
Improving Usability of Information Flow Security in Java

Scott F. Smith Mark Thober

The Johns Hopkins University
{scott,mthober}@cs.jhu.edu

Abstract
This paper focuses on improving the usability of information flow type systems. We present a static information flow

type inference system for Middleweight Java (MJ) which automatically infers information flow labels, thus avoiding the
need for a multitude of program annotations. Additionally, policies need only be specified on IO channels, the critical flow
boundary. Our type system includes a high degree of parametric polymorphism, necessary to allow classes to be used in
multiple security contexts, and to properly distinguish the security policies of different IO channels.

We prove a noninterference property for programs that interactively input and output data. We then describe a mechanism
that allows users to define top-level policies, which automatically inserts the security policies at the proper points in the
program. This provides the further benefit that whomever is defining the policy does not necessarily need intimate knowledge
of the program source.

1 Introduction

While the foundations of static information flow systems are solid, there remains a usability gap that needs to be closed. The
overhead for adding information flow security to programs is potentially large, since existing systems usually require that
security annotations be added to the code. With large numbers of annotations, the likelihood of having incorrect annotations
also increases: a mistake can get lost in the noise of so many annotations. Input/output is another important practical concern
which has also not been fully integrated into static information flow systems.

Information flow research [4, 13, 24, 18, 31] has shown how type systems can be defined to statically guarantee that high
security data will not affect low security data. Anoninterference[12] property is usually shown for well-typed programs:
low security outputs are not affected by any high security inputs. The majority of these works assume a batch model of IO,
although O’Neillet. al. recently described a technique for enforcing information flow security for interactive IO, using a
simple imperative language and basic type system [21].

Our primary goal is to provide practical data secrecy and integrity protection to aid programmers in securing programs
they write. To this end, we present a provably correct static information flow type inference system, for a core subset of
Java (namely, Middleweight Java) that automatically infers information flow labels, thus avoiding the need for a multitude of
program annotations. Policies need only be specified on IO channels, which we will argue to be the only real flow boundary
that must be considered. The type system includes a high degree of parametric polymorphism, necessary to allow classes to
be used in multiple security contexts, and to distinguish policies of different IO channels.

Our work places the focus on input and output points asthe important boundaries for securing data. Thus, we are only
indirectly concerned about internal flows, in how they ultimately will relate to the inputs and outputs. In general, we should
speak of securing thecomponent interface[30], since runtimes may be composed of multiple independent components with
distinct security policies; here we focus on just the IO boundary for simplicity.

As is common practice in information flow type systems, we associate a flow label with each program value. Labels
are explicitly placed on input data and checking policies explicitly declared at output points; for points in between, the type
system automatically infers the labels and so programmers do not need to add declarations. Input statements are of the form
read(Ls,Li)(fd), whereLs andLi are the declared security level policy for secrecy and integrity of the channel, respectively,
andfd is the file descriptor that names the channel. Similarly, output statements are of the formwrite(Ls,Li)(e, fd). For
practicality we also support the ability to downgrade (declassify) secrecy labels, and upgrade (endorse) integrity labels when
deemed safe to do so.

The type inference system provides an expressive form of parametric polymorphism. Polymorphism is crucial for mod-
eling information flows with fine enough granularity. Different objects of the same class (e.g. two completely different

1

HashSet objects) may be used in different security contexts, which must be differentiated in the analysis. Otherwise, secure
programs may be rejected by a type system that unnecessarily merges flows. In our system, security policies on IO channels
are defined at the level of JavaStream classes. This allows aLowOutputStream class to have a different security require-
ment than aHighOutputStream class. As described in Section 2, our fine-grained polymorphic type inference algorithm is
essential for providing a fine enough distinction on IO channels. To demonstrate the correctness of our system, we prove a
type soundness result, and we also show a noninterference property, extended to account for interactive inputs and outputs.

One weakness of Java and other programming languages is how the IO points can get buried in the code through sub-
classing, method calls,etc. This in turn makes it difficult to observe the policies on the use of IO channels without digging
through the whole program. This lack of a clear top-level IO interface means anyone who wants to understand the informa-
tion flow properties of a whole program must have knowledge of the code details in order to understand what information
flows occur through IO. We describe a simple mechanism that allows users to define concise top-level policies which are then
automatically applied to the proper IO points in the program. This reduces the burden on both the programmer as well as the
policy validator – the security policy for the whole program is now defined in one place.

The result of our strong type inference system and IO policy declarations is a usable system for a real language, where
programmers need only specify the security policy of IO channels, and the type system ensures the program does not violate
the policy.

2 System Overview

Our syntax is based on Middleweight Java (MJ) [8], extended with labeled input and output operations, declassifying and
endorse syntax as well as other minor additions. Input and output statements areread(L,L′)(fd) andwrite(L,L′)(e, fd),
wherefd is the file descriptor of the IO channel,e is what is written to the output channel, andL andL′ are sets of labels
specifying the secrecy and integrity levels of the channel, respectively. For convenience, we use labels sets and the usual set
relations as our security lattice [11].

At the point of a read operation, the returned value is tagged with the security labels of the channel. Further, checks are
performed to ensure it is safe to read in the current security context. For example, a low read must not occur under a high
guard. Otherwise, an attacker would notice that the amount of data read from a low stream would differ if the high guard
differed. For example, one execution may read from a low stream three times, while another execution with a different high
guard may read from the stream seven times, indirectly leaking information in the three vs. seven number. At each write,
the labels on the value to be put to the channel are checked against the channel policy, to ensure that high secrecy data is not
output to a low secrecy channel (and, dually that low integrity data does not flow into a high integrity channel).

Integrity is an important dimension of information flow security that is often ignored. While most research correctly
states that integrity is a dual to secrecy [7], there are subtle differences [15, 17], and for this reason we model both secrecy
and integrity in detail. Our goal of providing a usable information flow system provides further motivation for including
integrity in our analysis, since integrity is an important dimension of information assurance.

We provide aDeclassify(e,L) statement, which removes secrecy labelsL from e. This serves to declassify data in
infrequent, explicitly allowable instances [20, 34]. For example, in a program where a password is being checked, the result
of a password comparison may be declassified, so the resulting boolean will not carry the high security label of the password.
Programmers must be very careful when using declassify operations, because they may reveal too much information and
compromise security. We also provide the integrity dual,Endorse(e,L), which increases the integrity label of the argument,
specifying increased confidence in the data.

We define a static constraint-based type inference system, with a form of automatic label polymorphism inference that
is related to CPA-style concrete class analyses [3, 27, 33]. The need for label polymorphism inference will become evident
when we study the example program of Section 2.2.

2.1 Program Constants and Default Policies

The use of security-critical constants directly in the program text can create security holes: hard-coded secret data may be
mislabeled and leak out of a program through output operations, or by an unauthorized agent reading the source code itself.
Similarly, program constants may adversely affect data integrity,e.g. if a rogue string constant is inadvertently written as a
user’s password. Remarkably, programmers continue to make such mistakes, even in recent commercially available programs
and devices [25, 2, 10], where hard-coded passwords resulted in security problems.

2

Example 1Password Changing Program

class PwdFile extends Object {
String fileName; String tempName;

bool ChangePwd(String uname,oldpwd,newpwd){
bool succ = false; String line;
BR passIn = getPwdReader();
PrintWriter tempOut = getWriter();
while((line = passIn.readLine()) != null) {
if (isUser(line,uname,oldpwd)) {
tempOut.println(uname + ":" + newpwd);
succ = true;
} else { tempOut.println(line) }
}
// rename tempFile to fileName
return Declassify(succ,{high,sys});
}
Reader getPwdReader() {
SysFileIS fin = new SysFileIS(fileName);
return new BR(new ISReader(fin));
}
Writer getWriter() {
PwdFileOS fout = new PwdFileOS(tempName);
return new PrintWriter(fout);
}
bool isUser(String line, uname, oldpwd) {
// parseline and return true ifuname andoldpwd match
}
}

public class SysFileIS extends FileIS {
public int read() {
return read({high,sys},{high,sys})(fd); }

}

public class UserIS extends IS {
public int read() {
return Endorse(super.read(),{high});}

}

public class PwdFileOS extends FileOS {
public void write(int v) {
write({high,sys},{high})(v,fd); }

}

void main(){
String fileName = "/etc/passwd";
String tempName = "/tmp/tmppasswd";
PwdFile pf = new PwdFile(fileName,tempName);

//read uname,oldpwd,newpwd from a UserIS.

bool succ = pf.ChangePwd(uname,oldpwd,newpwd);
if (succ) {
System.out.println("Success");
} else {
System.out.println("Failure");
}
}

We take the approach that hard-coding of secret data or low-integrity data simply should not happen: the only reasonable
way to view program constants are as low secrecy but high integrity data, and this is how our type system treats all constants.

Establishing default policies for input and output channels is a closely related problem. This is important for establishing
security for programs where not all IO channels have been given a security policy, and in describing policies for the standard
input and output streams (System.in, System.out andSystem.err in Java). The default policy for an input channel is
established as low secrecy and low integrity. This means the data is considered public and unreliable, which is a natural
default for an unknown channel. The default policy for an output channel is also low secrecy and low integrity. This means
the channel is considered observable to public users, and does not require any degree of confidence in the integrity of the data
being output.

2.2 An Example Java Program

In this section we elaborate on how information flow is controlled at IO points in our system, by the study of a simple
example. In the following subsection we then give an overview of our parametric polymorphism and label inference system.

IO channels in Java are created through subclassing, creating classes such asFileInputStream, DataOutputStream,
SocketInputStream, etc. We build on this approach by defining different information flow policies via subclassing the core
IO classes. In particular, a different subclass is created for each distinct security category of IO. This 1-1 relationship between
class definitions and security policies makes for anobject-orientedapproach to information flow policies, harmonizing with
the existing language structures.

We now focus on an Example 1, a program for changing passwords, where data security is important in both secrecy and
integrity dimensions. This example is somewhat oversimplified but is short enough to illustrate the key concepts. Firstly, we
want to provide secrecy for the user name and password information contained on the system, making sure this information

3

Example 2Password Changing with Polymorphism

...
bool ChangePwd(IS in,OS out,String uname,
String oldpwd, String newpwd){
bool succ = false; String line;
BR passIn = new BR(new ISReader(in));
PrintWriter tempOut = new PrintWriter(out);
// . . . same code as above
}
...

public class TopFileOS extends FileOS {
public void write(int v) {
write({top,high,sys},{top,high})(v,fd);}}

void main() {
// . . . same code as above

String ts = "/etc/topsecret";
SysFileIS in = new SysFileIS();
PwdFileOS pout = new PwdFileOS(tempName);
TopFileOS tout = new TopFileOS(ts);

pf.ChangePwd(in,pout,uname,oldpwd,newpwd);
pf.ChangePwd(in,tout,uname,oldpwd,newpwd);
}

is not leaked to a public channel,i.e. the screen. Secondly, we want to ensure the integrity of the system password file by
not allowing it to be tainted by improper data, thereby altering user names and passwords on the system. These are two
well-defined goals for a programmer of a password changing application.

We take some liberties with syntax that is not described in our calculus, such as the use of local variables,super(), and
awhile loop. We make some abbreviations to shorten the presentation,IS for InputStream, OS for OutputStream, PS for
PrintStream. B abbreviatesBuffer, andBR is BufferedReader. Other obvious abbreviations have been made, and some
code is omitted.

The modifications needed to support information flow analysis here are minor. The most significant requirement is to
define distinct subclasses ofInputStream andOutputStream for each distinct IO policy. In this case we are defining three
new IO policies, in the classesSysFileIS andUserIS (for input), andPwdFileOS (for output). ForSysFileIS, theread
method labels input values withhigh andsys for both secrecy and integrity. Thewrite method ofPwdFileOS allows
secrecy labelshigh andsys, and requires the integrity labelhigh, thereby enforcing the policy that only certain data may be
written to the password file. TheUserIS class is defined with anEndorse operation, expressing confidence in the integrity
of the data on the channel. (Note that IO can occur with other methods such as filerename, but we are simplifying a bit in
this example). There is also a declassification of secrecy labels at the end of theChangePwd method, necessary to allow the
success or failure of the program to be output to the screen.

Note that this program shows how code is written in the language, no explicit parametric type declarations are needed, and
no label type declarations need to be placed on variables – type parametricity and variable information flow labels are both
inferred automatically. So, the underlying Java program only needs to be changed to declare the appropriate IO channels and
policies, and to add any needed downgrading and upgrading constructs. The underlying program structure remains largely
unchanged,e.g.aSysFileIS objectsysin is still accessed viasysin.read(), with no need for annotation.

Proper typing of this example imposes some requirements on the type system: the type of theread andwrite methods
simplycannotbe the same across all subclasses, otherwise all of the work we made to separate the policies in separate classes
would be for nothing since the type system would merge the information flows. So, a form of parametric polymorphism is
needed to distinguish between subclasses. It is even more subtle because a variable declared to be anInputStream can
at runtime be any of its subclasses such asSysFileIS or UserIS, and so it may look very difficult to type these methods
distinctly. Our solution is to use a polymorphic form of concrete class analysis [3]: we use a constraint-based type system that
specializes the type of an object at each method call site for each different type of object that it could be. This technique leads
to a very accurate typing [3, 33], and allows the methodology of placing different security policies in different subclasses to
be sound yet expressive. The most obvious forms of polymorphic type inference, based on treating each class or interface
as polymorphic and not each method and message send, are too weak to properly treat examples such as theInputStream
mentioned above.

2.3 Polymorphism

To better illustrate the expressiveness of our polymorphic type system we show an alternate implementation of theChangePwd
method in Example 2. This implementation takes anInputStream andOutputStream as arguments for reading from and

4

Example 3HashSet Polymorphism

public class HighFileIS extends FileIS {
public int read() {
return read({high},{high})(fd); }}

public class LowFileIS extends FileIS {
public int read() {
return read(∅,∅)(fd); }}

public class LowFileOS extends FileOS {
public void write(int v) {
write(∅,∅)(v,fd); }}

void main() {
HashSet highSet = new HashSet();
FileIS hin = new HighFileIS("high infile");
int i;
while(i = hin.read()) {
highSet.add(i);
}
HashSet lowSet = new HashSet();
FileIS lin = new LowFileIS("low infile");
int j;
while(j = lin.read()) {
lowSet.add(i);
}
Iterator lowIt = lowSet.iterator();
FileOS lowout = new LowFileOS("low outfile");
lowout.write(lowIt.next());
}

writing to the password file, respectively. Themain method in Example 2 uses this new implementation.TopFileOS is
subclassed fromFileOS, and thewrite method of the new class checks the output data for the integrity labelTop. In the
main portion, two different calls are made toChangePwd, one with aPwdFileOS, as before, and one to aTopFileOS.

Our polymorphic type system is expressive enough to directly support this newChangePwd method. Additionally, since
we are statically inferring the concrete classes of objects, we can create different security policies for overriding methods,
and the type system will know the correct policy to use. In this example, the first call toChangePwd will type properly, but
the second call will cause a type error, since the data passed to thewrite method of theTopFileOS is not labeled withtop.

In addition to the need for polymorphism for discriminating input and output streams, we also need polymorphism for
code re-use. Code should be reusable in multiple contexts, and those contexts may also have different information flow
policies. This means concretely that library classes and methods must be allowed to be instantiated at multiple security
contexts, and the type system must not merge all of the flows. We illustrate this with the program in Example 3, which uses
differentHashSet objects: one holding high data, and the other holding low data.

We define two input stream classes, one for reading in high data, and one for low data, and an output stream class for
writing low data. The program reads data from both high and low streams and puts them in separateHashSet objects. A
value is then taken from theHashSet containing low data, and written to the low output channel.

This clearly shows the need for polymorphism over security levels. If the types for these twoHashSet objects were
merged, the program would be rejected, because high data would appear to flow out a low channel. Our system views
HashSet as polymorphic and thehighSet andlowSet are typed distinctly, so the program typechecks.

3 Types for Data Tracking and Checking

We now present the formal type inference system. In order to simplify the reasoning and presentation of the system, we define
a label type inference systemsolely for typing data flows, and use the existing MJ type system for normal MJ typechecking
not related to information flow. Our label type system is strong enough to handle any valid MJ program, including those with
mutually recursive class definitions, and method recursion. A program type checks if and only if it type checks in both the
MJ type system and the label type system.

3.1 The Language

Our language is an extension of Middleweight Java (MJ) [8]. MJ contains the basic object constructs of Java, including state;
it omits some of the more complex features of Java, which allows formal properties to be established. We eliminate local
variables, which complexify the operational semantics and proofs, although their typings are a straight forward extension of

5

P ::= C̄L; s̄ program
CL ::= class C extends C {C̄ f̄; K M̄} class
K ::= C(C̄ x̄){super(ē); s̄} constructor
M ::= RT m(C̄ x̄) {s̄} method
RT ::= C | void return type
L ::= {l̄}, wherel are unique labels. label
CO ::= c | b | str | null | fd constant
e ::= x | this | CO | e.f | (C) e | expression

e⊕ e | pe | Declassify(e, L) |
Endorse(e, L) | read(L,L)(fd)

pe ::= e.m(ē) | new C(ē) | promotable exp.
s ::= pe; | if e then {s̄} else {s̄} | statement

; | {s̄} | e.f := e; | return e; |
write(L,L)(e, fd)

Figure 1: Grammar

object fields. We addconstants(int, bool, string, file descriptor),operators(+,- etc.), in order to better reason about infor-
mation flows in real programs. We also add low level read and write operations to the language, of the formread(L,L′)(fd)
andwrite(L,L′)(e, fd), wherefd is the file descriptor of the IO channel,e is what is written to the output channel, andL and
L′ are sets of labels specifying the secrecy and integrity levels of the channel, respectively. We also add aDeclassify(e,L)
construct, which removes the secrecy labels inL from those one. Endorse(e,L) is the integrity dual of declassification that
adds integrity labelsL to those one. The grammar for our Extended MJ (EMJ) language is given in Figure 1.

We assume some familiarity with MJ, and do not reproduce its typing or semantic definitions; see [8] for the details. Note
that EMJ follows MJ and types expressions with respect to a global class table,CT , that contains the types of all classes. At
the top level a sequence of statements̄ corresponding to themain method is typechecked with respect to this table.

In MJ, type assertions are of the formCT ; Γ `T e : C meaning under class tableCT and type environmentΓ, expression
e has typeC (note thisΓ is different from our definition). A similar definition is given for statements. In addition to the
standard type rules for MJ, we add the type rules corresponding to the EMJ extensions; they are mostly straightforward, and
are omitted for lack of space.read(L,L′)(fd) is typed to input an integer andwrite(L,L′)(e, fd) outputs an integer (e has
an integer type), whilefd is of typeFileDescriptor. ForDeclassify(e, L) andEndorse(e, L), the resulting type of the
expression is the same type ase, since the label tracking is only handled in the label typing rules.

3.2 Label Types

EMJ values are either objects or primitive constants. Objects may be labeled, as may the internal fields of an object. Thus,
Label types,τ , are four-tuples〈 S, I,F ,A〉; S is a set of secrecy labels for the current object,I is a set of integrity labels
for the object,F is a record containing sets of labels, representing the internal fields of the object, andA is anα-type, a type
representing the concrete class of the object, explained below. The type definitions are summarized in Figure 2.

An object’s fields has its own labels, represented by the field typeF , which is a mapping of field names to types,
{f1 7→ τ1, . . . , fn 7→ τn}. The individual labels may be accessed by a dot notation:F .f.S is the secrecy label on thef field
of the object. Primitive constants are labeled as objects with no fields.

Theα-types are used to express a form of parametric polymorphism over the inheritance hierarchy, allowing the super-
class and subclass to differ in their labeling. The usual Java type declaration is insufficient for determining the class of an
object, as it may be an object of a subclass, which contains a different policy, or returns different labels. As discussed in Sec-
tion 2, we need a more expressive form of polymorphism. We employ an analysis that is closely related to Data-polymorphic
CPA [27, 33], a variant of CPA [3]. This ensures proper creation of distinctcontours(polyinstantiations) when needed to give
the type expressivity required for our system, while on the other hand merging enough contours to make sure the analysis
terminates.

We usel to represent a concrete label, ands, i for label variables in the secrecy and integrity domains, respectively.
NotationL refers to a set of concrete labels{l̄}, and label setsS, I may contain both concrete label sets and label variables,
the latter used when the concrete label is not yet known. For example, when typing methods, the argument labels are variables

6

τ ::= 〈 S, I,F ,A〉|t types
S ::= {l̄}|sσ|S ∪ S|S − S|F .f.S|∅ secrecy types
I ::= {l̄}|iσ|I ∩ I|I ∪ I|F .f.I|∅ integrity types
F ::= {f̄ 7→ τ̄}|fσ|F .f.F|∅ field types
A ::= C|ασ|F .f.A alpha types
σ ::= C, m, Ā,At,Ar | ε contours
sσ, iσ, fσ, ασ, sp, ip label variables
t ::= 〈 sσ, iσ, fσ, ασ 〉 type variables

κ ::= t̄, tt
sp,ip−−−→ tr\C method types

∀t̄′.t̄, tt
sp,ip−−−→ tr\C

c ::= S <: S|I <: I|F <: F constraints
|A <: A|SC(L,S)|IC(L, I)
|A.m(τ̄ , τt

pc,pci−−−−→ τr)
|τ <: get τ |τ <: setτ

C ::= {c}|C ∪ C|∅ constraint sets
pc ::= S prog. counter
pci ::= I prog. counter
PC ::= pc, pci pc abbrev.
u top integrity label
s ::= sσ|f.f.S trans. types
i ::= iσ|f.f.I trans. types
f ::= fσ|f.f.F trans. types
a ::= ασ|f.f.A trans. types
τ <: τ ′ is short forS <: S ′, I <: I ′,F <: F ′,A <: A′

Figure 2: Type Definitions

since the actual labels are not instantiated until the method is invoked. Additionally,f is a field variable referring to abstract
fields of an object, andF is either an abstract or a concrete field mapping;α is a variable referring to an unknown class, and
A is either an abstract classα or a concrete classC. σ defines the contours necessary for polymorphic method typing, and
type variables are extended to allow a contour superscript, (e.g.sσ) andε represents no superscript. For convenience, we
generally omit the superscript on variables when it is unimportant.t denotes a full four-tuple of label types, and is simply
short-hand.

We implicitly work over a simple equational theory of sets in typing and constraint closure. Concrete unions,S ∪ S ′,
whereS = {l̄} andS ′ = {l̄′} are considered equivalent to the unioned set,S∪S ′ = {l̄, l̄′} (without repeats). An analogous
equivalence holds forI ∩ I ′ whenI andI ′ are concrete label sets.S − S ′ is also equivalent to the obvious set difference
when both are concrete label sets. For field access,{f̄ 7→ τ̄}.fi.S is equivalent toSi, wherefi 7→ 〈 Si, Ii,Fi,Ai 〉. A similar
equivalence analogously holds for any{f̄ 7→ τ̄}.fi.I, {f̄ 7→ τ̄}.fi.F, or {f̄ 7→ τ̄}.fi.A.

We use a label table,LT , to keep track of the label types of all classes when typing expressions. This is analogous to the
class tableCT of the MJ type system that keeps track of all class types. However, since we are inferring label types here, we
must build up the label table while typing the classes, as discussed in Section 3.2.4.

Label type rules are of the formΓ, PC ` e : τ\C andΓ, PC ` s : τ\C, meaning in label environmentΓ, with program
counterspc andpci (PC is short-hand forpc, pci), expressione (or statements) has label typeτ with constraint setC.
Γ binds variables to label type variables,Γ(x) = t. Separate program counters for secrecy and integrity arepc andpci,
respectively. They track implicit flows through programs and are a standard feature of information flow type systems.

