
Improving Usability of Information Flow Security in Java

Scott F. Smith and Mark Thober
Department of Computer Science

Johns Hopkins University
{scott,mthober}@cs.jhu.edu

Abstract
This paper focuses on improving the usability of information flow
type systems. We present a static information flow type inference
system for Middleweight Java (MJ) which automatically infers in-
formation flow labels, thus avoiding the need for a multitude of
program annotations. Additionally, policies need only be specified
on IO channels, the critical flow boundary. Our type system in-
cludes a high degree of parametric polymorphism, necessary to al-
low classes to be used in multiple security contexts, and to properly
distinguish the security policies of different IO channels.

We prove a noninterference property for programs that interac-
tively input and output data. We then describe a mechanism that al-
lows users to define top-level policies, which automatically inserts
the security policies at the proper points in the program. This pro-
vides the further benefit that whomever is defining the policy does
not necessarily need intimate knowledge of the program source.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures, Constraints, Frameworks, Input/output; D.3.2 [Program-
ming Languages]: Language Classifications—Object-oriented lan-
guages; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection

General Terms Security, Languages, Design, Theory

Keywords Information flow security, type inference, security
policies, Java, declassification

1. Introduction
While the foundations of static information flow systems are solid,
their usability could still be improved. The overhead for adding
information flow security to programs is potentially large, since
existing systems often require security annotations to be added
to the code. With large numbers of annotations, the likelihood
of having incorrect annotations also increases: a mistake can get
lost in the noise of so many annotations. Input/output is another
important practical concern which has also not been fully integrated
into static information flow systems.

Information flow research [2, 10, 17, 14, 22] has shown how
type systems can be defined to statically guarantee that high se-
curity data will not affect low security data. A noninterference [8]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLAS’07 June 14, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-711-7/07/0006. . . $5.00.

property is usually shown for well-typed programs: low security
outputs are not affected by any high security inputs. The majority
of these works assume a batch model of IO, although O’Neill et.
al. recently described a technique for enforcing information flow
security for interactive IO, using a simple imperative language and
basic type system [16].

Our primary goal is to provide practical data secrecy and in-
tegrity protection to aid programmers in securing programs they
write. To this end, we present a provably correct static information
flow type inference system for a core subset of Java (namely, Mid-
dleweight Java) that automatically infers information flow labels,
thus avoiding the need for a large amount of program annotations.
Policies need only be specified on IO channels, which we will ar-
gue to be the only real flow boundary that must be considered. The
type system includes a high degree of parametric polymorphism,
necessary to allow classes to be used in multiple security contexts,
and to distinguish policies of different IO channels.

Our work places the focus on input and output points as the im-
portant boundaries for securing data. Thus, we are only indirectly
concerned about internal flows, in how they ultimately will relate
to the inputs and outputs. In general, we should speak of securing
the component interface [21], since runtimes may be composed of
multiple independent components with distinct security policies;
here we focus on just the IO boundary for simplicity.

As is common practice in information flow type systems, we
associate a flow label with each program value. Labels are explic-
itly placed on input data and checking policies explicitly declared
at output points; for points in between, the type system automati-
cally infers the labels and so programmers do not need to add dec-
larations. Input statements are of the form read(Ls ,Li)(fd), where
Ls and Li are the declared security level policy for secrecy and
integrity of the channel, respectively, and fd is the file descriptor
that names the channel. Similarly, output statements are of the form
write(Ls ,Li)(e, fd). For practicality we also support the ability to
downgrade (declassify) secrecy labels, and upgrade (endorse) in-
tegrity labels when deemed safe to do so.

The type inference system provides an expressive form of para-
metric polymorphism. Polymorphism is crucial for modeling infor-
mation flows with fine enough granularity. Different objects of the
same class (e.g. two completely different HashSet objects) may
be used in different security contexts, which must be differentiated
in the analysis. Otherwise, secure programs may be rejected by a
type system that unnecessarily merges flows. In our system, secu-
rity policies on IO channels are defined at the level of Java Stream
classes. This allows a LowOutputStream class to have a differ-
ent security requirement than a HighOutputStream class. As de-
scribed in Section 2, our fine-grained polymorphic type inference
algorithm is essential for providing a fine enough distinction on IO
channels. To demonstrate the correctness of our system, we prove a
type soundness result, and we also show a noninterference property,
extended to account for interactive inputs and outputs.

One weakness of Java and other programming languages is
how the IO points can get buried in the code through subclassing,
method calls, etc. This in turn makes it difficult to observe the poli-
cies on the use of IO channels without digging through the whole
program. This lack of a clear top-level IO interface means anyone
who wants to understand the information flow properties of a whole
program must have knowledge of the code details in order to under-
stand what information flows occur through IO. We describe a sim-
ple mechanism that allows users to define concise top-level policies
which are then automatically applied to the proper IO points in the
program. This reduces the burden on both the programmer as well
as the policy validator – the security policy for the whole program
is now defined in one place.

The result of our strong type inference system and IO policy
declarations is a system for a real language, where programmers
need only specify the security policy of IO channels, and the type
system ensures the program does not violate the policy.

2. System Overview
Our syntax is based on Middleweight Java (MJ) [4], extended
with labeled input and output operations, declassifying and endorse
syntax as well as other minor additions. Input and output statements
are read(L,L′)(fd) and write(L,L′)(e, fd), where fd is the file
descriptor of the IO channel, e is what is written to the output
channel, and L and L′ are sets of labels specifying the secrecy and
integrity levels of the channel, respectively. For convenience, we
use labels sets and the usual set relations as our security lattice [7].

At the point of a read operation, the returned value is tagged
with the security labels of the channel. Further, checks are per-
formed to ensure it is safe to read in the current security context.
For example, a low read must not occur under a high guard. Oth-
erwise, an attacker would notice that the amount of data read from
a low stream would differ if the high guard differed. For exam-
ple, one execution may read from a low stream three times, while
another execution with a different high guard may read from the
stream seven times, indirectly leaking information in the three vs.
seven number. At each write, the labels on the value to be put to the
channel are checked against the channel policy, to ensure that high
secrecy data is not output to a low secrecy channel (and, dually that
low integrity data does not flow into a high integrity channel).

Integrity is an important dimension of information flow security,
and is generally recognized as a dual to secrecy [3]. To simplify
the presentation, we here omit integrity tracking from the formal
system, though we include it in examples and discussion, when
relevant. Hence, in readLs (fd), the integrity label is omitted. A
full treatment of integrity can be found in the technical report [19].

We provide a Declassify(e,L) statement, which removes se-
crecy labels L from e. This serves to declassify data in infrequent,
explicitly allowable instances [15, 24]. For example, in a program
where a password is being checked, the result of a password com-
parison may be declassified, so the resulting boolean will not carry
the high security label of the password. Programmers must be
very careful when using declassify operations, because they may
reveal too much information and compromise security. Although
omitted from the formal system in this paper, the integrity dual,
Endorse(e,L), increases the integrity label of the argument, spec-
ifying increased confidence in the data.

We define a static constraint-based type inference system, with
a form of automatic label polymorphism inference that is related
to CPA-style concrete class analyses [1, 23]. The need for label
polymorphism inference will become evident when we study the
example program of Section 2.2.

