
The Cell Project:

Component Technology for the Internet

Ran Rinat Scott F. Smith

Department of Computer Science

The Johns Hopkins University

{rinat, scott}@cs.jhu.edu

June 1, 2001

1 Introduction

Component-based software systems are currently receiving significant attention in
both industrial and research environments. One fact that is not brought out in
current component architectures is that there are two different layers at which co-
operating components are tied together. In the component link layer, the code that
comprises the cooperating components is linked in a way that enables them to in-
teract. In the component invocation layer, the components interact by dynamically
invoking operations defined in component interfaces.

In existing technologies—including COM, Corba and Java Beans—components
are primarily constructed around the invocation layer above: COM components
are in fact a certain kind of object that provides services to clients via COM in-
terfaces. Code-wise, COM objects are instances of COM classes, which ship inside
a DLL or an executable file. That DLL or executable needs to be linked with
the client’s program before its COM classes can be instantiated, and its objects ac-
cessed. In other words, the linking mechanism is outside the scope of the component
technology (COM). In addition, DLLs are binary entities created from object files.
Consequently, their “interfaces” are internal computer-generated symbol tables, not
programmer-declared interfaces.

Module systems, on the other hand, are concerned with the link layer, i.e. with
the way program units developed separately may be combined in a declarative,
interface-oriented fashion. Once a system has been constructed from its constituent
modules, the modules themselves cease to exist: they are only code- and link-
time abstractions. Because modules have no runtime existence, there can be no
programmatic manipulation of modules. For example, it makes no sense to unload,
or “unlink”, a module, and it makes no sense to ship a module at runtime to another
location.

Keeping these two layers of component interaction apart has some historical
justification: before applets and electronically shipped plugins became prominent,

1

linking functioned as “binary glue”: there just had to be a way of putting together
various compilation results (statically or dynamically). This apparently has nothing
to do with the runtime elements (COM objects) put to life by these binaries (DLLs).
However, an applet coming over the internet is much more than an innocent binary:
it is a component written by someone, somewhere, that wants to enter the local
domain and do its thing. As such, its identity and intentions need to be examined
and authorized by the hosting environment. In addition, if instead of the Java-
specific applet construct we consider the applet metaphor – i.e., the notion of code
being copied from a remote server to be executed locally – then the ability to carry
state (i.e. data) gains important flexibility. For instance, applets/plugins could be
specialized to the target client before shipping.

All this suggests that much can be gained by treating shipped code, not the ob-
ject it instantiates, as a dynamic entity: a stateful first-class runtime entity that can
be accessed and manipulated in a systematic way via explicit interfaces—much like
a COM object. While it should be possible for a given system to support two dif-
ferent component technologies—one module-like for the code linking purposes and
one COM-like for object interaction—the similarity of concerns strongly suggests
that the two layers are better off unified.

In this position paper we describe progress in constructing a new component
model that combines both interface-driven code linking and service invocation in
one streamlined architecture. It is based around the concept of a cell (the name
is inspired by the biological notion of cell). Cells are units of linking and deploy-
ment that exist as first-class entities in the program runtime environment. They
are containers of both passive code, in the form of classes and functions, and of
executing stateful entities, in the form of objects. In this sense, they correspond
both to DLLs and to COM objects. The cells themselves—not the objects inside—
correspond to COM objects: in our model, objects are only used to implement
cells. In contrast with DLLs, cells are linked via explicit interfaces. Like DLLs,
but unlike modules, they can be de-linked at a later time. Linking and delinking is
done programmatically at run-time via a plugging interface. This notion is closely
related to connection-oriented programming interfaces [Szy98]. Figure 1 shows a
cell containing classes and objects with a plugging interfaces ready to be linked to
other cells.

On top of this fundamental unification of component layers in cells, it is possible
to build a broader architecture incorporating component distribution and security.
The unified notion of component gives in turn a more unified notion of distribution
and security, where for instance persistent network connections can be achieved by
the linking of components, and where security of linking and security of component
invocation are one and not two problems.

