systems [ZM90] generally allow any object to be persistent; we instead
have a per-cell notion of persistence. Like object databases, cells are a good level of
granularity on which to place transaction processing protocols.

Cells also are related to prototype-based object languages such as Self [US87]
in the sense that they can in some ways be viewed as heavyweight prototype-style
objects: cells have no notion of inheritance, and copies can be generated from a
prototype cell. Self’s transporter mechanism for serializing objects is also related
to how cells serialize their “own” objects, but ownership is more ad hoc in Self
since without something like cells it is hard to define what objects should own what
other objects. A more elegant self transporter mechanism is stated as future work
[Ung95]; we believe cells make a step toward such an improvement.

In terms of the general goals, cells are also intended to provide open internet
services on a wide-area network. Such services have clear, published modes for
interaction, and directories for looking up services. In this sense cells can be viewed
as a toolkit with a similar purpose to the XML/SOAP/UDDI/WSDL standards
now being developed. Cells are more expressive than the above technologies, but
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Fig. 1. Two chatters communicating over the network

the above are at the bottom text-based messaging protocols and so are more widely
adaptable across platforms. So the two address a different target set of problems.
For loosely-coupled systems a simple protocol is often preferable, but for more
tightly-coupled systems, the additional expressivity of cells may be necessary.

There are many projects in addition to those named above that share at least a
fraction of our goals. JavaSeal [BV01] is built around the concept of a seal, which
encapsulates objects and code much like cells do. Seals own their objects, just like
cells. Our focus is more on module/component technology, and individual cells can
be large immobile components consisting of many classes, whereas seals are more
intended for mobile units. Our module focus means we support cross-network linking
and our component focus means we support remote service invocation. Serialized
cells are similar to passive seals. Seals may be nested; we may add nesting to cells
in the future.

ArchJava [ACN02] is another module/component system extension to Java which
supports code-embedded architectural design and guarantees the compatibility of
implementations. ArchJava components have ports, which are similar to our plugins
and plugouts. Their focus however is more on static architectural aspects and less
on runtime and networking.

2 Cells by Example

In this section we introduce JCells through a running Chatter example modeled on
an internet chat system such as ICQ, Odigo, or Yahoo Messenger. The base scenario
is two Chatter cells running in different virtual machines which link to one another
across the network to carry out a chat conversation; see Fig. 1.

Each Chatter has a connector named Chatwith send and receive operations. The
receive operation is a plugout, i.e. provided to anyone who connects to it, and send
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is a plugin, i.e. expected from connecting cells. When the individual Chatter cells
are first loaded, their connectors are not linked. Later, an explicit link command
will connect them across the network (the dashed line in the figure is the network
boundary), linking the send of one to the receive of the other. From this time
on, one cell calling its plugin send will invoke the plugout receive of the other
Chatter, passing the message as parameter. When the two cells are done chatting,
they can be unlinked.

The Chatter is expressed by the following JCells syntax.

// File Chatter.csc

cell Chatter {
{ // begin cell header

//------------------Cell Connector Declaration -----------------

connector Chat { // connector which another chatter links on to chat
plugins {

void send (String aMessage);
}
plugouts {

void receive (String aMessage);
}

}

} // end cell header

//====================== Cell Chatter Body =====================

{ // begin cell body

// ------------------------- Cell Operations--------------------

// (Operations defined for the cell; some, e.g. receive, may be plugged out)

void linkToAnotherChatter(String userID) {
cell Chatter otherChatter = ... get chatter for userID; detailed later ...
link otherChatter at Chat [receive->send, send<-receive] ;

void UnLinkFromOtherChatter() {
unlink at Chat;

}

// sendMessage is activated by the GUI’s send button event handler
void sendMessage() {

String msg = ... // get message from GUI window
send (msg) ; // call send plugin. receive of linked chatter is thus invoked.

}

void receive (String aMessage) {
... implementation for plugout operation receive: display aMessage ...

}

...

} // end cell body

} // end cell Chatter

The code above is in a cell source file Chatter.csc. A .csc file contains the
definition of a single cell, in analogy to a .java file holding one class. A cell’s def-
inition consists of a header and a body. The header contains declarations, and the
body contains implementations. Every plugout must be implemented in the body
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(or, itself plugged in on some other connector). The only declaration in the header
here is of the Chat connector with the send operation as plugin and receive as plu-
gout. The cell body contains the operation implementations. receive implements
the plugout, linkToAnotherChatter is a local cell operation responsible for linking
this chatter to another chatter, and sendMessage sends a message by invoking the
send plugin. Note that a call to a plugin is the same syntax as a call to a local
operation.

The body of operations mostly follows standard Java syntax, with only a few
modifications. In linkToAnotherChatter, the variable otherCell has cell type
cell Chatter. The keyword cell is used to distinguish cell types from class and
interface names. As with classes, the definition of cell Chatter also defines a type
by the same name. The statement

link otherChatter at Chat [receive->send, send<-receive]

is a JCells extension to Java syntax which dynamically links the current cell with
otherChatter via connector Chat, and hooks receive into send in both sides. For
the chat application, this link will be across the network, but local and nonlocal
linking share the same syntax and largely the same semantics. Even though linking
is dynamic, we do not want to lose the advantages of static types and typchecking:
since send and receive are linked, we require their types to be the same. In general,
a link at a connector requires the types in all connected plugin/plugout pairs to
correspond.