2.1 Program Constants and Default Policies

The use of security-critical constants directly in the program text
can create security holes: hard-coded secret data may be misla-
beled and leak out of a program through output operations, or by
an unauthorized agent reading the source code itself. Similarly, pro-
gram constants may adversely affect data integrity, e.g. if a rogue
string constant is inadvertently written as a user’s password. Re-
markably, programmers continue to make such mistakes, even in
recent commercially available programs and devices [12, 6], where
hard-coded passwords and cryptographic keys resulted in security
problems.

We take the approach that hard-coding of secret data or low-
integrity data simply should not happen: the only reasonable way
to view program constants are as low secrecy but high integrity
data, and this is how our type system treats all constants.

Establishing default policies for input and output channels is a
closely related problem. This is important for establishing security
for programs where not all IO channels have been given a security
policy, and in describing policies for the standard input and output
streams (System.in, System.out and System.err in Java). The
default policy for an input channel is established as low secrecy
and low integrity. This means the data is considered public and
unreliable, which is a natural default for an unknown channel. The
default policy for an output channel is also low secrecy and low
integrity. This means the channel is considered observable to public
users, and does not require any degree of confidence in the integrity
of the data being output.

2.2 An Example Java Program

In this section we elaborate on how information flow is controlled
at IO points in our system, by the study of a simple example. In the
following subsection we then give an overview of our parametric
polymorphism and label inference system.

IO channels in Java are created through subclassing, creat-
ing classes such as FileInputStream, DataOutputStream,
SocketInputStream, etc. We build on this approach by defin-
ing different information flow policies via subclassing the core IO
classes. In particular, a different subclass is created for each dis-
tinct security category of IO. This 1-1 relationship between class
definitions and security policies makes for an object-oriented ap-
proach to information flow policies, harmonizing with the existing
language structures.

We now focus on an example program for changing passwords,
where data security is important in both secrecy and integrity di-
mensions. This example is somewhat oversimplified but is short
enough to illustrate the key concepts. Firstly, we want to provide
secrecy for the user name and password information contained on
the system, making sure this information is not leaked to a pub-
lic channel, i.e. the screen. Secondly, we want to ensure the in-
tegrity of the system password file by not allowing it to be tainted
by improper data, thereby altering user names and passwords on
the system. These are two well-defined goals for a programmer of
a password changing application.

We take some liberties with syntax that is not described in our
calculus, such as the use of local variables, super(), and a while
loop. We make some abbreviations to shorten the presentation, IS
for InputStream, OS for OutputStream, PS for PrintStream.
B abbreviates Buffer, and BR is BufferedReader. Other obvious
abbreviations have been made, and some code is omitted for lack
of space.

class SysFileIS extends FileIS {
int read() { return read({high,sys},{high,sys}) (fd); }}

class UserIS extends IS {
int read() { return Endorse(super.read(),{high});}}

class PwdFileOS extends FileOS {
void write(int v) { write({high,sys},{high}) (v, fd); }}

class PwdFile extends Object {
String fileName; String tempName;

bool isUser(String line, uname, oldpwd) {
// parse line and return true if uname and oldpwd match

}

Reader getPwdReader() {
SysFileIS fin = new SysFileIS(fileName);
return new BR(new ISReader(fin));

}

Writer getWriter() {
PwdFileOS fout = new PwdFileOS(tempName);
return new PrintWriter(fout);

}

bool ChangePwd(String uname,oldpwd,newpwd){
bool succ = false; String line;
BR passIn = getPwdReader();
PrintWriter tempOut = getWriter();
while((line = passIn.readLine()) != null) {
if (isUser(line,uname,oldpwd)) {
tempOut.println(uname + ":" + newpwd);
succ = true;

} else { tempOut.println(line) }
}
// rename tempFile to fileName
return Declassify(succ,{high,sys});

}
} // end class PwdFile

void main(){
String fileName = "/etc/passwd";
String tempName = "/tmp/tmppasswd";
PwdFile pf = new PwdFile(fileName,tempName);

//read uname,oldpwd,newpwd from a UserIS.

bool succ = pf.ChangePwd(uname,oldpwd,newpwd);
if (succ) { System.out.println("Success"); }
else { System.out.println("Failure"); }

}

The modifications needed to support information flow analysis
here are minor. The most significant requirement is to define dis-
tinct subclasses of InputStream and OutputStream for each dis-
tinct IO policy. In this case we are defining three new IO policies,
in the classes SysFileIS and UserIS (for input), and PwdFileOS
(for output). For SysFileIS, the read method labels input val-
ues with high and sys for both secrecy and integrity. The write
method of PwdFileOS allows secrecy labels high and sys, and
requires the integrity label high, thereby enforcing the policy that
only certain data may be written to the password file. The UserIS
class is defined with an Endorse operation, expressing confidence
in the integrity of the data on the channel. (Note that IO can occur
with other methods such as file rename, but we are simplifying a
bit in this example). There is a declassification of secrecy labels at
the end of the ChangePwd method, necessary to allow the success
or failure of the program to be output to the screen.

This program shows how code is written in the language; no
explicit parametric type declarations are needed, and no label type
declarations need to be placed on variables – type parametricity and
variable information flow labels are both inferred automatically. So,
the underlying Java program only needs to be changed to declare
the appropriate IO channels and policies, and to add any needed
downgrades and upgrades. The underlying program structure re-
mains largely unchanged, e.g. a SysFileIS object sysin is still
accessed via sysin.read(), with no need for annotation.

Proper typing of this example imposes some requirements on
the type system: the type of the read and write methods simply
cannot be the same across all subclasses, otherwise all of the work
we made to separate the policies in separate classes would be for
nothing since the type system would merge the information flows.
So, a form of parametric polymorphism is needed to distinguish be-
tween subclasses. It is even more subtle because a variable declared
to be an InputStream can at runtime be any of its subclasses such
as SysFileIS or UserIS, and so it may look very difficult to type
these methods distinctly. Our solution is to use a polymorphic form
of concrete class analysis [1]: we use a constraint-based type sys-
tem that specializes the type of an object at each method call site
for each different type of object that it could be. This technique
leads to a very accurate typing [1, 23], and allows the methodology
of placing different security policies in different subclasses to be
sound yet expressive. The most obvious forms of polymorphic type
inference, based on treating each class or interface as polymorphic
and not each method and message send, are too weak to properly
treat examples such as the InputStream mentioned above.

2.3 Polymorphism

To better illustrate the expressiveness of our polymorphic type
system we show an alternate implementation of the ChangePwd
method, one that takes an InputStream and OutputStream as
arguments for reading from and writing to the password file, re-
spectively.

bool ChangePwd(IS in,OS out,String
uname,oldpwd,newpwd){
bool succ = false; String line;
BR passIn = new BR(new ISReader(in));
PrintWriter tempOut = new PrintWriter(out);
// . . . same code as above

}

The following code uses this new implementation. TopFileOS
is subclassed from FileOS, and the write method of the new class
checks the output data for the integrity label top. In the main
portion, two different calls are made to ChangePwd, one with a
PwdFileOS, as before, and one to a TopFileOS.
class TopFileOS extends FileOS {
void write(int v) { write({top,high,sys},{top,high}) (v,fd);}}

void main() {
// . . . same code as above

String ts = "/etc/topsecret";
SysFileIS in = new SysFileIS();
PwdFileOS pout = new PwdFileOS(tempName);
TopFileOS tout = new TopFileOS(ts);

pf.ChangePwd(in,pout,uname,oldpwd,newpwd);
pf.ChangePwd(in,tout,uname,oldpwd,newpwd);

}

Our polymorphic type system is expressive enough to directly
support this new ChangePwd method. Additionally, since we are
statically inferring the concrete classes of objects, we can create
different security policies for overriding methods, and the type
system will know the correct policy to use. In this example, the
first call to ChangePwd will type properly, but the second call will
cause a type error, since the data passed to the write method of the
TopFileOS is not labeled with top.

