
Securing Timing Channels at Runtime

Paritosh Shroff Scott F. Smith
The Johns Hopkins University
{pari,scott}@cs.jhu.edu

Abstract
We propose a general purpose runtime framework to secure timing
channels. Our technique supports higher-order function invocations
and computations looping on secret data, features which none of
the existing approaches fully allow. We provably eliminate exter-
nal and internal timing channels in both sequential and concurrent
settings, in presence of deterministic as well as nondeterministic
schedulers. There is a price to be paid, however – the high compu-
tation may have to be disrupted; the low computation is neverthe-
less guaranteed to be unaffected. We illustrate how our approach
can be realized on standard computing platforms.

1. Introduction
Secure information flow analysis aims to prevent the flow of infor-
mation from secure data in a program to insecure entities. A vari-
ety of covert channels [20] for insecure flow of information have
been classified in the literature; Sabelfeld and Myers [37] provides
a good survey. In this paper we address timing (and termination)
channels.

A timing attack is a form of side-channel attack [48] wherein the
attacker attempts to gain secret information by analyzing the exe-
cution time of a program; the corresponding channel of information
leakage is known as a timing channel. Timing channels have been
used to obtain secret keys of cryptographic systems by exploit-
ing weaknesses in their implementations [17, 6], as opposed to the
underlying mathematics. Various approaches and countermeasures
have been proposed to eliminate or mitigate such covert attacks,
falling into several categories: algorithm specific (e.g. RSA blind-
ing, dummy extra reduction in Montgomery algorithm, quantiza-
tion of RSA decryptions [6]), hardware based (e.g. fuzzy time [11],
clock randomization [16], randomization of instruction set execu-
tion and/or register usage [24, 25], information flow analysis of
synchronous (clocked) hardware circuits [18]), ad hoc [13], and
programming language-based [43, 1]. Language-based techniques
tend to be the most general, in that they are not tied to any specific
algorithm or implementation. This paper presents a new language-
based approach to secure timing channels.

Timing channels reveal classified information by manifesting
high data as timing variations in low observable events. Timing
channels are further classified as external and internal depending
on the nature of those events – external channels are externally
observable events such as the execution time of a program and
the time gap between low outputs, while internal channels are
internally observable events like the interleavings of concurrently
running threads.

A substantial body of work [43, 38, 47, 34, 3] addresses internal
timing channels. However, the only known language-based tech-
nique to secure both external and internal timing channels is the
static method of program transformation by cross-copying branch
slices [1]. This technique has limited expressiveness in that no loop-
ing executions on high data are allowable. In fact the execution time

of computations looping on secret data is inherently tied to that se-
cret data, and it does not seem likely to secure such computations
by purely static approaches. Additionally, none of the existing ap-
proaches support higher-order functions. Higher-order function ap-
plication is also dynamic in how the code to be executed is de-
cided only at runtime, thus making it harder for static approaches
to secure them as the exact code to be secured is itself not known
statically. Dynamic dispatch in object-oriented languages presents
a similar challenge. In fact all existing language-based approaches
to eliminate timing channels are based on static analysis of pro-
grams. Timing behavior however by its very nature is a dynamic
property, and runtime techniques hold significant promise – a run-
time system has direct access to the running time of the program
and can use this information to good advantage, for example by
altering running times just enough to eliminate the insecure cases.
Static techniques can only make approximate models of the timing
behavior of programs, and hence must be inherently more conser-
vative than a runtime one.

In this paper we propose a general purpose runtime framework
to secure timing channels for a language which includes higher-
order functions and looping computations on secret data, features
which none of the existing approaches fully support – [41, 5, 10]
do allow while-loops with secret guards but only under severe re-
strictions. We show how both external and internal timing chan-
nels are provably eliminated in both sequential and concurrent set-
tings, in the presence of deterministic as well as nondeterministic
schedulers, modulo the effect of caches [14, 2] and resource ex-
haustion [37] on timing behavior of programs. There is a price to
be paid, however – the high computation may have to be disrupted;
the low computation is nevertheless guaranteed to be unaffected.
Section 2 provides an informal overview of our technique which
elaborates on these issues.

We formulate three runtime systems: �

sync
seq , the core system,

which addresses external timing channels in sequential programs,
and two extensions to it, �

sync
concD and �

sync
concN , to address both ex-

ternal and internal timing channels in a concurrent setting, un-
der arbitrary deterministic and nondeterministic schedulers, re-
spectively. We prove a strong noninterference [9] result for �

sync
seq ,

and scheduler-independent strong noninterference and probabilis-
tic noninterference [38] results for �

sync
concD and �

sync
concN , respectively.

Our probabilistic noninterference result employs discrete probabil-
ity distributions, as opposed to the continuous probabilities of [38],
allowing for a more direct proof technique.

1

2. Overview
Consider the following program in Caml [22]-like syntax:

let len = �z. (* number of digits in z *) in

let multiplyBigInts =
�a. �b. let alen = len a in let blen = len b in

let i = ref 0 in let j = ref 0 in

while (!i < alen) {
while (!j < blen) { . . . ; j++ }; . . . ; i++ }; . . .

in

let modBigInts =
�c. �d. let clen = len c in let dlen = len d in . . . in

let h = inputBit

high() in let r = ref 5high
in

let x = inputBigInt

low() in let n = inputBigInt

low() in

let xlen = len x in let nlen = len n in

output

low(“p is about to start execution”);
if

p

(h == 1) then

r := modBigInts (multiplyBigInts x x) n

else

r := modBigInts x n;
output

low(“p just finished execution”);

(1)

This program is inspired by the square-and-multiply algorithm –
an efficient algorithm for modular exponentiation of large numbers
used in many cryptographic implementations including RSA [33].
For simplicity of presentation we employ the naive O(n2) school-
book algorithms for multiplication and modular division of big in-
tegers; the exact algorithm used is not relevant here. The program
assumes the presence of arbitrary precision arithmetic1. It leaks in-
formation because it changes its timing behavior based on the high
input to the variable h. The program point identifier p on if

p

labels
this conditional branch point. The variable h holds a single high bit,
that of the RSA private exponent for example, while x and n hold
arbitrary precision low integers, say the message to be decrypted
and RSA’s modulus, respectively. The attacker’s goal is to find the
value of h by externally observing the time lag between the two
low outputs across multiple program runs.