Cells execute in a Cell Virtual Machine (CVM), which is similar to a Java JVM.
One important property of cells is cross-network linking: the two chatter cells are
are running in different CVMs at different network locations, but still can be linked.
The Chatter.csc file above is compiled into a Chatter.cell file which can then
be loaded into two different CVMs; one chatter then can link to the other to form
the configuration of Fig. 1. A .cell file is at first approximation analogous to a
Java .class file, but it contains a cell including its classes and objects.

CVMs only execute cells, so every object and operation must be part of some
cell. There can be many cells loaded into a given CVM.

Library Linking Cells serve both as components and as modules, thus code libraries
are also cells. Chatter will need to plug in libraries, in this example an audio-visual
support library extending the chatter’s basic text capability. The audio-visual cell
is likely to arrive to the local machine as a downloaded AV Extension.cell file,
perhaps some time after the basic Chatter.cell system has been installed. The
AV Extension.cell is a mobile cell, which generalizes Java’s Applets: it may include
state (in the form of objects) along with code.

We now expand the above example to link to an audio-visual library, pictured
in Fig. 2 (cell ChatCentral at the bottom of the figure is introduced later). The
syntax is as follows.

cell Chatter {

{ // Begin Cell Header
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Fig. 2. The complete chatter example

//---------------Class Signature Declarations------------
// (Class signatures declared here for typechecking purposes)

class MediaPlayer {
void play(); // (No code is given in a class signature)

void pause();
...

}

interface Cert {
... Java interface for certificates ...

}

//----------- Cell Signature Declarations ------------

// (Like class signatures, need to declare types of other cells for typechecking)

cell AV_Extension {
connector AudioVideo {

plugouts { MediaPlayer, ... }
}
service Cert getCertificate();

}

//----------- Connectors for Cell Chatter ------------

connector AudioVideo { // For plugging in audio-video library code
plugins {

MediaPlayer, ... // MediaPlayer is a class plugin
}
// special verify predicate: verify the extension comes from a reliable source
boolean verify(cell AV_Extension other) {

Cert cert = other <- getCertificate();
... return true only if cert is satisfactory ...

}
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}

connector Chat { ... as before ... }

} // End Cell Header

//================ Cell Chatter Body =================

{ // Begin Cell Body

//-----------------Cell Fields------------------------

// (Cell fields allow cells to have their own state)

cell AV_Extension theAV_Extension ;

//------------------Cell Operations------------------

void onLoad() { // this hook is invoked when the cell is loaded

theAV_Extension = (cell AV_Extension) lookup("AV_Extension");

link theAV_Extension at AudioVideo; // links plugins with like-named plugouts

}

void linkToAnotherChatter(String userID) { ... as before... }
void UnLinkFromOtherChatter() { ... as before ... }
void receive(String aMessage) { ... as before ... }

//--------------Cell Internal Class Definitions-------------
// (Cells can define their own classes either for internal use

// or for plugging out and use by others)

class ChatMediaPlayer extends MediaPlayer { // internal class extending a plugin class
....

}

} // End Cell Body

} // End Cell Chatter

Looking first at Chatter’s connectors declared above, a new connector for the
AV Extension library cell is defined. This connector declares plugins through which
various classes such as MediaPlayer are plugged-in, showing how classes as well as
operations may appear on connectors. In the providing cell AV Extension (whose
code we don’t give), these classes should have been declared as plugouts and defined
in its body. In Chatter’s body, there is now a class ChatMediaPlayer which ex-
tends the plugin class MediaPlayer—cross-cell inheritance is an important feature
of JCells.

One important security aspect of cell connections is that link time is a point at
which authentication should occur. This is one of the points in allowing persistent
connections via link: security checks happen only at link time, not at every in-
vocation. The connector AudioVideo includes a special verify predicate for this
purpose. verify is called by the CVM whenever a link at this connector is initiated.
This is one example of the per-cell approach we take to security. Note that the Chat
connector should certainly also be verified in a real implementation since it is a
cross-network link. In this example, verification of a library is sensible because the
A/V library is a downloaded plug-in which cannot always be trusted.

In the code of verify, other <- getCertificate() invokes a service on the
other cell. Services are direct cell operations which one can use without linking;
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they are used for more transient interactions. Services are described in more detail
below. The signature for AV Extension declares the service getCertificate().

Upon loading a cell, the CVM calls the hook operation onLoad() if it is defined.
Here onLoad() looks up and then links the AV Extension library cell via link

theAV extension at AudioVideo. Since here plugouts are plugged into plugins by
the same name, there is no need for a plugging map ([...<-...]). lookup is a
built-in operation, found on all cells in analogy to the methods of Object which all
objects respond to. lookup is a nameserver which maps strings to cells.

Cell source files are compilation units, and so they must know the types of
all cells and classes they interact with. For simplicity, we now require each cell to
directly declare the signatures of all these cells and classes. Class and cell signature
information is given above in the header of the cell definition. A class signature is a
class without method bodies, and similarly a cell signature is a cell without a body.
Note that these declarations are solely for compile time typechecking; in order for
actual code linking to occur, cells must explicitly link their connectors at runtime.
Realistic cells will have very long signature declaration blocks, and a mechanism for
abbreviating and sharing signatures is a topic for future work.