In addition to the need for polymorphism for discriminating IO
streams, we also need polymorphism for code re-use. Code should
be reusable in multiple contexts, which may have different infor-
mation flow policies. This means concretely that library classes
and methods must be allowed to be instantiated at multiple secu-
rity contexts, and the type system must not merge all of the flows.

We illustrate this with the following example of different HashSet
objects: one holding high data, and the other holding low data.
class HighFileIS extends FileIS {
int read() { return read({high},{high})(fd); }}

class LowFileIS extends FileIS {
int read() { return read(∅,∅)(fd); }}

class LowFileOS extends FileOS {
void write(int v) { write(∅,∅)(v,fd); }}

void main() {
HashSet highSet = new HashSet();
FileIS hin = new HighFileIS("high infile");
int i; int j;
while(i = hin.read()) { highSet.add(i); }
HashSet lowSet = new HashSet();
FileIS lin = new LowFileIS("low infile");
while(j = lin.read()) { lowSet.add(i); }
Iterator lowIt = lowSet.iterator();
FileOS lowout = new LowFileOS("low outfile");
lowout.write(lowIt.next()); }

We define two input stream classes, one for reading in high
data, and one for low data, and an output stream class for writing
low data. The program reads from both high and low streams into
separate HashSet objects. A value is then taken from the HashSet
containing low data, and written to the low output channel.

This clearly shows the need for polymorphism over security
levels. If the types for these two HashSet objects were merged,
the program would be rejected, because high data would appear to
flow out a low channel. Our system views HashSet as polymorphic
and the highSet and lowSet are typed distinctly, so the program
typechecks.

3. Types for Data Tracking and Checking
We now present the formal type inference system. In order to
simplify the reasoning and presentation of the system, we define a
label type inference system solely for typing data flows, and use the
existing MJ type system for normal MJ typechecking not related to
information flow. Our label type system is strong enough to handle
any valid MJ program, including those with mutually recursive
class definitions, and method recursion. A program type checks if
and only if it type checks in both the MJ type system and the label
type system.

P ::= C̄L; s̄ program
CL ::= class C extends C {C̄ f̄; K M̄} class
K ::= C(C̄ x̄){super(ē); s̄} constructor
M ::= RT m(C̄ x̄) {s̄} method
RT ::= C | void return type
L ::= {l̄}, where l are unique labels. label
CO ::= c | b | str | null | fd constant
e ::= x | this | CO | e.f | (C) e | expression

e⊕ e | pe | Declassify(e, L) |
readL(fd)

pe ::= e.m(ē) | new C(ē) | promotable exp.
s ::= pe; | if e then {s̄} else {s̄} | statement

; | {s̄} | e.f := e; | return e; |
writeL(e, fd)

Figure 1. Grammar

3.1 The Language

Our language is an extension of Middleweight Java (MJ) [4]. MJ
contains the basic object constructs of Java, including state; it omits

some of the more complex features of Java, which allows formal
properties to be established. We eliminate local variables, which
complexify the operational semantics and proofs, although their
typings are a straight forward extension of object fields. We add
constants (int, bool, string, file descriptor), operators (+,- etc.), in
order to better reason about information flows in real programs. We
also add low level read and write operations to the language, of the
form readL(fd) and writeL(e, fd), where fd is the file descriptor
of the IO channel, e is what is written to the output channel, and L
is a set of labels specifying the secrecy level of the channel.

We also add a Declassify(e,L) construct, which removes the
secrecy labels in L from those on e. The grammar for our Extended
MJ (EMJ) language is given in Figure 1.

We assume some familiarity with MJ, and do not reproduce its
typing or semantic definitions; see [4] for the details. Note that EMJ
follows MJ and types expressions with respect to a global class
table, CT , that contains the types of all classes. At the top level
a sequence of statement s̄ corresponding to the main method is
typechecked with respect to this table. In addition to the standard
type rules for MJ, we add the type rules corresponding to the
EMJ extensions; they are mostly straightforward, and are omitted
for lack of space. readL(fd) is typed to input an integer and
writeL(e, fd) outputs an integer (e has an integer type), while fd
is of type FileDescriptor. For Declassify(e, L) , the resulting
type of the expression is the same type as e, since the label tracking
is only handled in the label typing rules.

3.2 Label Types

EMJ values are either objects or primitive constants. Objects may
be labeled, as may the internal fields of an object. Thus, Label
types, τ , are three-tuples 〈 S,F ,A〉; S is a set of secrecy labels
for the current object, F is a record containing sets of labels,
representing the internal fields of the object, and A is an α-type, a
type representing the concrete class of the object, explained below.
The type definitions are summarized in Figure 3.

τ ::= 〈 S,F ,A〉|t types
S ::= {l̄}|sσ|S ∪ S|S − S|F .f.S|∅ secrecy types
F ::= {f̄ 7→ τ̄}|fσ|F .f.F|∅ field types
A ::= C|ασ |F .f.A alpha types
σ ::= C, m, Ā,At,Ar | ε contours
sσ, fσ, ασ, sp label variables
t ::= 〈 sσ, fσ, ασ 〉 type variables

κ ::= t̄, tt

sp

−→ tr\C method types

∀t̄′.t̄, tt

sp

−→ tr\C
c ::= S <: S|F <: F|A <: A constraints

|A.m(τ̄ , τt
pc
−→ τr)

|τ <: get τ |τ <: set τ |SC(L,S)
C ::= {c}|C ∪ C|∅ constraint sets
pc ::= S prog. counter
τ <: τ ′ is short for S <: S ′,F <: F ′,A <: A′

Figure 3. Type Definitions

An object’s fields has its own labels, represented by the field
type F , which is a mapping of field names to types, {f1 7→
τ1, . . . , fn 7→ τn}. The individual labels may be accessed by a
dot notation: F .f.S is the secrecy label on the f field of the object.
Primitive constants are labeled as objects with no fields.