The constraint set,C, contains normal subtyping constraints<: for secrecy, integrity, field, andα-types. In addition, check
constraints of the formSC(L,S), andIC(L, I), for secrecy and integrity checks, respectively, are placed inC and the closure
process will need to verify their correctness. Method constraintsA.m(τ̄ , τt

pc,pci−−−−→ τr) contain the necessary information to
tie up method invocations with the labels of the resulting method call. Methods in the label table are universally quantified,

∀t̄′.t̄, tt
sp,ip−−−→ tr\C, so they may vary parametrically. This allows distinct contours to be formed for each combination of

argument type and call site. We detail this analysis when discussing the constraint closure in section 3.2.5.
We proceed by discussing specific elements of the type inference system separately.

7

Γ(x) = 〈 s, i, f, α 〉
Γ, PC ` x : 〈 s ∪ pc, i ∩ pci, f, α 〉\∅

(Var)
Γ(this) = 〈 s, i, f, α 〉

Γ, PC ` this : 〈 s ∪ pc, i ∩ pci, f, α 〉\∅
(This)

Γ, PC ` c : 〈 pc, pci, ∅, int 〉\∅
(Const)

Γ, PC ` e : 〈 S, I,F ,A〉\C t consist of fresh type variables.

Γ, PC ` e.f : t\〈 S ∪ F .f.S, I ∩ F .f.I,F .f.F,F .f.A <: get t 〉 ∪ C
(Field)

Γ, PC ` e : 〈 S, I,F ,A〉\C
Γ, PC ` (C) e : 〈 S, I,F ,A〉\C

(Cast)

Γ, PC ` e : 〈 S, I, ∅,A〉\C
Γ, PC ` e′ : 〈 S ′, I ′, ∅,A′ 〉\C′

Γ, PC ` e⊕ e′ : 〈 S ∪ S ′, I ∩ I ′, ∅, int 〉\C ∪ C′
(Op)

Γ, PC ` e : τ = 〈 S, I,F ,A〉\C Γ, PC ` ē : τ̄\C̄
tr = 〈 s, i, f, α 〉 s, i, f, α are fresh variables

Γ, PC ` e.m(e) : 〈 S ∪ s, I ∩ i, f, α 〉\C ∪ C̄ ∪ {A.m(τ̄ , τ
pc∪S,pci∩I−−−−−−−→ tr)}

(Invoke)

Γ, PC ` ē : τ̄\C̄ fields(C) = C̄ f̄ t̄, tr consist of fresh type variables

Γ, PC ` new C(ē) : 〈 pc, pci, {f̄ : t̄}, C 〉\C̄ ∪ {C.K(τ̄ , 〈 pc, pci, {f̄ : t̄}, C 〉 pc,pci−−−−→ tr)}
(New)

Γ, PC ` e : 〈 S, I,F ,A〉\C
Γ, PC ` Declassify(e, L) : 〈 pc ∪ (S − L), I,F ,A〉\C

(Declassify)

Γ, PC ` e : 〈 S, I,F ,A〉\C
Γ, PC ` Endorse(e, L) : 〈 S, pci ∩ (I ∪ L),F ,A〉\C

(Endorse)

Γ, PC ` e : 〈 S, I,F ,A〉\C
Γ, PC ` read(L,L′)(e) : 〈 S ∪ L, I ∩ L′, ∅, int 〉\SC(L,S) ∪ IC(L′, I)

(Input)

Figure 3: Label Type Rules for Expressions

3.2.1 Expression Typing

The label type inference rules for expressions are given in Figure 3. Here are a few highlights of the rules. (Const) types
constants as label types containing onlypc for secrecy, andpci for integrity, reflecting our view that constants should by
default have no secrecy and full integrity as discussed in section 2.1.

In (Field), we use aget constraint to obtain the type of a field access. These constraints are discussed further in section
3.2.3. The secrecy and integrity types include the labels on the field within the object, along with the labels the object itself
carries.

In (Invoke), the constraintA.m(τ̄ , τ
pc∪S,pci∩I−−−−−−−→ tr) is added to the constraint set.S andI are added to the program

counters, since the execution of methodm depends on the object to which the method is being passed. The method type
eventually needs to be looked up in the global label tableLT . However, sinceA may at this point be of unknown class we
postpone this decision until more information is known aboutA, at constraint closure. The above type constraint records the
method call information so it can be propagated in the closure once the concrete class ofA is known.

In (New), the names of the fields in the classC are looked up usingfields. We cannot simply add the types of each
argument to the field types, since the constructor may not have this behavior. Thus, fresh type variables are created for each
field, and theF element of the type contains these variables. A constraint is added to capture the call to the constructor,
which is similar to a method call. Theα-type is given the concrete class name of the object being created.pc andpci are the
secrecy and integrity labels on the new object, respectively. Like constants, objects are assumed to have no secrecy and full
integrity by default.

As expected,Declassify(e,L) removesL from the secrecy labels ofe in (Declassify), whileEndorse(e,L) addsL to
the integrity labels ofe in (Endorse).

The type of aread(L,L′)(e) expression contains the security levels of the statement combined with the labels on the file

8

Γ, PC ` ; : 〈 pc, pci, ∅, void 〉\∅
(No-op)

Γ, PC ` e : τ\C
Γ, PC ` e; : τ\C

(PE)

Γ, pc, pci ` e : 〈 S, I,F ,A〉\C Γ, pc ∪ S, pci ∩ I ` s̄1 : 〈 S1, I1,F1,A1 〉\C′
Γ, pc ∪ S, pci ∩ I ` s̄2 : 〈 S2, I2,F2,A2 〉\C′′

Γ, pc, pci ` if e then {s̄1} else {s̄2} : 〈 S ∪ S1 ∪ S2, I ∩ I1 ∩ I2, ∅, void 〉\C ∪ C′ ∪ C′′
(If)

Γ, PC ` e : 〈 S, I,F ,A〉\C Γ, PC ` e′ : 〈 S ′, I ′,F ′,A′ 〉\C′

Γ, PC ` e.f := e′; : 〈 S ∪ S ′, I ∩ I ′, ∅, void 〉\C ∪ C′ ∪ {F .f <: set〈 S ∪ S ′, I ∩ I ′,F ′,A′ 〉}
(F-Assign)

Γ, PC ` s : τ\C Γ, PC ` s̄ : τ ′\C′ s 6= C x

Γ, PC ` s; s̄ : τ ′\C ∪ C′
(Seq)

Γ, PC ` s̄ : τ\C
Γ, PC ` {s̄} : τ\C

(Block)

Γ, PC ` e : τ\C
Γ, PC ` return e; : τ\C

(Return)

Γ, PC ` e : 〈 S, I,F ,A〉\C Γ, PC ` e′ : 〈 S ′, I ′,F ′,A′ 〉\C′

Γ, PC ` write(L,L′)(e, e′) : 〈 S ∪ S ′, I ∩ I ′, ∅, void 〉\C ∪ C′ ∪ SC(L,S ∪ S ′) ∪ IC(L′, I ∩ I ′)
(Output)

Figure 4: Label Type Rules for Statements

descriptor argument. Secrecy and integrity checking constraints are also added to the constraint set. There are two reasons
for this. Firstly, the constraints ensure that low reads are not happening under high guards; as discussed previously, this may
cause an information leak (note the type of any sub-expression implicitly contains the types of the program counters, a fact
easily shown by structural induction one, observing the base cases all addpc, pci to the types). Secondly, if the file descriptor
value has a higher label than the channel policy, performing the read may result in a security leak (e.g., two executions that
differ only in high inputs may read from different low channels, since the file descriptor for the channel differs).

3.2.2 Statement Typing

The type rules for statements are given in Figure 4. In rule (If), the secrecy and integrity types of the condition are added to
the respective program counters when typing each branch. (F-Assign) adds asetconstraint to the constraint set to set the flow
of labels into an object field. These constraints are described in section 3.2.3. Typing awrite(L,L′)(e, e′) statement produces
secrecy and integrity check constraints to ensure the type of the output aligns with the policy of the channel. The type of
the file descriptor is also checked against the policy for the same reasons asread, discussed earlier. The remaining rules are
straightforward.

Statements that have avoid α-type (e.g. Output, If) could also have empty secrecy and integrity types. They are an
artifact of our proof technique. Inclusion of these labels does not affect the typability of programs, since they only occur on
statements; since statements cannot be passed as arguments to reads or writes, these labels will never affect a check constraint.

3.2.3 Get and Set Constraints

We useget constraints when typing fields in (Field), andset constraints for field assignment in (F-Assign). Constraint
closure rules (Get) and (Set) ensures that values assigned to a field flow to any read-point of the field, while ensuring that no
backward-flows occur in the types [27, 33]. For example,

x := read({low},{low})(fd);
z := x;
z := read({high},{high})(fd′);

will not result inx having the secrecy type{high}.

9

Initial Label Table:

t̄, tt, tr, sp, ip consist of fresh variables.
Each use ofInitialMethod() creates distinct variables.

InitialMethod() = t̄, tt
sp,ip−−−→ tr\∅

t̄, tt, tr, sp, ip consist of fresh variables.
Each use ofInitialConstructor() creates distinct variables.

InitialConstructor() = t̄, tt
sp,ip−−−→ tr\∅

κi = InitialConstructor() κ̄i = InitialMethod()
InitialLT = LT [(C0, K) : κ0, (C0, M̄0) : κ̄0, (C1, K) : κ1, (C1, M̄1) : κ̄1, . . .]

Constructor Typing:

C0 = class C extends D {C̄ f̄; K M̄} K = C(C̄ x̄) {super(ē); s̄} D 6= Object

InitialLT (C0, K) : t̄, tt
sp,ip−−−→ tr\∅ Γ[x̄ : t̄, this : tt], sp, ip, ∅ ` ē : τ̄\C̄

Γ[x̄ : t̄, this : tt], sp, ip ` s̄ : τ\C t̄′ = FreeTypeVar(t̄, tt
sp,ip−−−→ tr\C ∪ C′ ∪ {D.K(τ̄ , tt

sp,ip−−−→ tr)})

InitialLT `M (C0, K) : ∀t̄′.t̄, tt
sp,ip−−−→ tr\C ∪ C̄ ∪ {D.K(τ̄ , tt

sp,ip−−−→ tr)} ∪ {τ <: tr}

C0 = class C extends Object {C̄ f̄; K M̄} K = C(C̄ x̄) {super(); s̄}
InitialLT (C0, K) : t̄, tt

sp,ip−−−→ tr\∅ Γ[x̄ : t̄, this : tt], sp, ip ` s̄ : τ\C t̄′ = FreeTypeVar(t̄, tt
sp,ip−−−→ tr\C)

InitialLT `M (C0, K) : ∀t̄′.t̄, tt
sp,ip−−−→ tr\C ∪ {τ <: tr}

Method Typing:

C0 = class C extends D {C̄ f̄; K M̄} M = RT m(C̄ x̄) {s̄} InitialLT (C0, M) : t̄, tt
sp,ip−−−→ tr\∅

Γ[x̄ : t̄, this : tt], sp, ip ` s̄ : τ\C t̄′ = FreeTypeVar(t̄, tt
sp,ip−−−→ tr\C ∪ {τ <: tr})

InitialLT `M (C0, M) : ∀t̄′.t̄, tt
sp,ip−−−→ tr\C ∪ {τ <: tr}

Class Typing:

InitialLT `M (C0, K) : κ0 InitialLT `M (C0, M̄0) : κ̄0

InitialLT `M (C1, K) : κ1 InitialLT `M (C1, M̄1) : κ̄1 . . .

`C LT [(C0, K) : κ0, (C0, M̄0) : κ̄0, (C1, K) : κ1, (C1, M̄1) : κ̄1, . . .]

Program Typing:

`C LT [(C0, K) : κ0, (C0, M̄0) : κ̄0, (C1, K) : κ1, (C1, M̄1) : κ̄1, . . .]
∅, ∅, u ` s̄ : τ\C Closure(LT [(C0, M̄0) : κ̄0, (C1, M̄1) : κ̄1, . . .], C) is consistent

`P {C0, C1, . . . }; s̄ : τ\C

Fields:

fields(Object) = ∅ fields(constants) = ∅
CT (C) = class C extends D {C̄ f̄; K M̄} fields(D) = D̄ ḡ

fields(C) = D̄ ḡ, C̄ f̄

Figure 5: Label Type Rules for Classes and Programs

3.2.4 Class and Program Typing

Type inference rules for typing programs, classes, and methods are found in Figure 5. Programs are typed by typing each
class definition, which types each method definition, which are in turn typed according to the expression rules in Figure 3.s̄,
representingmain is also typed. Notice the initial integrity program counter must be the highest integrity label, so as not to

10

Closure Rules:

τ <: get t

τ <: t
(Get)

τ <: setτ ′

τ ′ <: τ
(Set)

S1 <: s S2 ∪ (s− S3) <: S4

S2 ∪ (S1 − S3) <: S4

(S-Trans)
S1 ∪ S2 <: S3

S1 <: S3 S2 <: S3

(S-Union)

I1 ∩ I2 <: I3

I1 <: I3 I2 <: I3

(I-Intersect)
I1 <: i i ∩ I2 <: I3

I1 ∩ I2 <: I3

(I-Trans)
F1 <: f f <: F2

F1 <: F2

(F-Trans)

F <: f F containsf
S1 ∪ (f.f.S− S2) <: S3

S1 ∪ (F .f.S− S2) <: S3

(S-Field)

F <: f F containsf
I1 ∩ f.f.I <: I2

I1 ∩ F .f.I <: I2

(I-Field)

F <: f F containsf
f.f.F <: F1

F .f.F <: F1

(F-Field)

F <: f f.f.A <: A1 F containsf

F .f.A <: A1

(A-Field)

f <: F F containsf
S <: f.f.S

S <: F .f.S
(S-Field’)

f <: F F containsf
I <: f.f.I

I <: F .f.I
(I-Field’)

f <: F F containsf
F ′ <: f.f.F

F ′ <: F .f.F
(F-Field’)

f <: F F containsf
A <: f.f.A

A <: F .f.A
(A-Field’)

A1 <: i i <: A2

A1 <: A2

(A-Trans)

C <: A A.m(τ̄ , τt
pc,pci−−−−→ τr) mtype(C, m) = ∀t̄′.t̄, tt

sp,ip−−−→ tr\C
τ̄ = 〈 S, I,F ,A〉 τt = 〈 St, It,Ft,At 〉 τr = 〈 Sr, Ir,Fr,Ar 〉 t̄′′ = θ(t̄′, C, m, Ā,At,Ar)

[t̄′ 7→ t̄′′][sp 7→ pc, ip 7→ pci, t̄ 7→ τ̄ , tt 7→ τt, tr 7→ τr]C
(Method)

SC(L, (s ∪ S2)− S3) S1 <: s

SC(L, (S1 ∪ S2)− S3)
(SC-Trans)

IC(L, I2 ∩ i) I1 <: i

IC(L, I2 ∩ I1)
(IC-Trans)

F <: f F containsf
SC(L, (S ∪ f.f.S)− S ′)
SC(L, (S ∪ F .f.S)− S ′)

(SC-Field)

F <: f F containsf
IC(L, I ∩ f.f.I)
IC(L, I ∩ F .f.I)

(IC-Field)

Auxiliary Definitions:

LT (C, m) = ∀t̄′.t̄, tt
sp,ip−−−→ tr\C

mtype(C, m) = ∀t̄′.t̄, tt
sp,ip−−−→ tr\C

CT (C) = class C extends D {C̄ f̄; K M̄} m is not defined in̄M

mtype(C, m) = mtype(D, m)

θ(t, C, m, Ā,At,Ar) = tC,m,flatten(Ā,At,Ar) flatten(Aσ) = A flatten(x, y, . . .) = flatten(x),flatten(y), . . .

Figure 6: Label Closure Rules and Definitions

unnecessarily reduce the integrity of any information. Methods require the type variables to be set in an initial label table in
order to support recursive class definitions and mutually recursive methods. Method typing fills in the constraint types in the
full label table, where the return type of the method body flows into the return label variable of the method. As previously
noted, methods and constructors are given∀ types so that they may vary polymophically, and these types are instantiated
when computing the constraint closure.

11

3.2.5 Label Closure

The key closure rules for label constraint sets are given in Figure 6, along with some necessary definitions. Most of the rules
add new constraints based on transitivity, obvious set propagations, and field labels. The closure rule (Method) is important
for tying up the types of method calls. As discussed above, method constraints are added during method invocation, when
the actual class of the object on which the method is being called may be unknown. Thus, for all constraintsC <: A, where
C is a concrete class, the methodm is looked up inLT via mtype, which returns a typing for that method as found either inC
or in a superclass if not defined inC. We then substitute the labels in themethodconstraint into this constraint set from the
label table, and replace all local label variables as defined by the functionθ.

The manner in which local label variables are replaced defines thecontoursof a concrete class analysis. In other words,
different instantiations of the∀ type create unique types that distinguish different method invocations. Our definition ofθ
creates a new contour for each distinct receiver typeC, method namef, argument typeĀ (At is the type ofthis), and
return typeAr. This allows calls to be distinguished based on receiver and argument types, as in CPA [3], and additionally
distinguishes call-sites based on unique program points. Since the (Invoke) type rule creates fresh variables for each method
invocation, this serves as a unique marker of the call-site in the program; thus,Ar is the call-site of the method. Since
constructor calls during (New) are similar to method invocations, the analysis can distinguish most object instances via
call-sites and constructor arguments. Consider the following example.

x = new C(); y = new C();
x.put(read({L},{L})(fd)); y.put(read({H},{H})(fd′))
x.get();

Here, our analysis produces separate contours for the creation ofx andy, where CPA merges them into one. Even though
theput calls have different contours, since the types ofx andy are not distinguished, the CPA analysis cannot determine that
x.get() is low. We obtain more precision, so we can correctly identify the flows of data into and out-of abstract objects on
the heap.

This precision is similar to that obtained in data-polymorphic CPA analysis [27, 33]; although DCPA includes many
optimizations to combine contours whenever possible, while still supporting data polymorphism. Theflatten function is
necessary to merge contours for recursive calls and to ensure the analysis terminates. We discuss the termination of this
algorithm in section 3.2.7.

We define a constraint closure as follows.

Definition 3.1 (Constraint Closure) Closure(LT, C) is the least set that includesC and any constraint that can be derived
fromC by the rules of Figure 6, and with the additional constraint that the (Method) rule is only applied once in the closure
for each unique set of premises.

If we did not constrain (Method) rule as above, it could be applied arbitrarily many times, generating different fresh
variables each time.

3.2.6 Inconsistent Constraints

Inconsistencies in the label constraint sets come fromSC andIC constraints. Constraint consistency is defined as follows.

Definition 3.2 (Inconsistent Constraints) An inconsistent constraint is any constraintSC(Ls, L′s), whereL′s 6⊆ Ls; or any
constraintIC(Li, L′i), whereLi 6⊆ L′i.

Note that constraint consistency is defined only on concrete constraint sets, which are formed during the closure after
all transitive flows into type variables have been considered. IfClosure(LT, C) contains an inconsistent constraint, then the
closure is inconsistent, and type inference fails.

Secrecy policies are enforced bySC constraints. In the constraintSC(Ls, L′s), Ls is the secrecy policy of the IO channel,
andL′s is the set of labels on the data at that point. Proper enforcement of the policy requires the labels on the data to be
a subset of the labels on the IO channel. For example, the constraintSC({high, low}, {low}) is consistent, with low data
flowing to a high channel;SC({low}, {high}) is inconsistent, since high data is flowing to a low channel.

Similarly, integrity policies are enforced byIC constraints. InIC(Li, L′i), Li is the integrity policy of the IO channel,
andL′i is the set of labels on the data at that point. Since integrity is a dual to secrecy, the subset relation is flipped, meaning
Li ⊆ L′i is required to satisfy the policy. For example, the constraintIC({Untainted}, {Untainted, Classified}) is con-
sistent, as the data is required to carry at least the untainted label; whereasIC({Untainted, Classified}, {Untainted})
is inconsistent, since the data must be both untainted and classified.

12

3.2.7. Typing Complexity and Termination

A potential pitfall of this form of type inference algorithm is non-termination. If contours are continually created for recursive
method invocations, the analysis may not terminate. Our analysis merges contours for recursive calls, ensuring termination.
We now address the complexity of type inference and constraint closure computation.

Inferring types completes in linear time. Closing the constraint set can be exponential in the worst case. This is evident
from the definition ofθ. t inputs toθ are all flat (i.e. have no superscript), since they are the free type variables that occur
when typing methodm of classC. Superscripted variables are only added during the closure. This meanst is bounded byn,
the size of the program. SincēA,At, andAr are all flattened, the number of possibilities for these values is bounded by the
number of concrete classes and the number of fresh variables created in the program, which are each less thann. Thus, in
the worst case, we may create up tonn5

contours (accounting also forC andm). This is a large exponential, but nevertheless
terminates. Many optimizations (e.g. combining contours and constraint garbage collection) can be performed to make this
practical, as shown in [27, 33] and elsewhere; this is out of the scope of the current work.

The type inference system provides separate compilation of classes, since type inference can be done separately, and the
final global constraint set must be closed and checked for inconsistencies. Classes and methods may be analyzed only once,
and their types and constraints built into the label table, which may be re-used for any number of programs.

4 Soundness and Noninterference

We now state the formal soundness and noninterference properties for our system. Soundness means that well-typed programs
will not produce any run-time secrecy or integrity check failures. Noninterference is shown here only for secrecy: changes
made to high inputs do not effect low outputs. We first provide an overview of the proof technique, which is a new method
for proving noninterference using a labeled operational semantics, and state the results.

In order to more clearly state our results, we make the following assumptions in the definitions and proofs in this section.
The program has a fixed, well-typed class table,CT , and a fixed, well-typed label table,LT . We usehigh ∈ S̄ to represent
∀Si ∈ S̄ , high ∈ Si. In order to simplify our presentation, integrity labels have generally been omitted. While this does
affect the soundness theorem concerning integrity checks, extending the proofs to integrity labels is straight-forward. For the
purposes of proving noninterference, integrity labels and types are irrelevant; however, the dual property ofintegrity nonin-
terference, where low integrity inputs do not affect high integrity outputs can be shown, with an identical proof to secrecy
noninterference. In proving noninterference, we assume expressions and statements do not contain anyDeclassify(e′, L)
subexpressions, which would violate the property thathigh inputs do not affectlow outputs. Hence, in the proof of nonin-
terference, we assumeDeclassify does not occur in any programs. This restriction does not apply to the soundness result,
whereinDeclassify may occur in programs, and run-time check failures will not occur; these programs may, however,
permit interfering executions.

Our Noninterference property, Theorem 4.24, states that for a typeable programP, any two runs of the program differing
only in high input streams will produce the same low output streams, and that the resulting low input streams are also
equivalent. The latter condition is necessary since the size of the low input streams after computation may convey secret
information, such as if one stream had been read five times, and the other seven; the attacker would know that a change was
made to a high input. We specify that the values must be integers for this theorem, as it intuitively doesn’t make sense to
input or output heap locations (pointers). Since our system is termination-insensitive, both runs of the program are assumed
to terminate normally.

The proof of noninterference proceeds as follows. We define labeled configurations that are analogous to the definitions
of expressions and statements. We then translate the original program into a configuration, mapping the labels given by the
typing of each sub-expression onto each sub-configuration. This creates a one-to-one correspondence between the expression
types and semantic labels.