A full Chatter system We now flesh out the example above by showing how a
central server (ChatCentral) is used to complete the picture of a chat framework,
by allowing individual Chatter cells to learn about one another. In this full example,
we also show how song archives may be traded amongst chatters, without having to
send entire archives across the network, and without compromising security. Lastly,
the example also illustrates cell persistence: a Chatter can be unloaded along with
its state, and then reloaded at a later time.

The full architecture is shown in Fig. 2. It includes the ChatCentral cell, on
which we only invoke services. Here is the code for the full example.

cell Chatter {

{ // Begin Cell Header

//--------------Class/interface Signature Declarations------------

... as before plus:

interface User { // interface for chat user data

String getID();
String getName();

String getIntention(); // romance, friendship, chat etc.
String getHobbies();

int getAge();
...

}

interface SongArchive { // for song archives shared amongst chatters

setGenre(String musicGenre);
setArtist(String anArtist);
setLanguage(String aLanguage);

Collection getSongs(); // returns songs matching criteria
...

}

//----------- Cell Signature Declarations --------------

cell AV_Extension { ... as before ... }
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cell ChatCentral { // Clearinghouse for chatters to find other users to connect to
// declaration of ChatCentral’s services

service String registerNewChatter(copy User aUser, cell Chatter aCell);
service void logon (cell Chatter aChatter);
service void logoff(cell Chatter aChatter);

service copy User getUser (String userID);
service void updateUserDetails(User aUser);

service cell Chatter getChatter(String userID);
service Collection getUsersByCriteria(String Criteria); // returns set of users

}

//----------- Connectors for Cell Chatter --------------------

... connectors Windowing, AudioVideo as before ...

// Chat connector expanded to include song archive capability

connector Chat {
plugins {

void send (String aMessage);

modulate songArchive requestSongs(); // modulated (proxy) reference returned
}
plugouts {

void receive (String aMessage);
modulate songArchive provideSongs();

}
}

} // End Cell Header

//================ Cell Chatter Body =================

{ // Begin Cell Body

//-----------------Cell Fields-----------------------

cell ChatCentral theChatCentral;
cell GUI theGUI;
cell AV_Extension theAV_Extension ;

String myUserID;

User me; // an object holding this user’s details
SongArchive mySongArchive; // this user’s SongArchive

boolean firstLoad = true;

//------------------Cell Operations ------------------

void onLoad() {

// get cell references via lookup

theChatCentral = (cell ChatCentral) lookup("ChatCentral");

theAV_Extension = (cell AV_Extension) lookup("AV_Extension");

// link to library

link theAV_Extension at AudioVideo;

// if first time, get user details and register with ChatCentral

if (firstTime) {
me = getUserDetails(); // obtain user details by input from user

// register new user via ChatCentral service ; fresh user ID is returned:
myUserID = theChatCentral <- registerNewUser(me, thisCell);
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firstTime = false;

}

// logon to chatCentral
theChatCentral <- logon(thisCell); // let ChatCentral know we’re ready to chat

void onUnload() { // a hook run just before cell is unloaded

// logoff upon unload since user will not be available for chat
theChatCentral <- logoff(thisCell);

}

void linkToAnotherChatter(String userID) {

cell Chatter otherChatter = theChatCentral <- getChatter(userID);

// link chatters as before but more plugins and plugouts to map:
link otherChatter at Chat [receive->send, send<-receive,

provideSongArchive->requestSongArchive,

requestSongArchive<-provideSongArchive] ;

void UnLinkFromOtherChatter() { ... as before ... }

// operations which implement plugouts

void receive(String aMessage) { ... }

modulate songArchive provideSongs { .... };

//--------------Cell Internal Class Definitions-------------

// As before, plus:

class SongArchiveObj implements SongArchive {
...

}

class UserObj implements User {
...

}

} // End Cell Body

} // End Cell Chatter

ChatCentral is a server cell that exclusively provides services. Services are the
other means of communication with cells: they are operations that users can invoke
without linking, in a client-server fashion. The group of services of a given cell act
like a COM/Corba interface on the cell. Like connectors, services must be listed in
the cell’s header, and like plugouts, they must be implemented in the body or listed
as plugins.

Each loaded cell has a cell identifier (cid) which identifies it globally across all
CVMs. Cell variables at run-time hold cid’s. Users wishing to join the chatting
network proceed as follows: first they obtain the Chatter.cell file with no cid, an
anonymous cell. When it is then loaded, the CVM automatically generates a fresh
cid for the cell and executes its onLoad() hook. Using a boolean flag firstTime,
onLoad() recognizes that it is the first time this cell is being loaded, and so asks the
user for his/her details, including name, age, hobbies, etc. It then invokes the service
registerNewUser() on ChatCentral to register this new user. This service returns
a fresh userID generated by ChatCentral, which identifies the user in the chatting
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network. Next, onLoad() calls the service logon() on ChatCentral, letting it know
that it is active and willing to chat.

At some later point the Chatter cell may be unloaded into a .cell file by
invoking unload(aStream); the resulting .cell file will now contain the cell’s cid,
as well as its state, including the userID, the fields me and mySongArchive, etc. The
full unload process is as follows: the CVM first unlinks all connectors, the code in
the onUnload() hook is run (which in this case logs the user off from ChatCentral),
and the whole cell including its state is then serialized into a .cell file. When the
same cell is later loaded into the CVM, its state is fully restored and cid preserved.