The α-types are used to express a form of parametric polymor-
phism over the inheritance hierarchy, allowing the superclass and
subclass to differ in their labeling. The usual Java type declaration
is insufficient for determining the class of an object, as it may be
an object of a subclass, which contains a different policy, or returns

Γ(x) = 〈 s, f, α 〉

Γ, pc ` x : 〈 s ∪ pc, f, α 〉\∅
(Var)

Γ(this) = 〈 s, f, α 〉

Γ, pc ` this : 〈 s ∪ pc, f, α 〉\∅
(This)

Γ, pc ` c : 〈 pc, ∅, int 〉\∅
(Const)

Γ, pc ` e : 〈 S,F ,A〉\C t consists of fresh type variables.
Γ, pc ` e.f : t\{〈 S ∪ F .f.S,F .f.F,F .f.A 〉 <: get t} ∪ C

(Field)
Γ, pc ` e : 〈 S,F ,A〉\C

Γ, pc ` (C) e : 〈 S,F ,A〉\C
(Cast)

Γ, pc ` e : 〈 S, ∅,A〉\C
Γ, pc ` e

′ : 〈 S ′
, ∅,A′ 〉\C′

Γ, pc ` e ⊕ e
′ : 〈 S ∪ S ′

, ∅, int 〉\C ∪ C′ (Op)

Γ, pc ` e : τ = 〈 S,F ,A〉\C Γ, pc ` ē : τ̄\C̄
tr = 〈 s, f, α 〉 s, f, α are fresh variables

Γ, pc ` e.m(e) : 〈 S ∪ s, f, α 〉\C ∪ C̄ ∪ {A.m(τ̄ , τ
pc∪S
−−−→ tr)}

(Invoke)

Γ, pc ` ē : τ̄\C̄ fields(C) = C̄ f̄ t̄, tr consist of fresh type variables
Γ, pc ` new C(ē) : 〈 pc, {f̄ : t̄}, C 〉\C̄ ∪ {C.K(τ̄ , 〈 pc, {f̄ : t̄}, C 〉

pc
−→ tr)}

(New)

Γ, pc ` e : 〈 S,F ,A〉\C

Γ, pc ` Declassify(e, L) : 〈 pc ∪ (S − L),F ,A〉\C
(Declassify)

Γ, pc ` e : 〈 S,F ,A 〉\C

Γ, pc ` readL(e) : 〈 S ∪ L, ∅, int 〉\SC(L,S)
(Input)

Figure 2. Label Type Rules for Expressions

different labels. As discussed in Section 2, we need a more expres-
sive form of polymorphism. Our analysis is closely related to Data-
polymorphic CPA [23], a variant of CPA [1]. This ensures creation
of distinct contours (polyinstantiations) when needed to give the
type expressivity required for our system, while on the other hand
merging enough contours to make sure the analysis terminates.

We use l to represent a concrete label, and s for label variables
in the secrecy domain. Notation L refers to a set of concrete labels
{l̄}, and label sets S may contain both concrete label sets and
label variables, the latter used when the concrete label is not yet
known. For example, when typing methods, the argument labels
are variables since the actual labels are not instantiated until the
method is invoked. Additionally, f is a field variable referring to
abstract fields of an object, and F is either an abstract or a concrete
field mapping; α is a variable referring to an unknown class, and
A is either an abstract class α or a concrete class C. σ defines
the contours necessary for polymorphic method typing, and type
variables are extended to allow a contour superscript, (e.g. sσ) and
ε represents no superscript. For convenience, we generally omit the
superscript on variables when it is unimportant. t denotes a full
three-tuple of label types, and is simply short-hand.

We implicitly work over a simple equational theory of sets in
typing and constraint closure. Concrete unions, S ∪ S ′, where
S = {l̄} and S ′ = {l̄′} are considered equivalent to the unioned
set, S ∪ S ′ = {l̄, l̄′} (without repeats). S − S ′ is also equivalent
to the obvious set difference when both are concrete label sets.
For field access, {f̄ 7→ τ̄}.fi.S is equivalent to Si, where fi 7→
〈 Si,Fi,Ai 〉. A similar equivalence analogously holds for any
{f̄ 7→ τ̄}.fi.F, or {f̄ 7→ τ̄}.fi.A.

We use a label table, LT , to keep track of the label types
of all classes when typing expressions. This is analogous to the
class table CT of the MJ type system that keeps track of all class
types. However, since we are inferring label types here, we must
build up the label table while typing the classes, as discussed in
Section 3.2.4.

Label type rules are of the form Γ, pc ` e : τ\C and Γ, pc `
s : τ\C, meaning in label environment Γ, with program counter pc,
expression e (or statement s) has label type τ with constraint set C.
Γ binds variables to label type variables, Γ(x) = t. The program
counter tracks implicit flows through programs and is a standard
feature of information flow type systems.

The constraint set, C, contains normal subtyping constraints <:
for secrecy, field, and α-types. In addition, check constraints of
the form SC(L,S), for secrecy checks, are placed in C and the
closure process will need to verify their correctness. Method con-
straints A.m(τ̄ , τt

pc
−→ τr) contain the necessary information to tie

up method invocations with the labels of the resulting method call.
Methods in the label table are universally quantified, ∀t̄′.t̄, tt

sp

−→
tr\C, so they may vary parametrically. This allows distinct con-
tours to be formed for each combination of argument type and call
site. We detail this analysis when discussing the constraint closure
in section 3.2.5. We proceed by discussing specific elements of the
type inference system separately.

3.2.1 Expression Typing

The label type inference rules for expressions are given in Figure
2. Here are a few highlights of the rules. (Const) types constants
as label types containing only pc for secrecy, reflecting our view
that constants should by default have no secrecy as discussed in
section 2.1.

In (Field), we use a get constraint to obtain the type of a field
access. These constraints are discussed further in section 3.2.3. The
secrecy type includes the labels on the field within the object, along
with the labels the object itself carries.

In (Invoke), the constraint A.m(τ̄ , τ
pc∪S
−−−→ tr) is added to

the constraint set. S is added to the program counter, since the
execution of method m depends on the object to which the method
is being passed. The method type eventually needs to be looked up
in the global label table LT . However, since A may at this point be
of unknown class we postpone this decision until more information
is known about A, at constraint closure. The above type constraint
records the method call information so it can be propagated in the
closure once the concrete class of A is known.

In (New), the names of the fields in the class C are looked up
using fields. We cannot simply add the types of each argument to
the field types, since the constructor may not have this behavior.
Thus, fresh type variables are created for each field, and the F
element of the type contains these variables. A constraint is added
to capture the call to the constructor, which is similar to a method
call. The α-type is given the concrete class name of the object being
created. pc is the secrecy label on the new object. Like constants,
objects are assumed to have no secrecy by default.

As expected, Declassify(e,L) removes L from the secrecy
labels of e in (Declassify).

The type of a readL(e) expression contains the security levels
of the statement combined with the labels on the file descriptor
argument. A secrecy checking constraint is also added to the
constraint set. There are two reasons for this. Firstly, the this
ensures that low reads are not happening under high guards; as
discussed previously, this may cause an information leak (note the
type of any sub-expression implicitly contains the types of the
program counters, a fact easily shown by structural induction on

Γ, pc ` e : 〈 S,F ,A〉\C Γ, pc ∪ S ` s̄1 : 〈 S1,F1,A1 〉\C
′ Γ, pc ∪ S ` s̄2 : 〈 S2,F2,A2 〉\C

′′

Γ, pc ` if e then {s̄1} else {s̄2} : 〈 S ∪ S1 ∪ S2, ∅, void 〉\C ∪ C′ ∪ C′′ (If)

Γ, pc ` ; : 〈 pc, ∅, void 〉\∅
(No-op)

Γ, pc ` e : 〈 S,F ,A〉\C Γ, pc ` e
′ : 〈 S ′

,F ′
,A′ 〉\C′

Γ, pc ` e.f := e
′; : 〈 S ∪ S ′

, ∅, void 〉\C ∪ C′ ∪ {F .f <: set 〈 S ∪ S ′
,F ′

,A′ 〉}
(F-Assign)

Γ, pc ` s : τ\C Γ, pc ` s̄ : τ
′\C′

s 6= C x

Γ, pc ` s; s̄ : τ
′\C ∪ C′ (Seq)

Γ, pc ` s̄ : τ\C

Γ, pc ` {s̄} : τ\C
(Block)

Γ, pc ` e : τ\C

Γ, pc ` return e; : τ\C
(Return)

Γ, pc ` e : 〈 S,F ,A〉\C Γ, pc ` e
′ : 〈 S ′

,F ′
,A′ 〉\C′

Γ, pc ` writeL(e, e
′) : 〈 S ∪ S ′

, ∅, void 〉\C ∪ C′ ∪ SC(L,S ∪ S ′)
(Output)

Γ, pc ` e : τ\C

Γ, pc ` e; : τ\C
(PE)

Figure 4. Label Type Rules for Statements

e, observing the base cases all add pc to the types). Secondly,
if the file descriptor value has a higher label than the channel
policy, performing the read may result in a security leak (e.g., two
executions that differ only in high inputs may read from different
low channels, since the file descriptor for the channel differs).