We define a small-step operational semantics, where computation is specified on four-tuples: configurations, heaps, sets
of input streams and sets of output streams. As expected, heaps consist of labeled objects and fields. Input and output streams
are represented by file descriptors, and the run-time streams also include policies. These policies must be checked against the
static policies of read and write commands when they are used. If we did not perform this check, we would allow multiple
security access levels to the same channel. This would mean that the security level on the channel is dynamically changing,
which is not supported by our system. Our definition of noninterference would not hold under these conditions, since a low
observer may have intermittent access to a channel that also uses high data. We assume in our proofs that the static policy
description of an IO command aligns with the run-time policy of the channel being used. Since the stream policy is a purely
dynamic property, it is impossible to verify statically.

13

The first step in our formal analysis is a proof of a Fixed Point Lemma, which assures that during computation the labels
on configurations and the labels on the heap will never increase. This is analogous to a subject-reduction lemma, since the
types have been mapped onto the semantics. Using this Fixed Point Lemma, we then show soundness of the type system that
well-typed programs do not produce run-time check failures.

For proving noninterference, we first distinguish low and high input and output channels. The observational behavior of
the low user is defined by a set of secrecy labelsLow. Hence, low data is any data labeled with some set of labelsL, such
thatL ⊆ Low. High data is any data not observable to the low user, e.g. data labeled with a set of secrecy labelsH, such that
H 6⊆ Low.

Noninterference is then shown via bisimulation of the execution of two configurations. The bisimulation relation,'Low,
states that high labeled values may differ, and any low values in the configurations must be equivalent. Furthermore, the data
labeled low in the heaps must exist in the other heap with the same values; high portions of the heap are not accounted by the
bisimulation. The final part of the bisimulation asserts the equivalence of low input and output streams.

We distinguish low reduction steps from high reduction steps based on the labels of the configuration, such that every
reduction step is either a low step or a high step. We then show that for typeable programs, assuming two executions where
the low input streams are identical, they each take the same low steps, with possibly differing high steps between, such
that after each low step and number of high steps, the resulting configurations remain bisimilar. Hence, when the execution
finishes, the result is a low-equivalent trace of inputs and outputs.

In order to cleanly state our result, we define an unlabeled semantics that works directly on expressions (and statements).
This semantics is equivalent to the configuration semantics, only lacking labels. The noninterference result on this semantics
is the same as that of the labeled semantics: that if a program is typeable, for two terminating executions of the program that
differ only in high input streams, the resulting low input and output streams are equivalent (as are the termination values of
the executions).

The structure of the remainder of this section is as follows. Section 4.1 provides some necessary definitions, and Sec-
tion 4.2 defines a labeled small-step operational semantics. The Fixed Point Lemma and Soundness theorem appear in
Section 4.3, and the Noninterference result is in Section 4.4.

4.1 Definitions

We define concrete secrecy types of expressions and statements in Definition 4.1 so as to more cleanly state our results.
Concrete secrecy types are the concrete secrecy labels for an expression as determined by the type of the expression and the
constraint set.

Definition 4.1 (Concrete Secrecy Types)Γ,H, pc, C `con ε : S is an assertion andS is a concrete secrecy type as follows.
For somepci, I,F ,A, if Γ, pc, pci,H ` e : 〈 S, I,F ,A〉\C′ or Γ, pc, pci,H ` s : 〈 S, I,F ,A〉\C′ whereC′ ⊆ C, S is a
set containing every concrete label,l, such that either

1. l ∈ S; or

2. there exists ans ∈ S, such thatl <: s ∈ Closure(LT, C); or

3. there exists anf.f.F.f′.S ∈ S, such thatl <: f.f.F.f′.S ∈ Closure(LT, C)

The translation functionJΓ,Hi, pc, C, ε K = L E MS ,H is given in Definition 4.4. For every subexpressionε′ of ε, the
concrete label type ofε′ is placed as the label on the corresponding subconfiguration inL E MS . Thus, there is a one-to-one
correspondence between concrete label types of subexpressions ofε, and the labels on each subconfiguration inL E MS . The
heap is also translated, as defined in Definition 4.2, such that any constraint inC that has a concrete label flowing into a heap
location is placed on the translated heap.

Definition 4.2 (Heap Translation) JΓ,Hi, C K = H, iff ∀o ∈ Hi, if Hi(o) = L new C(L v MSv) MS , Γ(o) = t̄, andS̄ <: t̄ ∈ C,
thenH(o) = Hi[o 7→ L new C(L v MSv∪S) MS]

Definition 4.3 (Expression and Statement Translation)If Γ,H, pc, C `con ε : S , the translationJΓ,H, pc, C, ε Ke =
L E MS and is defined by straightforward structural induction ofε. The base cases areJ Γ,H, pc, C, c Ke = L c MS , J Γ,H, pc, C, x Ke =
L x MS , JΓ,H, pc, C, L v MS Ke = L v MS , andJΓ,H, pc, C, L readL()MS Ke = L readL()MS . new (ē) is a special case, defined as
follows: JΓ,H, pc, C, new (ē) K = L new C(JΓ,H, pc, C, ē Ke)S̄

′ MS iff Γ, pc, H ` new (ē) : 〈 S, {f̄ : 〈 s, f, α 〉},A〉\C′ and
for all S̄ ′ <: s̄ ∈ C.

For example,JΓ,H, pc, C, e⊕ e′ Ke = L JΓ,H, pc, C, e Ke ⊕ JΓ,H, pc, C, e Ke MS .

14

Concrete Labels:
S , I ::= {l̄}, wherel̄ are unique label names
Heap Objects:
ho ::= L new C, {V̄} MSI
Heap:
H is a finite partial function from memory
locations to heap objects.
Object Identifier:
loc is a unique memory location in the heap
o ::= loc(S ,I) is an object identifier consisting of a
memory location with it’s security level.
IO Streams:
Functions from file descriptors with pairs of security
levels to streams of integers.
ι ::= (fd,S , I) −→ c̄
ω ::= (fd,S , I) −→ c̄
Values:
v ::= CO | o | CkFail | IOErr

Final Configurations:
V ::= L o MSI | L c MSI | CkFail | IOErr
Expressions:
e = . . . | V | L o MSI .super(C, ē)
Expr./Stmt.
ε = e | s
Configurations:
E ::= v | x | this | L E MSI .f | (C) L E MSI |
L E MSI ⊕ L E MS

′

I ′ | new C(L E MSI)S̄ ′

Ī ′ | L E MSI .m(L E MSI) |
read(L,L′)(L E MSI) | write(L,L′)(L E MSI , L E MS

′

I ′) |
Declassify(L E MSI , L) |
if L E MSI then L E1 MS1

I1
else L E2 MS2

I2
|

L E MSI | {L E MSI } | L E MSI .f := L E ′ MS ′

I ′ ; |
return L E MSI ; | L o MSI .super(L E MSI)|;
Reductions:
L E MSI ,H, ι, ω L E ′ MS ′

I ′ ,H ′, ι′, ω′

Figure 7: Operational Semantics Definitions

Definition 4.4 (Translation) JΓ,Hi, pc, C, ε K = L E MS ,H iff JΓ,Hi, C K = H andJΓ,H, pc, C, ε Ke = L E MS

4.2 Semantics

We now present a small-step operational semantics for our system. Figure 7 shows the necessary definitions for the semantics.
Configurations allow each sub-expression to be labeled. Reductions are then on labeled configurations,L E MSI , with two label
setsS andI , for secrecy and integrity, respectively. Labels in the label sets may appear due to direct or indirect flows. Final
configurations,L v MSI , are values with an associated label set, orCkFail , denoting a failed label check, orIOErr , denoting
a mismatch in read or write policies. Objects on the heap are labeled so we can separate thelow andhigh portions of the
heap for noninterference. Object identifiers must contain additional labels to distinguish between two different pointers to the
same object. Thus,L o MH

H andL o ML
L point to the same object, but have different labels, due to computing in different contexts,

with different program counters.ι is a function mapping file descriptors and sets of security labels to a list of integer input
values.ω is a function mapping file descriptors and sets of security labels to a list of integer output values.

Small-step reduction rules define the single-step reduction relationL E MSI ,H, ι, ω L E ′ MS ′

I ′ ,H ′, ι′, ω′. The semantics
is designed with a noninterference theorem in mind. As discussed previously, labels from the type system are mapped onto
configurations in the semantics. Thus, a semantic program runs with all of the labels inferred by the type system. Notice the
semantics are defined non-determinalistically, due to the use of the translations when invoking methods or calling construc-
tors. Since the type rules used during evaluations may contain uses of (Sub), the translation becomes non-deterministic. The
choice of the type variables added toΓ′ in the (New-R) rule also allows non-determinism.

Reduction rules are given in Figure 8 and Figure 9. Reductions under context rules are in Figure 10. The reductions
implicitly work over environmentsΓ and constraint setsC, which are necessary for the method invocation and constructor
reductions, which require a typing translation during the reduction.

4.3 Soundness and Fixed Point

We now show that for translated programs, there exists a reduction such that the labels on each configuration are a fixed-point;
that is, the labels will never increase during computation. The existence of a reduction is due to the non-determinism in our
semantics, as discussed above. This means that any configuration markedlow, will never compute to ahigh value, which
is necessary for noninterference. The fixed-point also allows us to state our soundness result that no typable programs will
produce run-time check failures (although they may have run-time IO errors, where the stream policy does not align with the
static stream label). We proceed by stating a few necessary lemmas before giving the results.

15

(Field-R) L L o MS
′

I ′ .fi MSI ,H, ι, ω L v MSi∪S∪S ′

Ii∩I∩I ′ ,H, ι, ω wherefields(C) = C̄ f̄, and
H(o) = L new C(V̄) MSv

Iv
andVi = L v MSi

Ii

(Op-R) L L c MSc

Ic
⊕ L c′ MS

′
c

I ′
c

MSI ,H, ι, ω L v MSc∪S ′
c∪S

Ic∩I ′
c∩I ,H, ι, ω where v = c⊕ c′

(Cast-R) L (D) L o MSv

Iv
MSI ,H, ι, ω L o MSv∪S

Iv∩I ,H, ι, ω where C <: D

(Declassify-R) L Declassify(L v MSv

Iv
,L) MSI ,H, ι, ω L v M(Sv−L)∪S

Iv∩I ,H, ι, ω

(New-R) L new C(L v̄ MS̄v

Īv
)S̄
Ī

MSI ,H, ι, ω L L E ′ MS ′

I ′ ; L return L o MSI ; MSI MSI ,H ′, ι, ω

wherecnbody(C) = super(ē); s̄ andclass C extends D {. . . } andΓ′ = Γ[o 7→ t̄]
andL E ′ MS ′

I ′ = JΓ′,H ′,S , C, [x̄ 7→ L v̄ MS̄v

Īv
, this 7→ L o MSv

Iv
]this.super(D, ē); s̄ K

andH ′ = H[o 7→ L new C(L null MS̄
Ī
) MSI]ando = newref (H,S , I)

(Invoke-R) L L o MSv

Iv
.m(L v̄ MS̄v

Īv
) MSI ,H, ι, ω L E ′ MS ′∪S

I ′∩I ,H, ι, ω

wherembody(m, C) = s̄

andL E ′ MS ′

I ′ = JΓ,H,Sv, C, [x̄ 7→ L v̄ MS̄v

Īv
, this 7→ L o MSv

Iv
]s̄ K

(Super-R) L L o MSv

Iv
.super(C, L v̄ MS̄v

Īv
) MSI ,H, ι, ω L E ′ MS∪S ′

I∩I ′ ,H, ι, ω

wherecnbody(C) = super(ē); s̄ andclass C extends D {. . . }
andL E ′ MS ′

I ′ = JΓ,H,Sv, C, [x̄ 7→ L v̄ MS̄v

Īv
, this 7→ L o MSv

Iv
]this.super(D, ē); s̄ K

(Super-R’) L L o MSo

Io
.super(Object) MSI ,H, ι, ω L null MS∪So

I∩Io
,H, ι, ω

(IfTrue-R) L if L True MSv

Iv
then L E1 MS1

I1
else L E2 MS2

I2
MSI ,H, ι, ω L E1 MS1∪S

I1∩I ,H, ι, ω

(Seq-R) L L v MSv

Iv
; L E MSI MSI ,H, ι, ω L L E MSI MSI ,H, ι, ω whereL E MSI is a sequence two or more configs.

(Seq-R’) L L v MSv

Iv
; L E MS

′

I ′ MSI ,H, ι, ω L E MS
′∪S

I ′∩I ,H, ι, ω

(Return-R) L return L v MSv

Iv
; MSI ,H, ι, ω L v MSv∪S

Iv∩I ,H, ι, ω

(Block-R) L {L E MS
′

I ′ } MSI ,H, ι, ω L E MS∪S ′

I∩I ′ ,H, ι, ω

(Skip-R) L ; MSI ,H, ι, ω L null MSI ,H, ι, ω

(Assign-R) L L o MS
′

I ′ .f := L v MSv

Iv
; MSI ,H, ι, ω L null MS∪Sv∪S ′

I∩Iv∩I ′ ,

H[o 7→ L new C(. . . , L v MSv∪S∪S ′∪Si

Iv∩I∩I ′∩Ii
, . . .) MS

′′

I ′′], ι, ω
wherefields(C) = C̄ f̄ andH(o) = L new C(V̄) MS

′′

I ′′

andVi = L vi MSi

Ii
, for i corresponding tof in V̄

newref(H,S , I) = o = loc(S ,I)
i wherei− 1 is the largest integer, such thatloc(S ,I)

i−1 ∈ H

Figure 8: Operational Semantics Reduction Rules

Lemma 4.5 shows that the type of every expression must contain the respective secrecy and integrity program counters.

Lemma 4.5 (Pervasiveness of program counters)

1. If Γ, pc, pci,H ` ε : 〈 S, I,F ,A〉\C, thenpc ⊆ S andpci ⊇ I.

2. If Γ,H, pc, C `con ε : S thenpc ⊆ S .

Proof.

1. By induction on the type derivation ofe. For the base cases: Var, This, Const, New, Val, Heap, Label, Declassify,
No-op the lemma holds withpc andpci added to the typing. The inductive step is trivial, since each rule unions the
secrecy labels and intersects the integrity labels from the premise.

2. Directly by Lemma 4.5[1] and Definition 4.1.

16

(Input-R) L read(L,L′)(L fd MSf

If
) MSI ,H, ι, ω L c MLL′ ,H, ι′, ω whereL = Si andL′ = Ii

andι(fd,Si, Ii) = c.ι′(fd,Si, Ii)
andSf ⊆ L andL′ ⊆ If

(Output-R) L write(L,L′)(L c MSc

Ic
, L fd MSf

If
) MSI ,H, ι, ω whereL = Si andL′ = Ii

L null MSc∪Sf∪S
Ic∩If∩I ,H, ι, ω′ andω′(fd,Si, Ii) = c.ω(fd,Si, Ii)

andSc ∪ Sf ⊆ L andL′ ⊆ Ic ∩ If

(InFail-R) L read(L,L′)(L fd MSf

If
) MSI ,H, ι, ω CkFail ,H, ι, ω whereL = Si andL′ = Ii

andι(fd,Si, Ii)
andSf 6⊆ L andL′ 6⊆ If

(OutFail-R) L write(L,L′)(L c MSc

Ic
, L fd MSf

If
) MSI ,H, ι, ω CkFail ,H, ι, ω whereL = Si andL′ = Ii

andω(fd,Si, Ii)
andSc ∪ Sf 6⊆ L or L′ 6⊆ Ic ∩ If

(InErr-R) L read(L,L′)(L fd MSf

If
) MSI ,H, ι, ω IOErr ,H, ι, ω whereL 6= Si or L′ 6= Ii

andι(fd,Si, Ii)

(OutErr-R) L write(L,L′)(L c MSc

Ic
, L fd MSf

If
) MSI ,H, ι, ω IOErr ,H, ι, ω whereL 6= Si or L′ 6= Ii

andω(fd,Si, Ii)

(CkFail-R) L E MSI ,H, ι, ω CkFail ,H, ι, ω whereCkFail is a subconf. ofL E MSI
(IOErr-R) L E MSI ,H, ι, ω IOErr ,H, ι, ω whereIOErr is a subconf. ofL E MSI

Figure 9: Operational Semantics IO Reduction Rules

ut

Lemma 4.6 (PC Weakening)

1. If Γ, pc, H ` ε : τ\C andpc′ ⊆ pc, thenΓ, pc′,H ` ε : τ\C.

2. If Γ,H, pc, C `con ε : S andpc′ ⊆ pc, thenΓ,H, pc′, C ` ε : S .

Proof.

1. By induction on the derivation ofε, using the (Sub) rule.

2. Directly by Lemma 4.6[1] and Definition 4.1.

ut

Fixed Point Lemma 4.9 shows that for any translated expression, taking a reduction step produces a configuration whose
secrecy label is no larger than the given configuration.

Lemma 4.7 (Substitution) If Γ[x̄ : t̄], sp, ∅ ` ε : τ\C, andΓ, pc, H ` L v̄ MS̄v : τ̄\C̄, and there exists̄t′l such that for allt̄l
free in [sp 7→ pc, t̄ 7→ τ̄]C, [t̄l 7→ t̄′l][sp 7→ pc, t̄ 7→ τ̄]C ∪ C̄ is consistent, thenΓ, pc, H ` [x̄ 7→ L v̄ MS̄v]ε : [t̄l 7→ t̄′l][sp 7→
pc, t̄ 7→ τ̄]τ\[t̄l 7→ t̄′l][sp 7→ pc, t̄m 7→ τ̄]C ∪ C̄.

Proof.
By induction onΓ[x̄ : t̄], sp, ∅ ` ε : τ\C. We present only a few cases. The remainder follow in a similar fashion.

Case ε = x. Supposet = 〈 s, f, α 〉. Then by (Var),Γ[x̄ : t̄], sp, ∅ ` ε : 〈 s ∪ sp, f, α 〉\∅.
Sincex 7→ L v MSv , we have two cases.

Subcasev is a constant. Then by (Val),Γ, pc, H ` L v MSv : 〈Sv ∪ pc, ∅, int 〉\∅.
HenceΓ, pc, H ` [L v MSv 7→ x]x : [sp 7→ pc, s 7→ Sv ∪ pc, f 7→ ∅, α 7→ int]〈 s ∪ sp, f, α 〉\∅, and by (Sub),
Γ, pc, H ` [L v MSv 7→ x]x : [sp 7→ pc, s 7→ Sv ∪ pc, f 7→ ∅, α 7→ int]〈 s ∪ sp, f, α 〉\C̄.

17

(Field-RC) L L E MSe

Ie
.f MSI ,H, ι, ω L L E ′ MS

′
e

I ′
e
.f MSI ,H ′, ι′, ω′ if L E MSe

Ie
,H, ι, ω L E ′ MS

′
e

I ′
e
,H ′, ι′, ω′

(New-RC) L new C(V̄, L E MSe

Ie
, L Ē MS̄

Ī
) MSI ,H, ι, ω if L E MSe

Ie
,H, ι, ω L E ′ MS

′
e

I ′
e
,H ′, ι′, ω′

 L new C(V̄, L E ′ MS
′
e

I ′
e
, L Ē MS̄

Ī
) MSI ,H ′, ι′, ω′

(Invk-RC) L L E MSe

Ie
.m(L Ē MS̄

Ī
) MSI ,H, ι, ω L L E ′ MS

′
e

I ′
e
.m(L Ē MS̄

Ī
) MSI ,H ′, ι′, ω′ if L E MSe

Ie
,H, ι, ω L E ′ MS

′
e

I ′
e
,H ′, ι′, ω′

(IArg-RC) L L o MSv

Iv
.m(V̄, L E MSe

Ie
, L Ē MS̄

Ī
) MSI ,H, ι, ω if L E MSe

Ie
,H, ι, ω L E ′ MS

′
e

I ′
e
,H ′, ι′, ω′

 L L o MSv

Iv
.m(V̄, L E ′ MS

′
e

I ′
e
, L Ē MS̄

Ī
) MSI ,H ′, ι′, ω′

(Super-RC) L L E MSe

Ie
.super(L Ē MS̄

Ī
) MSI ,H, ι, ω if L E MSe

Ie
,H, ι, ω L E ′ MS

′
e

I ′
e
,H ′, ι′, ω′

 L L E ′ MS
′
e

I ′
e
.super(L Ē MS̄

Ī
) MSI ,H ′, ι′, ω′

(SArg-RC) L L o MSv

Iv
.super(V̄, L E MSe

Ie
, L Ē MS̄

Ī
) MSI ,H, ι, ω if L E MSe

Ie
,H, ι, ω L E ′ MS

′
e

I ′
e
,H ′, ι′, ω′

 L L o MSv

Iv
.super(V̄, L E ′ MS

′
e

I ′
e
, L Ē MS̄

Ī
) MSI ,H ′, ι′, ω′

(If-RC) L if L E MSe

Ie
then L E1 MS1

I1
else L E2 MS2

I2
MSI ,H if L E MSe

Ie
,H, ι, ω L E ′ MS

′
e

I ′
e
,H ′, ι′, ω′

 L if L E ′ MS
′
e

I ′
e
then L E1 MS1

I1
else L E2 MS2

I2
MSI ,H ′, ι′, ω′

(Seq-RC) L L E MSe

Ie
; L Ē MS̄

Ī
MSI ,H, ι, ω L L E ′ MS

′
e

I ′
e
; L Ē MS̄

Ī
MSI ,H ′, ι′, ω′ if L E MSe

Ie
,H, ι, ω L E ′ MS

′
e

I ′
e
,H ′, ι′, ω′

(Op-RC) L L E1 MS1
I1
⊕ L E2 MS2

I2
MSI ,H, ι, ω if L E1 MS1

I1
,H, ι, ω L E ′1 MS

′
1

I ′
1
,H ′, ι′, ω′

 L L E ′1 MS
′
1

I ′
1
⊕ L E2 MS2

I2
MSI ,H ′, ι′, ω′

(Op-RC’) LV ⊕ L E MSe

Ie
MSI ,H, ι, ω LV ⊕ L E ′ MS

′
e

I ′
e

MSI ,H ′, ι′, ω′ if L E MSe

Ie
,H, ι, ω L E ′ MS

′
e

I ′
e
,H ′, ι′, ω′

(Cast-RC) L (C) L E MSe

Ie
MSI ,H, ι, ω L (C) L E ′ MS

′
e

I ′
e

MSI ,H ′, ι′, ω′ if L E MSe

Ie
,H, ι, ω L E ′ MS

′
e

I ′
e
,H ′, ι′, ω′

(Input-RC) L read(L,L′)(L E1 MS1
I1

) MSI ,H, ι, ω if L E1 MS1
I1

,H, ι, ω L E ′1 MS
′
1

I ′
1
,H ′, ι′, ω′

 L read(L,L′)(L E ′1 MS
′
1

I ′
1
) MSI ,H ′, ι′, ω′

(Output-RC) L write(L,L′)(L E1 MS1
I1

, L E2 MS2
I2

) MSI ,H, ι, ω if L E1 MS1
I1

,H, ι, ω L E ′1 MS
′
1

I ′
1
,H ′, ι′, ω′

 L write(L,L′)(L E ′1 MS
′
1

I ′
1
, L E2 MS2

I2
) MSI ,H ′, ι′, ω′

(Output-RC’) L write(L,L′)(V, L E1 MS1
I1

) MSI ,H, ι, ω if L E1 MS1
I1

,H, ι, ω L E ′1 MS
′
1

I ′
1
,H ′, ι′, ω′

 L write(L,L′)(V, L E ′1 MS
′
1

I ′
1
) MSI ,H ′, ι′, ω′

(Decl-RC) L Declassify(L E MSe

Ie
, L) MSI ,H, ι, ω if L E MSe

Ie
,H, ι, ω L E ′ MS

′
e

I ′
e
,H ′, ι′, ω′

 L Declassify(L E ′ MS
′
e

I ′
e
, L) MSI ,H ′, ι′, ω′

(Assign-RC) L L E1 MS1
I1

.f := L E2 MS2
I2

MSI ,H, ι, ω if L E1 MS1
I1

,H, ι, ω L E ′1 MS
′
1

I ′
1
,H ′, ι′, ω′

 L L E ′1 MS
′
1

I ′
1
.f := L E2 MS2

I2
MSI ,H ′, ι′, ω′

(Assign-RC’) LV.f := L E MSe

Ie
MSI ,H, ι, ω LV.f := L E ′ MS

′
e

I ′
e

MSI ,H ′, ι′, ω′ if L E MSe

Ie
,H, ι, ω L E ′ MS

′
e

I ′
e
,H ′, ι′, ω′

(Return-RC) L return L E MSe

Ie
MSI ,H, ι, ω L return L E ′ MS

′
e

I ′
e

MSI ,H ′, ι′, ω′ if L E MSe

Ie
,H, ι, ω L E ′ MS

′
e

I ′
e
,H ′, ι′, ω′

(Val-RC) L L E MSe

Ie
MSI ,H, ι, ω L L E ′ MS

′
e

I ′
e

MSI ,H ′, ι′, ω′ if L E MSe

Ie
,H, ι, ω L E ′ MS

′
e

I ′
e
,H ′, ι′, ω′

Figure 10: Operational Semantics Reductions Under Context

Subcasev is an object identifier.