While logged on, ChatCentral allows individual chatters to learn about each
other and to update their own details via ChatCentral services. If one chatter wants
to chat with another, it obtains a reference to it (i.e., a cid) from ChatCentral us-
ing getChatter(String userID), where userID has been obtained previously, for
example by using ChatCentral’s getUsersByCriteria(aCriteria) service. The
chatting itself is done by the two cells linking directly at connector Chat. (Note
that Chatter cells could have alternatively used a persistent connector to interact
with ChatCentral; we chose a service interface here to illustrate cell services.)

The result type of getUser() is declared to be copy User; the keyword copy

indicates a copy of the result is returned. Since this service is invoked from another
network node, the link would fail without this declaration; unlike RMI, there is no
implicit serialization of objects upon remote invocation.

This example also demonstrates a use of modulated object references, another
means by which parameters can be passed and results returned across the network.
A modulated reference is an RMI-like proxy through which one cell may refer to an
object inside another cell. Each cell implicitly maintains a modulation table holding
the objects it is letting outside cells access; these references can be revoked when the
Chat connector is unlinked. Revocability of modulated references is an important
security feature—when one cell is done interacting with another, backdoor channels
via modulated references may be closed. Modulation is, unlike RMI, designed for
either local or remote access; locally, the stronger security properties make it useful
for e.g. agent interaction.

Here, a plugin requestSongArchive and a plugout provideSongArchive have
been added to the Chat connector. The return value of these operations is a mod-
ulated SongArchive object which one chatter passes into the other while chatting:
the keyword modulate in the connector declaration indicates a modulated proxy
is to be returned and not the actual object. While linked, the receiving chatter
may browse the other chatter’s song archive by invoking methods on the modulated
SongArchive object it holds. If the song archive were instead returned by copy,
the whole archive would have to be copied across the network.

3 JCells Programs

This section describes JCells programs, already introduced informally in the ex-
ample of the previous section. In the subsequent section we describe the run-time
behavior of cells.
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3.1 Cell Source Files and Static Scoping

Each cell is defined in its own distinct .csc (cell source code) file. Cells are the unit
of source definition in JCells; each class is defined as part of some cell, and so .csc

files replace .java files. A .csc file is compiled to a .cell file with no cid and with
an empty state (see Sec. 4.3).

Cell definitions are statically closed name spaces on two levels. At the first level,
every identifier mentioned in the header must be declared in the header. So, if a
service, a plugin, or a plugout has a parameter of type A, A must be declared in
the header. At the second level, identifiers mentioned in the cell’s body must either
be declared in the header or defined in the body.

All top level identifiers declared inside a cell are unique and thus referable any-
where within the cell without qualification. The top level identifiers of a cell are its
name, the names of cell signatures declared inside, connector names, plugin/plugout
names, services, and the names of all elements defined in the body. The uniqueness
requirement entails that there may not be two plugins with the same name (even
on different connectors), and the names of all internal classes, operations, and inter-
faces must be different from all plugin names. Plugouts and services must be defined
in the body, and a given plugout name may be listed in more than one connector
(but implemented by one element in the body).

3.2 JCells Syntax

The syntax is very similar to Java, with the cell definition, link/unlink state-
ments, and service invocations aCell <- aService() being the primary new syn-
tax. We informally described this new syntax when presenting the example.

A cell definition consists of a header and a body. The header mainly contains
declarations of connectors and services, but also cell, class, and interface signatures
for compile-time typechecking. Connectors list plugins and plugouts which may be
classes or operations. Services are always operations. All plugouts and services must
either be defined within the body or declared as plugins.

The body defines fields, classes, operations, and interfaces, some of which imple-
ment the plugouts and services, and some of which are purely internal. In the body,
plugins are referable as if they are defined internally. In particular, an internal class
may inherit from a plugin class.

The built-in operations are listed in Appendix A. The electronic version of this
paper contains a link to the full JCells grammar.

3.3 Typing

Cells are strongly typed, meaning that “message not understood” errors do not
arise at run-time. Additionally, cell linking never fails due to plugin-plugout type
mismatch. Cell type casting may fail dynamically, just like object downcasting may
fail at run-time in the JVM.
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Cell Types and Subtyping The only new types introduced in JCells are cell types. A
definition of a cell implicitly derives a cell type by the same name with connectors
and services as specified in the cell’s header, much in analogue with how class
definitions in Java implicitly define a type. Cell types may in addition be declared
directly via signatures, see below.

Cell types are referred to in the program as cell ACellName, with the prefix
cell added to distinguish them from class types.

A subtyping relation is supported between cell types. Unlike class/interface sub-
typing in Java, cell type subtyping is structural, not by name: one cell is a subtype
of another if every service and every connector appearing in the supertype cell also
appears in the subtype cell, and with the same or more plugouts and the same or
fewer plugins on each connector. Structural subtyping is important because of the
open-ended nature of cells: it is possible to interact with an external cell for which
only one connector type is known; the types of all connectors are not needed. The
empty cell type cell Cell is a supertype of all cell types.

Casting on cell types is also supported, but in contrast with Java typecasting,
it is of a purely structural nature: a cell may be cast to a type consistent with
its header. That is, the cell at run-time must have all the connectors and services
specified by the cell type it is being cast to. By subtyping (subsumption), it may have
more. As with Java type casts, upcasts entail no runtime overhead but downcasts
require a run-time verification that the cell indeed has the indicated and so-typed
connectors and services. Type cell Cell is useful in analogy to Object in that
polymorphism on cells can be crudely modeled by using type cell Cell and then
casting as appropriate. For instance, the built-in operation load to load a .cell

file returns a cell of type cell Cell which then must be cast to be used.