Run 1 Run 2
h 1high 0high

!r, initial 5high

x, n, xlen, nlen i

low
1 , i

low
2 , 20low, 15low

branch taken at p then else

running time of p 2860 units 1275 units
!r, final (x2 mod n)high (x mod n)high

h leaked? yes
i1 = 29837429873928930498, i2 = 908028734093623

Figure 1. Example (1): A Set of Raw Runs

Figure 1 tabulates the traces of a set of runs of program (1)
with differing high values for h, but the same low values of x and
n. Recall the computational time complexities of multiplyBigInts
and modBigInts are quadratic in the lengths of their inputs, so for
a given x and n, the then-branch should take more than double
the time of the else-branch, a fact borne out in Figure 1. (Note,
the numbers denoting the running times in Figure 1, and in the
discussion to follow, have been chosen to denote the expected
relative running times of the respective branches; hence the use

1 For technical simplicity we do not have variable length arrays for imple-
menting big integers in the formal language syntax presented in Section 3;
it should be straightforward to incorporate them if desired. We also do not
formally support while-loops, but we do have higher-order functions with
mutable state so loops are encodable via the ‘tying the knot’ technique.
Lastly, the input and output statements used in the example are not a part of
our official language syntax; they can, however, be easily incorporated, as
is discussed in Section 8.

Run 10 Run 20

...
...

...
running time of p 2860 units

!r, final (x2 mod n)high (x mod n)high

h leaked? no

Figure 2. Example (1): Optimally Synchronized Runs

of ‘unit’ as the metric for measurement of time. In our formal
semantics, the number of small-steps is used to express time.)
Consequently, an attacker who knows the structure of program (1)
and observes that the lag between the low outputs is less than half in
run 2 as compared to run 1, can correctly infer that the then-branch
was taken in the first run while the else in the second, that is, h

was 1 in run 1, and 0 in run 2. The delay between the low outputs
constitutes an external timing channel; our goal is to secure it by
decoupling the time lag from the value of h.

How to secure the external timing channel? The attacker can be
deceived by forcing the running time of the branching statement to
be the same regardless of which branch was taken. Figure 2 tabu-
lates runs 10 and 20, which are variants of runs 1 and 2 forced to
synchronize in this manner. Synchronization can be implemented
by setting a timer for 2860 units – the greater of the running times
of the branching statement p in runs 1 and 2 – immediately after
resolving the guard (h == 1) but just before beginning execution
of the selected branch. If the execution of the selected branch fin-
ishes before the timer goes off, as is the case in run 20, nops can be
performed until the allotted time is over, thus padding the compu-
tation of p ensuring it takes exactly 2860 units. Both the then- and
else-branches thus take the same time, and we say the synchronized
running time (in short, the sync time) of p is 2860 units. Thus, with
identical timing the attacker can learn nothing about the value of h

by comparing runs 10 and 20.
The sync time of 2860 units for the branching statement p is in

fact optimal, denoting the upper bound on the running time of p for
x = i1 and n = i2. The knowledge of the structure of program (1)
and the running times of p in runs 1 and 2 can be used to obtain
the optimally synchronized runs 10 and 20. In general, however, it is
impossible to always accurately determine the upper bound on the
running time of a given piece of code.

Our general solution Taking cue from the above example where
we used the knowledge gained from the “test” runs 1 and 2 to gener-
ate the leak-free synchronized runs 10 and 20, we propose a twofold
solution to secure external timing channels: a) Pre-deployment: Es-
timate as accurately as possible the upper bounds on the running
times of all branching statements with high guards, by a combina-
tion of rigorous testing on a variety of inputs and/or programmer
input, and b) Post-deployment: Use the pre-deployment estimates
as the sync times for the corresponding branching statements, in
conjunction with a realtime fallback technique (presented below)
for securely handling situations where the sync times are found to
be less than needed.

How are sync times determined? The time complexities of the
then- and else-branches can be approximated by a measurement-
based approach – run program (1) on a variety of inputs for h,
x, and n, measuring the corresponding running times in each of
the runs, and then correlate the inputs with the measured run-
ning times of the corresponding branches. We know the com-
putational time complexities of the functions multiplyBigInts and
modBigInts are quadratic in the lengths of their inputs, that is,
O(alen ⇤ blen) and O(clen ⇤ dlen) respectively, implying the run-
ning times of the then- and else-branches of program (1) are in

2

turn quadratic in the lengths of x and n; say the functions approx-
imating the running times of the then- and else-branches of pro-
gram (1) are �T (xlen, nlen) = 9xlennlen + 5xlen + 4nlen + 318 and
�F (xlen, nlen) = 4xlennlen + 3xlen + nlen + 243 respectively, each
parameterized on the lengths of x and n denoted by xlen and nlen
respectively. Observe for some xlen and nlen the estimated running
time of the then-branch, �T (xlen, nlen) units, is always greater than
that of the else-branch, �F (xlen, nlen) units; hence we can use �T

as the sync timer function.
One can imagine the programmer having supplied the compu-

tational complexities for the then- and else-branches, with only the
constant factors in �T and �F determined empirically above. It
also may be possible to automate the process of computing the sync
timer functions by employing curve fitting techniques on top of em-
pirical data. The problem of estimating time bounds has been stud-
ied extensively in the field of Worst-Case Execution Time (WCET)
analysis [45]. In general any methodology which delivers the de-
sired accuracy may be used to derive the sync timer functions – the
security guarantees of our system are independent of the precision
of the sync times; however the closer to optimal the sync times can
be made to be, the better would be the practical usefulness of our
system.