Then by (Heap),Γ, pc, H ` L v MSv : 〈 pc ∪ Sv ∪ S ′
v, {f̄ = t̄′}, C 〉\{t̄′ <: set τ̄}. HenceΓ, pc, H ` [L v MSv 7→ x]x :

[sp 7→ pc, s 7→ pc∪ Sv ∪ S ′
v, f 7→ {f̄ = t̄}, α 7→ C]〈 s∪ sp, f, α 〉\{t̄′ <: set τ̄}, and since{t̄′ <: set τ̄} ⊆ C̄, by (Sub),

Γ, pc, H ` [L v MSv 7→ x]x : [sp 7→ pc, s 7→ pc ∪ Sv ∪ S ′
v, f 7→ {f̄ = t̄}, α 7→ C]〈 s ∪ sp, f, α 〉\C̄.

Case ε = e′.f.

By (Field), if Γ[x̄ : t̄], sp, ∅ ` e′ : 〈 S ′,F ′,A′ 〉\C′, Γ[x̄ : t̄], sp, ∅ ` e′.f : 〈 sl, fl, αl 〉\C′∪{〈 S ′∪F ′.f.S,F ′.f.fF,F ′.f.S 〉 <:
get 〈 sl, fl, αl 〉}
By induction,Γ, pc, H ` [x̄ 7→ L v̄ MS̄v]e′ : [t̄l 7→ t̄′l][sp 7→ pc, t̄ 7→ τ̄]〈 S ′,F ′,A′ 〉\[t̄l 7→ t̄′l][sp 7→ pc, t̄m 7→ τ̄]C′ ∪ C̄.

18

So, by (Field),Γ, pc, H ` [x̄ 7→ L v̄ MS̄v]e′.f : [t̄l 7→ t̄′l][sp 7→ pc, t̄ 7→ τ̄]〈 s′, f ′, α′ 〉\[t̄l 7→ t̄′l][sp 7→ pc, t̄m 7→
τ̄]C′ ∪ C̄ ∪ {[t̄l 7→ t̄′l][sp 7→ pc, t̄m 7→ τ̄]〈 S ′ ∪ F ′.f.S,F ′.f.fF,F ′.f.S 〉 <: get 〈 s′l, f ′l , α′l 〉}, which isΓ, pc, H ` [x̄ 7→
L v̄ MS̄v]e′.f : [t̄l 7→ t̄′l][sp 7→ pc, t̄ 7→ τ̄]〈 s′, f ′, α′ 〉\[t̄l 7→ t̄′l][sp 7→ pc, t̄m 7→ τ̄](C′∪{〈 S ′∪F ′.f.S,F ′.f.fF,F ′.f.S 〉 <:
get 〈 sl, fl, αl 〉}) ∪ C̄.

ut

Lemma 4.8 (Method Substitution) If Γ,H, pc, C `con L o MSv .m(L v̄ MS̄v) : S , and mbody(m, C) = s̄, then there exists a
typingΓ,H, pc, C `con [x̄ 7→ L v̄ MS̄v , this 7→ L o MSv]s̄ : S ′, such thatS ′ ⊆ S .

Proof.
By (Invoke)Γ, pc, H ` L o MSv.m(L v̄ MS̄v) : 〈 S ∪ s, f, α 〉\Co ∪ C̄ ∪ {C.m(τ̄ , τ

pc∪S−−−→ t′r)}. By Method Typing,Γ[x̄ 7→
t̄, this 7→ tt], sp,H ` s̄ : τm\Cm ∪ {τm <: tr}. By (Invoke) and closure rule(Method), [t̄l 7→ t̄′l][sp 7→ pc, t̄ 7→ τ̄ , tt 7→
τ, tr 7→ t′r](Cm ∪ {τm <: tr}) is consistent. So by Substitution Lemma 4.7,Γ, pc, H ` [x̄ 7→ L v̄ MS̄v , this 7→ L o MSv]s̄ :
[t̄l 7→ t̄′l][sp 7→ pc, t̄ 7→ τ̄ , tt 7→ τ, tr 7→ t′r]τm\[t̄l 7→ t̄′l][sp 7→ pc, t̄m 7→ τ̄ , tt 7→ τ, tr 7→ t′r](Cm ∪ {τm <: tr}) ∪ Co ∪ C̄.

Hence[t̄l 7→ t̄′l][sp 7→ pc, t̄ 7→ τ̄ , tt 7→ τ, tr 7→ t′r]τm <: tr ∈ C, sinceC is the closed constraint set from the top-level
typing. Applying the substitutiontr 7→ t′r, we have[t̄l 7→ t̄′l][sp 7→ pc, t̄ 7→ τ̄ , tt 7→ τ]τm <: t′r ∈ C.

Let [t̄l 7→ t̄′l][sp 7→ pc, t̄ 7→ τ̄ , tt 7→ τ]τm = 〈 Sm,Fm,Am 〉 andt′r = 〈 s, f, α 〉. Let l be any concrete label inS ′. We
have three cases according to Definition 4.1.

Case l ∈ Sm. Since[t̄l 7→ t̄′l][sp 7→ pc, t̄ 7→ τ̄ , tt 7→ τ]τm <: t′r ∈ C, by (S-Union), we havel <: s. So, by Definition 4.1,
l ∈ S .

Case There exists ansm ∈ Sm, such thatl <: sm ∈ Closure(LT, C). Since[t̄l 7→ t̄′l][sp 7→ pc, t̄ 7→ τ̄ , tt 7→ τ]τm <: t′r ∈
C, by (S-Union), we havesm <: s. So, by (S-Trans) and Definition 4.1,l ∈ S .

Case There exists anfm.f.F.f′.S ∈ S, such thatl <: fm.f.F.f′.S ∈ Closure(LT, C).

Since[t̄l 7→ t̄′l][sp 7→ pc, t̄ 7→ τ̄ , tt 7→ τ]τm <: t′r ∈ C, by (S-Union), we havefm.f.F.f′.S <: s. So, by (S-Trans) and
Definition 4.1,l ∈ S .

So, for anyl ∈ S ′, we havel ∈ S , henceS ′ ⊆ S .
ut

Lemma 4.9 (Fixed Point) For someι, ω, if JΓ,Hi,Sp, C, e K = L E MS ,H and L E MS ,H, ι, ω L E ′ MS ′
,H ′, ι′, ω′, and

∀o ∈ dom(H),H(o) = L new C(L v̄ MS̄) MSo then there exists a derivationL E MS ,H, ι, ω L E ′′ MS ′′
,H ′′, ι′, ω′ such that

H ′′(o) = L new C(L v̄′ MS̄ ′) MS
′
o , S ′′ = S ,S ′

o = So, S̄ ′ = S̄ .

Proof.
By induction on the reduction derivation ofE .
By Lemma 4.5,Sp is a subset of all secrecy types. Hence it must be a subset ofS in translated valuesL v MS . Thus, we

omit consideration ofSp in this proof, as it always implicitly occurs in the values of each reduction. We assume, without loss
of generality, that the typing ofΓ,Sp,H ` e : τ\C does not end in an instance of (Sub). This means each typing ends with a
syntax-directed type rule. (If the typing did end in (Sub), the same reasoning would apply, only adding an additional use of
(Sub) to end of the derivation.) We present most of the cases, and the remaining cases follow in a similar fashion.

Case (Op-R) L L c MSc ⊕ L c′ MS
′
c MS ,H, ι, ω L v MSc∪S ′

c∪S ,H, ι, ω
By type rule (Val), we haveΓ,H,Sp, C `con L c MSc : Sc andΓ,H,Sp, C `con L c′ MS

′
c : S ′

c. By type rules (Sub) and (Op),
we haveΓ,H,Sp, C `con L c MSc ⊕ L c′ MS

′
c : S , such thatSc ∪ S ′

c ⊆ S .
Now, by Definition 4.4, we haveJΓ,Hi,Sp, C, L c MSc⊕L c′ MS

′
c K = L L c MSc⊕L c′ MS

′
c MS ,H = L L c MSc⊕L c′ MS

′
c MSc∪S ′

c∪S ,H,
and the lemma follows.

Case (Field-R) L L o MS
′
.fi MS ,H, ι, ω L v MSi∪S∪S ′

,H, ι, ω
By premise to (Field-R), we haveH(o) = L new C(V̄) MSv andVi = L v MSi

By type rule (Heap), we haveΓ,Sp,H ` L o MS
′
: 〈S ′ ∪ Sv, {f̄ : t̄}, C 〉\{〈 S̄ , F̄ , Ā 〉 <: set t̄}. By (Heap),Γ(o) = t̄, so by

Definition 4.2,Si <: ti are all the constraints from concrete labels flowing intoti in C. So by type rule (Field), closure rule

19

(Set) and Definition 4.1, we obtainΓ,H,Sp, C `con L o MS
′
.fi : Si ∪ S ′ ∪ Sv. Hence by (Sub),Γ,H,Sp, C `con L o MS

′
.fi :

S , such thatSi ∪ S ′ ∪ Sv ⊆ S .
Now, by Definition 4.4, we haveJΓ,Hi,Sp, C, L o MS

′
.fi K = L L o MS

′
.fi MS ,H = L L o MS

′
.fi MSi∪S∪S ′

,H, and the lemma
follows.

Case (New-R) L new C(L v̄ MS̄v)S̄ MS ,H, ι, ω L L E ′ MS ′
; L return L o MS MS ; MS ,H[o 7→ L new C(L null MS̄) MS], ι, ω

The heaps are the same apart from the addition to the heap on the right side of the reduction. So, for all heap objects they
have in common,S ′

o = So andS̄ ′
o = S̄o. Since both configurations are labeled withS , the lemma follows.

Case (Invoke-R) L L o MSv.m(L v̄ MS̄v) MS ,H, ι, ω L E ′ MS ′∪S ,H, ι, ω
By assumption,L L o MSv.m(L v̄ MS̄v) MS ,H = JΓ,Hi,Sp, C, e K, so by Definition 4.4,e = L o MSv.m(L v̄ MS̄v) and
Γ,H,Sp, C `con L o MSv.m(L v̄ MS̄v) : S .
So, by (Invoke), Definition 4.1, and Definition 4.4,Γ,H,Sp, C `con L o MSv : Sv. By Lemma 4.5[2],Sp ⊆ Sv.
By premise to (Invoke-R),L E ′ MS ′

= J ∅,H,Sv, C, [x̄ 7→ L v̄ MS̄v , this 7→ L o MSv]s̄ K, so by Definition 4.4Γ,H,Sv, C `con

[x̄ 7→ L v̄ MS̄v , this 7→ L o MSv]s̄ : S ′. SinceSp ⊆ Sv, by Lemma 4.6[2],Γ,H,Sp, C `con [x̄ 7→ L v̄ MS̄v , this 7→ L o MSv]s̄ :
S ′.
SinceΓ,H,Sp, C `con L o MSv.m(L v̄ MS̄v) : S , by Concrete Substitution Lemma 4.8,S ′ ⊆ S . The lemma follows by (Sub)
and Definition 4.4.

Case (Super-R) follows in a similar manner to (Invoke-R).

Case (Super-R’) follows in a similar manner to (Invoke-R).

Case (Assign-R) L L o MS
′
.f := L v MSv ; MS ,H, ι, ω L null MS∪Sv∪S ′

,H[o 7→ L new C(. . . , L v MSv∪S∪S ′∪Si , . . .) MS
′′
], ι, ω

By premise to (Assign-R), we haveH(o) = L new C(V̄) MS
′′
. By type rule (Heap), we haveΓ,H,Sp, C `con L o MS

′
:

S ′ ∪ S ′′, and by type rule (Val),Γ,H,Sp, C `con L v MSv : Sv. So, by type rule (F-Assign),Γ,H,Sp, C `con L o MS
′
.f :=

L v MSv ; : S ′ ∪ S ′′ ∪ Sv and by (Sub),Γ,H,Sp, C `con L o MS
′
.f := L v MSv ; : S , whereS ′ ∪ S ′′ ∪ Sv ⊆ S .

By Definition 4.4, we haveJΓ,Hi,Sp, C, L o MS
′
.f := L v MSv ; K = L L o MS

′
.f := L v MSv ; MS ,H = L L o MS

′
.f := L v MSv ; MS∪Sv∪S ′

,H.
Now, by type rule (F-Assign), we have the constraint〈 si, fi, αi 〉 <: set〈S ′ ∪ S ′′ ∪ Sv,F ,A〉 ∈ C, for Γ(o) = 〈 s, f, α 〉.
Thus,S ′ ∪ S ′′ ∪ Sv <: si ∈ C. According to Definition 4.2,S ′ ∪ S ′′ ∪ Sv <: si ∈ C meansS ′ ∪ S ′′ ∪ Sv was placed on
the field in the heap. Thus,S ′ ∪ S ′′ ∪ Sv ⊆ Si. SinceS ′ ∪ S ′′ ∪ Sv ⊆ S , we haveSv ∪ S ∪ S ′ ∪ Si = Si. The lemma
follows, since for the only change on the heap,Sv ∪ S ∪ S ′ ∪ Si = Si.

Case (IfTrue-R) L if L True MSvthen L E1 MS1 else L E2 MS2 MS ,H, ι, ω L E1 MS1∪S ,H, ι, ω
SinceJΓ,Hi,Sp, C, e K = L if L True MSvthen L E1 MS1 else L E2 MS2 MS ,H, there exists̄s1 ands̄2 such that
e = if L True MSv then {s̄1} else {s̄2}. By Definition 4.4, we knowJΓ,Hi,Sp ∪ Sv, C, {s̄1} K = L E1 MS1 ,H, and
JΓ,Hi,Sp ∪ Sv, C, {s̄2} K = L E2 MS2 ,H, andJ Γ,Hi,Sp, C, L True MSv K = L True MSv ,H.
Thus,Γ,H,Sp ∪ Sv, C `con {s̄1} : S1, andΓ,H,Sp ∪ Sv, C `con {s̄2} : S2, andΓ,H,Sp, C `con L True MSv : Sv.
Now, by typerule (If) and Definition 4.1,Γ,H,Sp, C `con if L True MSvthen L E1 MS1 else L E2 MS2 : Sv ∪ S1 ∪ S2. So,
we haveSv ∪ S1 ∪ S2 ⊆ S , and the lemma follows.

Case (Input-R) L readL(L fd MSf) MS ,H, ι, ω L c ML,H, ι′, ω
By type rule (Input), we haveΓ,H,Sp, C `con readL(L fd MSf) : Sf ∪ L. By (Sub),Γ,H,Sp, C `con readL(L fd MSf) : S ,
whereSf ∪ L ⊆ S .
By Definition 4.4,J Γ,Hi,Sp, C, readL(L fd MSf) K = L readL(L fd MSf) MS ,H. Since by (Input-R),S ∪Sf ⊆ L, the lemma
follows.

Case (Output-R) L writeL(L c MSc , L fd MSf) MS ,H, ι, ω L null MSc∪Sf∪S ,H, ι, ω′

By type rule (Val), we haveΓ,H,Sp, C `con L c MSc : Sc andΓ,H,Sp, C `con L c MSf : Sf . By type rule (Output), we have
Γ,H,Sp, C `con writeL(L c MSc , L fd MSf) : Sc ∪ Sf . By (Sub),Γ,H,Sp, C `con writeL(L c MSc , L fd MSf) : S , whereSc ∪
Sf ⊆ S . Now, by Definition 4.4, we haveJΓ,Hi,Sp, C, writeL(L c MSc , L fd MSf) K = L writeL(L c MSc , L fd MSf) MS ,H =
L writeL(L c MSc , L fd MSf) MSc∪Sf∪S ,H, and the lemma follows.

Case (Declassify-R) L Declassify(L v MSv,L) MS ,H, ι, ω L v M(Sv−L)∪S ,H, ι, ω
By type rule (Val) or (Heap), we haveΓ,H,Sp, C `con L v MSv : S ′, whereSv ⊆ S ′. By type rule (Declassify), we have
Γ,H,Sp, C `con Declassify(L v MS

′
,L) : S ′ − L. By (Sub),Γ,H,Sp, C `con Declassify(L v MS

′
,L) : S , whereS ′ −

L ⊆ S . Now, by Definition 4.4, we haveJ Γ,Hi,Sp, C, Declassify(L v MSv,L) K = L Declassify(L v MSv,L) MS ,H =
L Declassify(L v MSv,L) M(Sv−L)∪S ,H, and the lemma follows.

Case (Field-RC) L L E MSe .f MS ,H, ι, ω L L E ′ MS ′
e .f MS ,H ′, ι′, ω′

20

By induction on the reductionL E MSe ,H, ι, ω L E ′ MS ′
e ,H ′, ι′, ω′, we haveS ′

o = So, S̄ ′
o = S̄o. Since the outer label,S is

unchanged in the reduction, the lemma follows.

ut

Lemma 4.10 shows that a reduction of a translated expression produces an configuration that is also a translated expres-
sion. This is needed in the proofs of soundness and noninterference, that continually use Fixed Point Lemma 4.9, which
requires a translated configuration as a pre-condition.

Lemma 4.10 (Uniformity of Translated Expressions)For someι, ω, if JΓ,Hi, pc, C, e K = L E MS ,H andL E MS ,H, ι, ω
L E ′ MS ′

,H ′, ι′, ω′, then there exists an expressione′, a heapH ′
i, a type environmentΓ, and apc′, such thatJΓ′,H ′

i, pc′, C, e′ K =
L E ′ MS ′

,H ′.

Proof.
By induction on the reduction derivation ofE .
We assume, without loss of generality, that the typing ofΓ, pc, H ` e : τ\C does not end in an instance of (Sub). This

means each typing ends with a syntax-directed type rule. (If the typing did end in (Sub), the same reasoning would apply,
only adding an additional use of (Sub) to end of the derivation.)

Case (Op-R) L L c MSc ⊕ L c′ MS
′
c MS ,H, ι, ω L v MSc∪S ′

c∪S ,H, ι, ω

By type rule (Val), we haveΓ,H, pc, C `con L v MSc∪S ′
c∪S : Sc∪S ′

c∪S . Then, by Definition 4.4, we haveJΓ,Hi, pc, C, L v MSc∪S ′
c∪S K =

L v MSc∪S ′
c∪S ,H. The lemma follows.

Cases (Field-R), (Cast-R), (Input-R), (Output-R), (Declassify-R), (Return-R), (Skip-R), (Super-R’), and (SubVal-R) all fol-
low in a similar manner to (Op-R), since they all reduce to values.

Case (New-R) L new C(L v̄ MS̄v)S̄ MS ,H, ι, ω L L E ′ MS ′
; L return L o MS MS ; MS ,H[o 7→ L new C(L null MS̄) MS], ι, ω

By premise to (New-R), we havecnbody(C) = super(ē); s̄ and

L E ′ MS ′
= JΓ′,H,S , C, [x̄ 7→ L v̄ MS̄v , this 7→ L o MS]this.super(D, ē); s̄ Ke, whereΓ′ = Γ[o 7→ t̄]. By Definition 4.3,

(Seq), (Return), and (Heap), we haveJΓ′,H,S , C, [x̄ 7→ L v̄ MS̄ , this 7→ L o MS]this.super(D, ē); s̄; return L o MS ; Ke =
L L E ′ MS ′

; L return L o MS MS ; MS .

We now show the heap translation condition holds. By assumption, Definition 4.3, and (New), we haveΓ, pc, Hi `
new C(L v̄ MS̄v) : 〈 S, {f̄ : t̄},A〉\C′ andS̄ ′ <: s̄ ∈ C. Hence, by Definition 4.2,JΓ,Hi[o 7→ L new C(L null MS̄) MS], C K =
H[o 7→ L new C(L null MS̄) MS].
The lemma follows by Definition 4.4.

Case (Invoke-R) L L o MSv.m(L v̄ MS̄v) MS ,H, ι, ω L E ′ MS ′∪S ,H, ι, ω

By premise to (Invoke-R), we havembody(m, C) = s̄ andL E ′ MS ′
= J ∅,H,Sv, C, [x̄ 7→ L v̄ MS̄v , this 7→ L o MSv]s̄ Ke. By

(Sub) and Definition 4.4,L E ′ MS ′∪S ,H = J ∅,H,Sv, C, [x̄ 7→ L v̄ MS̄v , this 7→ L o MSv]s̄ K

Case (Super-R) follows in a similar manner to (New-R) and (Invoke-R).

Case (IfTrue-R) L if L True MSvthen L E1 MS1 else L E2 MS2 MS ,H, ι, ω L E1 MS1∪S ,H, ι, ω

By Definition 4.4, we haveL E1 MS1 = JΓ,Hi, pc ∪ Sv, C, {s̄} K. By (Sub) and Definition 4.4,L E1 MS1∪S = J Γ,Hi, pc ∪
Sv, C, {s̄} K

Case (Assign-R) L L o MS
′
.f := L v MSv ; MS ,H, ι, ω L null MS∪Sv∪S ′

,H[o 7→ L new C(. . . , L v MSv∪S∪S ′∪Si , . . .) MS
′′
], ι, ω

By Definition 4.4, Definition 4.1, and type rule (Val), we have

JΓ,Hi[o 7→ L new C(. . . , L v MSv∪S∪S ′∪Si , . . .) MS
′′
], pc, C, L null MS∪Sv∪S ′

K =
L null MS∪Sv∪S ′

,H[o 7→ L new C(. . . , L v MSv∪S∪S ′∪Si , . . .) MS
′′
].

Case (Seq-R) L L v MSv ; L Ē MS̄ MS ,H, ι, ω L L Ē MS̄ MS ,H, ι, ω

According to Definition 4.4, we have

L Ē MS̄ ,H = J Γ,H, pc, C, s2 K; . . . ; JΓ,H, pc, C, sn K;
According to type rule (Seq),Γ,H, pc, C `con s2; . . . ; sn : S , so we have

JΓ,Hi, pc, C, s2; . . . ; sn; K = L L Ē MS̄ MS ,H, and the lemma follows.

21

Case (Block-R) L {L E MS
′} MS ,H, ι, ω L E MS∪S′

,H, ι, ω

By Definition 4.4, we haveL E MS
′
,H = JΓ,Hi, pc, C, s̄ K.

By premise to type rule (Block), we haveΓ,H, pc, C `con s2; . . . ; sn; : S (in other words,S = S ′).

So, we haveJΓ,Hi, pc, C, s̄ K = L E MS∪S′
,H, and the lemma follows.

