
Assemb lages:
Modules with Interfaces

for
Dynamic Linking and

Comm unication
Yu David Liu and Scott F. Smith

The Johns Hopkins University

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.1

The Main Design Principle

Every form of interaction of code
with the environment should be
supported by explicit, declared
interfaces.

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.2

A Typical Module
Examples: Functors, Mixins

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.3

Modern Langua ge Interactions

Main forms of interaction include

� Code-code interaction via static linking

� Code-runtime interaction via dynamic

linking

� Runtime-runtime interaction via

distributed messaging

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.4

Our Appr oach: Assemb lages

� A module-centric approach to interfaces for all three

� Static linking of assemblages—mostly standard stuff

� Main contributions:

– Module-centric view of dynamic extensibility and
distributed messaging

– Unified treatment of all three, using related notions
of interface

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.5

Code and Runtime

� Assemblages are code units—modules

� Assemblage runtimes are loaded assemblages

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.6

Static Linking Illustrated
Assemblages with static linkers being linked together:

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.7

Static Linking Illustrated
Assemblages with static linkers being linked together:

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.7

Static Linking Illustrated
Assemblages with static linkers being linked together:

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.7

Dynamic Linking

Gaussian

cano Sensing Main

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.8

Dynamic Linking

Gaussian

cano Sensing Main

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.8

Dynamic Linking

Gaussian

cano Sensing Main

h1

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.8

Rebindability of Dynamic Linker s

� Problem: The need to allow arbitrary code extension
vs

Fact that only a fixed number of dynamic linkers can be
on an assemblage

� Solution:
– Allow multiple simultaneous linkings on a single

dynamic linker
– Get a different name ("handle") to access each one
– Unlinking is implicit via garbage collection when

handle is unreachable
– Use of handles also avoids an “unlinked” error

– if you have a handle, it references a real plugin

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.9

Rebindability illustrated

Gaussian

cano Sensing Main

h1

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.10

Rebindability illustrated

Poisson

Gaussian

cano Sensing Main

h1

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.10

Rebindability illustrated

Poisson

Gaussian

cano Sensing Main

h1

h2

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.10

Rebindability illustrated

Poisson

Gaussian

cano Sensing Main

Non-Parametric

h1

h2

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.10

Rebindability illustrated

Poisson

Gaussian

cano Sensing Main

Non-Parametric

h1

h2

h3

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.10

Dynamic Linking Tree

Poisson

Gaussian

cano Sensing Main

Non-Parametric

h1

h2

h3

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.11

Dynamic Linking Tree

Poisson

Gaussian

cano Sensing Main

Expt1

Non-Parametric

h1

h2

h3

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.11

Dynamic Linking Tree

Poisson

Gaussian

cano Sensing Main

Non-Parametric
Non-Parametric

Expt1

h1

h2

h3

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.11

Dynamic Linking Tree

Poisson

Gaussian

cano Sensing Main

Non-Parametric

Expt1

Non-Parametric

h1

h2

h3

h4

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.11

Dynamic Linking Tree

Poisson

Gaussian

cano Sensing Main

Non-Parametric

Expt1

Non-Parametric

Expt2

h1

h2

h3

h4

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.11

Dynamic Linking Tree

Poisson

Gaussian

cano Sensing Main

Non-Parametric
Expt2

Expt1

Non-Parametric

h1

h2

h3

h4

h5

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.11

Connector s for Messaging

� Connectors allow different assemblage runtimes to
interact

� Aim is a cleaner notion to replace RMI/RPC
– RMI/RPC lacks a declared interface of interaction

� Connectors in programming languages are not
completely new
– Previously used in e.g. Cells and ArchJava and

Darwin

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.12

Distrib uted Messaging Illustrated

�� �

cano Sensing Main �� �p Sensor 1

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.13

Distrib uted Messaging Illustrated

�� �

cano Sensing Main �� �p Sensor 1

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.13

Distrib uted Messaging Illustrated

�� �

cano Sensing Main �� �p Sensor 1

hc1

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.13

Distrib uted Messaging Illustrated

�� �

cano Sensing Main

�� �p Sensor 2
�� �p Sensor 1

�� �p Sensor 3

hc1

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.13

Distrib uted Messaging Illustrated

�� �

cano Sensing Main

�� �p Sensor 2
�� �p Sensor 1

�� �p Sensor 3

hc1

hc3

hc2

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.13

Data Encapsulation
Goal: maintain sanctity of the runtime interfaces

� Only access internals of a runtime through its interfaces

� RMI/RPC violate the sanctity of interfaces
– Object references can be passed around
– No external interface on modules for potential RMI

interactions

Thus we enforce the following

� No passing of object references across the network

� Objects can be copied, but only if their code is already
plugged in on the other side