Type Signatures in Cells Because cells are statically-typed closed namespaces, a
cell definition must declare the types of all cells and all classes/interfaces it refers
to. This is done by declaring cell and class/interface type signatures. Cell type
signatures are simply cells without a body. Class signatures are analogously classes
without method bodies. Signatures may appear only within a cell’s header. Because
cell signatures are defined within an enclosing cell, they may refer to other signatures
declared in that cell. This makes it possible to declare cell types that recursively
reference each other. One property of this requirement is that there will be many
class signatures written out in cell definitions and cell types. We plan on adding
type abbreviation mechanisms to the language in the future.

Type checking cell-related statements A simple link statement

link aCell at aConnector

is statically typechecked: both the cell containing the link command and aCell
need to have a connector named aConnector, with compatible types. That is, the
connector aConnector on each cell must have a plugout A for every plugin A on the
other cell’s aConnector, and with identical type. There may be unused plugouts on
either connector. In addition, the type cell A of the argument to verify(cell A
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aCell) in each cell must be a supertype of the other cell’s type. unlink statements
are typechecked similarly to link.

A service invocation

aCell <- s (args)

is typechecked w.r.t aCell ’s type in analogy to how object method invocation is
typechecked. The concepts underlying cell types are generally well-understood:
import/export interfaces subtyping, and typecast. So, we do plan on evantually
proving the system sound, but is it not a priority.

4 JCells Semantics

In this section we outline the semantics of cells, elaborating on what was presented
in the example. Since all of the concepts are interlinked, this section by necessity
contains many cross-references.

4.1 Cells and the Cell Virtual Machine

Each cell executes within a Cell Virtual Machine (CVM). CVMs are responsible
for loading, linking, and executing cells—much like JVMs w.r.t. classes. The major
difference is that cell linking is triggered by explicit link commands in the program
and is not done automatically upon loading: directly after being loaded, a cell
is not connected to any other cells. In addition, linking is performed through cell
connectors, which act as explicit interfaces to cells. In our implementation of JCells,
each CVM is implemented by a JVM. CVMs contain cells exclusively—there is no
possibility of a class or an object to be in a CVM but not part of some cell.

A cell in a CVM interacts with other cells via its connectors and services, and
internally contains classes, operations, and objects, see Fig. 3. Connectors list plug-
ins and plugouts, and may be used to link to cells with compatible connectors (Secs.
4.8,3.3). Linking will typically be used for more long term, security sensitive inter-
actions. After linking, references to plugins in one cell are resolved to the connected
plugout on the other. Services are operations which may be invoked directly, in a
client-server fashion. The set of operations of a given cell act like a COM/CORBA
interface to the cell. Services will typically be used for more light-weight, short term,
and less security sensitive interactions.

Internally, a cell has code in the form of classes and operations, and state con-
sisting of the state of its cell fields, the objects it owns (4.5), and the modulation
table for its modulated references (4.4).

4.2 Cell Identifiers (cid’s)

When a cell is loaded into a CVM, it is assigned a cell identifier (cid). The cid
identifies a CVM and a cell within that CVM, so it identifies a cell uniquely and
globally across all CVMs. Any cell variable at run-time is in fact holding a cid.
We elaborate more on the need for and use of cid’s in Sec. 5, where distributed cells
are discussed.
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Fig. 3. A cell at run-time

4.3 .cell Files

A cell is loaded into a CVM from a stream called a .cell file (In analogy with
.class files, we use this terminology even though the stream may not actually come
from a file). A .cell file contains all the information needed to create a cell in
memory. This includes the static part of the cell (functions, classes, Java interfaces)
as well as the dynamic part (cell fields, owned objects, table of modulated objects).
A .cell file may also contain a cid identifying the cell; if there is no cid the cell is
anonymous.

Compiling and serializing a cell both result in a .cell file. In this sense, .cell
files unify two distinct ideas in Java, the .class file and a file of serialized objects.
Compiling a .csc file results in an anonymous .cell file with null state. Serializing
a cell (see Sec. 4.6) results in a .cell file that contains a cid and the cell state.

4.4 Object References

CVMs support two kinds of references to objects: hard and modulated references. A
hard reference is a normal Java object reference: a pointer to an object in memory.
Hard references can span cell boundaries, but cannot span CVM boundaries. They
allow direct and full access to the referenced object.

A modulated reference is a proxy to an object which may be in a different cell,
see Fig. 4. Internally, a modulated reference has the form (cid, oid) where cid is the
cid of the modulating cell and oid is the identity of the object within the modulating
cell. From a programmer’s point of view, modulated references are transparent: they
are accessed as if they were local, like RMI objects. Behind the scenes, the proxy
forwards method calls to the modulating cell which in turn forwards it to the real
object.
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cell shield

stub (proxy)modulation table

modulated reference

hard reference

Fig. 4. Hard versus modulated references between cells

The modulation of references is an important security construct: a cell may
invalidate a reference it is modulating at any time. This is typically programmed
to happen when a connector through which the reference was passed is unlinked;
Unlinking a connector signifies the end of a tightly-coupled relationship, and object-
object connections made between the two cells via the connector should be broken.
The idea of revokable proxy object access is a common theme of object security
models [HCC+98]. The co-existence of hard and modulated references allows the
programmer to control the degree of isolation of a given cell.