Distribution Cells are designed to seamlessly support distributed computing.
This is in analogy to e.g. DCOM or Java’s RMI, but the distribution protocols
are closely tied to the component architecture and so are cleaner. Every cell exists
at some network location, and any cell in any location can in theory refer to any
other cell on the network. Program linking has traditionally been a purely local

2

Cell

classc

objectobjobj

linking (plugging) interface

Figure 1: A cell containing classes and objects ready to link

operation, but cells can directly link across the network, just by applying the cell
linking operation, connect, between cells on different nodes. Such persistent inter-
node connections bear a strong analogy to the persistent connections of internet
protocols such as ftp and ssh, but are at a higher level of programming abstraction.
What this means is that persistent service connections, which must be performed
in an ad-hoc manner in other languages, can be coded directly in the cell language.

Also within the context of distribution is the applet metaphor mentioned above:
cells containing classes, functions, and (stateful) objects may be copied from one
network location to another, to be linked and/or invoked locally. In addition, cells
may move from one network location to another, supporting a form of roving agent.

Security Cells are units of security in that they are designed to be an important
element in a distributed environment for which security policies can be established.
Cell boundaries are walls protecting the contained classes and objects, which may
be accessed only via the explicit interfaces. We propose here two simple levels of
security. The key point of our proposal is how naturally it fits into the existing cell
architecture. The existing security architectures in COM, Microsoft’s .NET, and
Java are based on external access control lists maintained in files, and are not as
tightly integrated into the design.

On the first level, cell references are unforgeable, and so serve as capabilities for

3

accessing the cell: whoever holds a reference to a cell has the capability of invoking
services on any of its service interfaces. Without a reference, a cell is completely
inaccessible and so is secured. Cell references sent across the network are implicitly
encrypted by the cell run-time system, so a reference cannot leak unless it was leaked
by an insider (assuming the cell run-time system was not itself hacked). This layer
of security requires no access control lists, no stack inspection/walking, no extra
syntax, and extremely little extra run-time overhead. Yet it provides a powerful
layer of protection; so, we believe it is a good thing to include.

On the second level, there is a natural synergy between linking and security: in
a distributed environment, linking is an operation between code units potentially
written by different parties, and it is a natural place at which to impose security
checks. So, at cell connection time the two cells mutually authenticate each other.
In the cross-network cell connection case outlined above, the analogy between per-
sistent internet connections and cell connections is reinforced: internet protocols
such as ssh and ftp start with a security check just as cross-network cell connec-
tions start with a security check. Once the check is passed, a persistent connection
is opened and generally no further security checks are needed. We believe this is a
powerful analogy, and perhaps cells can be called the first unified internet program-
ming language proposal.

Although the long-range goal of the project is to proceed with both foundations
and implementation, the project now focuses on foundations. In this position paper
we sketch the constructs and protocols supported by cells, via a series of examples.

2 The Cell Model

We illustrate the cell model in two stages: first the basic concepts, and then the
distribution layer. The examples in this section are written in the cell language,
which is defined along with its operational semantics and typing rules in [RS01].

2.1 Basic Cell Concepts

Cells interact via explicitly declared interfaces. There are two kinds of interfaces,
plugging interfaces and service interfaces, through which two modes of interaction
are supported:

1. Seamless interaction following linking via a plugging interface, a module-style
connection; and,

2. Explicit interaction via a particular service interface, a COM-style interaction.

Two cells may interact seamlessly (to be explained in a moment) after they
connect (link) via a plugging interface, see Fig. 2. A plugging interface on a cell
lists a series of imports and exports, the plugins and plugouts. To interact with cell
c via plugging interface I, another cell must be connected at I. That cell must also
have a dual plugging interface named I, in which the plugins and plugouts trade
places. Once a connection between two cells is established, calls to a plugin within

4

Cell 1 Cell 2

classc

objectobjobj
plugin

plugout

plugging interface

Figure 2: Linking cells via plugging interfaces

the implementation of cell c invoke the implementation for the plugout by the same
name in the connected cell. Thus, calls to plugins within a given cell look like a
call to an external function whose implementation will be provided via linking. The
interaction is therefore seamless from the point of view of the cell authors. This
notion of interface matching is close to module interface matching, only plugging
connections are more dynamic: two connected cells may be disconnected at a later
time.