Run 3 Run 4
h 1high 0high

!r, initial 5high

x, n, xlen, nlen i

low
3 , i

low
4 , 25low, 20low

branch taken at p then else

running time of p 4705 units 2095 units
!r, final (x2 mod n)high (x mod n)high

h leaked? yes
i3 = 5028234720108712878120324
i4 = 62598712387561314011

Figure 3. Example (1): Another Set of Raw Runs

Run 30 Run 40

...
...

...
running time of p �T (xlen, nlen) = 5023 units

!r, final (x2 mod n)high (x mod n)high

h leaked? no

Figure 4. Example (1): Synchronized Runs, Adequate Sync Time

What if the sync time is more than the raw running time? Prior
to deployment one must strive to tune the sync timer functions to
be as close to optimal as possible, so as to minimize the padding
of synchronized computations – besides the needless slow-down of
program computation, overestimated sync times have no undesir-
able side-effects. Consider runs 3 and 4 tabulated in Figure 3, with
the corresponding synchronized runs 30 and 40 shown in Figure 4.
For x = i3 and n = i4, �T provides an overestimation of the raw
running times for both of p’s branches. Hence in Figure 4, each
of the branches completes its execution before the sync timer goes
off; the residual sync time is padded away with nops as before. The
attacker again learns nothing of h from timing information gleaned
from runs 30 and 40. The parameterization of the sync timer func-
tions on low input values is an important aspect of our system.

The program transformation approach by Agat [1] exhibits the
same expressiveness on this program by a static technique of cross-
copying slices of branches, which implicitly encodes the above
parameterization in the transformed code. Agat’s technique, how-
ever, would not be applicable if the functions multiplyBigInts and
modBigInts were part of a library where their source code was not

available; our dynamic synchronization technique factors in only
the running times and does not need the source code, and so would
remain applicable to such library calls. Our technique is more gen-
eral in other ways as well, a topic that will be taken up later in this
section.

What if the sync time is less than the raw running time? Say the
programmer had expected program (1) to be used mainly on inputs
of lengths less than or equal to 32 digits for x and n; hence, prior
to deployment she had ensured that the sync timer function �T was
appropriate for all inputs to x and n of lengths 32 digits or less.
Recall the lengths of i3 and i4 in runs 3 and 4 were both less than
32 digits.

Run 50 Run 60

h 0high 1high

!r, initial 5high

x, n, xlen, nlen i

low
5 , i

low
6 , 40low, 30low

branch taken at p else then

running time of p

†
�T (xlen, nlen) = 11438 units

branch execution aborts? no yes‡
!r, final (x mod n)high 5high‡

h leaked? no
i5 = 3321654873210031296870149807841203498791
i6 = 103216510606489412030654984321
†raw running time of then-branch is 12003 units, and else-
branch is 5837 units.
‡computation is aborted after the allotted sync time is over
leaving the logically incorrect value 5high in !r.

Figure 5. Example (1): Synchronized Runs, Inadequate Sync Time

Now consider the synchronized runs 50 and 60 tabulated in
Figure 5; the sync time of �T (xlen, nlen) = 11438 units for x = i5

and n = i6, is less than the corresponding raw running time of the
then-branch but is greater than that of the else-branch. The run 50
terminates with (x mod n)high in !r; however, if the then-branch
in run 60 were allowed to complete, the attacker would observe a
timing difference between runs 60 and 50, and thus learn the value
of h. Hence in order to bluff the attacker the computation of the
then-branch is simply aborted in run 60 when the allotted sync time
is over, and the subsequent low output performed. Once aborted,
the high computation (the portion of the program computation
manipulating high data) has gone logically wrong, and the program
has entered a bluff computation state, the purpose of which is to
hide the abortion from a low observer, and to keep him from gaining
information on h.

As the execution of the then-branch was terminated before the
assignment to r could take place, the old and now logically incor-
rect value 5high remains in !r at the end of run 60; this value is to be
viewed as a “placeholder” in that it is not useful but prevents infor-
mation leakage. Note, only branching statements with high guards
are ever synchronized in our system, implying only high branch
computations can ever be aborted; hence placeholder values, which
are a result of such abortions, are guaranteed to be always high.

The bluffing technique can be viewed as a generalization of the
lenient execution model [7] for out-of-bounds array indices.

Bluff computation is only a fallback, not a norm Given that
the programmer had not expected an input of length as large as
40 digits for x, i5 could have been a malicious input fed by an
attacker trying to covertly gain classified information on h. In fact
the programmer should have disallowed invalid values greater than
32 digits for x and n in the first place by inserting

if (xlen > 32 || nlen > 32) then

output

low(“invalid input”); exit 1;

3

immediately after the line ‘let xlen = len x in let nlen = len n in’
in program (1). This change would eliminate the need for bluff
computation due to too-large an input.

In general, if the programmer is careful enough to disallow
all spurious low values from reaching timing-sensitive pieces of
code with running times dependent on low data, he can be quite
certain the bluff computation will not be needed for them upon
deployment.
Handling computations looping on high data In program (1) the
value of !r was never used. Now consider program (2), which is
program (1) followed by the addendum below.