In the implementation of modulated references, each cell holds a modulation table
mapping the oids of objects it is modulating to their actual locations in memory.

4.5 Cells as Containers: Object Ownership

Cells are both containers of static elements—functions, classes, interfaces—and dy-
namic elements—objects. The static elements contained by a given cell are those
textually contained by it. The objects contained in a cell are given by an ownership
relation between cells and objects: every object is owned by a unique cell, its owner.
The owner of an object is set at object creation time to be the cell containing the
new command that instantiated the object. Ownership is important for cell serial-
ization purposes (see Sec. 4.6): when a cell is serialized, all the objects it owns come
along.

4.6 Serialization

One of the fundamental features of cells is the ability to control them as a whole.
Cells can be unloaded to be re-loaded later, they can be copied, and they can be
moved. Underlying all these operations is the serialization process, i.e., turning a
cell with everything it contains into a .cell file. All cells are in principle serializable.

When a cell is serialized, both its static elements—functions, classes, interfaces—
and its dynamic elements—fields, owned objects, modulation table—are streamed
into a .cell file. Streaming the object state consists of deeply serializing all cell
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fields and objects owned by the cell until either a basic value (including integer,
boolean, cell reference, modulated reference) is reached, or an object not owned
by the cell is reached. There are three built-in operations for serialization, which
differ in the way they handle the latter case. serialize(aStream) serializes a
cell and into aStream and raises an exception if a non-owned object is encoun-
tered. serializeWithNull(aStream) serializes a cell putting null in fields of non-
owned objects. serializeByModulate(aStream) serializes a cell and requests that
all non-owned objects be modulated by their owner (by calling o.getOwner()

←modulate(o)). All of these operations fail if the cell has any active connections
at the time of serialization.

4.7 Cell Loading and Unloading

A cell is loaded into a CVM from a .cell file. Loading is accomplished by the built-
in service operations load(aStream) and loadWithoutCid(aStream), differing on
whether a fresh cid is assigned to the cell upon loading or not. load(aStream)
loads the cell into memory. If the stream contains a cid, it is assigned to the loaded
cell; an exception is raised if there is already a loaded cell with that cid. If the
stream is anonymous, i.e., does not contain a cid, load() generates a fresh one
for it. loadWithoutCid(aStream) loads a cell into memory, generating a fresh cid
for the cell even if aStream contains a cid. Loading a cell entails loading the cell’s
classes, the objects owned by the cell, and the modulation table of the cell from the
.cell file into memory. Once the cell is loaded, the cell’s hook onLoad() is invoked
if present. If a .cell file with cid is loaded via load(aStream), other cells who
knew this cell’s cid may immediately begin interacting with it now that it is (again)
loaded.

Cells may also be unloaded, which means removing them from the CVM, while
possibly serializing into a stream. Built-in operation unload(aStream) unloads
thisCell. If aStream is not null, the cell is also serialized onto aStream by in-
voking built-in operation serialize(aStream). A Cell may be unloaded only if it
has no active connections. So, unload first unlinks any linked connections. Before
a cell is unloaded, the hook onUnload() is run.

Unloading a cell entails also unloading all objects owned by the cell. If an object
that is loaded holds a reference to an object that has been unloaded, the object
appears in a zombie state: all object access results in an “object unloaded” exception
being thrown. Zombie objects cannot be restored; if the cell is re-loaded its objects
are restored, but at new locations. A cell may however hold modulated references to
objects in unloaded cells, and these references will function upon re-loading of the
cell, even if at a different location.

4.8 Cell Linking and Unlinking

Linking of cells is an operation which is not implicitly implied by loading. In order
for two cells to be linked, each must already be running in some CVM. Linking can
be either an intra- or inter-CVM operation, i.e., the two cells being linked may be in
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different CVMs. intra- and inter-CVM linking is similar; here we define intra-CVM
linking, and Sec. 5 describes how inter-CVM linking differs.

The cell linking protocol is as follows.

1. Cell connection is initiated by the atomic syntax link linkee at aConnector

being invoked from within the linker cell. We use the terms linker/linkee to
distinguish the two parties involved.

2. Multiple connections can be established at a given connector. However, the
connection attempt aborts if as a result of the linking there would exist a plugin
with more than one connected plugout (i.e. a plugout can be linked to multiple
plugins, but a plugin must be linked to a unique plugout.).

3. To verify the connection passes security checks, the verify predicate of the
linkee is first run, and if it succeeds, the verify predicate of the linker is run.
Both the linker and the linkee have a chance to refuse the linking via the verify
predicate.

4. If both verify operations succeed, the plugin/plugout connections are made,
the onConnect() operation of the linkee connector is run, followed by the
onConnect() operation of the linker connector.

5. Lastly, references to plugin classes, operations, and interfaces on either side of
the connection are resolved to refer to the connected plugout on the other cell
and the link command is complete.

The cell link protocol is asymmetric; for a perfectly symmetric model where
both cells ask for the connection (as in e.g. process algebra synchronization) each
cell must have its own thread in which each can simultaneously request a connection.
Since each additional thread complicates the architure, we do not assume a thread-
per-cell model. So, one cell—the linker—initiates the process and the other—the
linkee—responds.