Case (Field-RC) L L E MSe .f MS ,H, ι, ω L L E ′ MS ′
e .f MS ,H ′, ι′, ω′

By premise to (Field-RC), we haveL E MSe ,H, ι, ω L E ′ MS ′
e ,H ′, ι, ω. By induction, this meansL E MSe ,H = JΓ,Hi, pc, C, e K

and L E ′ MS ′
e ,H ′ = JΓ′,H ′

i, pc′, C, e′ K. Now, by Definition 4.4, we haveΓ′,H ′, pc′, C `con e′ : S ′
e. According

to Fixed Point Lemma 4.9,Se = S ′
e, so by type rule (Field),Γ′,H ′, pc′, C `con e′.f : S . So, by Definition 4.4

L L E ′ MS ′
e .f MS ,H ′ = J Γ′,H ′

i, pc′, C, e′.f K.

Remaining cases: (*-RC)
ut

Fixed Point Lemma 4.9 along with Lemma 4.10 produces the following soundness result.

Theorem 4.11 (Soundness)If ε : τ\C andClosure(LT, C) is consistent, then there exists a translationJ ∅, ∅, ∅, C, ε K, such
that J ∅, ∅, ∅, C, ε K, ι, ω 6 ∗ CkFail ,H ′, ι′, ω′.

Proof. SupposeJ ∅, ∅, ∅, C, ε, ι, ω K ∗ CkFail , ι′, ω′. Let J ∅, ∅, ∅, C, e K, ι, ω ∗ L E MS ,H ′, ι′, ω′, be the sequence of
reductions immediately before the check failure occurs. We have three cases.

Case L E MS = L read(L,L′)(L fd MSf) MS

By Fixed Point Lemma 4.9 and Lemma 4.10), we know there exists aΓ′, H ′, andpc′, such thatL E MS = JΓ′,H ′, pc′, C, ε K.
Hence, by Definition 4.4, Definition 4.1, and type rules (Input), (Val) and (Sub), we haveΓ′, pc′,H ′ ` L fd MSf :
〈 Sf , ∅, FD 〉\∅, whereSf ⊆ Sf , andΓ′, pc′,H ′ ` read(L,L′)(L fd MSf) : 〈 Sf ∪ L, ∅, int 〉\SC(L,Sf). By assumption,
SC(L,Sf) is consistent, so according to Definition 3.2,Sf ⊆ L.

Now, by Definition 4.1 and Definition 4.4,J Γ′,H ′, pc′, C, read(L,L′)(L fd MSf) K = L read(L,L′)(L fd MSf) MS .

By (InFail-R),Sf ∪ L 6⊆ L. However, we just showed thatSf ⊆ L, and sinceL ⊆ L, we haveSf ∪ L ⊆ L, a contradiction.
Hence, this step cannot have occurred.

Case L E MS = L write(L,L′)(L c MSc , L fd MSf) MS follows in a similar manner to the previous case.

Case CkFail is a subconfiguration ofL E MS . By induction on the structure ofL E MS .

ut

4.4 Noninterference

As stated previously, our Noninterference Theorem 4.24 states that for a typeable programP, any two runs of the program
differing only in high input streams will produce the same low output streams, and that the resulting low input streams are
also equivalent. A more detailed summary of the proof technique in this section follows.

We translate the program into configurations via Translation Definition 4.4 these map the label types of each sub-
expression onto each sub-configuration. Fixed Point Lemma 4.9 assures the existence of a reduction sequence, such that
the labels in the reduction sequence, and the labels on the heap will never increase. Translation Lemma 4.10 shows that a
reduction step of any translated expression produces a configuration that is also a translated expression; this allows Fixed
Point Lemma 4.9 and other lemmas to be applied, since a translated expression is required by assumption.

Now, letL E1 MS1 be the initial configuration of the translated program. Without loss of generality, the reduction ofL E1 MS1

with either set of inputs is broken into reductions of alternating zero or more high steps and one low step. According to the
High Reduction Lemma 4.23 and Low Reduction Lemma 4.22, if only the high inputs differ, there exists executions of the
configurationL E1 MS1 that must make all of the same low reductions (with possibly differing high values); furthermore, the
low portions of the respective heaps must be the same. This means that each low input and output step must be the same
for both runs, resulting in equivalent low input and output streams. These existentials are due to the non-determinism in
the labeled semantics. We then define an unlabeled semantics, which is deterministic and executes identically to the labeled

22

semantics, only without the labels. We then re-state noninterference for this semantics, where the execution deterministically
produces equivalent low input and output streams.

We assumeLow is the set of security labels the low observer has access to, so any subset of this set is accessible to the low
observer. Any security labels outside this subset relation are consideredhigh e.g. ifHigh 6⊆ Low, thenHigh is considered a
high label and any data that carries this label is considered high data, which must not be revealed to the low observer.

A low computation step is any step that is not affected by high data, as defined in Definition 4.12. Definition 4.13 defines
any steps that are not low as high steps, i.e. any step that is affected by data labeled high. Thus, any reduction step is
either a high step, or a low step.

Definition 4.12 (Low step) A low step, denotedL E MS ,H, ι, ω l L E ′ MS ′
,H ′, ι′, ω′ is a step,L E MS ,H, ι, ω L E ′ MS ′

,H ′, ι′, ω′

where the root of the context derivation tree contains only a subset ofLow secrecy labels on the right hand side, i.e.
L Er MSr ,H, ι, ω L E ′r MS

′
r ,H ′, ι′, ω′ is the root of the tree andS′

r ⊆ Low, or the root of the context derivation tree is a
use of (Invoke-R), (Super-R), or (Super-R’)where the object reference contains only a subset ofLow secrecy labels, e.g.
L L o MSv .m(V̄) MS ,H, ι, ω E ′,H ′, ι′, ω′, andSv ⊆ Low.

Definition 4.13 (High step) A high step, denotedL E MS ,H, ι, ω h L E ′ MS ′
,H ′, ι′, ω′ is a step,L E MS ,H, ι, ω L E ′ MS ′

,H ′, ι′, ω′

where the root of the context derivation tree contains secrecy labels that are not inLow on the right hand side, i.e.L Er MSr ,H, ι, ω
L E ′r MS

′
r ,H ′, ι′, ω′ is the root of the tree andS′

r 6⊆ Low, and if the root of the context derivation tree is a use of(Invoke-R),
(Super-R), or (Super-R’), the object reference must contain secrecy labels that are not inLow, e.g.L L o MSv .m(V̄) MS ,H, ι, ω
E ′,H ′, ι′, ω′, andSv 6⊆ Low.

Definition 4.14 (Termination) A configurationL E MS ,H, ι, ω terminates iff there exists aL v MS
′
, H ′, ι′, andω′ such that

L E MS ,H, ι, ω ∗ L v MS
′
,H ′, ι′, ω′

Definition 4.15 specifies the bisimulation relation between configurations, heaps, and input and output streams.

Definition 4.15 (Bisimulation Relation)

1. (Labels).

S1 'Low S2 iff either

(a) S1 ⊆ Low, S2 ⊆ Low, andS1 = S2; or

(b) S1 6⊆ Low andS2 6⊆ Low.

2. (Labeled Configurations).L E1 MS1 'Low L E2 MS2 iff either

(a) E1 = v1, E2 = v2 and either

i. S1 ⊆ Low, S2 ⊆ Low, S1 = S2, andv1 = v2; or

ii. S1 6⊆ Low andS2 6⊆ Low; or

(b) S1 'Low S2 andE1 = E2 = x, for somex; or

(c) S1 'Low S2 andE1 = E2 = this; or

(d) S1 'Low S2, E1 = L E ′1 MS
′
1 .f, E2 = L E ′2 MS

′
2 .f, andL E ′1 MS

′
1 'Low L E ′2 MS

′
2 ; or

(e) S1 'Low S2, E1 = (C) L E ′1 MS
′
1 , E2 = (C) L E ′2 MS

′
2 , andL E ′1 MS

′
1 'Low L E ′2 MS

′
2 ; or

(f) S1 'Low S2, E1 = L E ′1 MS
′
1⊕L E ′′1 MS

′′
1 , E2 = L E ′2 MS

′
2⊕L E ′′2 MS

′′
2 , andL E ′1 MS

′
1 'Low L E ′2 MS

′
2 , L E ′′1 MS

′′
1 'Low L E ′′2 MS

′′
2 ;

or

(g) S1 'Low S2, E1 = new C(L E ′1 MS ′
1)S̄ ′′

1 , E2 = new C(L E ′2 MS ′
2)S̄ ′′

2 , andL E ′1 MS ′
1 'Low L E ′2 MS ′

2 , S̄ ′′
1 'Low S̄ ′′

2 ; or

(h) S1 'Low S2, E1 = L E ′1 MS
′
1 .m(L E ′′1 MS ′′

1), E2 = L E ′2 MS
′
2 .m(L E ′′2 MS ′′

2), and L E ′1 MS
′
1 'Low L E ′2 MS

′
2 , L E ′′1 MS ′′

1 'Low

L E ′′2 MS ′′
2 ; or

(i) S1 'Low S2, E1 = read(L,L′)(L E ′1 MS
′
1), E2 = read(L,L′)(L E ′2 MS

′
2), andL E ′1 MS

′
1 'Low L E ′2 MS

′
2 ; or

(j) S1 'Low S2, E1 = write(L,L′)(L E ′1 MS
′
1 , L E ′′1 MS

′′
1), E2 = write(L,L′)(L E ′2 MS

′
2 , L E ′′2 MS

′′
2), and L E ′1 MS

′
1 'Low

L E ′2 MS
′
2 , L E ′′1 MS

′′
1 'Low L E ′′2 MS

′′
2 ; or

23

(k) S1 'Low S2, E1 = if L E ′1 MS
′
1 then L E ′′1 MS

′′
1 else L E ′′′1 MS

′′′
1 , E2 = if L E ′2 MS

′
2 then L E ′′2 MS

′′
2 else L E ′′′2 MS

′′′
2 ,

andL E ′1 MS
′
1 'Low L E ′2 MS

′
2 , L E ′′1 MS

′′
1 'Low L E ′′2 MS

′′
2 , L E ′′′1 MS

′′′
1 'Low L E ′′′2 MS

′′′
2 ; or

(l) S1 'Low S2, E1 = L E ′1 MS ′
1 , E2 = L E ′2 MS ′

2 , andL E ′1 MS ′
1 'Low L E ′2 MS ′

2 ; or

(m) S1 'Low S2, E1 = {L E ′1 MS
′
1}, E2 = {L E ′2 MS

′
2}, andL E ′1 MS

′
1 'Low L E ′2 MS

′
2 ; or

(n) S1 'Low S2, E1 = L E ′1 MS
′
1 .f := L E ′′1 MS

′′
1 ;, E2 = L E ′2 MS

′
2 .f := L E ′′2 MS

′′
2 ;, andL E ′1 MS

′
1 'Low L E ′2 MS

′
2 , L E ′′1 MS

′′
1 'Low

L E ′′2 MS
′′
2 ; or

(o) S1 'Low S2, E1 = return L E ′1 MS
′
1 ;, E2 = return L E ′2 MS

′
2 ;, andL E ′1 MS

′
1 'Low L E ′2 MS

′
2 ; or

(p) S1 'Low S2, E1 = L o1 MS
′′
1 .super(L E ′1 MS ′

1), E2 = L o2 MS
′′
2 .super(L E ′2 MS ′

2), andL o1 MS
′′
1 'Low L o2 MS

′′
2 , L E ′1 MS ′

1 'Low

L E ′2 MS ′
2 ; or

(q) S1 'Low S2 andE1 = E2 =; ; or

3. (Heaps) H 'Low H ′ iff the following two conditions hold:

(a) ∀o such thatH(o) = L new C(V̄) MS , if S ⊆ Low, thenH ′(o) = L new C(V̄ ′) MS
′
, S = S ′, andV̄ 'Low V̄ ′.

(b) ∀o such thatH ′(o) = L new C(V̄ ′) MS
′
, if S ′ ⊆ Low, thenH(o) = L new C(V̄) MS , S = S ′, andV̄ 'Low V̄ ′.

4. (Output Stream Equality).ω1(fd, L1) = ω2(fd, L2) iff ω1(fd, L1) = c̄1, ω2(fd, L2) = c̄2, andL1 = L2, |c̄1| = |c̄2|,
∀i < |c̄1|, c1i = c2i.

5. (Input Stream Equality).ι1(fd, L1) = ι2(fd, L2) iff ι1(fd, L1) = c̄1, ι2(fd, L2) = c̄2, andL1 = L2, |c̄1| = |c̄2|,
∀i < |c̄1|, c1i = c2i.

6. (Output Streams).ω1 'Low ω2 iff dom(ω1) = dom(ω2) and∀(fd, L1) ∈ dom(ω1), either

(a) L1 ⊆ Low, L2 ⊆ Low, andω1(fd, L1) = ω2(fd, L2); or

(b) L1 6⊆ Low andL2 6⊆ Low.

7. (Input Streams).ι1 'Low ι2 iff dom(ι1) = dom(ι2) and∀(fd, L1) ∈ dom(ι1), either

(a) L1 ⊆ Low, L2 ⊆ Low, andι1(fd, L1) = ι2(fd, L2); or

(b) L1 6⊆ Low andL2 6⊆ Low.

8. L E1 MS1 ,H1, ι1, ω1 'Low L E2 MS2 ,H2, ι2, ω2 iff L E1 MS1 'Low L E2 MS2 , H1 'Low H2, ι1 'Low ι2, andω1 'Low ω2.

Lemma 4.16 (Properties of Bisimulation)

1. (Reflexive)L E1 MS1 ,H1, ι1, ω1 'Low L E1 MS1 ,H1, ι1, ω1.

2. (Symmetric) IfL E1 MS1 ,H1, ι1, ω1 'Low L E2 MS2 ,H2, ι2, ω2, thenL E2 MS2 ,H2, ι2, ω2 'Low L E1 MS1 ,H1, ι1, ω1.

3. (Transitive) If L E1 MS1 ,H1, ι1, ω1 'Low L E2 MS2 ,H2, ι2, ω2, and L E2 MS2 ,H2, ι2, ω2 'Low L E3 MS3 ,H3, ι3, ω3, then
L E1 MS1 ,H1, ι1, ω1 'Low L E3 MS3 ,H3, ι3, ω3

Proof. By induction on the structure ofL E1 MS1 and directly by Definition 4.15. ut

Lemma 4.17 If S ⊆ Low, S ′ ⊆ Low, S = S ′ andH 'Low H ′, thennewref (H,S) = newref (H ′,S ′)

Proof. By contradiction.
Supposenewref (H,S) = o, newref (H ′,S ′) = o′, ando 6= o′. By the definition ofnewref , o = locS

i ando′ = locS ′

i′ .
Now, by assumption,S = S ′, so in order to satisfyo 6= o′, we must havei 6= i′. As per the definition ofnewref , let i− 1 be
the largest integer, such thatlocS

i−1 ∈ dom(H), and leti′ − 1 be the largest integer, such thatlocS ′

i′−1 ∈ dom(H ′). Without
loss of generality, assumei− 1 > i′ − 1.

Now, according to Definition 4.15[3], sinceS ⊆ Low, andS ′ ⊆ Low, we must havelocS
i−1 ∈ dom(H ′) andlocS ′

i′−1 ∈
dom(H). Sincei − 1 > i′ − 1 andlocS

i−1 ∈ dom(H ′), theni′ − 1 is not the largest integer such thatlocS ′

i′−1 ∈ dom(H ′),
a contradiction. Hence, the assumption thati 6= i′ is wrong, and therefore the assumption thato 6= o′ is also wrong. Hence,
o = o′.

ut

24

Lemma 4.18 (Value Substitution) If Γ[x̄ 7→ t̄], sp, ∅ ` ε : τ\Ce, Γ,Sp,H ` L v̄ MS̄v : τ̄v\C̄v, and there exists̄t′l such that for
all t̄l free in[sp 7→ Sp, t̄ 7→ τ̄]Ce ∪ C̄v, [t̄l 7→ t̄′l][sp 7→ Sp, t̄ 7→ τ̄]Ce ∪ C̄v is consistent, andΓ[x̄ 7→ t̄], ∅, sp, C `con ε : S then
Γ,H,Sp, C `con [x̄ 7→ L v̄ MS̄v]ε : S ∪ S̄v ∪ Sp.

Proof.
AssumeΓ,Sp,H ` L v̄ MS̄v : τ̄v\C̄v andΓ[x̄ 7→ t̄], sp, ∅ ` ε : τ\Ce.
By Substitution Lemma 4.7,Γ,Sp,H ` [x̄ 7→ L v̄ MS̄v]ε : [t̄l 7→ t̄′l][t̄ 7→ τ̄v, sp 7→ Sp]τ\[t̄l 7→ t̄′l][t̄ 7→ τ̄v, sp 7→ Sp]Ce.
Let τ = 〈 S,F ,A〉, [t̄l 7→ t̄′l][t̄ 7→ τ̄v, sp 7→ Sp]τ = 〈 S1,F1,A1 〉, τ̄v = 〈 Sv,Fv,Av 〉, andt̄ = 〈 s, f, α 〉.
SupposeΓ,H,Sp, C `con [x̄ 7→ L v̄ MS̄v]ε : S1. We now show thatS1 ⊆ S ∪ Sv ∪ Sp by showing that anyl ∈ S1 is also

in S ∪ Sv ∪ Sp. Let l be any concrete label inS1. We have three cases according to Definition 4.1.

1. l ∈ S1. We have two cases.

(a) l ∈ S. Then by Definition 4.1l ∈ S , sol ∈ S ∪ Sv ∪ Sp.

(b) l 6∈ S. Thenl ∈ Sv, so by Definition 4.1,l ∈ Sv. So,l ∈ S ∪ Sv ∪ Sp.

2. There exists ans′ ∈ S1, such thatl <: s′ ∈ Closure(LT, C). Now,s′ 6= s̄, sp, otherwise it would have been substituted
with Sv or Sp. Hence,s′ ∈ S, so by Definition 4.1,l ∈ S . So,l ∈ S ∪ Sv ∪ Sp.

3. There exists anf ′.f.F.f′.S ∈ S1, such thatl <: f ′.f.F.f′.S ∈ Closure(LT, C). Now, f ′ 6= f̄ , otherwise it would
have been substituted withFv. Hence,f ′.f.F.f′.S ∈ S, so by Definition 4.1,l ∈ S . So,l ∈ S ∪ Sv ∪ Sp.

Hence,S1 ⊆ S ∪ Sv ∪ Sp. Then by (Sub) and Definition 4.1Γ,H,Sp, C `con [x 7→ L v MSv]ε : S ∪ Sv. ut

Lemma 4.19 (Bisimulation of Substituted Values)If Sv 'Low S ′
v, L v̄ MS̄v 'Low L v̄′ MS̄ ′

v , o = o′, H1 'Low H ′
1, Γ[x̄ 7→

t̄], sp, ∅ ` ε : τ\Ce, Γ,Sv,H ` L v̄ MS̄v : τ̄v\C̄v, Γ,S ′
v,H ′ ` L v̄′ MS̄ ′

v : τ̄ ′v\C̄′v, L E2 MS2 = JΓ,H,Sv, C, [x̄ 7→ L v̄ MS̄v , this 7→
L o MSv]ε Ke there exists̄tl such that for allt̄i free in[sp 7→ Sv, t̄ 7→ τ̄v]Ce ∪ C̄v, [t̄i 7→ t̄l][sp 7→ Sv, t̄ 7→ τ̄v]Ce ∪ C̄v ⊆ C andC
is consistent, and there existst̄′l such that for allt̄i free in[sp 7→ S ′

v, t̄ 7→ τ̄ ′v]Ce ∪ C̄′v, [t̄i 7→ t̄′l][sp 7→ S ′
v, t̄ 7→ τ̄ ′v]Ce ∪ C̄′v ⊆ C′

andC′ is consistent, then there exists a translationL E ′2 MS
′
2 = JΓ′,H ′,S ′

v, C′, [x̄ 7→ L v̄′ MS̄ ′
v , this 7→ L o′ MS

′
v]ε Ke, such that

L E2 MS2 'Low L E ′2 MS
′
2 .

Proof.
By induction on the structure ofε. We present only a few cases. The remainder follow in a similar fashion.

Case ε = x. Hence[x̄ 7→ L v̄ MS̄v , this 7→ L o MSv]ε = L vi MSvi and [x̄ 7→ L v̄′ MS̄ ′
v , this 7→ L o′ MS

′
v]ε = L v′i MS

′
vi and

L vi MSvi 'Low L v′i MS
′
vi . We have two cases forvi.

Case vi is a constant. Then by (Val) and Definition 4.1, we haveΓ,H,Sv, C ` L vi MSvi : Svi
∪ Sv andΓ,H ′,S ′

v, C `
L v′i MSv′

i : Sv′
i
∪ S ′

v. Hence, by Definition 4.4,L vi MSvi
∪Sv = JΓ,H,Sv, C, [x̄ 7→ L v̄ MS̄v , this 7→ L o MSv]ε Ke and

L v′i MSv′
i
∪S ′

v = JΓ,H ′,S ′
v, C, [x̄ 7→ L v̄′ MS̄ ′

v , this 7→ L o′ MS
′
v]ε Ke. SinceL vi MSvi 'Low L v′i MS

′
vi andSv 'Low S ′

v, we have

L vi MSvi
∪Sv 'Low L v′i MS

′
vi
∪S ′

v . The lemma follows.

Case vi is an object identifier. Then by (Heap) and Definition 4.1, we haveΓ,H,Sv, C ` L vi MSvi : Svi
∪ Sv ∪ So and

Γ,H ′,S ′
v, C ` L v′i MSv′

i : Sv′
i
∪ S ′

v ∪ So, whereH(vi) = L new C(V̄) MSo andH(v′i) = L new C(V̄ ′) MS
′
o . Hence, by

Definition 4.4,L vi MSvi
∪Sv = J Γ,H,Sv, C, [x̄ 7→ L v̄ MS̄v , this 7→ L o MSv]ε Ke andL v′i MSv′

i
∪S ′

v = JΓ,H ′,S ′
v, C, [x̄ 7→

L v̄′ MS̄ ′
v , this 7→ L o′ MS

′
v]ε Ke. We have two cases according to Definition 4.15[2a].

SubcaseSvi
⊆ Low, S ′

vi
⊆ Low, vi = v′i, andSvi

= Sv′
i
.

SinceH1 'Low H ′
1, by Definition 4.15[3],So 'Low S ′

o.

SinceL vi MSvi 'Low L v′i MS
′
vi andSv 'Low S ′

v, we haveL vi MSvi
∪Sv∪So 'Low L v′i MS

′
vi
∪S ′

v∪S ′
o . The lemma follows.

SubcaseSvi
6⊆ Low andS ′

vi
6⊆ Low. Then by Definition 4.15[2a], we haveL vi MSvi

∪Sv∪So 'Low L v′i MS
′
vi
∪S ′

v∪S ′
o . The

lemma follows.

25

Case ε = ea.f.

HenceL E2 MS2 = J ∅,H,Sv, C, [x̄ 7→ L v̄ MS̄v , this 7→ L o MSv]ea.f Ke, andL E ′2 MS
′
2 = J ∅,H ′,S ′

v, C, [x̄ 7→ L v̄′ MS̄ ′
v , this 7→

L o′ MS
′
v]ea.f Ke.

Suppose[x̄ 7→ t̄], ∅, sp, C `con [x̄ 7→ L v̄ MS̄v , this 7→ L o MSv]ea.f : Se, then by Lemma 4.18,∅,H,Sv, C `con [x̄ 7→
L v̄ MS̄v , this 7→ L o MSv]ea.f : S ∪ S̄v ∪ Sv and∅,H ′,S ′

v, C,`con [x̄ 7→ L v̄′ MS̄ ′
v , this 7→ L o′ MS

′
v]ea.f : S ∪ S̄ ′

v ∪ S ′
v.