. . .
let y = !r in let ylen-max = nlen in

let h

0 = inputBit

high() in let r

0 = ref 7high
in

output

low(“p0 is about to start execution”);
if

p

0 (h0 == 1) then

r

0 := modBigInts (multiplyBigInts y y) n

else

r

0 := modBigInts y n;
output

low(“p0 just finished execution”);

(2)

Note, y is high in program (2) as r is set under the high guard
(h == 1) in program (1). Also note the computations of both
modBigInts (multiplyBigInts y y) n and modBigInts y n are loop-
ing on the lengths of y and n, so the running time of p

0 is para-
metric in y and n. We use �T as the sync timer function for p

0 as
well; however, parameterizing the sync time of p

0 on the length of
y would reveal the secret value of h – the lag between the low out-
puts on each side of p

0 would then depend on the value of y which
in turn depends on the secret bit in h. Recall the sync times of p

in runs 30–60 were solely parameterized on the low lengths of the
low values x and n; hence despite the difference in the sync times
in Figures 4 and 5 no information was leaked. In order to prevent
information leakage the sync time of p

0 must be parameterized ex-
clusively on low values.

Note the only values possible for y in program (2) are either
5high, (x mod n)high, or (x2 mod n)high, implying its value can be
no bigger than that of n, that is, the length of y is equal to the length
of n in the worst case. Given this publicly known worst-case length
for y we can conservatively parameterize the sync time of p

0 on
ylen-max (which is equal to nlen) and nlen. Figure 6 tabulates a set of
such synchronized runs for program (2) as extensions to run 60. The
attacker again learns nothing since runtimes are uniform.

Run 70 Run 80

h 1high

!r, initial 5high

x, n, xlen, nlen i

low
5 , i

low
6 , 40low, 30low

branch taken at p then

running time of p �T (xlen, nlen) = 11438 units
branch execution aborts? yes

!r, final 5high†

y, ylen-max 5high†, nlen
h

0 1high 0high

!r0, initial 7high

branch taken at p

0
then else

running time of p

0
�T (ylen-max, nlen) = 8688 units

branch execution aborts? no

!r0, final (y2 mod n)high

= 25high‡
(y mod n)high

= 5high‡

h or h

0 leaked? no
†high placeholder value ‡garbled high data

Figure 6. Example (2): Worst-Case Sync Time

The above example illustrates our general technique for pre-
venting timing leaks in presence of computations looping on secret

data: parameterize the corresponding sync times over low conser-
vative approximations of those high data.

Agat [1] does not allow looping computations with high guards.
While-loops with secret guards are supported in [41, 5], but only
in concurrent settings, and only if such loops are not followed by
low events. Our technique has the advantage of support for high
looping computations, in both sequential and concurrent settings,
and without the aforementioned restriction.

Our approach of parameterizing the sync times of high loop-
ing computations with the worst-case low approximations of the
corresponding high guards is analogous to the “worst-case prin-
ciple” proposed by Agat and Sands [2]; the latter, however, fo-
cuses on rewriting algorithms with low termination conditions cor-
responding to the worst-case executions of such high loops, while
we achieve a similar effect dynamically.

Placeholder values may garble high data Observe the final val-
ues of !r0 in runs 70 and 80 are logically incorrect due to the logical
incorrectness of y. In general once a branch computation is aborted
the resulting placeholder values may pollute the high computation
with garbled high data – taking the analogy of program (1) to an
RSA implementation, the decrypted message may be garbled. In
general, an execution entering a bluff computation state may not be
able to complete some high computation tasks due to garbled data,
and programs must be written with this contingency in mind, not
unlike how the case of “network down” needs to be accounted for
programatically. Note, any high computation task not influenced by
the garbled data will nonetheless function correctly.

A Higher-Order Example Examples (1) and (2) were simple
first-order programs. Now consider the following higher-order vari-
ant of program (1), where ‘ ’ is a shorthand for any variable not
found free in the body of the corresponding function.

. . .
if

p

00 (h == 1) then

f :=
`
� . r := modBigInts (multiplyBigInts x x) n

´

else

f := (� . r := modBigInts x n);
output

low(“p000 is about to start execution”);
(!f) ()

p

000 ;
output

low(“p000 just finished execution”);

(3)

The program point identifier p

000 denotes the corresponding func-
tion application statement; function application in the presence of
first-class functions is a form of branching – the code to be exe-
cuted next depends on the function flowing into the application site.
Analogously, the running times of such function application state-
ments depend on the exact functions flowing into them, just as the
running times of branching statements depend on the actual guard
flowing into them. Hence, akin to runs 1–4, program (3) will also
leak the value of h by exhibiting variation in the running time of p

000

based on h’s value. The synchronization technique discussed above
for conditional branching statements is applicable here as well; �T

could be used as the sync timer function for p

000.
We are not aware of any existing techniques for securing timing

channels which support higher-order functions; we believe this is a
new contribution of our approach.

Securing timing channels in presence of concurrency We now
show how our technique also may be used to secure timing channels
in concurrent programs. Consider the following program in Caml-
like syntax, adapted from [47],

let spin = �n. let i = ref 0 in while (!i < n) { i++ } in

let l = ref 0low
in„

if

p

0000 (h == 1) then spin(500low) else ();
output

low(!l)

‚‚‚‚
spin(50low);
l := 1low

« (4)

4

n 2 N small-step semantics up-counter
d 2 N [{1} down-counter
p program point identifier
x variable
i 2 Z integer
b ::= true | false boolean
loc heap location
�

a

::= + | � | ⇤ | / arithmetic binary operator
�

r

::= < | > | == | != relational binary operator
� ::= �

a

| �
r

binary operator
v ::= x | i | b | �x. p | loc value
p ::= v | p� p | let x = p in p program (source syntax)

| if

v

p,v

p then p else p | p (p)v

p,v

| ref p | !p | p := p

R ::= • | R� p | v � R | let x = R in p reduction context
| if

v

p,v

R then p else p | R(p)v

p,v

| v (R)v

p,v

| ref R | !R | R := p | v := R
s ::= hpiv synchronization construct
e ::= p | R[s] expression (runtime syntax)
H : {loc}! {v} heap (memory)
C ::=

`
H, e

´
d

runtime configuration

�

n :

n

z }| {
Z⇥ . . .⇥ Z ! N sync timer function

� : {p}! (�n _?) table of sync timer functions
v̂ ::= i | b integer/boolean value

Figure 7. �

sync
seq : Syntax Grammar

where the infix operator k denotes parallel composition. The vari-
able h holds a single high bit, while the reference variable l is
shared between the program fragments to be executed concurrently.