Plugins and plugouts can be either functions (“operations”) or classes. Declaring
a class plugin allows a class in one cell to inherit a class in another cell. This powerful
feature allows, for instance, shipped code to inherit from local libraries, as often is
the case with applets using a local GUI library via inheritance.

Cell interaction via plugging interfaces is as dynamic as operation invocation
on COM objects, but it is peer-to-peer: the interaction is between two cells, not
an unspecified client interacting with a COM server. Because interaction occurs
between two concrete parties, it is possible to perform a nontrivial security check to
verify that a mutual trust relationship holds. Cells contain a special trust predicate
that allows arbitrary security checks to be coded. This is illustrated below.

The second mode of interaction is via service interfaces. A service interface lists
a series of services which can be invoked by clients. This is done by first obtaining
an handle to the interface, and then invoking the service on the handle, much
like in COM. In contrast with plugins and plugouts, services are always operations

5

(functions): they cannot be classes. A given cell can have both plugging and service
interfaces.

Example: Explicit interaction via service interfaces A first example shows
how a COM-like purely service-oriented cell can be defined. The cell has no plugging
interfaces.

nameserver =
cell interface NameServer

lookup : String -> Int
setRoot : String -> Void

impl
toLowerCase = fun(str) ...
theRoot = new(class (s) inst root = nil meth ...)
lookup = fun(str) ... // look up a name, returning its number
setRoot = fun(newRoot) theRoot.root := newRoot // set default domain

In this example, the nameserver cell declaration has one interface, NameServer,
which is a service interface with two services: lookup and setRoot. Their imple-
mentations follow the interface. In the implementation there is a private function,
toLowerCase, which the other implementations can invoke, and theRoot, a private
object belonging to the cell. This object, which was created at cell creation time,
holds the current root value. The presence of objects in cells is important because
it allows cells to have state. Within the cell, the private elements can be referred
to directly by name.

Continuing with this example, the following client code grabs the NameServer
interface as ns, and invokes some services on that interface (/ is used both for
obtaining a handle to a service interface and for invoking a service on a handle).

ns = nameserver / getInterface[NameServer] // obtain handle to interface NameSever
ns / setRoot(".jhu.edu"); // invoke setRoot service to set default domain
ns / lookup("cs") // uses default domain ".jhu.edu"

Example: Seamless interaction following linking via a plugging interface

The next example repeats the same functionality as the previous one, but using a
plugging interface instead of a service interface to explicitly contrast the differences
between the two.

pluggingnameserver =
cell interface NameServer
plugouts

lookup : String -> Int
setRoot : String -> Void

impl
... as in nameserver above ...

nameuser =
cell interface NameServer
plugins

lookup : String -> Int
setRoot : String -> Void

impl
... setRoot("jhu.edu") ...
... lookup("cs") ...
... lookup("www") ...

6

connect(nameuser,pluggingnameserver) at NameServer; // link cells
...
disconnect(nameuser,pluggingnameserver) at NameServer // unlink at a later time

In this example, the pluggingnameserver is similar to the nameserver above,
but the interface is declared a plugging interface by the presence of plugouts.
These plugouts are the services the pluggingnameserver provides. The user cell
nameserver has the dual set of plugin declarations on its NameServer interface.

The two are dynamically linked by the connect statement. The act of link-
ing reserves the NameServer interface for the particular client until the subsequent
disconnect, so conflicts between users with different default domains are avoided.
The setRoot and lookup operations can be directly invoked from inside nameuser,
because those services were plugged in. If lookup were invoked before the connec-
tion to the name server was established, a run-time error would result.

Example: A Secure Name Server If the server is serving sensitive data, it
may be desirable to restrict the parties that can plug into it by requiring a trust

relationship.

securenameserver =
cell interface NameServer
plugouts

lookup : String -> Int
setRoot : String -> Void

impl
... as above ...

trust(x) plugcase NameServer =
cert = (x / getInterface[Cert]) / certificate()

... check that cert is a valid certificate for access
return true iff the certificate is valid ...

secureuser =
... nameuser, with in addition service interface
interface Cert

certificate : Void -> String
... and implementation

impl
certificate = fun(x) ... return the certificate for this cell ...