SinceL E2 MS2 = J ∅,H,Sv, C, [x̄ 7→ L v̄ MS̄v , this 7→ L o MSv]ea.f Ke, andL E ′2 MS
′
2 = J ∅,H ′,S ′

v, C, [x̄ 7→ L v̄′ MS̄ ′
v , this 7→

L o′ MS
′
v]ea.f Ke, by Definition 4.3,S2 = S ∪ S̄v ∪ Sv andS ′

2 = S ∪ S̄ ′
v ∪ S ′

v. SinceS̄v 'Low S̄ ′
v andSv 'Low S ′

v, we have
S2 'Low S ′

2.

By Definition 4.3,L E2 MS2 = L L Ea MSa .f MS2 , whereL Ea MSa = J ∅,H,Sv, C, [x̄ 7→ L v̄ MS̄v , this 7→ L o MSv]ea Ke, and
L E ′2 MS

′
2 = L L E ′a MS

′
a .f MS

′
2 , whereL E ′a MS

′
a = J ∅,H,Sv, C, [x̄ 7→ L v̄′ MS̄ ′

v , this 7→ L o′ MS
′
v]ea Ke.

By induction,L Ea MSa 'Low L E ′a MS
′
a . SinceS2 'Low S ′

2, by Definition 4.15[2d],L L Ea MSa .f MS2 'Low L L E ′a MS
′
a .f MS

′
2 , that

is L E2 MS2 'Low L E ′2 MS
′
2 .

ut

Lemma 4.20 (Deeply High Computation) If L E MS ,H, ι, ω terminates,Sp 6⊆ Low, and the label on each subconfiguration
of L E MS containsSp, then there existsv,H ′, ι′, ω′, such thatL E MS ,H, ι, ω ∗

h L v MSv ,H ′, ι′, ω′ andSv 6⊆ Low.

Proof. By induction on ∗
h and the structure ofL E MS using Definition 4.13. Since the label on each subconfiguration of

L E MS containsSp, observing each semantic rule showsSp must also be on the configuration of the resulting computation,
and on each object reference, which by Definition 4.13 makes each stephigh. Furthermore, sinceSp is on the configuration
resulting from any computation, we haveSp ⊆ Sv, and since by assumptionSp 6⊆ Low, we haveSv 6⊆ Low. ut

Lemma 4.21 (Bisimulation of High Computation)

1. (one-step) IfL E MS ,H, ι, ω h L E ′ MS ′
,H ′, ι′, ω′, thenH 'Low H ′, ι 'Low ι′, andω 'Low ω′.

2. (n-steps) IfL E MS ,H, ι, ω ∗
h L E ′ MS ′

,H ′, ι′, ω′, thenH 'Low H ′, ι 'Low ι′, andω 'Low ω′.

Proof.

1. By induction on the derivation ofL E MS ,H, ι, ω h L E ′ MS ′
,H ′, ι′, ω′, using Definition 4.15, Definition 4.13, and

Fixed Point Lemma 4.9.

2. By induction on the length of ∗
h, using Lemma 4.21[1].

ut

Lemma 4.22 shows that for two configurations that differ only in some high values, a low step results in the same
configuration, apart from differing high values. The low portions of the heap must be the same.

Lemma 4.22 (Reduction of Low Security Configurations)LetL E1 MS1 ,H1 = JΓ,Hi, pc, C, e K andL E1 MS1 ,H1, ι1, ω1 l

L E2 MS2 ,H2, ι2, ω2, andL E ′1 MS
′
1 ,H ′

1 = J Γ′,H ′
i, pc′, C′, e′ K and L E1 MS1 ,H1, ι1, ω1 'Low L E ′1 MS

′
1 ,H ′

1, ι
′
1, ω

′
1, then there ex-

ists derivationsL E1 MS1 ,H1, ι1, ω1 l L E ′′2 MS
′′
2 ,H ′′

2 , ι2, ω2, andL E ′1 MS
′
1 ,H ′

1, ι
′
1, ω

′
1 l L E ′′′2 MS

′′′
2 ,H ′′′

2 , ι′2, ω
′
2, such that

L E ′′2 MS
′′
2 ,H ′′

2 , ι2, ω2 'Low L E ′′′2 MS
′′′
2 ,H ′′′

2 , ι′2, ω
′
2.

Proof.
By induction on the context derivation tree of l, with case analysis on the last (bottom) reduction rule used.

Case (Field-R) LetL E1 MS1 = L L o MS .fi MS1 andL E ′1 MS
′
1 = L L o′ MS

′
.fj MS

′
1 . By (Field-R),L L o MS .fi MS1 ,H1, ι1, ω1

L v MSi∪S∪S1 ,H1, ι1, ω1, whereH(o) = L new C(V̄) MSv andVi = L v MSi . According to Definition 4.15[2d], we have
L L o MS .fi MS1 'Low L L o′ MS

′
.fj MS

′
1 , hencei = j, S1 'Low S ′

1, and L o MS 'Low L o′ MS
′
. Since this is a low step, by

Definition 4.12Si ∪ S ∪ S1 ⊆ Low, henceS1 ⊆ Low, so by Definition 4.15[1]S1 = S ′
1. We have two cases according to

Definition 4.15[2a].

26

SubcaseS ⊆ Low, S ′ ⊆ Low, S = S ′, ando = o′.

By (Field-R),L L o′ MS
′
.fi MS

′
1 ,H ′

1, ι
′
1, ω

′
1 L v′ MS

′
i∪S ′∪S ′

1 ,H ′
1, ι

′
1, ω

′
1, whereH(o) = L new C(V̄) MSv andVi = L v′ MS

′
i .

By Definition 4.12 and Definition 4.15[3],L v′ MS
′
i = L v MSi . As previously statedS = S ′ and S1 = S ′

1, hence
L v MSi∪S∪S1 = L v′ MS

′
i∪S ′∪S ′

1 , that isL v MSi∪S∪S1 'Low L v′ MS
′
i∪S ′∪S ′

1 . By hypothesis and Definition 4.15,L v MSi∪S∪S1 ,H1, ι1, ω1 'Low

L v′ MS
′
i∪S ′∪S ′

1 ,H ′
1, ι

′
1, ω

′
1

SubcaseS 6⊆ Low andS ′ 6⊆ Low.

By (Field-R),L L o MS .fi MS1 ,H1, ι1, ω1 L v MSi∪S∪S1 ,H1, ι1, ω1. HenceSi ∪ S ∪ S1 6⊆ Low, so by Definition 4.12,
this is not a low step, which contradicts the hypothesis, so this case cannot occur.

Case (New-R) LetL E1 MS1 = L new C(L v̄ MS̄v)S̄ MS1 andL E ′1 MS
′
1 = L new C(L v̄′ MS̄ ′

v)S̄ ′ MS
′
1 .

By (New-R),L new C(L v̄ MS̄v)S̄ MS1 ,H1, ι1, ω1 L L E2 MS2 ; L return L o MS1 MS1 ; MS1 ,H1[o 7→ L new C(L null MS̄) MS1], ι1, ω1,
cnbody(C) = super(ē); s̄, andclass C extends D {. . . }, and

L E2 MS2 = J Γ,H1,S1, C, [x̄ 7→ L v̄ MS̄v , this 7→ L o MS1]this.super(D, ē); s̄ Ke.

According to Definition 4.15[2g],̄S 'Low S̄ ′, S1 'Low S ′
1, andL v̄ MS̄v 'Low L v̄′ MS̄ ′

v . By assumption, this is a low step,
hence by Definition 4.12,S1 ⊆ Low, and sinceS1 'Low S ′

1, by Definition 4.15[2a],S ′
1 ⊆ Low, andS1 = S ′

1.

Assume thatD 6= Object. The case whereD = Object is omitted, as it is similar, except the call tosuper has no
arguments.

Since we have a well-typed label table, by Constructor Typing,Γ[x̄ 7→ t̄, this 7→ tt], sp,H ` s̄ : τc\Cc andΓ[x̄ 7→
t̄, this 7→ tt], sp,H ` ē : τ̄s\C̄s.

By assumption and (New), we haveΓ, pc, Hi ` L v̄ MS̄v : τ̄\C̄, Γ, pc, Hi ` L ō MS̄1 : τo\Co, andΓ′, pc′,H ′
i ` L v̄′ MS̄ ′

v : τ̄ ′\C̄′,
Γ′, pc′,H ′

i ` L ō′ MS̄ ′
1 : τ ′o\C′o, whereC̄, Co,⊆ C andC̄′, C′o ⊆ C′.

By (New) and(Method), there exists consistent constraint sets[t̄i 7→ t̄l][sp 7→ τo, t̄ 7→ τ̄ , tt 7→ τo, tr 7→ t′r](Cc ∪ C̄s ∪
{D.K(τ̄s, tt

sp−→ tr} ∪ {τc <: tr}) and[t̄i 7→ t̄′l][sp 7→ τ ′o, t̄ 7→ τ̄ ′, tt 7→ τo, tr 7→ t′′r](Cc ∪ C̄s ∪ {D.K(τ̄s, tt
sp−→ tr} ∪ {τ ′c <:

tr}).
By (New-R),o = newref (H1,S1), and leto′ = newref (H ′

1,S
′
1). SinceS1 ⊆ Low, S ′

1 ⊆ Low, S1 = S ′
1, andH1 'Low H ′

1,
by Lemma 4.17newref (H1,S1) = newref (H ′

1,S
′
1), henceo = o′.

SinceS1 = S ′
1, L v̄ MS̄v 'Low L v̄′ MS̄ ′

v , o = o′, andH1 'Low H ′
1, by Lemma 4.19, there exists a translationL E ′2 MS

′
2 =

J Γ′,H ′
1,S

′
1, C′, [x̄ 7→ L v̄′ MS̄ ′

v , this 7→ L o′ MS
′
1]this.super(D, ē); s̄ Ke. such thatL E2 MS2 'Low L E ′2 MS

′
2 .

Hence, by (New-R),L new C(L v̄′ MS̄ ′
v)S̄ ′ MS

′
1 ,H ′

1, ι
′
1, ω

′
1 L L E ′2 MS

′
2 ; L return L o′ MS

′
1 MS

′
1 ; MS

′
1 ,H ′

1[o
′ 7→ L new C(L null MS̄ ′) MS

′
1], ι′1, ω

′
1.

SinceS1 = S ′
1, o = o′, S1 ⊆ Low, andS ′

1 ⊆ Low, by Definition 4.15[2a],L o MS1 'Low L o′ MS
′
1 , and by Definition 4.15[1]

S1 'Low S ′
1. Hence, by Definition 4.15[2o],L return L o MS1 MS1 'Low L return L o′ MS

′
1 MS

′
1 . SinceL E2 MS2 'Low L E ′2 MS

′
2 ,

by Definition 4.15[2l]L L E2 MS2 ; L return L o MS1 MS1 ; MS1 'l setL L E ′2 MS
′
2 ; L return L o′ MS

′
1 MS

′
1 ; MS

′
1 .

Now, S̄ 'Low S̄ ′ impliesL null MS̄ 'Low L null MS̄ ′
by Definition 4.15[2a]. SinceH1 'Low H ′

1, o = o′, andS1 = S ′
1, by

Definition 4.15[3] we haveH1[o 7→ L new C(L null MS̄) MS1] 'Low H ′
1[o

′ 7→ L new C(L null MS̄ ′) MS
′
1]. the lemma follows

by Definition 4.15[8].

Case (Invoke-R) Let L E1 MS1 = L L o MSv.m(L v̄ MS̄v) MS1 and L E ′1 MS
′
1 = L L o′ MS

′
v.m(L v̄′ MS̄ ′

v) MS
′
1 . By (Invoke-R), let

L L o MSv.m(L v̄ MS̄v) MS1 ,H1, ι1, ω1 L E2 MS2∪S1 ,H1, ι1, ω1.

By Definition 4.15[2h,2a], we have two cases.

SubcaseSv 6⊆ Low.

By Definition 4.12, this is not a low step, so this case cannot occur.

SubcaseSv ⊆ Low.

So, by Definition 4.15[2h,2a],Sv = S ′
v ando = o′.

Now, by (Invoke-R),mbody(m, C) = s̄ andL E2 MS2 = JΓ,H1,Sv, C, [x̄ 7→ L v̄ MS̄v , this 7→ L o MSv]s̄ Ke

Since we have a well-typed label table, by Method Typing,Γ[x̄ 7→ t̄, this 7→ tt], sp,H ` s̄ : τm\Cm

By assumption and (Invoke), we haveΓ, pc, Hi ` L v̄ MS̄v : τ̄\C̄, Γ, pc, Hi ` L ō MS̄v : τo\Co, andΓ′, pc′,H ′
i ` L v̄′ MS̄ ′

v :
τ̄ ′\C̄′, Γ′, pc′,H ′

i ` L ō′ MS̄ ′
v : τ ′o\C′o, whereC̄, Co, C̄′, C′o ⊆ C.

27

By (Invoke) and(Method), there exists consistent constraint sets[t̄i 7→ t̄l][sp 7→ τo, t̄ 7→ τ̄ , tt 7→ τo, tr 7→ t′r](Cm ∪
{τm <: tr}) and[t̄i 7→ t̄′l][sp 7→ τ ′o, t̄ 7→ τ̄ ′, tt 7→ τ ′o, tr 7→ t′′r](Cm ∪ {τm <: tr}).
SinceSv = S ′

v, L v̄ MS̄v 'Low L v̄′ MS̄ ′
v , o = o′, andH1 'Low H ′

1, by Lemma 4.19, there exists a translationL E ′2 MS
′
2 =

J Γ′,H ′
1,S

′
v, C′, [x̄ 7→ L v̄′ MS̄ ′

v , this 7→ L o′ MS
′
v]s̄ Ke such thatL E2 MS2 'Low L E ′2 MS

′
2 .

Hence, by (Invoke-R),L L o′ MS
′
v.m(L v̄′ MS̄ ′

v) MS
′
1 ,H ′

1, ι
′
1, ω

′
1 L E ′2 MS

′
2∪S ′

1 ,H ′
1, ι

′
1, ω

′
1.

SinceS1 'Low S ′
1, L E2 MS2∪S1 'Low L E ′2 MS

′
2∪S ′

1 .
Since the heaps and streams are unchanged by the reduction step, the lemma follows by Definition 4.15[8].

Case (Super-R) follows a similar reasoning to (New-R) and (Invoke-R).

Case (Seq-R) LetL E1 MS1 = L L v MSv ; L Ē MS̄ MS1 andL E ′1 MS
′
1 = L L v′ MS

′
v ; L Ē ′ MS̄ ′ MS

′
1 .

By (Seq-R), letL L v MSv ; L Ē MS̄ MS1 ,H1, ι1, ω1 L L Ē MS̄ MS1 ,H1, ι1, ω1 and

L L v′ MS
′
v ; L Ē ′ MS̄ ′ MS

′
1 ,H ′

1, ι
′
1, ω

′
1 L L Ē ′ MS̄ ′ MS

′
1 ,H ′

1, ι
′
1, ω

′
1

By Definition 4.15[2l],L Ē MS̄ 'Low L Ē ′ MS̄ ′
andS1 'Low S ′

1. Hence, by Definition 4.15[2l],L L Ē MS̄ MS1 'Low L L Ē ′ MS̄ ′ MS
′
1 .

Conclude with Definition 4.15[8].

Case (Assign-R) LetL E1 MS1 = L L o MSo .f := L v MSv ; MS1 andL E ′1 MS
′
1 = L L o′ MS

′
o .f := L v′ MS

′
v ; MS

′
1 . By (Assign-R), let

L L o MSo .f := L v MSv ; MS1 ,H1, ι1, ω1 L null MS1∪Sv∪So ,H1[o 7→ L new C(. . . , L v MSv∪S1∪So∪Si , . . .) MSh], ι1, ω1 and
L L o′ MS

′
o .f := L v′ MS

′
v ; MS

′
1 ,H ′

1, ι
′
1, ω

′
1 L null MS

′
1∪S ′

v∪S ′
o ,H ′

1[o
′ 7→ L new C(. . . , L v′ MS

′
v∪S ′

1∪S ′
o∪S ′

i , . . .) MS
′
h], ι′1, ω

′
1

According to Definition 4.15[2n,2a], we have two cases.

SubcaseSo 6⊆ Low. Then by Definition 4.12, this is not a low step, so this case cannot occur.

SubcaseSo ⊆ Low. Theno = o′ andSo = S ′
o.

Again, according to Definition 4.15[2n,2a], we have two cases.

SubcaseSv 6⊆ Low. Then by Definition 4.12, this is not a low step, so this case cannot occur.
SubcaseSv ⊆ Low. Then v = v′ and Sv = S ′

v. By Definition 4.15 and assumption, we also knowS1 'Low

S ′
1, andSi 'Low S ′

i . HenceL v MSv∪S1∪So∪Si 'Low L v′ MS
′
v∪S ′

1∪S ′
o∪S ′

i . Therefore by Definition 4.15[3]H1[o 7→
L new C(. . . , L v MSv∪S1∪So∪Si , . . .) MSh] 'Low H ′

1[o
′ 7→ L new C(. . . , L v′ MS

′
v∪S ′

1∪S ′
o∪S ′

i , . . .) MS
′
h]. Furthermore,

L null MS1∪Sv∪So 'Low L null MS
′
1∪S ′

v∪S ′
o , and the lemma follows by Definition 4.15[8].

Case (IfTrue-R)

Let L E1 MS1 = L if L b MSvthen L Et MSt else L Ef MSf MS1 andL E ′1 MS
′
1 = L if L b′ MS

′
vthen L E ′t MS

′
t else L E ′f MS

′
f MS

′
1 and

without loss of generality, assumeb = True. So, by (IfTrue-R),L if L b MSvthen L Et MSt else L Ef MSf MS1 ,H1, ι1, ω1
L Et MSt ,H1, ι1, ω1.

By Definition 4.15[2k,2a], we have two cases

SubcaseSv 6⊆ Low. Then by Definition 4.12, this is not a low step, so this case cannot occur.

SubcaseSv 6⊆ Low. ThenSv = S ′
v andb = b′. Henceb′ = True, so by (IfTrue-R),

L if L b′ MS
′
vthen L E ′t MS

′
t else L E ′f MS

′
f MS

′
1 ,H ′

1, ι
′
1, ω

′
1 L E ′t MS

′
t ,H ′

1, ι
′
1, ω

′
1. By Definition 4.15[2k],L Et MSt 'Low

L E ′t MS
′
t . Since the heaps and streams are unchanged, the lemma follows by assumption and Definition 4.15[8].

Case (Input-R) LetL E1 MS1 = L readL(L fd MSf) MS1 andL E ′1 MS
′
1 = L readL(L fd′ MS

′
f) MS

′
1 .

By (Input-R), letL readL(L fd MSf) MS1 ,H1, ι1, ω1 L c ML,H1, ι2, ω1 andL readL(L fd′ MS
′
f) MS

′
1 ,H ′

1, ι
′
1, ω

′
1 L c′ ML,H ′

1, ι
′
2, ω

′
1

By Definition 4.15[2i,2a], we have two cases.

SubcaseSf 6⊆ Low. Then by premise to (Input-R),L 6⊆ Low. However, Definition 4.12 requiresL ⊆ Low for this to be a
low step. So this case cannot occur.

SubcaseSf ⊆ Low. ThenSf = S ′
f andfd = fd′. By Definition 4.12,L ⊆ Low, so by Definition 4.15[5],ι1(fd, L) =

ι′1(fd
′, L). Hencec.ι2(fd, L) = c′.ι′2(fd

′, L), soc = c′ and ι2(fd, L) = ι′2(fd
′, L). Thus, by Definition 4.15[2a],

L c ML 'Low L c′ ML and by Definition 4.15[5],ι2 'Low ι′2. The lemma follows by Definition 4.15[8].

28

Case (Output-R) LetL E1 MS1 = L writeL(L c MSc , L fd MSf) MS1 andL E ′1 MS
′
1 = L writeL(L c′ MS

′
c , L fd′ MS

′
f) MS

′
1 .

By (Output-R), letL writeL(L c MSc , L fd MSf) MS1 ,H1, ι1, ω1 L null MSc∪Sf∪S1 ,H1, ι1, ω2 and

L writeL(L c′ MS
′
c , L fd′ MS

′
f) MS

′
1 ,H ′

1, ι
′
1, ω

′
1 L null MS

′
c∪S ′

f∪S ′
1 ,H ′

1, ι
′
1, ω

′
2.

By Definition 4.15[2j,2a], we have two cases.

SubcaseSf 6⊆ Low. By Definition 4.12 this is not a low step. So this case cannot occur.

SubcaseSf ⊆ Low. ThenSf = S ′
f andfd = fd′. Again by Definition 4.15[2j,2a], we have two cases.

SubcaseSc 6⊆ Low. By Definition 4.12 this is not a low step. So this case cannot occur.

SubcaseSc ⊆ Low. ThenSc = S ′
c andc = c′.

We have two more cases.

SubcaseL ⊆ Low. Then, by Definition 4.15[6],ω1(fd, L) = ω′1(fd
′, L). Sincec = c′, we havec.ω1(fd, L) =

c′.ω′1(fd
′, L). Hence by Definition 4.15[6],ω2 'Low ω′2. Further, sinceSc = S ′

c, Sf = S ′
f , andS1 = S ′

1, by

Definition 4.15[2a],L null MSc∪Sf∪S1 'Low L null MS
′
c∪S ′

f∪S ′
1 . The lemma follows by Definition 4.15[8].

SubcaseL 6⊆ Low. Then by Definition 4.15[6],ω2 'Low ω′2. SinceSc = S ′
c, Sf = S ′

f , andS1 = S ′
1, by Defini-

tion 4.15[2a],L null MSc∪Sf∪S1 'Low L null MS
′
c∪S ′

f∪S ′
1 . The lemma follows by Definition 4.15[8].

Case (Field-RC) LetL E1 MS1 = L L Ea MSa .f MS1 and L E ′1 MS
′
1 = L L E ′a MS

′
a .f MS

′
1 . By assumption, Definition 4.12, and

(Field-RC),L L Ea MSa .f MS1 ,H1, ι1, ω1 l L L Eb MSb .f MS1 ,H2, ι2, ω2 andL Ea MSa ,H1, ι1, ω1 l L Eb MSb ,H2, ι2, ω2. Also
by (Field-RC),L L E ′a MS

′
a .f MS

′
1 ,H ′

1, ι
′
1, ω

′
1 l L L E ′b MS

′
b .f MS

′
1 ,H ′

2, ι
′
2, ω

′
2 andL E ′a MS

′
a ,H ′

1, ι
′
1, ω

′
1 l L E ′b MS

′
b ,H ′

2, ι
′
2, ω

′
2.

By assumption and Definition 4.15[2d],S1 'Low S ′
1 andL Ea MSa 'Low L E ′a MS

′
a . So, by Definition 4.15[8],L Ea MSa ,H1, ι1, ω1 'Low

L E ′a MS
′
a ,H ′

1, ι
′
1, ω

′
1. Hence, by induction, there exists derivationsL Ea MSa ,H1, ι1, ω1 l L Ec MSc ,H ′′

2 , ι2, ω2 andL E ′a MS
′
a ,H ′

1, ι
′
1, ω

′
1 l

L E ′c MS
′
c ,H ′′′

2 , ι′2, ω
′
2, such thatL Ec MSc ,H ′′

2 , ι2, ω2 'Low L E ′c MS
′
c ,H ′′′

2 , ι′2, ω
′
2. Then by Definition 4.15[2d],L L Ec MSc .f MS1 'Low

L L E ′c MS
′
c .f MS

′
1 . Conclude with Definition 4.15[8],L L Ec MSc .f MS1 ,H ′′

2 , ι2, ω2 'Low L L E ′c MS
′
c .f MS

′
1 ,H ′′′

2 , ι′2, ω
′
2.