Observe the raw running time of the then-branch in the left frag-
ment is considerably more than that of spin(50low) in the right frag-
ment; the converse is true for the else-branch. Hence under most
schedulers (e.g. round-robin), if h is 1 then the assignment l := 1low

is likely to precede output

low(!l), resulting in 1 being the likely out-
put; conversely, if h is 0 the output is likely to be 0. In summary,
h can affect the internal timing behavior of program (4), which in
turn can affect the value of !l that is output to a low observer, thus
indirectly leaking the value of h. Such leaks due to variations in the
internal timing behavior of concurrent programs are referred to as
internal timing leaks, with the internal timing behavior constituting
the internal timing channel. Note, unlike external timing leaks, the
attacker need not have a stop-watch to record the timings of the low
outputs, the values of the low outputs themselves reveal classified
information. Hence internal timing channels are easier to secure
than external timing channels – only the values of the low outputs
need to be decoupled from high data to secure internal timing chan-
nels, whereas both the low outputs and their timings need to be in-
sulated from secret information to close external timing channels.

Observe that the root of the timing leak in program (4) is the
asymmetry in the execution times of the then- and else-branches of
the branching statement p

0000. Hence our dynamic synchronization
technique will also secure the internal timing channel here. In gen-
eral, the technique secures all internal and external timing channels
in arbitrary concurrent programs, as is proved in Sections 5 and 6.

3. The �sync
seq Runtime System

We now formalize the �

sync
seq language and define its semantics.

�

sync
seq is a sequential language with mutable state, higher-order

functions, conditional branchings and let-bindings. The language
syntax appears in Figure 7. Note the overbar notation denotes
comma-separated sequence of zero or more items, so for exam-
ple v denotes some v1, . . . , vn

; the subscripted overbar notation
denotes a sequence of fixed length as indicated by the subscript,

so for example v

k

= v1, . . . , vk

and {loc
k

7! v

k

} = {loc1 7!
v1, . . . , loc

k

7! v

k

}. The runtime heap H is a partial function from
heap locations to values. Program point identifiers p are used to
uniquely label conditional branching and function application sites.
They are intended to be automatically generated, but we embed
them in program syntax for technical convenience. Also we use the
terms ‘program point’ and ‘program point identifier’ interchange-
ably throughout this paper.

The table of sync timer functions � associates each program
point with either a sync timer function �

n, or ? denoting lack of
such a function – sync timer functions need to be defined only for
timing-sensitive statements whose running times depend on high
data. The sync timer function �

n is parameterized on an n-tuple of
integers and returns a natural number denoting the corresponding
sync time; recall for example how the sync timer function �T in
Section 2 was parameterized on a pair of integers.

The subscripts v on the conditional branching and application
sites must evaluate to low-security integral parameters during com-
putation, and are then fed to the associated sync timer function.

The superscript v on the branching and application sites denotes
the default placeholder value for the expression – in case the syn-
chronized execution is aborted the associated default placeholder
value is inserted in its place to allow the rest of the computation
to proceed, thus hiding the abortion from a low observer. The de-
fault placeholder value can be any value of the same type as the
computation it is intended to replace – this is ensured by our type
system.

The synchronization construct hpiv is a runtime construct de-
noting the synchronized computation of the enclosed program p

with the default placeholder holder value v; hpiv occurs only at run-
time, and so we distinguish the runtime expressions e from source
programs p.

The set of free variables is defined as follows,

Definition 3.1 (Free Variables).

1. (Value).
(a) (Variable). free(x) = {x}; and
(b) (Integer, Boolean, Heap Location). free(i) = free(b) =

free(loc) = ;; and
(c) (Function). free(�x. p) = free(p)� {x}.

2. (Program).
(a) (Binary Operation). free(p� p

0) = free(p) [free(p0); and
(b) (Let). free(let x = p in p

0) = free(p) [(free(p0) � {x});
and

(c) (If). free
`
if

v

p,vk
p then p1 else p2

´
= free(p) [free(p1) [

free(p2) [free(v1) [. . . [free(v
k

) [free(v); and
(d) (App). free

`
p (p0)v

p,vk

´
= free(p) [free(p0) [free(v1) [

. . . [free(v
k

) [free(v); and
(e) (Ref). free(ref p) = free(p); and
(f) (Deref). free(!p) = free(p); and
(g) (Assign). free(p := p

0) = free(p) [free(p0).
3. (Synchronization Construct). free

`
hpiv

´
= free(p) [free(v).

4. (Expression with a Synchronization Construct). free
`
R[s]

´
=

free(s) [(free(R[x])� {x}), where R[s] = (R[x])[s/x].
5. (Heap). free(H) =

S
loc2dom(H) free

`
H(loc)

´
.

6. (Heap, Expression). free(H, e) = free(H) [free(e).