A connector may have more than one cell linked to it, provided item 2. above is
not violated. This supports reuse of a library-style cell with only plugouts by multi-
ple cells. Cells are unlinked by the JCells command unlink linkee at aConnector.
This first runs the onDisconnect() hooks of the linkee and linker in turn and then
un-resolves the references to plugged-in operations. So, after disconnection is com-
plete, any reference to plugin operations on the disconnected connector will raise
an exception. Classes that are unplugged will also get an exception upon new.

Class loading and linking In Java, the loading of classes is performed by the class
loader. Because a run-time type in Java is determined by the combination of class
loader and class name, class loaders introduce multiple name spaces into Java
([LB98]). This way of managing class names and their actual code is low-level and
is not related to the structure of the system at hand.

In JCells, on the other hand, there is only a cell loader, and not a class loader:
classes are loaded as part of some cell, which acts as its complete namespace. Dif-
ferent cells may have different internal definitions of the same-named class, which
causes no conflict. Classes also can be shared between cells by explicit links which
plug in/out the classes. Cells thus hold classes both statically, by their definition
within a cell, and dynamically, by how class names are resolved at run-time.
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Type consistency across cells As explained above, different cells may have different
interpretations for a given class identifier. This is a problem when an instance of
class A is copied from one cell to another one, which has a different notion of A. This
problem is analogous to an RMI A-instance being sent to another location in the
network, where there may be a different A. This inconsistency will be detected at
runtime similarly to how RMI handles type compatibilty: the receiving cell matches
its type against a type hash value carried by the copied object.

4.9 Parameter passing and modulation

Each object parameter or returned value on a method or operation can be passed
in one of three ways:

1. by hard reference: the usual and the default case of Java.
2. by copy: the object and all objects it refers to, transitively, are copied.
3. by modulate: the cell holding the reference modulates it and passes this mod-

ulated reference; modulated references are defined in Sec. 4.4.

A copy parameter is deeply copied at method/operation invocation time. Copy-
ing is similar to serialization, but does not stop at non-owned objects.

5 Distribution

JCells is explicitly designed to support distribution of cells; in particular, CVM
processes may be running on different nodes on a network, and cells in one CVM
may directly hold references to cells in other CVMs. Additionally, cells may be
copied or moved across the network, cells in different locations may be linked
across the network, and cells in one location can hold (modulated) references to
objects in other locations. In what follows, we use the terms CVM and location
interchangeably.

Each cell is universally addressable, and has a home CVM—the CVM that
initially loaded it and generated its cid. We can elaborate on cids in this context: a
cid is a bit sequence which is a pair (CVM locator,id), where CVM locator globally
identifies a CVM, and id identifies a cell with that CVM as its home. The id portion
of a cid is random and “long enough” to make it, and thus cell identifiers, practically
unguessable. For example, a cid of a cell in cvm1 in machine.cs.jhu.edu could have
cid

(cvm1.machine.cs.jhu.edu,2034832048355917203405485532639)

Within one cell, a Cell variable holds a cid which may either be local, i.e., refers to
a cell at home on the executing CVM, or remote, i.e., refers to a cell which has its
home on another CVM, which in turn may be on another machine. Built-in service
home() may be used to dynamically determine any cell’s home CVM. Every CVM
has a running thread for handling remote cell operations. The protocol for linking
to and invoking services on remote cells is the same as the local in-CVM protocol
except for the issues which we now outline.
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Inter-CVM Connections One of the main points of the cell link protocol is that it
can be used to persistently link two cells in different locations on the internet. As
such it is a high-level analogue to ftp and other persistent socket-based internet
protocols. An interlocation connector is one which is suitable for interlocation, that
is inter-CVM, linking. Not all connectors are so suitable: hard object references are
not sensible as parameters between CVMs, and so the connector must not contain
such references. Additionally, we disallow classes being plugged in across CVMs:
code for an object must be local, so a remote class reference is not sensible.

An interlocation connector is thus a connector with the following properties:

1. It has no class plugins or plugouts.
2. All non-basic parameters on operation plugins or plugouts are either copy or

modulate parameters; similarly for return values.

An interlocation service is one in which all non-basic parameters are passed by copy

or modulate. copy object parameters may be serialized to the remote CVM, and
modulated parameters may be sent as (cid,oid) bit sequences.

The semantics of interlocation linking is the same as intra-location linking, ex-
cept the connectors must first be verified to be interlocation connectors. This check
is dynamic because cell MyCell aCell may either be local or not; this information
is not declared in the type and the cell could have in fact initially been local and
later moved to another CVM.

Loading and Cell Movement Cells can be moved between locations by unloading
and then re-loading them in a different location. In order for references to the
moved cell to be transparent, the home CVM must be notified upon re-load at a
new location. It then forwards any reference to that cid to the CVM where the cell is
currently loaded. The home CVM is again notified if the cell is later unloaded. The
home CVM is thus responsible for tracking the cell, wherever it might be loaded,
throughout its lifetime.

Security In a distributed setting, security is of particular concern. Cells were de-
signed from the beginning as units on which security policies can be defined; this
was in fact one of the inspirations of the design. Classes and objects are arguably
too fine-grained for every class and object to hold an advanced security policy; com-
ponents and modules are just code and directly support code-level security only.