� Runtime references can be passed

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.14

The Unification

�	
	�
�
 ��� � ��

�
 �
 �� � � ��� � ��
� 	
� �

kLib

�	� � �� 	

y

�	� � �	 ��

� � �� �� � �	 �� �� � �

ain

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.15

The Unification

�	
	�
�
 ��� � ��

�
 �
 �� � � ��� � ��
� 	
� �

kLib

�	� � �� 	

y

�	� � �	 ��

� � �� �� � �	 �� �� � �

ain
� 	
 �!
 �

y

� 	
� �

kLib

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.15

The Unification

"# $#% $&' ()*+ ,-

(' & $ &% &) ()* + ,-
. # $/ &' kLib

0#1 2 3* # ' y

0#1 2 4# 2&' $

5 &)% 6- & 7# -8 ,-+ 9

ain
. # $: ,; ' 6' y

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.15

The Unification

<= >=? >@A BCDE FG

BA @ > @? @ C BCDE FG

H=I J KD = A y

H=I J L= J@A >

M @ C? NG @ O= GP F GE Q

ain

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.15

The Code

RTS UTVW X S YW Z X[// Volcano sensor example

\]]^ _ `a \b ^ c

] d \ d egf a eih j^ k lTm n o Z p c

. . . statically linking some network library . . .

q

ris h \ _ egf a eh j^ k tm nm V n Su v Uiw x Z X c

e _y z k d {m nm V n Ym n | S { }~

^ � y z k d xm n � X� [[. . . get current environment snapshot . . .

q

f zh h ^ f d z k � S {m �g� {W nm c

e _y z k d xm n tm nm V n � S {m } ~��

^ � y z k d V |m V � }��� � ��� �� �~ [[. . . check applicability of detect model . . .

q

� � � // local feature implementation

w � {W nm tm nm V n Su [[��� � } a^ d � �[f zh h ^ f d���� ��� ��� ��� ��� ��� ��� � eih

a^ d �� ��¡ [� ��¢ xm n tm nm V n � S {m £ }~ eh

a^ d �� ¤¥ [y ag¦ b eih §� ��¨ �� © ª«­¬ ® ¯�° � §� ��¨ � �� ��¡ eih

�� ¤¥ � {m nm V n YTm n | S { }~ ~

� � � q

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.16

The Type System

� Static linkers, dynamic linkers, and connectors are
typed

� Each import/export is typed

� There may be more exports than imports (subtyping)

� Assemblage runtime types are the connector types

� First-class assemblage types are static/dynamic linkers
and connector types

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.17

Technical Accomplishments

� Formal operational semantics

� Type system

� Soundness via a subject reduction argument
– Significant extra complication here due to multiple

runtimes, modules as first-class values etc

� Extension to have types as features on linkers
(not proved sound)

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.18

Related Work
Explicit interfaces are there to some degree

� Static linking
– “solved” in many module systems/calculus.

� Dynamic linking
– Java classloaders: not explicit; very fine-grained
– Units, Argus, MJ, etc have partial interface support

on code being linked, but not on the runtime

� Distributed langauge-based messaging
– Existing protocols bury interactions in the code
– RPC/RMI: When remote objects are passed

between JVM’s, you don’t even know who you are
talking to

– Connectors

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.19

Future Work

� Implementation

� Ensemble: A connector-based Sensornet language

� MVM: a Microkernel Virtual Machine

� Extensions
– Inference of signatures from assemblages
– Linker- and connector-based security
– Version control

Assemblages:Modules with InterfacesforDynamic Linking and Communication – p.20

	The Main Design Principle
	A Typical Module
	Modern Language Interactions
	Our Approach: Assemblages
	Code and Runtime
	Static Linking Illustrated
	Dynamic Linking
	Rebindability of Dynamic Linkers
	Rebindability illustrated
	Dynamic Linking Tree
	Connectors for Messaging
	Distributed Messaging Illustrated
	Data Encapsulation
	The Unification
	The Code
	The Type System
	Technical Accomplishments
	Related Work
	Future Work