3.2.2 Statement Typing

The type rules for statements are given in Figure 4. In rule (If),
the secrecy type of the condition are added to the respective pro-
gram counters when typing each branch. (F-Assign) adds a set
constraint to the constraint set to set the flow of labels into an ob-
ject field. These constraints are described in section 3.2.3. Typing
a writeL(e, e

′) statement produces a secrecy check constraint to
ensure the type of the output aligns with the policy of the channel.
The type of the file descriptor is also checked against the policy for
the same reasons as read, discussed earlier. The remaining rules
are straightforward.

3.2.3 Get and Set Constraints

We use get constraints when typing fields in (Field), and set con-
straints for field assignment in (F-Assign). Constraint closure rules
(Get) and (Set) ensures that values assigned to a field flow to any
read-point of the field, while ensuring that no backward-flows oc-
cur in the types [23]. For example,

x := read{low}(fd); z := x; z := read{high}(fd);
will not result in x having the secrecy type {high}.

3.2.4 Class and Program Typing

Type inference rules for typing programs, classes, and methods are
found in Figure 5. Typing of a whole program first requires each
of the classes to be typed, and these types placed in a label table,
LT ; then the statements corresponding to main are typed using this
label table.

Methods and constructors require the type variables to be set in
an initial label table in order to support recursive class definitions
and mutually recursive methods; hence, the first three rules in
Figure 5 create the initial label table with unique label variables
for each constructor and method of each class.

The first constructor rule is for classes that pass arguments to
the parent’s constructor; these classes are not direct subclasses of
Object, and the second rule is for those that are. Note that the
former rule includes a constraint denoting the call to the parent’s
constructor. The body of each constructor and method is typed with
respect to the label variables as found in the initial label table. As
previously noted, methods and constructors are given ∀ types so
that they may vary polymorphically, and these types are instantiated
when computing the constraint closure. For this reason, any free
type variables occurring in the typing are found and placed in the
∀ type as t̄′; these are type variables that are local to the method
(or constructor) body, and therefore must be properly instantiated

during the constraint closure, so the typing will not mix flows for
different calls to the same method. Method typing then fills in the
constraint types in the full label table, and the constraint {τ <: tr}
is added, since tr appears in the label table as an abstract indication
of the return type of the method, which must be bound by the type
of the method body, τ .

Programs are therefore typed by typing each class definition,
which types each method definition. s̄, representing main is also
typed. The fields function returns the list of fields for a class, used
in the (New) type rule.

3.2.5 Label Closure

The key closure rules for label constraint sets are given in Figure
6, along with some necessary definitions. Rules that add new con-
straints based on transitivity, obvious set propagations, and field la-
bels have been omitted for space. The closure rule (Method) is im-
portant for tying up the types of method calls. As discussed above,
method constraints are added during method invocation, when the
actual class of the object on which the method is being called may
be unknown. Thus, for all constraints C <: A, where C is a concrete
class, the method m is looked up in LT via mtype, which returns a
typing for that method as found either in C or in a superclass if not
defined in C. We then substitute the labels in the method constraint
into this constraint set from the label table, and replace all local
label variables as defined by the function θ.

The manner in which local label variables are replaced defines
the contours of a concrete class analysis. In other words, different
instantiations of the ∀ type create unique types that distinguish dif-
ferent method invocations. Our definition of θ creates a new con-
tour for each distinct receiver type C, method name f, argument
type Ā (At is the type of this), and return type Ar . This allows
calls to be distinguished based on receiver and argument types, as in
CPA [1], and additionally distinguishes call-sites based on unique
program points. Since the (Invoke) type rule creates fresh variables
for each method invocation, this serves as a unique marker of the
call-site in the program; thus, Ar is the call-site of the method.
Since constructor calls during (New) are similar to method invo-
cations, the analysis can distinguish most object instances via call-
sites and constructor arguments. Consider the following example.

x = new C(); y = new C();
x.put(read{low} (fd)); y.put(read{high} (fd′))
x.get();

Here, our analysis produces separate contours for the creation
of x and y, where CPA merges them into one. Even though the
put calls have different contours, since the types of x and y are
not distinguished, the CPA analysis cannot determine that x.get()
is low. We obtain more precision, so we can correctly identify the
flows of data into and out-of abstract objects on the heap.

This precision is similar to that obtained in data-polymorphic
CPA analysis [23]; although DCPA includes many optimizations

Initial Label Table:
t̄, tt, tr, sp consist of fresh variables.
Each use creates distinct variables.

InitMeth() = t̄, tt

sp

−→ tr\∅

t̄, tt, tr, sp consist of fresh variables.
Each use creates distinct variables.

InitCon() = t̄, tt

sp

−→ tr\∅

κi = InitCon() κ̄i = InitMeth()

InitialLT = LT [(C0, K) : κ0, (C0, M̄0) : κ̄0, . . .]

Constructor Typing:

C0 = class C extends D {C̄ f̄; K M̄} K = C(C̄ x̄) {super(ē); s̄} D 6= Object InitialLT (C0, K) : t̄, tt

sp

−→ tr\∅

Γ[x̄ : t̄, this : tt], sp ` ē : τ̄\C̄ Γ[x̄ : t̄, this : tt], sp ` s̄ : τ\C t̄′ = FreeTypeVar (t̄, tt

sp

−→ tr\C ∪ C′ ∪ {D.K(τ̄ , tt

sp

−→ tr)})

InitialLT `M (C0, K) : ∀t̄′.t̄, tt

sp

−→ tr\C ∪ C̄ ∪ {D.K(τ̄ , tt

sp

−→ tr)} ∪ {τ <: tr}

C0 = class C extends Object {C̄ f̄; K M̄} K = C(C̄ x̄) {super(); s̄}

InitialLT (C0, K) : t̄, tt

sp

−→ tr\∅ Γ[x̄ : t̄, this : tt], sp ` s̄ : τ\C t̄′ = FreeTypeVar (t̄, tt

sp

−→ tr\C)

InitialLT `M (C0, K) : ∀t̄′.t̄, tt

sp

−→ tr\C ∪ {τ <: tr}

Method Typing:
C0 = class C extends D {C̄ f̄; K M̄} M = RT m(C̄ x̄) {s̄}

InitialLT (C0, M) : t̄, tt

sp

−→ tr\∅ Γ[x̄ : t̄, this : tt], sp ` s̄ : τ\C t̄′ = FreeTypeVar (t̄, tt

sp

−→ tr\C ∪ {τ <: tr})

InitialLT `M (C0, M) : ∀t̄′.t̄, tt

sp

−→ tr\C ∪ {τ <: tr}

Class Typing: Program Typing:

InitialLT `M (C0, K) : κ0 InitialLT `M (C0, M̄0) : κ̄0 . . .