Remaining cases: (Op-R) (Cast-R) (Super-R) (Super-R’) (Return-R) (Block-R) (Skip-R) (SubVal-R) (*-RC) ut

Lemma 4.23 shows that for two configurations that differ only in high values, a series of high steps – where the high steps
complete by either reaching a value, or being followed by a low step – result in the same configuration with possibly some of
the high values substituted for other high values, and the low portions of the heap are the same.

Lemma 4.23 (Reduction of High Security Configurations)Let L E1 MS1 ,H1 = JΓ,Hi, pc, C, e K, and
L E ′1 MS

′
1 ,H ′

1 = J Γ′,H ′
i, pc′, C′, e′ K andL E1 MS1 ,H1, ι1, ω1 'Low L E ′1 MS

′
1 ,H ′

1, ι
′
1, ω

′
1 andL E1 MS1 ,H1, ι1, ω1 ∗

h L E2 MS2 ,H2, ι2, ω2,
and eitherE2 is a value, orL E2 MS2 ,H2, ι2, ω2 l L E3 MS3 ,H3, ι3, ω3, for someL E3 MS3 ,H3, ι3, and ω3, and assume
L E1 MS1 ,H1, ι1, ω1 andL E ′1 MS

′
1 ,H ′

1, ι
′
1, ω

′
1 both terminate; then there exists derivationsL E1 MS1 ,H1, ι1, ω1 ∗

h L E ′′2 MS
′′
2 ,H ′′

2 , ι2, ω2,
andL E ′1 MS

′
1 ,H ′

1, ι
′
1, ω

′
1

∗
h L E ′2 MS

′
2 ,H ′

2, ι
′
2, ω

′
2, such thatL E ′′2 MS

′′
2 ,H ′′

2 , ι2, ω2 'Low L E ′2 MS
′
2 ,H ′

2, ι
′
2, ω

′
2.

Proof.
By induction on length of the reduction ∗

h, and the height of the reduction derivation tree.
Base Case (reflexive):L E1 MS1 = L E2 MS2 , H1 = H2, ι1 = ι2, andω1 = ω2. Then, by reflexivity of ∗, L E ′1 MS

′
1 = L E ′2 MS

′
2 ,

H ′
1 = H ′

2, ι′1 = ι′2, andω′1 = ω′2. The lemma follows by assumption,L E2 MS2 ,H2, ι2, ω2 'Low L E ′2 MS
′
2 ,H ′

2, ι
′
2, ω

′
2.

Inductive Case: L E1 MS1 ,H1, ι1, ω1 h L E MS ,H, ι, ω ∗
h L E2 MS2 ,H2, ι2, ω2.

By induction on the context derivation tree ofL E1 MS1 ,H1, ι1, ω1 h L E MS ,H, ι, ω, with case analysis on the last
(bottom) reduction rule used.

Case (Field-R) LetL E1 MS1 = L L o MSo .fi MS1 andL E ′1 MS
′
1 = L L o′ MS

′
o .fi MS

′
1 . By (Field-R), letL L o MSo .fi MS1 ,H1, ι1, ω1

L v MSi∪S1∪So ,H1, ι1, ω1 andL L o′ MS
′
o .fi MS

′
1 ,H ′

1, ι
′
1, ω

′
1 L v′ MS

′
i∪S ′

1∪S ′
o ,H ′

1, ι
′
1, ω

′
1.

By Definition 4.13,Si ∪ S1 ∪ So 6⊆ Low. By Definition 4.15[2d, 2a, 3], we haveSi 'Low S ′
i , S1 'Low S ′

1, andSo 'Low S ′
o.

HenceS ′
i ∪ S ′

1 ∪ S ′
o 6⊆ Low. Then, by Definition 4.15[2a],L v MSi∪S1∪So 'Low L v′ MS

′
i∪S ′

1∪S ′
o . The lemma follows by

Definition 4.15[8].

29

Case (Invoke-R) Let L E1 MS1 = L L o MSv.m(L v̄ MS̄v) MS1 and L E ′1 MS
′
1 = L L o′ MS

′
v.m(L v̄′ MS̄ ′

v) MS
′
1 . By (Invoke-R), let

L L o MSv.m(L v̄ MS̄v) MS1 ,H1, ι1, ω1 L Ea MS1∪Sa ,H1, ι1, ω1.

By Definition 4.13, we haveSv 6⊆ Low. Hence by Definition 4.15[2h, 2a] and assumption,S ′
v 6⊆ Low.

By assumption,L Ea MS1∪Sa ,Sv,H1, ι1, ω1 terminates, and we have just shown thatSv 6⊆ Low. By (Invoke-R),L Ea MSa =
JΓ,H,Sv, C, [x̄ 7→ L v̄ MS̄v , this 7→ L o MSv]s̄ Ke, so by Lemma 4.5 and Definition 4.4,Sv is on every subconfiguration
of L Ea MSa . Hence by Lemma 4.20,L Ea MS1∪Sa ,Sv,H1, ι1, ω1 ∗

h L E2 MS2 ,H2, ι2, ω2, whereE2 = v2 for somev2, and
S2 6⊆ Low. By Lemma 4.21[2],H1 'Low H2, ι1 'Low ι2, andω1 'Low ω2.

Similarly, by (Invoke-R), letL L o′ MS
′
v.m(L v̄′ MS̄ ′

v) MS
′
1 ,H ′

1, ι
′
1, ω

′
1 L E ′a MS

′
1∪S ′

a ,H ′
1, ι

′
1, ω

′
1. By assumptionL E ′a MS

′
1∪S ′

a ,S ′
v,H ′

1, ι
′
1, ω

′
1

terminates, and we have shown thatS ′
v 6⊆ Low. By (Invoke-R), L E ′a MS

′
a = JΓ′,H ′,S ′

v, C′, [x̄ 7→ L v̄′ MS̄ ′
v , this 7→

L o′ MS
′
v]s̄ Ke, so by Lemma 4.5 and Definition 4.4,S ′

v is on every subconfiguration ofL E ′a MS
′
a . (Regardless of which

actual typing is used,S ′
v, as the program counter, will occur on every subconfiguration. (Sub) can only add labels, in

essence making things morehigh, which is inconsequential.) Hence by Lemma 4.20,L E ′a MS
′
1∪S ′

a ,S ′
v,H ′

1, ι
′
1, ω

′
1

∗
h

L E ′2 MS
′
2 ,H ′

2, ι
′
2, ω

′
2, whereE ′2 = v′2 for somev′2, andS ′

2 6⊆ Low. By Lemma 4.21[2],H ′
1 'Low H ′

2, ι′1 'Low ι′2 and
ω′1 'Low ω′2.

Now, sinceS2 6⊆ Low, S ′
2 6⊆ Low, E2 = v2, andE ′2 = v′2, by Definition 4.15[2],L E2 MS2 'Low L E ′2 MS

′
2 . By Lemma 4.16[2,3],

we haveH2 'Low H ′
2, ι2 'Low ι′2 andω2 'Low ω′2. Then by Definition 4.15[8],L E2 MS2 ,H2, ι2, ω2 'Low L E ′2 MS

′
2 ,H ′

2, ι
′
2, ω

′
2.

Case (New-R) LetL E1 MS1 = L new C(L v̄ MS̄v)S̄ MS1 andL E ′1 MS
′
1 = L new C(L v̄′ MS̄ ′

v)S̄ ′ MS
′
1 . By (New-R), let

L new C(L v̄ MS̄v)S̄ MS1 ,H1, ι1, ω1 L L Ea MSa ; L return L o MS1 MS1 ; MS1 ,Ha, ι1, ω1 andHa = H1[o 7→ L new C(L null MS̄) MS1].

By Definition 4.13,S1 6⊆ Low, and by Definition 4.15[2g],S ′
1 6⊆ Low. Now, we havenewref (H1,S1) = o = locS1

i and

newref (H ′
1,S

′
1) = o′ = locS ′

1
j . So, if o ∈ dom(H ′

1), then by the definition ofnewref , H ′
1(o) = L new C(LV MS̄v) MS1 .

Similarly, if o′ ∈ dom(H1), then by the definition ofnewref , H1(o′) = L new C(LV ′ MS̄ ′
v) MS

′
1 . SinceS1 6⊆ Low and

S ′
1 6⊆ Low, by Definition 4.15[3],Ha 'Low H ′

a.

The remaining argument follows the (Invoke-R) case.

Case (Super-R) follows a similar reasoning to (Invoke-R).

Case (IfTrue-R) LetL E1 MS1 = L if L b MSvthen L Et MSt else L Ef MSf MS1 andL E ′1 MS
′
1 = L if L b′ MS

′
vthen L E ′t MS

′
t else L E ′f MS

′
f MS

′
1

and without loss of generality, assumeb = True. So, by (IfTrue-R),L if L b MSvthen L Et MSt else L Ef MSf MS1 ,H1, ι1, ω1
L Et MSt ,H1, ι1, ω1.

We have two subcases:

SubcaseSv ⊆ Low

Then, by Definition 4.15[2k,2a],b′ = b = True. Hence, by (IfTrue-R),L if L b′ MS
′
vthen L E ′t MS

′
t else L E ′f MS

′
f MS

′
1 ,H ′

1, ι
′
1, ω

′
1

L E ′t MS
′
t ,H ′

1, ι
′
1, ω

′
1. The lemma follows by induction onL Et MSv∪St ,H1, ι1, ω1.

SubcaseSv 6⊆ Low

According to assumption and Lemma 4.5, each subconfiguration inL E1 MS1 must contain the labels inSv. SinceSv 6⊆
Low, the label on each subconfiguration is also not a subset ofLow (the label is thehigh). The lemma follows with the
same reasoning as the (Invoke-R) case.

Case (Assign-R) LetL E1 MS1 = L L o MSo .f := L v MSv ; MS1 andL E ′1 MS
′
1 = L L o′ MS

′
o .f := L v′ MS

′
v ; MS

′
1 . Since both executions

terminate, By (Assign-R) and Fixed Point Lemma 4.9, there exists reductionsL L o MSo .f := L v MSv ; MS1 ,H1, ι1, ω1
L null MS1∪Sv∪So ,H2, ι1, ω1 and L L o′ MS

′
o .f := L v′ MS

′
v ; MS

′
1 ,H ′

1, ι
′
1, ω

′
1 L null MS

′
1∪S ′

v∪S ′
o ,H ′

2, ι
′
1, ω

′
1, whereH2 =

H1[o 7→ L new C(. . . , L v MSv∪S1∪So∪Si , . . .) MSh] andH ′
2 = H ′

1[o
′ 7→ L new C(. . . , L v′ MS

′
v∪S ′

1∪S ′
o∪S ′

i , . . .) MS
′
h], such that

Sv ∪ S1 ∪ So ∪ Si = Si andS ′
v ∪ S ′

1 ∪ S ′
o ∪ S ′

i = S ′
i .

By Definition 4.13,S1 ∪ Sv ∪ So 6⊆ Low. Since by Definition 4.15[2d,2a],S1 'Low S ′
1, Sv 'Low S ′

v, andSo 'Low S ′
o, we

haveS ′
1 ∪ S ′

v ∪ S ′
o 6⊆ Low. Hence, by Definition 4.15[2a],L null MS1∪Sv∪So 'Low L null MS

′
1∪S ′

v∪S ′
o .

It remains to be shown thatH2 'Low H ′
2. S1 ∪ Sv ∪ So 6⊆ Low impliesSv ∪ S1 ∪ So ∪ Si 6⊆ Low andS ′

1 ∪ S ′
v ∪ S ′

o 6⊆ Low
impliesS ′

v ∪ S ′
1 ∪ S ′

o ∪ S ′
i 6⊆ Low. SinceSv ∪ S1 ∪ So ∪ Si = Si andS ′

v ∪ S ′
1 ∪ S ′

o ∪ S ′
i = S ′

i , we haveSi 6⊆ Low and
S ′

i 6⊆ Low.

According to Definition 4.15[2n,2a], we have two cases.

30

SubcaseSo 6⊆ Low. ThenS ′
o 6⊆ Low.

According to Definition 4.15[3], we must satisfy two cases to showH2 'Low H ′
2.

SubcaseDefinition 4.15[3a], ifo ∈ dom(H ′
1).

Let H1(o) = L new C(. . . , L vi MSi , . . .) MSh andH ′
1(o) = L new C(. . . , L v′′i MS

′′
i , . . .) MS

′′
h . Thus,

H2(o) = L new C(. . . , L v MSv∪S1∪So∪Si , . . .) MSh andH ′
2(o) = L new C(. . . , L v′′i MS

′′
i , . . .) MS

′′
h .

SupposeS ′
h 6⊆ Low. Then by Definition 4.15[3],Sh 6⊆ Low, and this case is satisfied.

Suppose instead thatS ′
h ⊆ Low. Then by Definition 4.15[3],Sh = S ′

h andL vi MSi 'Low L v′′i MS
′′
i . SinceSv ∪ S1 ∪

So ∪ Si 6⊆ Low andSi 6⊆ Low, by Definition 4.15[2a],L v MSv∪S1∪So∪Si 'Low L v′′i MS
′′
i , and the case is satisfied.

SubcaseDefinition 4.15[3b], ifo′ ∈ dom(H1).
Let H1(o′) = L new C(. . . , L v′′′i MS

′′′
i , . . .) MS

′′′
h andH ′

1(o
′) = L new C(. . . , L v′i MS

′
i , . . .) MS

′
h . Thus,

H2(o′) = L new C(. . . , L v′′′i MS
′′′
i , . . .) MS

′′′
h andH ′

2(o
′) = L new C(. . . , L v′ MS

′
v∪S ′

1∪S ′
o∪S ′

i , . . .) MS
′
h .

SupposeS ′
h 6⊆ Low. Then by Definition 4.15[3],S ′′′

h 6⊆ Low, and this case is satisfied.
Suppose instead thatS ′

h ⊆ Low. Then by Definition 4.15[3],S ′′′
h = S ′

h andL v′′′i MS
′′′
i 'Low L v′i MS

′
i . SinceS ′

v ∪ S ′
1 ∪

S ′
o ∪ S ′

i 6⊆ Low andS ′
i 6⊆ Low, by Definition 4.15[2a],L v′′′i MS

′′′
i 'Low L v′ MS

′
v∪S ′

1∪S ′
o∪S ′

i , and the case is satisfied.

Therefore, by Definition 4.15[3],H2 'Low H ′
2.

SubcaseSo ⊆ Low. Theno = o′ andSo = S ′
o.

Hence, by Definition 4.15[2a],L v MSv∪S1∪So∪Si 'Low L v′ MS
′
v∪S ′

1∪S ′
o∪S ′

i . Therefore, sinceo = o′, by assumption
H1 'Low H ′

1, and Definition 4.15[3],H2 'Low H ′
2.

The lemma follows by Definition 4.15[8].

Case (Seq-R) LetL E1 MS1 = L L v MSv ; L Ē MS̄ MS1 andL E ′1 MS
′
1 = L L v′ MS

′
v ; L Ē ′ MS̄ ′ MS

′
1 .

By (Seq-R), letL L v MSv ; L Ē MS̄ MS1 ,H1, ι1, ω1 L L Ē MS̄ MS1 ,H1, ι1, ω1 and

L L v′ MS
′
v ; L Ē ′ MS̄ ′ MS

′
1 ,H ′

1, ι
′
1, ω

′
1 L L Ē ′ MS̄ ′ MS

′
1 ,H ′

1, ι
′
1, ω

′
1

By Definition 4.15[2l],L Ē MS̄ 'Low L Ē ′ MS̄ ′
andS1 'Low S ′

1. Hence, by Definition 4.15[2l],L L Ē MS̄ MS1 'Low L L Ē ′ MS̄ ′ MS
′
1 .

The lemma follows by induction onL L Ē MS̄ MS1 ,H1, ι1, ω1.

Case (Input-R) LetL E1 MS1 = L readL(L fd MSf) MS1 andL E ′1 MS
′
1 = L readL(L fd′ MS

′
f) MS

′
1 .

By (Input-R), letL readL(L fd MSf) MS1 ,H1, ι1, ω1 L c ML,H1, ι2, ω1, andι1(fd, L) = c.ι2(fd, L),

L readL(L fd′ MS
′
f) MS

′
1 ,H ′

1, ι
′
1, ω

′
1 L c′ ML,H ′

1, ι
′
2, ω

′
1, andι′1(fd

′, L) = c′.ι′2(fd
′, L).

By Definition 4.13,L 6⊆ Low. Hence, by Definition 4.15[7],ι2 'Low ι′2 and by Definition 4.15[2a],L c ML 'Low L c′ ML. The
lemma follows by Definition 4.15[8].

Case (Output-R) LetL E1 MS1 = L writeL(L c MSc , L fd MSf) MS1 andL E ′1 MS
′
1 = L writeL(L c′ MS

′
c , L fd′ MS

′
f) MS

′
1 .

By (Output-R), letL writeL(L c MSc , L fd MSf) MS1 ,H1, ι1, ω1 L null MSc∪Sf∪S1 ,H1, ι1, ω2, andω2(fd, L) = c.ω1(fd, L),

L writeL(L c′ MS
′
c , L fd′ MS

′
f) MS

′
1 ,H ′

1, ι
′
1, ω

′
1 L null MS

′
c∪S ′

f∪S ′
1 ,H ′

1, ι
′
1, ω

′
2, andω′2(fd

′, L) = c′.ω′1(fd
′, L).

By premise to (Output-R),Sc ∪ Sf ∪ S1 ⊆ L. By Definition 4.13,Sc ∪ Sf ∪ S1 6⊆ Low. Hence,L 6⊆ Low, and by
Definition 4.15[6],ω2 'Low ω′2.

By Definition 4.15[2j,2a],Sc 'Low S ′
c, Sf 'Low S ′

f , andS1 'Low S ′
1, soS ′

c∪S ′
f ∪S ′

1 6⊆ Low. HenceL null MSc∪Sf∪S1 'Low

L null MS
′
c∪S ′

f∪S ′
1 . The lemma follows by Definition 4.15[8].

Case (Field-RC) LetL E1 MS1 = L L Ea MSa .f MS1 andL E ′1 MS
′
1 = L L E ′a MS

′
a .f MS

′
1 .

By assumption, Definition 4.13, and (Field-RC),L L Ea MSa .f MS1 ,H1, ι1, ω1 ∗
h L L Eb MSb .f MS1 ,H2, ι2, ω2 and

L Ea MSa ,H1, ι1, ω1 ∗
h L Eb MSb ,H2, ι2, ω2. By assumption and Definition 4.15[2d],S1 'Low S ′

1 andL Ea MSa 'Low L E ′a MS
′
a .

So, by Definition 4.15[8],L Ea MSa ,H1, ι1, ω1 'Low L E ′a MS
′
a ,H ′

1, ι
′
1, ω

′
1. Hence, by induction, there exists derivations

L Ea MSa ,H1, ι1, ω1 ∗
h L Ec MSc ,H ′′

2 , ι2, ω2 andL E ′a MS
′
a ,H ′

1, ι
′
1, ω

′
1

∗
h L E ′c MS

′
c ,H ′′′

2 , ι′2, ω
′
2, such thatL Ec MSc ,H ′′

2 , ι2, ω2 'Low

L E ′c MS
′
c ,H ′′′

2 , ι′2, ω
′
2. Then by Definition 4.15[2d],L L Ec MSc .f MS1 'Low L L E ′c MS

′
c .f MS

′
1 . By Definition 4.15[8],L L Ec MSc .f MS1 ,H ′′

2 , ι2, ω2 'Low

L L E ′c MS
′
c .f MS

′
1 ,H ′′′

2 , ι′2, ω
′
2.

Now, if L L Ec MSc .f MS1 ,H ′′
2 , ι2, ω2 l L E3 MS3 ,H3, ι3, ω3, then this case is complete. Otherwise, ifL L Ec MSc .f MS1 ,H ′′

2 , ι2, ω2 ∗
h

L E3 MS3 ,H3, ι3, ω3, conclude by induction on ∗
h.

31

Remaining cases: (Op-R) (Cast-R) (Super-R’) (Return-R) (Block-R) (Skip-R) (SubVal-R) (*-RC) ut

The noninterference theorem assumes the initial input streams are bisimilar with respect toLow. In other words, the user
with access only to data labeled by a subset ofLow cannot observe anything about data with labels that are not inLow (i.e.
high). Initial output streams are also assumed to be bisimilar with respect toLow, although for normal programs, they will
initially be empty. The theorem assumes the input streams are fixed before execution, but applies toanystream of inputs.

Theorem 4.24 (Non-deterministic Noninterference)Suppose∅, ∅, ∅ ` s̄ : 〈 S,F ,A〉\C, andι1 'Low ι′1, andω1 'Low ω′1,
and J ∅, ∅, ∅, C, s̄ K, ι1, ω1 and J ∅, ∅, ∅, C, s̄ K, ι′1, ω′1 both terminate then there exists derivationsJ ∅, ∅, ∅, C, s̄ K, ι1, ω1 ∗

L c MSc ,H2, ι2, ω2 andJ ∅, ∅, ∅, C, s̄ K, ι′1, ω′1 ∗ L c′ MS
′
c ,H ′

2, ι
′
2, ω

′
2, such thatι2 'Low ι′2 andω2 'Low ω′2. (andL c MSc 'Low

L c′ MS
′
c)

Proof.
The theorem follows by repeated use of lemmas 4.23 and 4.22 (allowed by Translation lemma 4.10). The reduction ∗

consists of alternating ∗
h and l steps. The number of high steps in ∗

h can also be zero. SinceJ ∅, ∅, ∅, C, s̄ K, ι1, ω0 termi-
nates, we haveJ ∅, ∅, ∅, C, s̄ K, ι1, ω0 ∗ L c MS ,H2, ι2, ω2, which can be written asJ ∅, ∅, ∅, C, s̄ K, ι1, ω0 ∗

h L E ′′3 MS
′′
3 ,H ′′

3 , ι3, ω3 l

L E ′′4 MS
′′
4 ,H ′′

4 , ι4, ω4 ∗
h . . . ∗

h L c′′ MS
′′
c ,H ′′

2 , ι2, ω2.
Then, according to Lemmas 4.23 and 4.22, there exists derivationsJ ∅, ∅, ∅, C, s̄ K, ι1, ω0 ∗

h L E3 MS3 ,H3, ι3, ω3 l

L E4 MS4 ,H4, ι4, ω4 ∗
h . . . ∗

h L c MSc ,H2, ι2, ω2 andJ ∅, ∅, ∅, C, s̄ K, ι1, ω0 ∗
h L E ′3 MS

′
3 ,H ′

3, ι3, ω3 l L E ′4 MS
′
4 ,H ′

4, ι4, ω4 ∗
h

. . . ∗
h L c′ MS

′
c ,H ′

2, ι2, ω2, such thatL E3 MS3 ,H3, ι3, ω3 'Low L E ′3 MS
′
3 ,H ′

3, ι3, ω3, L E4 MS4 ,H4, ι4, ω4 'Low L E ′4 MS
′
4 ,H ′

4, ι4, ω4,
and so forth, untilL c MSc ,H2, ι2, ω2 'Low L c′ MS

′
c ,H ′

2, ι2, ω2.
Hence, regardless of whether the execution ends in a low or high step, lemmas 4.23 and 4.22 both conclude that the low

input and output streams remain equivalent:ω2 'Low ω′2, andι2 'Low ι′2, as do the final values:c = c′. The theorem follows.
ut

4.5 Unlabeled Semantics and Noninterference

We now describe an unlabeled semantics with a deterministic evaluation relation, and show that it’s execution is equivalent in
terms of values to the labeled semantics, and therefore the noninterference result holds for this semantics. The deterministic
evaluation relation→, defined for unlabeled expressions and statements is identical to the semantic definitions of the labeled
configuration semantic relation , only without the labels. Reductions are of the formε,M ′

1, ι1, ω1 → ε′,M ′
2, ι2, ω2, where

M is defined identical toH, only lacking labels. The reduction rules are presented in Figure 11 and Figure 12. The rules for
reductions under context are similar to those in the labeled semantics, and are therefore omitted. In the deterministic seman-
tics,e is defined as in the original grammar in Figure 1, with the following addition:e ::= . . . | o | IOErr | o.super(C, ē).