Recall that cells mutually authenticate each other at link time via verify

clauses, and the linking succeeds only if both sides verify the connection is legit-
imate. Verification is particularly important for inter-CVM linking. Cells are also
secured by cid: cid’s are unguessable and so cells know only other cells they have
been explicitly told about. Finally, remote object references in JCells take the form
of modulated references, which are dynamically revokable. These principles are how-
ever only the infrastructure on which a detailed security policy is to be placed. We
are currently developing a complete policy built on the SDSI/SPKI open standard
[EFL+97], where each cell is a SDSI/SPKI principal. Under any policy it is still
unavoidable that some trust must be placed in the CVM by cells running on it. If
the CVM has not itself been tampered with, integrity of individual cells running on
the CVM is guaranteed.
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6 Conclusions

Contributions This work makes a number of contributions, which we now summa-
rize. We unify the compile-time and run-time notions of module/component: mod-
ules are well-structured at compile time but largely disappear at run-time, whereas
components have relatively less structure at compile-time but have clear interfaces
at run-time; cells importantly have both a strong compile-time and run-time pres-
ence. Module principles of code reuse are also preserved by cells: a class in one cell
may inherit from a class it has plugged in.

Java allows some programmer control over loading via class loaders; we complete
what Java started by separating loading from linking and by putting both fully
under high-level programmatic control. Cells support unlinking, a function absent
from module systems. We extend the notion of module linking to a network context
by allowing two cells running on different network nodes to link with one another.

Cells give an excellent foundation for a new security architecture because each
cell itself is sensibly a principal to be secured; in particular, cell reference and
cell linking are both privileged operations which may be restricted in JCells. The
concept of a modulated reference allows for security-controlled access to objects in
other, possibly remote cells.

We introduce the concept of multiple object spaces within a single virtual ma-
chine at run-time by requiring each object to be “owned” by a particular cell; this
helps focus policies of security and persistence. We work persistence more directly
into the design by having a standard definition of how cells and their objects may
be serialized.

We believe the above elements in the cell architecture result in a more parsimo-
nious language, in which modular Internet programming is supported as part of the
core design. In particular, Java’s RMI, ClassLoader, security manager, packages,
Java Beans, and applets are not needed in JCells because cell functionality sub-
sumes their responsibilities: cell references and modulated references replace RMI
(and cell nameserver lookup replaces the RMI registry), cell loading replaces class
loading, the cell security policy (currently under development) will replace the Java
security manager, cells replace Java Beans and applets, and cells are also used in
place of Java packages. The cell parallel of java package importing is future work.

Implementation The design outlined in this paper clearly needs to be implemented
to verify its soundness and workability in practice. So far we have implemented a
limited prototype [Lu02] on top of an unmodified JVM. We have implemented cells
with connections, a .cell file format with an XML manifest, loading of cells from
.cell files, and dynamic linking and unlinking of cells. We have yet to implement
ownership of objects by cells, serialization, modulated references, and distributed
cells. Reflection is needed to implement plugin operations. A more complete im-
plementation of JCells is currently in progress.

Future Work This is a large project and we were forced to leave out topics that were
not critical to the core architecture. A full cell security policy is currently under
development. An explicit protocol for sharing cell signatures is needed, possibly via
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cell signature nameservers. This will provide the Java-like package import function-
ality for cells. Currently we lack any notion of cell version control, a critical issue
for component systems.

Acknowledgements The authors would like to thank the ECOOP reviewers for help-
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A Built-in Protocols

Cells have built-in services and operations for important functions, and the Object

protocol is also enriched in JCells. In this Appendix we summarize the protocols.

Built-in services Cells have several built-in services to support system functions.
This is in analogy to class Object public methods. Several of them have been already
described above. Here we list the full metaprotocol available.

– cell Cell clone()—returns of a copy of the cell.
– cell Cell modulate(Object o)—returns a modulated reference to o.
– copy CVM home()—returns the home CVM of the cell.
– copy CVM location()—returns the current CVM where the cell is located.

Built-in operations Some in-cell built-in operations are also supported. These may
not be invoked by outsiders, i.e. they are not services.

– Cell cell [] cellsAt(String aConnector)—returns the set of cells connected
at thisCell’s aConnector.

– cell Cell invoker()—the cell which invoked the currently executing cell op-
eration.

– cell Cell revokeModulationOn(Object mo)—removes modulated reference
mo from thisCell’s modulation table.

– cell Cell load(aStream)—cell load preserving the cid
– cell Cell loadWithoutCid(Stream s)—a cell is loaded off of stream s, ig-

noring cid.
– void unload(Stream s)—thisCell is serialized to s and then unloaded from

the CVM. If s is null, the cell is just unloaded.
– void serialize(Stream s)—serialize thisCell unto the stream s; variants

serializeWithNull(Stream s) and void serializeByModulate(Stream s).
– cell Cell lookup(String s)—lookup a cell via name server.
– cell Cell register(String s)—register this cell with the name server as s.

Supported hooks The following hooks are supported by the CVM:

– onUnload()—This operation, if it is defined, is invoked just before a cell is
unloaded.

– onLoad()—This operation, if it is defined, is invoked immediately after a cell is
loaded off a stream, and can for instance be used to re-link the cell to libraries
or other services.

Object Protocol There are also a few additional object protocols, messages which
all objects in a CVM respond to.

1. cell Cell o.getOwner() returns the cell owning object o.
2. Boolean o.isModulated() returns true iff o is a modulated reference.
3. Boolean o.isZombie() returns true iff o is a zombie.


