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The Main Design Principle

Every form of interaction of code
with the environment should be
supported by explicit, declared
interfaces.
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A Typical Module
Examples: Functors, Mixins
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Modern Langua ge Interactions

Main forms of interaction include

� Code-code interaction via static linking

� Code-runtime interaction via dynamic

linking

� Runtime-runtime interaction via

distributed messaging
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Our Appr oach: Assemb lages

� A module-centric approach to interfaces for all three

� Static linking of assemblages—mostly standard stuff

� Main contributions:

– Module-centric view of dynamic extensibility and
distributed messaging

– Unified treatment of all three, using related notions
of interface
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Code and Runtime

� Assemblages are code units—modules

� Assemblage runtimes are loaded assemblages
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Static Linking Illustrated
Assemblages with static linkers being linked together:
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Dynamic Linking
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Rebindability of Dynamic Linker s

� Problem: The need to allow arbitrary code extension
vs

Fact that only a fixed number of dynamic linkers can be
on an assemblage

� Solution:
– Allow multiple simultaneous linkings on a single

dynamic linker
– Get a different name ("handle") to access each one
– Unlinking is implicit via garbage collection when

handle is unreachable
– Use of handles also avoids an “unlinked” error

– if you have a handle, it references a real plugin
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Dynamic Linking Tree
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Connector s for Messaging

� Connectors allow different assemblage runtimes to
interact

� Aim is a cleaner notion to replace RMI/RPC
– RMI/RPC lacks a declared interface of interaction

� Connectors in programming languages are not
completely new
– Previously used in e.g. Cells and ArchJava and

Darwin
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Distrib uted Messaging Illustrated
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Distrib uted Messaging Illustrated
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Distrib uted Messaging Illustrated
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Data Encapsulation
Goal: maintain sanctity of the runtime interfaces

� Only access internals of a runtime through its interfaces

� RMI/RPC violate the sanctity of interfaces
– Object references can be passed around
– No external interface on modules for potential RMI

interactions

Thus we enforce the following

� No passing of object references across the network

� Objects can be copied, but only if their code is already
plugged in on the other side

� Runtime references can be passed
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The Unification
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The Unification
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The Unification
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The Code

RTS UTVW X S YW Z X[ // Volcano sensor example

\] ]^ _ `a \b ^ c

] d \ d egf a eih j^ k lTm n o Z p c

. . . statically linking some network library . . .

q

ris h \ _ egf a eh j^ k tm nm V n Su v Uiw x Z X c

e _y z k d {m nm V n Ym n | S { }~

^ � y z k d xm n � X� [ [ . . . get current environment snapshot . . .

q

f zh h ^ f d z k � S {m �g� {W nm c

e _y z k d xm n tm nm V n � S {m } ~��

^ � y z k d V |m V � }��� � ��� �� �~ [ [ . . . check applicability of detect model . . .

q

� � � // local feature implementation

w � {W nm tm nm V n Su [ [ ��� � } a^ d � �[ f zh h ^ f d���� ��� ��� ��� ���   ��� ��� � eih

a^ d �� ��¡ [ � ��¢ xm n tm nm V n � S {m £ }~ eh

a^ d �� ¤¥ [ y ag¦ b eih §� ��¨ �� © ª«­¬ ® ¯�° �   §� ��¨ � �� ��¡ eih

�� ¤¥ � {m nm V n YTm n | S { }~ ~

� � � q
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The Type System

� Static linkers, dynamic linkers, and connectors are
typed

� Each import/export is typed

� There may be more exports than imports (subtyping)

� Assemblage runtime types are the connector types

� First-class assemblage types are static/dynamic linkers
and connector types
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Technical Accomplishments

� Formal operational semantics

� Type system

� Soundness via a subject reduction argument
– Significant extra complication here due to multiple

runtimes, modules as first-class values etc

� Extension to have types as features on linkers
(not proved sound)
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Related Work
Explicit interfaces are there to some degree

� Static linking
– “solved” in many module systems/calculus.

� Dynamic linking
– Java classloaders: not explicit; very fine-grained
– Units, Argus, MJ, etc have partial interface support

on code being linked, but not on the runtime

� Distributed langauge-based messaging
– Existing protocols bury interactions in the code
– RPC/RMI: When remote objects are passed

between JVM’s, you don’t even know who you are
talking to

– Connectors
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Future Work

� Implementation

� Ensemble: A connector-based Sensornet language

� MVM: a Microkernel Virtual Machine

� Extensions
– Inference of signatures from assemblages
– Linker- and connector-based security
– Version control
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