We write e[e0/x] to denote the capture-avoiding substitu-
tion of all free occurrences of x in e with e

0, and H[e/x]
to denote the heap H0 such that dom(H0) = dom(H) and
8loc 2 dom(H). H0(loc) = H(loc)[e/x]. In addition we use
(H, e)[e0/x] as shorthand for

`
H[e0/x], e[e0/x]

´
, and the multi-

substitution X[v
k

/x

k

], where X ::= H | e, as shorthand for

5


```
X[v1/x1]

´
[v2/x2]

´
. . .

´
[v

k

/x

k

]. Also we write “e is a pro-
gram” if e = p, for some p, “e is a value” if e = v, for some
v, and “e has a sync construct” if there exists a R and a s, such that
e = R[s].

For technical ease we sometimes view functions as a set of
mappings from the elements in its domain to those in its range;
so for example loc 7! v 2 H is equivalent to asserting H(loc) = v.
The complement operator \ on a set of mappings, say H, is defined
as H\loc = {loc0 7! v

0 | loc0 7! v

0 2 H ^ loc 6= loc0}; the update
operation is then defined as H[loc 7! v] = H\loc [ {loc 7! v}.
Further for any binary relation R such that R ✓ A⇥B, A = {a}
and B = {b}, we use the shorthand ‘a

k

R b’ for ‘81  i 
k. a

i

R b’, and symmetrically, ‘a R b

k

’ for ‘81  i  k. a R b

i

’.

Operational Semantics Figure 8 gives the syntax-directed small-
step operational operational semantics for �

sync
seq . The small-step

reduction relation �!�, parameterized by a table of sync timer
functions �, relates heap/expression configurations

`
H, e

´
d

. Here
d is the down-counter and is decremented at each step; it denotes
the maximum number of small-steps available for the expression
e to complete its execution. If d = 1, there is an unbounded
number of available steps (we consider (1 � 1) = 1). The n-
step reflexive and transitive closure of �!� is denoted as �!n

�.
We use the small-step counter n as our abstraction for execution
time; however, our techniques are generalizable regardless of the
granularity of the abstraction used.

The computation of program p starts in an initial configuration`
;, p

´
1. During the course of computation, if the execution time

of a branching or application statement needs to be synchronized
(i.e., the premise �(p)(i

k

) = n holds in the IF-SYNC and APP-
SYNC rules), the corresponding code is placed in a synchronization
construct

`
hp

i

iv in IF-SYNC, and
˙
p[v/x]

¸
v

0
in APP-SYNC

´
with

the associated default placeholder value (v and v

0, respectively);
the down-counter is then set to the indicated sync time (n). Since
n 2 N, synchronized computation is limited to a finite number
of steps by the SYNC rule – when the down-counter reaches 0,
the SYNC rule is no longer applicable as �1 is not a valid down-
counter.

If the computation being synchronized finishes before the sync
time is over, nop’s are performed via the SYNC-PAD rule until the
down-counter is 0, thus ensuring the overall synchronization takes
exactly the sync time number of steps to complete from an exter-
nal observer’s point of view; the computed value is then unwrapped
from the synchronization construct and the down-counter is reset to
1 via the SYNC-DONE rule, while the default placeholder value is
simply thrown away. However, if the computation under synchro-
nization does not converge to a value in the allotted sync time, then
it is aborted via the SYNC-ABORT rule. The default placeholder
value is inserted in place of the unfinished computation, and the
down-counter is reset to1 indicating the synchronization has com-
pleted and non-synchronized computation can resume.

Definition 3.2 (Canonical Configuration). A configuration
`
H, e

´
d

is canonical iff either e is a program and d = 1, or e has a
synchronization construct and d 6= 1.

Definition 3.3 (Canonical Derivation). A derivation
`
H, e

´
d

�!n

�`
H0, e0

´
d

0 is canonical iff the configuration at each node of its
derivation tree is canonical.

An important aspect of our synchronization technique is that
only top-level branching and function application statements are
synchronized, as indicated in the IF-SYNC and APP-SYNC rules by
the infinite down-counter on the left side of the reduction relation,
and the premise d 6= 1 in the IF and APP rules. Hence if the a
branching or function application site is visited (revisited) inside

a synchronized computation, as for example in case of nested
(recursive) computations, the sync time is not reset at each such
visit; the corresponding code is already under synchronization as
part of the encapsulating computation.

The premise �(p) = ? in the IF rule (and correspondingly in
the APP rule) indicates the guard flowing into the corresponding
branching site is of low security, and so its computation is not to