The bisimulation in Definition 4.25 shows the relationship between labeled configurations and unlabeled expressions and
statements. The latter are the same as the former, only without the labels. Further, the heaps are the same onlyM lacks
labels, modulo exact heap locations.

Definition 4.25 (Bisimulation of Labeled and Unlabeled)

1. (Configurations and Expressions). For a partial functionβ : {ō} ⇀ {ō′}, thenε ∼β L E MS iff either

(a) ε = E = CO; or

(b) ε = E = IOErr ; or

(c) ε = o andE = β(o); or

(d) ε = E1 = x, for somex; or

(e) ε = E = this; or

(f) ε = ε′.f, E = L E ′ MS ′
.f, andε′ ∼β L E ′ MS ′

; or

(g) ε = (C) ε′, E = (C) L E ′ MS ′
, andε′ ∼β L E ′ MS ′

; or

(h) ε = ε′ ⊕ ε′′, E = L E ′ MS ′ ⊕ L E ′′ MS ′′
, andε′ ∼β L E ′ MS ′

, ε′′ ∼β L E ′′ MS ′′
; or

(i) ε = new C(ε′), E2 = new C(L E ′ MS ′)S̄ ′′
, andε′ ∼β L E ′ MS ′ ; or

(j) ε = ε′.m(ε′′), E = L E ′ MS ′
.m(L E ′′ MS ′′), andε′ ∼β L E ′ MS ′

, ε′′ ∼β L E ′′ MS ′′ ; or

32

(Field-R) o.fi,M, ι, ω → vi,M, ι, ω wherefields(C) = C̄ f̄, and
M(o) = new C(v̄)

(Op-R) c⊕ c′,M, ι, ω → v,M, ι, ω where v = c⊕ c′

(Cast-R) (D) o,M, ι, ω → o,M, ι, ω where C <: D

(Declassify-R) Declassify(v, L),M, ι, ω → v,M, ι, ω

(New-R) new C(v̄),M, ι, ω → s̄′; return o,M ′, ι, ω
wherecnbody(C) = super(ē); s̄ andclass C extends D {. . . }
ands̄′ = [x̄ 7→ v̄, this 7→ o]this.super(D, ē); s̄]
andM ′ = M [o 7→ new C(null)]ando = newref (M)

(Invoke-R) o.m(v̄),M, ι, ω → s̄′,M, ι, ω
wherembody(m, C) = s̄ ands̄′ = [x̄ 7→ v̄, this 7→ o]s̄

(Super-R) o.super(C, v̄),M, ι, ω → s̄′,M, ι, ω
wherecnbody(C) = super(ē); s̄ andclass C extends D {. . . }
ands̄′ = [x̄ 7→ v̄, this 7→ o]this.super(D, ē); s̄

(Super-R’) o.super(Object),M, ι, ω → null,M, ι, ω

(IfTrue-R) if True then e1 else e2,M, ι, ω → e1,M, ι, ω

(Seq-R) v; e,M, ι, ω → e,M, ι, ω

(Return-R) return v; ,M, ι, ω → v,M, ι, ω

(Block-R) {e},M, ι, ω → e,M, ι, ω

(Skip-R) ;,M, ι, ω → null,M, ι, ω

(Assign-R) o.f := v; ,M, ι, ω → null,
M [o 7→ new C(. . . , v, . . .)], ι, ω

wherefields(C) = C̄ f̄ andM(o) = new C(v̄)

newref(M) = o = loci wherei− 1 is the largest integer, such thatloci−1 ∈ M

Figure 11: Operational Semantics Reduction Rules

(Input-R) read(L,L′)(fd),M, ι, ω → c,M, ι′, ω whereL = Si andL′ = Ii

andι(fd,Si, Ii) = c.ι′(fd,Si, Ii)

(Output-R) write(L,L′)(c, fd),M, ι, ω → null,M, ι, ω′ whereL = Si andL′ = Ii

andω′(fd,Si, Ii) = c.ω(fd,Si, Ii)

(InErr-R) read(L,L′)(fd),M, ι, ω → IOErr ,M, ι, ω whereL 6= Si or L′ 6= Ii

andι(fd,Si, Ii)

(OutErr-R) write(L,L′)(c, fd),M, ι, ω → IOErr ,M, ι, ω whereL 6= Si or L′ 6= Ii

andω(fd,Si, Ii)

(IOErr-R) ε,M, ι, ω → IOErr ,M, ι, ω whereIOErr is a subexpression ofε

Figure 12: Operational Semantics IO Reduction Rules

(k) ε = read(L,L′)(ε′), E = read(L,L′)(L E ′ MS
′
), andε′ ∼β L E ′ MS ′

; or

(l) ε = write(L,L′)(ε′, ε′′), E = write(L,L′)(L E ′ MS
′
, L E ′′ MS ′′

), andε′ ∼β L E ′ MS ′
, ε′′ ∼β L E ′′ MS ′′

; or

33

(m) ε = if ε′ then ε′′ else L E ′′′1 MS
′′′
1 , E = if L E ′ MS ′

then L E ′′ MS ′′
else L E ′′′ MS ′′′

, andε′ ∼β L E ′ MS ′
, ε′′ ∼β

L E ′′ MS ′′
, L E ′′′1 MS

′′′
1 ∼β L E ′′′ MS ′′′

; or

(n) ε = ε′, E = L E ′ MS ′ , andε′ ∼β L E ′ MS ′ ; or

(o) ε = {ε′}, E = {L E ′ MS ′}, andε′ ∼β L E ′ MS ′
; or

(p) ε = ε′.f := ε′′;, E = L E ′ MS ′
.f := L E ′′ MS ′′

;, andε′ ∼β L E ′ MS ′
, ε′′ ∼β L E ′′ MS ′′

; or

(q) ε = return ε′;, E = return L E ′ MS ′
;, andε′ ∼β L E ′ MS ′

; or

(r) ε = L o1 MS
′′
1 .super(ε′), E = L o MS

′′
.super(L E ′ MS ′), andL o1 MS

′′
1 ∼β L o MS

′′
, ε′ ∼β L E ′ MS ′ ; or

(s) ε = E =; ; or

2. (Heaps)M ∼β H iff the following two conditions hold:

(a) β is a bijection betweendom(β) andrng(β).

(b) dom(β) = dom(M) andrng(β) = dom(H)

(c) ∀o ∈ dom(M), if M(o) = new C(v̄), thenH(β(o)) = L new C(V̄) MS and v̄ ∼β V̄.

We prove the equivalence of the evaluations of the labeled and unlabeled semantics in the following lemma.

Lemma 4.26 (Evaluation Equivalence)If ε,M1, ι1, ω1 → ε′,M2, ι2, ω2, and L E1 MS1 ,H1 = JΓ,Hi, pc, C, ε K, andε ∼β

L E1 MS1 , and H1 ∼β M1, then there existsβ′ whereβ ⊆ β′, such thatL E1 MS1 ,H1, ι1, ω1 L E2 MS2 ,H2, ι2, ω2, and
ε′ ∼β L E2 MS2 , andH1 ∼β M1.

Proof. By induction on the structure ofε and using Soundness Theorem 4.11. ut

The use of the soundness theorem is necessary since the labeled semantics has an a rule that may reduce a configuration
to CkFail . However, Soundness Theorem 4.11 shows this will not happen for a translated expression.

This further means that in the following Noninterference result for the unlabeled semantics, when we assume termination
we are assuming only the usual types of non-termination do not occur, since there is no check failure in the semantics. In
other words, all reads and writes that are notIOErr will occur, but the following Corollary ensures the low IO streams remain
equivalent.

Corollary 4.27 (Noninterference) Suppose∅, ∅, ∅ ` s̄ : 〈 S,F ,A〉\C, andι1 'Low ι′1, andω1 'Low ω′1, and s̄, ι1, ω1 →∗

c,H2, ι2, ω2 and s̄, ι′1, ω
′
1 →∗ c′,H ′

2, ι
′
2, ω

′
2, thenι2 'Low ι′2 andω2 'Low ω′2, andc = c′.

Proof. Directly by Theorem 4.24 and Lemma 4.26. ut

5 Top-level Policies

In this section, we present a system for declaring class-based policies at the top level of a program, meaning the policy will
not be buried in the code. This also provides a simpler means of adding information flow controls to programs, since the
underlying programs will not need to include any explicit flow annotations and so there is no need to define a new language
syntax for an information flow extension.

We use a simple translation-based approach for these top-level policies. Given a valid program and a top-level pol-
icy, the translation produces a new program with security levels onread and write expressions ofInputStream and
OutputStream subclasses, andDeclassify (andEndorse) statements on method return values, when downgrading (or
upgrading) is warranted. Policies are declared at the per-method level in a class. Each policy statement for a classC produces
a translation, where methodM is translated toM′, which includes the information flow statement.

Policies consist of four types of statements.read policies declare the sets of security labels for an input channel using
the Java representation of anInputStream subclass,C. Hence, theread method ofC is re-written to perform a low level
read operation with the security labels given by the policy. In a similar manner,write policies declare the sets of security
labels for an output channel using the Java representation of anOutputStream subclass. Thewrite method is re-written to
perform a low level write operation with the security labels given by the policy. Notice we require both theInputStream
andOutputStream subclasses to have a file descriptor as a (private) field. While the abstract classesInputStream and

34

class C : (S , I) whereC <: InputStream andFileDescriptor fd is a (private) field ofC.
int read() {s̄} ⇒ int read() {return read(S ,I)(fd); }

class C : (S , I) whereC <: OutputStream andFileDescriptor fd is a (private) field ofC.
void write(e) {s̄} ⇒ void write(e) {write(S ,I)(e, fd); }

class C, method RT m(C̄ x̄) : Declassify(L) whereRT 6= void
RT m(C̄ x̄){s̄; return e; } ⇒ RT m(C̄ x̄){s̄; return Declassify(e, L); }

class C, method RT m(C̄ x̄) : Endorse(L) whereRT 6= void
RT m(C̄ x̄){s̄; return e; } ⇒ RT m(C̄ x̄){s̄; return Endorse(e, L); }

Figure 13: Top-level Policy Translation

OutputStream do not have such a requirement, usable stream classes do, such asFileInputStream. In the Java imple-
mentation, low-level reads and writes are actually native methods. It is these low-level methods that we are re-defining. (In
actuality, there is some variation in the Java implementations of variousStream classes. For example,FileInputStream
uses an additional private native methodreadBytes for low-level reads of multiple bytes. For complete Java, we would need
to define additional translations to satisfy these inconsistencies, though the policy format will remain the same.)

Any sub-classes ofInputStream andOutputStream that do not have a defined policy receive the default policy, de-
scribed earlier. Hence all unspecified input streams are low secrecy and low integrity; the default policy for an output stream
is also low secrecy and low integrity.

Declassify statements specify what labels will be declassified from a method’s return value. Note that although we
provide the ability to specify declassification policies at the top-level, declassification of data requires knowledge of the un-
derlying code to be sure the data is truly diluted enough to warrant declassification, so it must be used with care.Declassify
statements can only be applied to methods with non-void return types, since it is the value that is returned from the method
that is declassified.Endorse statements are defined analogously for integrity upgrading. Note that MJ requires that methods
only have one return statement, at the end of the method body. Generalizing the language to other return statements requires
the translation to be applied to any return statement within a method body.

5.1 Example Top-level Policies

The following is a top-level policy for the program for changing passwords in section 2.2.

class SysFileIS:
({high,sys},{high,sys})
class UserIS
read(): Endorse({high})
class PwdFileOS:
({high,sys},{high})
class PwdFile
ChangePwd(String uname,oldpwd,newpwd):
Declassify({high,sys})

Supposing the program of Section 2.2 had all of the explicit information flow labels, checks, and declassifications re-
moved, to give a regular Java program; if the above policy were then applied to that stripped program, we would obtain the
program presented in Section 2.2 all over again. Even though programs may contain no explicit information flow policy
information, it still may be necessary to rewrite parts of a program for purposes of adding a fine-grained information flow
policy: a unique subclass needs to be defined for each different IO security policy. This in fact can be viewed as a good step,
because it leads to a more object-oriented information flow policy. The problem is that most programs use a limited number
of classes for input and output operations. For example, file reads will useFileInputStream, regardless of the sensitivity
of the file being read.

35

5.2 Policies at Code Deployment Time

One of the drawbacks of other information flow systems is the inflexibility of their security policy definitions. Many type
annotations are required, and security levels are added directly to the code. The result is that the programmer is the one
defining the security policy, not the users deploying the code in their specific setting – different deployment settings will have
different security requirements for the same program.

By contrast, our top-level policies are definable at deployment time, since whomever is defining the policy need not have
intimate knowledge of the source code. A drawback to our method is that a new static analysis must be done for each set of
policies. Although performance is less of an issue for a static analysis, we would still like to avoid long run-times, especially
if the policy needs tweaking. We can avert this in the following manner. Variables for labels are automatically generated
to represent input and output channels when typing classes and the program body. The constraint closure is then computed
with these variables. A user-defined policy describes the security level each channel represents, and each variable is replaced
by this security level in the closed constraint set. All that remains is a simple consistency check ofSC andIC constraints,
which will be much faster, since the majority of the cost of the analysis is due to closing the constraint set.

6 Related Work

Static analysis of information flow control systems is a well-studied area [13, 31, 32, 4, 1, 23]; Sabelfeld and Myers present a
survey in [26]. Much of the literature focuses on proving formal results for small programming languages, though there has
been some effort to define working systems. Flow Caml [24] is an information flow extension to Core ML. The Jif system
provides information flow control for full Java [18, 19].

O’Neill et. al. described an information flow security model for interactive IO using a simple imperative language [21].
They demonstrate that a simple type system can be used to obtain noninterference in an interactive setting involving user
strategies, then expand the model to incorporate nondeterministic choice. Instead of dealing with user strategies directly, our
noninterference result accounts foranypossible set of input streams a user may define, which includes all strategies that a
user may employ. We do not, however, provide nondeterminism, which is a significant portion of their paper. In comparison,
our system provides security for Middleweight Java, a much larger language. This allows their type system to be much
simpler, although they do not describe an IO-based inference mechanism, as we do, and polymorphism is not a concern since
their language does not allow methods. To our knowledge, this is the only other information flow type system that formally
models interactive IO. All other systems consider only a batch input and output model, where all inputs are available prior to
program execution, and outputs are only available upon completion.

Jif [18, 19] is unique as an information flow system since it covers essentially the full Java language, but it lacks a formal
analysis. Checks on IO channels are intermixed with the multitude of other internal checks within a program (e.g. on function
application, or assignment). Our system is designed to reduce the number of checks to IO points only. Jif provides parametric
polymorphism and some inference of labels. Programs must be annotated with security labels, including label parameters for
polymorphic classes. This creates a backward compatibility issue, where all code must be re-coded to introduce the proper
annotations. Additionally, method overloading requires subclass types to conform to the types of the superclass.

In contrast, our type system infers all label types and parametric types, removing the need for additional program anno-
tations. Our label types are inferred for existing code, meaning libraries can be used as is, provided the proper labels and
checks are placed on the IO points in the program. Our concrete class analysis [3, 22, 33] tracks the concrete classes of
objects through the program, allowing us to statically determine a conservative approximation of the runtime object. This
means overridden methods in the subclass can have different types from the superclass, and the type system will correctly
distinguish the information flow controls on the different objects statically.

Banerjee and Naumann [4, 5] prove a batch-model noninterference property for an information flow type system for a
Java-like language using a denotational semantics. They provide an inference extension for libraries that are parameterized by
security levels [29]. This form of polymorphism resembles Jif’s, requiring annotations in the form of label parameters. They
also require polymorphic types for methods must be satisfied by all overriding methods. As mentioned above, we employ a
more implicit polymorphism that requires no program modifications, and we prove soundness and interactive noninterference
using an extensible operational approach.

Flow Caml [24] provides label type inference and parametric polymorphism for an information flow extension to Core
ML. They prove soundness of type inference and a batch-model noninterference property. Our type system is significantly
different, since it is based on an object-oriented language, which presents unique issues, (i.e. inheritance and dynamic
dispatch) that do not arise in a functional language.

36

Several works have developed policies for downgrading data. One approach is for the labels to contain downgrading
policies which describe when it is safe to declassify the data, whether after a certain method call, operation, or some other
property [16, 9]. In comparison, our policies for downgrading (and upgrading) are attached to the methods, similar to Hicks
et. al.’s notion of declassifiers [14]. The method policies describe what labels will be downgraded for data passed to the
method. This mechanism follows the object-oriented philosophy, allowing downgrading at the class and method level, and
showing it in the API.

7 Conclusion

We have presented a static information flow type inference system for Middleweight Java and formally proved its correctness.
Our type system provides a high level of polymorphism to promote IO-based policies and code re-use in multiple security
contexts. We provide a top-level policy description, which automatically inserts information flow controls in a program and
clarifies the policy in the API. Changes to Java programs are therefore minor, as only the underlying IO operations change.
Type inference and easily identifiable policies are a necessity for a usable information flow system.

References

[1] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calculus of dependency. InPOPL ’99:
Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 147–160,
New York, NY, USA, 1999. ACM Press.

[2] French Security Incident Response Team Advisories. Veritas backup exec and netbackup remote file access vulnerabil-
ity. http://www.frsirt.com/english/advisories/2005/1387, August 2005.

[3] Ole Agesen. The cartesian product algorithm. InProceedings ECOOP’95, volume 952 ofLNCS. SV, 1995.

[4] A. Banerjee and D. Naumann. Secure information flow and pointer confinement in a java-like language. InProc. IEEE
Computer Security Foundations Workshop, pages 253–267, 2002.

[5] A. Banerjee and D. Naumann. Using access control for secure information flow in a java-like language. InProc. IEEE
Computer Security Foundations Workshop (CSFW), pages 155–169. IEEE Computer Society Press, 2003., 2003.

[6] David E. Bell and Leonard J. LaPadula. Secure computer system: Unified exposition and multics interpretation. Tech-
nical Report MTR-2997, The MITRE Corporation, Bedford, MA, 1975.

[7] K. J. Biba. Integrity considerations for secure computer systems. Technical Report MTR-3153, MITRE Corporation,
Bedford, Massachusetts, April 1977.

[8] Gavin Bierman, Matthew Parkinson, and Andrew Pitts. MJ: An imperative core calculus for Java and Java with effects.
Technical Report 563, Cambridge University Computer Laboratory, April 2003.

[9] Stephen Chong and Andrew C. Myers. Security policies for downgrading. InCCS ’04: Proceedings of the 11th ACM
conference on Computer and communications security, pages 198–209, New York, NY, USA, 2004. ACM Press.

[10] Symantec Corp. Symantec brightmail antispam static database password.http://securityresponse.symantec.
com/avcenter/security/Content/2005.05.31a.html, June 2005.

[11] Dorothy E. Denning. A lattice model of secure information flow.Commun. ACM, 19(5):236–243, 1976.

[12] Joseph A. Goguen and José Meseguer. Security policies and security models. InIEEE Symposium on Security and
Privacy, pages 11–20, 1982.

[13] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with secrecy and integrity. InProceedings of the
25th ACM Symposium on Principles of Programming Languages, pages 365–377, Jan. 1998.

[14] Boniface Hicks, Dave King, Patrick McDaniel, and Michael Hicks. Trusted declassification:: high-level policy for a
security-typed language. InPLAS ’06: Proceedings of the 2006 workshop on Programming languages and analysis for
security, pages 65–74, New York, NY, USA, 2006. ACM Press.

37

[15] Peng Li, Yun Mao, and Steve Zdancewic. Information integrity policies. InWorkshop on Formal Aspects in Security
and Trust (FAST), Sep. 2003.

[16] Peng Li and Steve Zdancewic. Downgrading policies and relaxed noninterference. InPOPL ’05: Proceedings of the
32nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 158–170, New York, NY,
USA, 2005. ACM Press.

[17] Peng Li and Steve Zdancewic. Unifying confidentiality and integrity in downgrading policies. InFoundations of
Computer Security Workshop (FCS), 2005.

[18] Andrew C. Myers. JFlow: Practical mostly-static information flow control. InSymposium on Principles of Programming
Languages, pages 228–241, 1999.

[19] Andrew C. Myers. Mostly-Static Decentralized Information Flow Control. PhD thesis, Massachusetts Institute of
Technology, January 1999.

[20] Andrew C. Myers and Barbara Liskov. A decentralized model for information flow control. InSymposium on Operating
Systems Principles, pages 129–142, 1997.

[21] Kevin R. O’Neill, Michael R. Clarkson, and Stephen Chong. Information-flow security for interactive programs. In
CSFW ’06: Proceedings of the 19th IEEE Workshop on Computer Security Foundations, pages 190–201, Washington,
DC, USA, 2006. IEEE Computer Society.

[22] John Plevyak and Andrew Chien. Precise concrete type inference for object-oriented languages. InProceedings of the
Ninth Annual ACM Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
pages 324–340, 1994.

[23] Franois Pottier and Sylvain Conchon. Information flow inference for free. InProceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00), pages 46–57, Montral, Canada, 2000.

[24] Franois Pottier and Vincent Simonet. Information flow inference for ML. InProceedings of the 29th ACM Symposium
on Principles of Programming Languages (POPL’02), pages 319–330, Portland, Oregon, January 2002.

[25] Paul Roberts. Cisco warns of wireless security hole.Computerworld, April 2004. http://www.computerworld.
com/securitytopics/security/holes/story/0,10801,92015,00.html.

[26] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.IEEE Jounal on Selected Areas in
Communications, 21(1), January 2003.

[27] Scott Smith and Tiejun Wang. Polyvariant flow analysis with constrained types. In Gert Smolka, editor,Proceedings
of the 2000 European Symposium on Programming (ESOP’00), volume 1782 ofLecture Notes in Computer Science,
pages 382–396. Springer Verlag, March 2000.

[28] Scott F. Smith and Mark Thober. Towards usable information flow security in java. Technical report, Johns Hopkins
University, March 2007.http://www.cs.jhu.edu/~mthober/.

[29] Qi Sun, Anindya Banerjee, and David A. Naumann. Modular and constraint-based information flow inference for an
object-oriented language. InProc. of the Eleventh International Static Analysis Symposium (SAS), volume 3148, pages
84–99. Lecture Notes in Computer Science, Springer-Verlag, August 2004.

[30] Clemens Szyperski.Component Software: Beyond Object-Oriented Programming. Addison-Wesley, January 1998.

[31] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow analysis.Journal of
Computer Security, 4(3):167–187, December 1996.

[32] Dennis M. Volpano and Geoffrey Smith. A type-based approach to program security. InTAPSOFT, pages 607–621,
1997.

[33] Tiejun Wang and Scott F. Smith. Precise constraint-based type inference for Java. InEuropean Conference on Object-
Oriented Programming(ECOOP’01), Budapest, Hungary, June 2001.

[34] Steve Zdancewic and Andrew C. Myers. Robust declassification. InCSFW ’01: Proceedings of the 14th IEEE Workshop
on Computer Security Foundations, page 5, Washington, DC, USA, 2001. IEEE Computer Society.

38