`C LT [(C0, K) : κ0, (C0, M̄0) : κ̄0, . . .]

`C LT [(C0, K) : κ0, (C0, M̄0) : κ̄0, . . .] ∅, ∅, u ` s̄ : τ\C
Closure(LT [(C0, M̄0) : κ̄0, . . .], C) is consistent

`P {C0, C1, . . . }; s̄ : τ\C

Fields:

fields(Object) = ∅ fields(constants) = ∅

CT (C) = class C extends D {C̄ f̄; K M̄} fields(D) = D̄ ḡ

fields(C) = D̄ ḡ, C̄ f̄

Figure 5. Label Type Rules for Classes and Programs

to combine contours whenever possible, while still supporting data
polymorphism. The flatten function is necessary to merge contours
for recursive calls and to ensure the analysis terminates. We discuss
the termination of this algorithm in section 3.2.8.

We define a constraint closure as follows.

DEFINITION 3.1 (Constraint Closure). Closure(LT, C) is defined
as the least set that includes C and any constraint that can be de-
rived from C by the rules of Figure 6, and with the additional con-
straint that the (Method) rule is only applied once in the closure
for each unique set of premises.

If we did not constrain (Method) rule as above, it could be
applied arbitrarily many times, generating different fresh variables
each time.

3.2.6 Inconsistent Constraints

Inconsistencies in the label constraint sets come from SC con-
straints. Constraint consistency is defined as follows.

DEFINITION 3.2 (Inconsistent Constraints). An inconsistent con-
straint is any constraint SC(Ls, L

′
s), where L′s 6⊆ Ls.

Note that constraint consistency is defined only on concrete con-
straint sets, which are formed during the closure after all transitive
flows into type variables have been considered. If Closure(LT, C)
contains an inconsistent constraint, then the closure is inconsistent,
and type inference fails. SC constraints enforce secrecy policies.
In the constraint SC(Ls, L

′
s), Ls is the secrecy policy of the IO

channel, and L′s is the set of labels on the data at that point. Proper
enforcement of the policy requires the labels on the data to be a
subset of the labels on the IO channel. For example, the constraint
SC({high, low}, {low}) is consistent, with low data flowing to a

high channel; SC({low}, {high}) is inconsistent, since high data
is flowing to a low channel.

3.2.7 Example Typing

To illustrate our type inference algorithm, consider the following
code segment, where hin, lin, and lowout are as defined in the
HashSet example in section 2.3; C is a class with a field x.

lowC = new C(0); highC = new C(0);
lowC.x = lin.read(); highC.x = hin.read();
lowout.write(lowC.x);

The relevant constraints in the label table are as follows.
(HiFIS, read) : ∀t, tt

sp

−→ tr\{〈 . . . {high}, ∅, int 〉 <: tr} . . .

(LowFIS, read) : ∀t′, t′t
s′

p

−→ t′r\{〈 . . . ∅, ∅, int 〉 <: t′r} . . .

(LowFOS, write) : ∀tv, t′′t
s′′

p

−→ t′′r\SC(∅, · · · ∪ sv) . . .
When each new C(0) expression is typed, (New) gives them

each distinct types for the field; the type of lowC is 〈 ∅, {x : tl}, C 〉
and highC’s type is 〈 ∅, {x : th}, C 〉.

Using (Invoke), the typing of hin.read() creates a fresh set
of variables for the return value, trh, and generates a method
constraint that closure rule (Method), using the above defined label
table, instantiates to 〈 . . . {high}, ∅, int 〉 <: trh.

By (F-Assign) and the relevant closure rules, we have {x :
th}.x <: set trh, which by (Set) entails trh <: {x : th}.x, so
by transitivity and field access, we get {high} <: srh and so
{high} <: sh (recall each t is a triple of type variables, 〈 s, f, α 〉).

Note that a new type variable is used for each method invoca-
tion, so srh is unique to the call hin.read(), so the high label does
not pollute the low call lin.read(); therefore, high does not flow
into sl.

Closure Rules:

τ <: get t

τ <: t
(Get)

τ <: set τ
′

τ
′
<: τ

(Set)

C <: A A.m(τ̄ , τt
pc
−→ τr) mtype(C, m) = ∀t̄′.t̄, tt

sp

−→ tr\C

τ̄ = 〈 S,F ,A〉 τt = 〈 St,Ft,At 〉 τr = 〈 Sr,Fr,Ar 〉
t̄′′ = θ(t̄′, C, m, Ā,At,Ar)

[t̄′ 7→ t̄′′][sp 7→ pc, t̄ 7→ τ̄ , tt 7→ τt, tr 7→ τr]C
(Method)

Auxiliary Definitions:
LT (C, m) = ∀t̄′.t̄, tt

sp

−→ tr\C

mtype(C, m) = ∀t̄′.t̄, tt

sp

−→ tr\C

CT (C) = class C extends D {C̄ f̄; K M̄} m is not defined in M̄

mtype(C, m) = mtype(D, m)

θ(t, C, m, Ā,At,Ar) = t
C,m,flatten(Ā,At,Ar)

flatten(Aσ) = A flatten(x, y, . . .) = flatten(x),flatten(y), . . .

Figure 6. Label Closure Rules and Definitions

lowC.x produces a constraint sl <: sf , where sf is created
during (Field), and closure rule (Get) introduces this constraint.
So, lowout.write(lowC.x); produces a method type, which when
instantiated with (Method) gives SC(∅, ∅ ∪ sf), since the type of
the program counter, the object lowout, and the field fd of lowout
are all ∅, and sf was substituted for sv . Now, we have ∅ <: sl from
lowC.x = lin.read(), so ∅ <: sf by transitivity, which leads to
the constraint SC(∅, ∅), which is consistent.

Suppose we added the statement lowout.write(highC.x); to
the program. Then the constraint sh <: s′f is produced by (Field)
and (Get). So, lowout.write(highC.x); yields a method type,
which when instantiated with (Method) gives SC(∅, ∅ ∪ s′f). As
noted above, we have {high} <: sh, so {high} <: s′f by
transitivity, which leads to the constraint SC(∅, {high}), which
is inconsistent.

3.2.8 Typing Complexity and Termination

A potential pitfall of this form of type inference algorithm is
non-termination, if contours are continually created for recursive
method invocations.Our analysis merges contours for recursive
calls, ensuring termination. We now address the complexity of type
inference and constraint closure computation.

Inferring types completes in linear time. Closing the constraint
set can be exponential in the worst case. This is evident from the
definition of θ. t inputs to θ are all flat (i.e. have no superscript),
since they are the free type variables that occur when typing method
m of class C. Superscripted variables are only added during the
closure. This means t is bounded by n, the size of the program.
Since Ā,At, and Ar are all flattened, the number of possibilities
for these values is bounded by the number of concrete classes and
the number of fresh variables created in the program, which are
each less than n. Thus, in the worst case, we may create up to nn5

contours (accounting also for C and m). This is a large exponential,
but nevertheless terminates. Many optimizations (e.g. combining
contours and constraint garbage collection) can be performed to
make this practical, as shown in [23] and elsewhere; this is out of
the scope of the current work.