be synchronized. A type system, to be presented in Section 3.1,
ensures the table of sync timer functions � correctly identifies such
branching and application statements based on the security levels
of the guards and the functions flowing into them.

We now formally state some properties of the operational se-
mantics.

Lemma 3.4 (Properties of Operational Semantics).

1. (Canonicality of Derivation). If
`
H, p

´
1 �!n

�

`
H0, e0

´
d

0 then
this derivation is canonical.

2. (Program to Program). If
`
H, p

´
d

�!n

�

`
H0, p0

´
d

0 then d

0 =

d� n. (Hence, if d = 1 then d

0 = 1.)
3. (A Stuck State). For any H and p, there does not exist a �, H0,

e

0, and d

0, such that
`
H, p

´
0
�!�

`
H0, e0

´
d

0 .

4. (Time-Fixed Computation). If
`
H, hpiv

´
n

�!n

0
�

`
H0, e0

´
d

0
then either,
(a) For some p

0, e

0 = hp0iv and d

0 = n� n

0; or
(b) For some v

0, e

0 = v

0, n

0 = n + 1 and d

0 = 1.
5. (IF-SYNC). If �(p)(i

k

) = n and`
H, if

v

p,ik
b then p1 else p2

´
1 �!n

0
�

`
H0, v0

´
d

0 then
n

0 = n + 2 and d

0 = 1. (Hence, if n = 0 then n

0 = 2.)
6. (APP-SYNC). If �(p)(i

k

) = n and`
H, (�x. p) (v0)v

p,ik

´
1 �!n

0
�

`
H0, v00

´
d

0 then n

0 = n + 2 and
d

0 = 1. (Hence, if n = 0 then n

0 = 2.)

Proof. 1. (Canonicality of Derivation). By induction on the
derivation of

`
H, p

´
1 �!n

�

`
H0, e0

´
d

0 .
2. (Program to Program). By induction on the derivation of`

H, p

´
d

�!n

�

`
H0, p0

´
d

0 .
3. (A Stuck State). By induction on the structure of p given the

syntax-directedness of the semantics rules in Figure 8.
4. (Time-Fixed Computation). By induction on the derivation of`

H, hpiv
´

n

�!n

0
�

`
H0, e0

´
d

0 .
5. (IF-SYNC). By IF-SYNC and Lemma 3.4[4].
6. (APP-SYNC). By APP-SYNC and Lemma 3.4[4].

3.1 A Type System for �

sync
seq

As discussed above, the operational semantics of �

sync
seq relies on the

table of sync timer functions � to indicate whether the computation
of a branching or application statement is to be synchronized or
not – if a sync timer function is defined then the corresponding
statement is to be synchronized, otherwise not. In order to prevent
timing leaks only the branching and application statements with
running times dependent on high data need to be synchronized,
that is, those with high guards or functions flowing into them. For
simplicity we employ a basic monomorphic type system to identify
such statements in this paper; more expressive polymorphic type
systems [32] could be employed to better effect, as could dynamic
techniques [39].

Let (L,) be a lattice whose elements, denoted by ` and pc,
represent security levels. Following Denning [8] we typically use
the meta-variable pc, rather than `, when considering information
obtained by observing the value of the “program counter”. We
write ? for L’s least element. The type grammar and subtyping

6



BINOP
i1 � i2 = v

`
H, i1 � i2

´
d

�!�

`
H, v

´
d�1

LET
`
H, let x = v in p

´
d

�!�

`
H, p[v/x]

´
d�1

IF-SYNC
i 2 {1, 2} (b1, b2) = (true, false) �(p)(i

k

) = n

“
H, if

v

p,ik
b

i

then p1 else p2

”

1
�!�

`
H, hp

i

iv´
n

IF
i 2 {1, 2} (b1, b2) = (true, false) �(p) = ? _ d 6= 1

“
H, if

v

p,ik
b

i

then p1 else p2

”

d

�!�

`
H, p

i

´
d�1

APP-SYNC
�(p)(i

k

) = n

“
H, (�x. p) (v)v

0

p,ik

”

1
�!�

“
H,

˙
p[v/x]

¸
v

0”

n

APP
�(p) = ? _ d 6= 1

“
H, (�x. p) (v)v

0

p,ik

”

d

�!�

`
H, p[v/x]

´
d�1

SYNC̀
H, p

´
n

�!�

`
H0, p0

´
n�1`

H, hpiv´
n

�!�

`
H0, hp0iv´

n�1

SYNC-PAD

`
H, hviv0´

n

�!�

`
H, hviv0´

n�1

SYNC-DONE

`
H, hviv0´

0
�!�

`
H, v

´
1

SYNC-ABORT
p is not a value

`
H, hpiv´

0
�!�

`
H, v

´
1

REF
`
H, ref v

´
d

�!�

`
H [ {loc 7! v}, loc

´
d�1

loc is fresh

DEREF
H(loc) = v

`
H, !loc

´
d

�!�

`
H, v

´
d�1

ASSIGN
loc 2 dom(H)

`
H, loc := v

´
d

�!�

`
H[loc 7! v], v

´
d�1

CONTEXT`
H, e

´
d

�!�

`
H0, e0

´
d

0`
H, R[e]

´
d

�!�

`
H0, R[e0]

´
d

0

Figure 8. �

sync
seq : Syntax-Directed Small-Step Operational Semantics

t ::= int | bool | ⌧ ! ⌧ | ⌧ ref ground type
⌧ ::= t

` type
� : {x}! {⌧} type of environment
H : {loc}! {⌧} type of heap
t̂ ::= int | bool ground int/bool type
⌧̂ ::= t̂

` int/bool type

`  `

0

t̂

`  t̂

`

0
`  `

0
`

0 C ⌧

⌧ ref `  ⌧ ref `

0
⌧

0
1  ⌧1 ⌧2  ⌧

0
2

(⌧1 ! ⌧2)`  (⌧ 01 ! ⌧

0
2)`

Figure 9. �

sync
seq : Type Grammar and Subtyping Rules

rules are defined in Figure 9. The annotation ` on the ground
type t in type ⌧ reflects the security level of the information the
corresponding expression may carry. The function seclevel on types
returns the associated security levels: seclevel(t`) = `, for any t