The securenameserver cell above includes a trust predicate of the form trust(x)

plugcase Nameserver.... The plugcase defines code to be executed when any cell
plugs into the NameServer interface. The secureuser cell includes a service inter-
face Cert which the securenameserver uses in its trust predicate to determine if
the user is authorized to connect. The securenameserver-secureuser connection
succeeds only if the securenameserver trust predicate returns true. (In the general
case, secureuser could also have its own trust predicate for mutual authentication.)

2.2 Cells in Distributed Environments

As illustrated in the previous section, cells can be used in a local setting for modular
and secure programming. However, a main focus is for cells to serve as a cross-
network abstraction for distributed environments. This means that cells are global

7

entities: every cell has an identity which is unique over the network (like COM
GUIDs). References to cells are valid across the network, and reference holders use
them in the same way regardless of whether they refer to local or to remote cells
(like CORBA Inter-operable Object References (IORs)). This is the basis for the
following supported functionality:

1. Cells may be copied and shipped across the network, to be linked/invoked
locally (the applet metaphor).

2. Cells may move from one network location to another (a form of roving
agents).

3. Cells may be linked across the network, that is a cell in one location can be
connected to a cell in another location via a plugging interface.

4. A client may transparently invoke operations on a remote cell via a service
interface.

From the four points above, only the last one (remote invocation) is integrally
supported in existing technologies. As explained in the introduction, copying a cell
containing code and stateful objects from one location to another realizes the ap-
plet metaphor in a way that allows for systematic authorization and invocation on
the client side. Linking cells across the network allows for persistent peer-to-peer
connections to be made at a high level of abstraction rather than at the low level
of internet protocols. Consequently, instead of performing security checks on a per-
operation-invocation basis, such checks will typically be performed on a one-time
per-connection basis. This is a crucial point for security-sensitive distributed ap-
plications that need to maintain reasonable performance. Component technologies
not supporting the component linking concept cannot be expected to provide this
kind of security mechanism as an integral part of the technology.

We now elaborate on some of the details involved in the design. The network can
be viewed as a set of locations, each with an associated address space. Every cell is
in some location. References to cells are meaningful across locations, so one location
can hold a reference to a cell in another location. By contrast, an object reference is
valid only within the location containing the object. Cells can communicate across
the network via plugging interfaces or service interfaces in exactly the same way as
locally. Copying (moving) a cell means copying (moving) its static code part, i.e.,
classes and functions declared inside, as well as its current state, i.e., the objects to
which it holds a reference, each in its current state.

Since copied or moved objects should execute in the new location, their code
(i.e. their classes) must exist in that location. In general, a cell can hold a reference
to an object whose class is defined in another cell. If that class is a plugin for the
cell, then the cell can be sensibly copied or moved, assuming that an appropriate
cell will be available for plugging in the new location. If however this is not the case,
for example if the reference was obtained via a service/plugin/plugout parameter,
then there will be no way of executing the object in the new location.

We therefore define encapsulated cells, as ones which own all object references
they hold. A cell owns an object reference if it created the object. Only encapsulated

8

cells can be moved or copied, where the check of encapsulation is performed at
runtime. Ownership implies having the class for the object either as part of the cell
or as a plugin, so restricting copy and move to encapsulated cells guarantees that
objects within a cell can execute on the new location. (Some initial connection to
library code may be required).

A fundamental requirement that we put on object execution is that objects
always run locally, meaning that the class for the object and all its superclasses
must be in the same location as the object itself. This is still not guaranteed by
restricting copy/move to encapsulated cells because a superclass might be plugged-
in remotely. To avoid that, and also in order to be explicit about networking, we
require that interfaces – both plugging and service – be declared as networked to
be used remotely. Networked interfaces have certain restrictions which guarantee
locality of code: they cannot have classes as plugins or plugouts.