The type inference system provides separate compilation of
classes, since type inference can be done separately, and the final
global constraint set must be closed and checked for inconsisten-
cies. Classes and methods are analyzed only once, and their types
and constraints built into the label table, which may be re-used for
any number of programs.

4. Soundness and Noninterference
We now state the soundness and noninterference properties for our
system. Soundness means that well-typed programs will not pro-
duce any run-time check failures. Due to space restrictions, we omit
the semantic definitions and formal proofs of soundness and non-

interference, which may be found in the companion technical re-
port [19]. In proving noninterference, we assume expressions and
statements do not contain any Declassify(e′ , L) subexpressions,
which would violate the property that high inputs do not affect low
outputs. The formal statement of noninterference follows.

THEOREM 4.1 (Noninterference). Given class table CT and la-
bel table LT , if ∅, ∅ ` s̄ : 〈 S,F ,A〉\C, and Closure(LT, C) is
consistent, and ι1 'Low ι′1, and ω1 'Low ω′

1, and s̄, ∅, ι1, ω1 →∗

c, H2, ι2, ω2 and s̄, ∅, ι′1, ω
′
1 →∗ c′, H ′

2, ι
′
2, ω

′
2, then ι2 'Low ι′2

and ω2 'Low ω′
2, and c = c′.

Theorem 4.1 states that for a typeable program, any two runs
of the program differing only in high input streams will produce
equivalent low input and output streams (and equivalent termina-
tion values of the executions). The low input streams must be equal
since the size of the low input streams after computation may con-
vey secret information, as discussed in section 2. ι and ω define
sets of input and output streams, respectively; the relation 'Low de-
scribes the low equivalency of the sets of streams. The empty sets
before the turnstyle indicate that the typing environment and se-
crecy program counter are empty in the original typing. We specify
that the values must be integers for this theorem, as it intuitively
doesn’t make sense to input or output heap locations (pointers).
Since our system is termination-insensitive, both runs of the pro-
gram are assumed to terminate normally.

The proof [19] uses a labeled operational semantics, which
maps the labels from the typing onto each sub-expression. We then
prove, via bisimulation, that all low execution steps are identical for
both executions, while high steps may differ. We then show how
reductions in the labeled semantics are isomorphic to reductions in
an unlabeled semantics.

5. Top-level Policies
In this section, we present a system for declaring class-based poli-
cies at the top level of a program, meaning the policy will not be
buried in the code, but can be seen in the API. This also provides
a simpler means of adding information flow controls to programs,
since the underlying programs will not need to include any explicit
flow annotations and so there is no need to define a new language
syntax for an information flow extension.

We use a simple translation-based approach for these top-
level policies, as shown in Figure 7. Given a valid program and
a top-level policy, the translation produces a new program with
security levels on read and write expressions of InputStream
and OutputStream subclasses, and Declassify statements on
method return values, when downgrading is warranted. Policies are
declared at the per-method level in a class. Each policy statement
for a class C produces a translation, where method M is translated to
M′, which includes the information flow statement.

class C : (S , I) where C <: InputStream and FileDescriptor fd is a (private) field of C.
int read() {s̄} ⇒ int read() {return read(S ,I)(fd); }

class C : (S , I) where C <: OutputStream and FileDescriptor fd is a (private) field of C.
void write(e) {s̄} ⇒ void write(e) {write(S ,I)(e, fd); }

class C, method RT m(C̄ x̄) : Declassify(L) where RT 6= void
RT m(C̄ x̄){s̄; return e; } ⇒ RT m(C̄ x̄){s̄; return Declassify(e, L); }

class C, method RT m(C̄ x̄) : Endorse(L) where RT 6= void
RT m(C̄ x̄){s̄; return e; } ⇒ RT m(C̄ x̄){s̄; return Endorse(e, L); }

Figure 7. Top-level Policy Translation

read policies declare the sets of security labels for an input
channel using the Java representation of an InputStream sub-
class, C. Hence, the read method of C is re-written to perform
a low level read operation with the security labels given by the
policy. In a similar manner, write policies declare the sets of se-
curity labels for an output channel using the Java representation
of an OutputStream subclass. The write method is re-written
to perform a low level write operation with the security labels
given by the policy. Notice we require both the InputStream and
OutputStream subclasses to have a file descriptor as a (private)
field. While the abstract classes InputStream and OutputStream
do not have such a requirement, usable stream classes do, such as
FileInputStream. In the Java implementation, low-level reads
and writes are actually native methods. It is these low-level meth-
ods that we are re-defining. (In actuality, there is some variation
in the Java implementations of various Stream classes. For exam-
ple, FileInputStream uses an additional private native method
readBytes for low-level reads of multiple bytes. For full Java, we
would need to define additional translations to satisfy these incon-
sistencies, though the policy format would be the same.)

Any sub-classes of InputStream and OutputStream that do
not have a defined policy receive the default policy, described
earlier. Hence all unspecified input streams are low secrecy and low
integrity; the default policy for an output stream is also low secrecy
and low integrity.

Declassify statements specify what labels will be declassi-
fied from a method’s return value. Note that although we provide
the ability to specify declassification policies at the top-level, de-
classification of data requires knowledge of the underlying code to
be sure the data is truly diluted enough to warrant declassification,
so it must be used with care. Declassify statements can only be
applied to methods with non-void return types, since it is the value
that is returned from the method that is declassified. Endorse state-
ments are defined analogously for integrity upgrading. Note that MJ
requires that methods only have one return statement, at the end of
the method body. Generalizing the language to other return state-
ments requires the translation to be applied to any return statement
within a method body.

Since these top-level policies automatically insert the relevant
security portions into the code, they may be used for defining poli-
cies at deployment time. This allows the users deploying an ap-
plication to tailor it to fit their own security requirements. How-
ever, declassification (and endorsement) is a delicate issue that
usually requires some inspection of the code, so automatic inser-
tion of declassify is generally a bad idea. Security requirements
should remain part of the software development process, from de-
sign through deployment. We plan to continue exploring these soft-
ware engineering challenges in future work.

5.1 Example Top-level Policies

The following is a top-level policy for the program for changing
passwords in section 2.2.

class SysFileIS: ({high,sys},{high,sys})
class UserIS
read(): Endorse({high})

class PwdFileOS: ({high,sys},{high})
class PwdFile
ChangePwd(String uname,oldpwd,newpwd):
Declassify({high,sys})

Supposing the program of Section 2.2 had all of the explicit
information flow labels, checks, and declassifications removed, to
give a regular Java program; if the above policy were then applied
to that stripped program, we would obtain exactly the program
presented in Section 2.2 again. Even though programs may contain
no explicit information flow policy information, it still may be
necessary to rewrite parts of a program for purposes of adding a
fine-grained information flow policy: a unique subclass needs to be
defined for each different IO security policy. This can be viewed as
a good step, because it leads to a more object-oriented information
flow policy.

6. Related Work
Static analysis of information flow control systems is a well-studied
area [10, 22, 2]; Sabelfeld and Myers present a survey in [18].
Much of the literature focuses on proving formal results for small
programming languages, though there has been some effort to
define working systems. Flow Caml [17] is an information flow
extension to Core ML. The Jif system provides information flow
control for full Java [14].

O’Neill et. al. describe an information flow security model
for interactive IO using a simple imperative language [16]. They
demonstrate that a simple type system can be used to obtain non-
interference in an interactive setting involving user strategies, then
expand the model to incorporate nondeterministic choice. In com-
parison, our system provides security for Middleweight Java, a
much larger language. A smaller language allows their type system
to be much simpler, and they do not describe an IO-based inference
mechanism, as we do, and polymorphism is not a concern since
their language does not allow methods. To our knowledge, this is
the only other information flow type system that formally models
interactive IO.

Jif [14] is unique as an information flow system since it cov-
ers essentially the full Java language, but it lacks a formal analysis.
Checks on IO channels are intermixed with the many other internal
checks within a program (e.g. on function application, or assign-
ment). Our system is designed to reduce the number of checks to
IO points only. Jif provides parametric polymorphism and some in-
ference of labels. Programs must be annotated with security labels,
including label parameters for polymorphic classes. This creates a

backward compatibility issue, where all code must be re-coded to
introduce the proper annotations. Additionally, method overloading
requires subclass types to conform to the types of the superclass.

In contrast, our type system infers all label types and parametric
types, removing the need for additional program annotations. Our
label types are inferred for existing code, meaning libraries can be
used as is, provided the proper labels and checks are placed on
the IO points in the program. Our concrete class analysis [1, 23]
tracks the concrete classes of objects through the program, allow-
ing us to statically determine a conservative approximation of the
runtime object. This means overridden methods in the subclass can
have different types from the superclass, and the type system will
correctly distinguish the information flow controls on the different
objects statically.

Banerjee and Naumann [2] prove a batch-model noninterfer-
ence property for an information flow type system for a Java-like
language using a denotational semantics. They provide an infer-
ence extension for libraries that are parameterized by security levels
[20]. This form of polymorphism resembles Jif’s, requiring anno-
tations in the form of label parameters. They also require polymor-
phic types for methods must be satisfied by all overriding methods.
As mentioned above, we employ a more implicit polymorphism
that requires no program modifications, and we prove soundness
and interactive noninterference using an extensible operational ap-
proach.

Flow Caml [17] provides label type inference and parametric
polymorphism for an information flow extension to Core ML. They
prove soundness of type inference and a batch-model noninterfer-
ence property. Our type system is significantly different, since it
is based on an object-oriented language, which presents unique is-
sues, (i.e. inheritance and dynamic dispatch) that do not arise in a
functional language.

Hammer et. al. describe how program dependence graphs
(PDGs) may be used for information flow control [9]. Although
the technical methods used are significantly different than our ap-
proach, the expressive power is roughly similar: our polymorphic
types are approximately matched by the context-sensitivity in their
analysis for example. Their system incorporates flow-sensitivity
and we do not. The advantage of a type-based approach is that it
provides a much more succinct definition; for example, our formal
system is completely defined in this short paper and they do not
completely define a formal system in their paper.

Several works have developed policies for downgrading data.
One approach is for the labels to contain downgrading policies
which describe when it is safe to declassify the data, whether
after a certain method call, operation, or some other property [13,
5]. In comparison, our policies for downgrading (and upgrading)
are attached to the methods, similar to Hicks et. al.’s notion of
declassifiers [11]. The method policies describe what labels will
be downgraded for data passed to the method. This mechanism
follows the object-oriented philosophy, allowing downgrading at
the class and method level, and showing it in the API.

7. Conclusion
We have presented a static information flow type inference system
for Middleweight Java and formally proved its correctness. Our
type system provides a high level of polymorphism to promote IO-
based policies and code re-use in multiple security contexts. We
provide a top-level policy description, which automatically inserts
information flow controls in a program and clarifies the policy in
the API. Changes to Java programs are therefore minor, as only
the underlying IO operations change. Type inference and easily
identifiable policies are a necessary step towards a more usable
information flow system.

References
[1] Ole Agesen. The cartesian product algorithm. In European Conference on

Object-Oriented Programming (ECOOP), 1995.
[2] A. Banerjee and D. Naumann. Secure information flow and pointer confinement

in a Java-like language. In IEEE Computer Security Foundations Workshop
(CSFW), 2002.

[3] K. J. Biba. Integrity considerations for secure computer systems. Technical
Report MTR-3153, MITRE Corporation, Bedford, Massachusetts, April 1977.

[4] Gavin Bierman, Matthew Parkinson, and Andrew Pitts. MJ: An imperative
core calculus for Java and Java with effects. Technical Report 563, Cambridge
University Computer Laboratory, April 2003.

[5] Stephen Chong and Andrew C. Myers. Security policies for downgrading. In
the 11th ACM Conference on Computer and Communications Security (CCS),
2004.

[6] Symantec Corp. Symantec brightmail antispam static database password.
http://securityresponse.symantec.com/avcenter/security/
Content/2005.05.31a.html, June 2005.

[7] Dorothy E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236–243, 1976.

[8] Joseph A. Goguen and José Meseguer. Security policies and security models.
In IEEE Symposium on Security and Privacy, 1982.

[9] Christian Hammer, Jens Krinke, and Gregor Snelting. Information flow control
for Java based on path conditions in dependence graphs. In IEEE International
Symposium on Secure Software Engineering (ISSSE), 2006.

[10] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming
with secrecy and integrity. In the 25th ACM Symposium on Principles of
Programming Languages (POPL), 1998.

[11] Boniface Hicks, Dave King, Patrick McDaniel, and Michael Hicks. Trusted
declassification:: high-level policy for a security-typed language. In ACM
SIGPLAN Workshop on Programming Languages and Analysis for Security
(PLAS), 2006.

[12] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, and Dan S. Wallach.
Analysis of an electronic voting system. In IEEE Symposium on Security and
Privacy, 2004.

[13] Peng Li and Steve Zdancewic. Downgrading policies and relaxed noninter-
ference. In the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), 2005.

[14] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In
Symposium on Principles of Programming Languages (POPL), 1999.

[15] Andrew C. Myers and Barbara Liskov. A decentralized model for information
flow control. In Symposium on Operating Systems Principles (SOSP), 1997.

[16] Kevin R. O’Neill, Michael R. Clarkson, and Stephen Chong. Information-flow
security for interactive programs. In the 19th IEEE Workshop on Computer
Security Foundations (CSFW), 2006.

[17] François Pottier and Vincent Simonet. Information flow inference for ML. In
the 29th ACM Symposium on Principles of Programming Languages (POPL),
2002.

[18] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow
security. IEEE Jounal on Selected Areas in Communications, 21(1), January
2003.

[19] Scott F. Smith and Mark Thober. Improving usability of information flow
security in Java. Technical report, Johns Hopkins University, March 2007.
http://www.cs.jhu.edu/~mthober/.

[20] Qi Sun, Anindya Banerjee, and David A. Naumann. Modular and constraint-
based information flow inference for an object-oriented language. In the
Eleventh International Static Analysis Symposium (SAS), 2004.

[21] Clemens Szyperski. Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley, January 1998.

[22] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for
secure flow analysis. Journal of Computer Security, 4(3):167–187, December
1996.

[23] Tiejun Wang and Scott F. Smith. Precise constraint-based type inference for
Java. In European Conference on Object-Oriented Programming (ECOOP),
2001.

[24] Steve Zdancewic and Andrew C. Myers. Robust declassification. In the 14th
IEEE Workshop on Computer Security Foundations (CSFW), 2001.