Example: Cross-Network Linking Consider the pluggingnameserver and
securenameserver examples above. These examples can be explicitly implemented
with the user and server cells being on different locations with minimal change in
the code. First, the interface NameServer in both cells must defined as networked.
Then, supposing a reference for the server cell has been obtained in the user’s
location, the exact same connect command is coded, and the interaction proceeds
transparently over the network. The service interface example nameserver can also
be made distributed, just by defining the interface NameServer as networked.

Example: Applets Applets are cells that come from other locations on the
network. In Java, an applet arrives at a location with requirements for several
system libraries, such as java.awt and java.applet. In a cell implementation of
the applet concept, there must be a cell for each such system library, and the applet
will then negotiate a connection (a plugging) with such a library. Applets with
insufficient authorization will not be allowed to plug into the system libraries. The
library cells in the client’s location are of the form

awtlib = cell
interface AWTRoot plugouts Canvas : Class(...) ... other java.awt root class headers ...
interface AWTEvent plugouts ... the java.awt.event class headers ...
...
impl

... code for all AWT classes ...
trust(x) ... authorization policy to be enforced on library users ...

appletlib = cell
interface AppletRoot plugouts Applet : Class(...) ... other java.applet class headers ...
impl

... code for applet classes ...
trust(x) ... authorization policy for applet library users ...

...

In the server’s location, an applet cell of the following form is declared:

myapplet = cell
// import all the relevant libraries
interface AWTRoot plugins ... Canvas : Class(...) ...
interface AWTEvent plugins ... the java.awt.event class headers ...

9

interface AppletRoot plugins ... Applet : Class(...) ...
...
interface Run

main : ...
impl

MyApplet = class extends Applet ... // Applet imported from AppletRoot
MyCanvas = class extends Canvas ... // Canvas imported from AWTRoot
main = fun(x) ...

Assuming the client obtained a reference for that cell, stored in remoteapplet,
it could copy it and then use it locally. After connecting to the client’s local library
cells, the plugins Applet and Canvas will refer to these local classes. The following
code copies and then links the applet dynamically with the libraries:

// link
myapplet = copy(remoteapplet)()
connect(myapplet,awtlib) at AWTRoot;
connect(myapplet,awtlib) at AWTEvent;
connect(myapplet,appletlib) at AppletRoot;
// run the applet
(myapplet / getInterface[Run]) / main()

Note that since the library cells awtlib and appletlib are plugged into myapplet,
these cells cannot be used by other parties. New cells should be created for other
applets. One consequence of this is that the libraries may themselves hold state
information. For instance, the appletlib cell could keep track of the applet cur-
rently connected to it, and keep an audit trail of critical library functions accessed.
Also note that there is no need to declare any networked interfaces here since all
connections are made locally (after copying).

One important feature of this example is that it shows how a class in one cell can
inherit from a class in another cell. When a MyApplet object is created, some of its
code is in the myapplet cell, and some is in the appletlib cell due to inheritance
from Applet. This does not violate the requirement that objects have their code
locally, since all cells involved are at the same location.

In addition to code, the imported applet could contain some data, as part of its
state. For instance, it could contain relevant web links dynamically kept up-to-date
in the server’s location. The server could even pick links which are appropriate to
the target client.

3 Related Work

We have already given the broad picture of how cells relate to existing component
technologies in the previous sections; here we focus this comparison further, and
also discuss related work in the component research community.

Existing Component Frameworks We must start with a disclaimer: it is not
quite right to compare our proposal here with COM/Corba/Java because these tech-
nologies are implemented working systems, whereas the cell technology is still at the
conceptual design stage. At this time, we have a toy language with a precise opera-
tional semantics as a proof of concept, and we are about to start an implementation

10

project aiming to prove the concept at a more practical level. The comparison below
is therefore on a conceptual level rather than on the level of technical particulars.

Cells are designed to unify in a single abstraction the properties of (1) COM/CORBA/Java-
like components, (2) Modula-like modules, and (3) DLL-, or Java .class-like dynam-
ically linkable entities. We believe that this kind of unification is the right thing
to do in order to support the challenges of the Internet distributed computing en-
vironment. We gave several concrete advantages earlier in the paper, including the
synergistic advantages this approach gives to the resulting security and distributed
programming architectures.

The idea that a compilation result is directly a dynamically linkable unit is not
new; in Java all linking is in fact a dynamic load of .class files generated directly by
the compiler. The concept of linking via explicit interfaces is also not new: it is the
main concern of module systems, and is also similar to C++ included .h files; but
the combination of modules or C++ object files is done statically by tools outside
the scope of the runtime execution engine. DLLs on the other hand are linked
dynamically; but they have no explicit interfaces. They are at a different level of
abstraction than object files, and their relationship to the object files from which
they were created is a secret of the operating system.

Cells incorporate the above properties in one programming abstraction. The
Java model, where classes in .class form can move around the network to be loaded
dynamically by the JVM, is an enabling technology for the Internet. However,
there is no systematic, interface-driven, upfront way by which these classes (usually
applets) are plugged into the local environment. Consequently, security checks
– a major issue in this setting – are embedded in the code of library functions.
Moreover, the data for these security checks – the policy files – are kept separately
in files that have nothing to do with the class being loaded. This has two problems:
first it is hard, if not impossible, to write class-specific security policies. Second,
programming for security is cumbersome for the programmer, who needs to insert
explicit calls to checkPermission() in his program.

Another drawback of the Java loading mechanism is that the objects instantiated
from the loaded classes exist in the general JVM space, not within some space
devoted for the loaded class. As a result it is hard to control the imported component
as a whole.

In contrast, COM and Corba have all it takes for a component to act as an
isolated entity, systematically accessible only via interfaces. However, because they
are not concerned with the code that runs the components (which are COM/Corba
objects), they are not directly suitable for the internet, and a different layer – outside
the scope of these technologies – needs to be used to move them around as code-
components. In the new Microsoft internet architecture, these concepts are divided
between the COM+ component architecture and the .NET runtime architecture,
each with independently designed security and distribution policies. By putting
together the advantages of the existing technologies into a single entity, cells, we
believe a simpler, more synergistic architecture is produced which will lead to faster
production of more reliable and secure code.

11

Other Related Work The importance of modeling the dynamic aspect of com-
ponent connections has been addressed by several researchers. Connection-oriented
programming as discussed in [Szy98] is closely related to our plugging interface
connections, which can be viewed as a concrete realization of that idea.

There are several foundational component frameworks that have been devel-
oped. Piccola [AN00, LAN00] is based on a core calculus for components. It is
a glue scripting langauge for putting together software. Importantly, it explicitly
models the dynamic nature of component connection. It does not include 1-1 link-
ing/unlinking via plugging/unplugging or trust relationships and is untyped. Sev-
eral purely static component calculi have also been developed. [SC00] models typed
static component composition. Some module systems are also very close to static
component systems; one such system is Units [FF98], which allows some dynamic
module linking but is lacking any service interfaces or statefulness.

References

[AN00] Franz Achermann and Oscar Nierstrasz. Applications = Components +
Scripts – A Tour of Piccola. In Mehmet Aksit, editor, Software Architec-

tures and Component Technology. Kluwer, 2000. to appear.

[FF98] Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT
languages. In Proceedings of the ACM SIGPLAN ’98 Conference on Pro-

gramming Language Design and Implementation, pages 236–248, 1998.

[LAN00] Markus Lumpe, Franz Achermann, and Oscar Nierstrasz. A Formal Lan-
guage for Composition. In Gary Leavens and Murali Sitaraman, editors,
Foundations of Component Based Systems, pages 69–90. Cambridge Uni-
versity Press, 2000.

[RS01] Ran Rinat and Scott Smith. Cells: Dynamic trusted components. Draft,
available at http://www.cs.jhu.edu/~scott/pll/cells/, March 2001.

[SC00] Joao Costa Seco and Luis Caires. A basic model of typed components. In
ECOOP, pages 108–128, 2000.

[Szy98] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-

gramming. ACM Press and Addison-Wesley, New York, NY, 1998.

12