and `. The binary predicate ` C ⌧ (read: ` guards ⌧ ) holds iff ` 
seclevel(⌧). The type rules appear in Figure 10. In a type judgement
pc, �,H `�`

e : ⌧ , pc denotes the security level of the context,
while ` represents the least upper bound of all “low” security levels
in L, that is, for any `

0 2 L, `

0 is considered low iff `

0  `,
otherwise `

0 is high. The function type on binary operators, used in
the type rule binop, is defined as, type(�

a

) = int and type(�
r

) =
bool . We use the following shorthand: ‘pc, �,H `�`

e

k

: ⌧ ’
abbreviates ‘81  i  k. pc, �,H `�`

e

i

: ⌧ ’, ‘pc, �,H `�`

e

k

: ⌧

k

’ abbreviates ‘81  i  k. pc, �,H `�`

e

i

: ⌧

i

’, and
‘pc, �,H `�`

e

k

, e

0
k

: ⌧

k

’ abbreviates ‘81  i  k. pc, �,H `�`

e

i

, e

0
i

: ⌧

i

’.
The type system is fairly standard with much of the notation

adapted from [32]. It mainly serves to identify the branching and
application statements needing synchronization to secure timing
channels. It does so by ensuring the existence of associated sync
timer functions, with appropriate arities, for such statements via
the type rules if -sync and app-sync; the nonexistence of sync timer
functions for all other branching and application statements not
needing synchronization is ensured by the if and app rules, respec-
tively. As pointed out in the discussion on the operational seman-
tics, only top-level branching and application statements, that is,
only those that appear in low contexts, with high guards or func-

tions flowing into them, need to be synchronized for securing tim-
ing channels; this is captured by the premise pc  ` ^ `

0 6
` ^ �(p) = �

k in the if -sync and app-sync rules, while the
premise pc, �,H `�`

v

k

: int

` ensures all parameters to the corre-
sponding sync timer function �

k are low integers. The other state-
ments, not needing synchronization, are indicated by the premise`
pc  ` ^ `

0  ` ^ �(p) = ?
´
_ pc 6 ` in the if and app

rules; the subscripts v

k

and the superscript v are in fact unused in
the if and app rules.

We now formally state some properties of the type system and
then prove the type safety of �

sync
seq . We start by defining some

notation. The subtyping relation between environments �  �0

holds iff dom(�) = dom(�0) and 8x 2 dom(�). �(x)  �0(x).
The type judgement pc, �,H `�`

(H, e) : ⌧ holds iff pc, �,H `�`

H and pc, �,H `�`

e : ⌧ hold.

Lemma 3.5 (Properties of the Type System).

1. (Program Counter).
(a) (Typing Invariant). If pc, �,H `�`

e : ⌧ then pc C ⌧ .
(b) (Value). If pc, �,H `�`

v : ⌧ and pc0 C ⌧ then
pc0, �,H `�`

v : ⌧ .
(c) (Bump-Up). If pc, �,H `�`

v : ⌧ , pc  pc0 and pc0 C ⌧

then pc0, �,H `�`

v : ⌧ .
(d) (Bump-Down).

i. (“Low” to further “Low”). If pc, �,H `�`

e : ⌧ and
pcsub  pc  ` then pcsub, �,H `�`

e : ⌧ .
ii. (“High” to lesser “High”). If pc, �,H `�`

p : ⌧ ,
pcsub  pc and pcsub, pc 6 ` then pcsub, �,H `�`

p : ⌧ .
2. (Subtyping).

(a) (Type of Environment). If pc, �,H `�`

e : ⌧ and �sub  �
then pc, �sub,H `�`

e : ⌧ .
(b) (Expression). If pc, �,H `�`

e : ⌧ and ⌧  ⌧

0 then
pc, �,H `�`

e : ⌧

0.
3. (Heap Update). If pc, �,H `�`

H and pc, �,H `�`

v :
H(loc) then pc, �,H `�`

H[loc 7! v].
4. (Extension of Type of Heap). If pc, �,H `�`

e : ⌧ and H ✓ H0

then pc, �,H0 `�`

e : ⌧ .

7



var
�(x)  ⌧ pc C ⌧

pc, �,H `�`

x : ⌧

int
pc  `

0

pc, �,H `�`

i : int

`

0

bool
pc  `

0

pc, �,H `�`

b : bool

`

0

func
pc  `

0
`

0
, �[x 7! ⌧ ],H `�`

p : ⌧

0

pc, �,H `�`

�x. p : (⌧ ! ⌧

0)`

0

location
pc  `

0 H(loc) = ⌧ `

0 C ⌧

pc, �,H `�`

loc : ⌧ ref `

0

binop
pc, �,H `�`

p1, p2 : int

`

0

pc, �,H `�`

p1 � p2 : type(�)`

0

let
pc, �,H `�`

p : ⌧ pc, �[x 7! ⌧ ],H `�`

p

0 : ⌧

0

pc, �,H `�`

let x = p in p

0 : ⌧

0

if -sync
pc, �,H `�`

p : bool

`

0
pc  ` ^ `

0 6 ` ^ �(p) = �

k pc, �,H `�`

v

k

: int

`

`

0
, �,H `�`

p1, p2, v : ⌧

pc, �,H `�`

if

v

p,vk
p then p1 else p2 : ⌧

app-sync
pc, �,H `�`

p : (⌧ ! ⌧

0)`

0
pc  ` ^ `

0 6 ` ^ �(p) = �

k pc, �,H `�`

p

0 : ⌧ pc, �,H `�`

v

k

: int

`

`

0
, �,H `�`

v : ⌧

0

pc, �,H `�`

p (p0)v

p,vk
: ⌧

0

if
pc, �,H `�`

p : bool

`

0 `
pc  ` ^ `

0  ` ^ �(p) = ?
´ _ pc 6 ` `

0
, �,H `�`

p1, p2 : ⌧

pc, �,H `�`

if

v

p,vk
p then p1 else p2 : ⌧

app
pc, �,H `�`

p : (⌧ ! ⌧

0)`

0

`
pc  ` ^ `

0  ` ^ �(p) = ?
´ _ pc 6 ` pc, �,H `�`

p

0 : ⌧ `

0 C ⌧

0

pc, �,H `�`

p (p0)v

p,vk
: ⌧

0

sync
pc  `

0

pc  ` ^ `

0 6 ` `

0
, �,H `�`

p, v : ⌧

pc, �,H `�`

hpiv : ⌧

ref
pc  `

0 pc, �,H `�`

p : ⌧ `

0 C ⌧

pc, �,H `�`

ref p : ⌧ ref `

0

deref
pc, �,H `�`

p : ⌧ ref `

0
`

0 C ⌧ ⌧  ⌧

0

pc, �,H `�`

!p : ⌧

0

assign
pc, �,H `�`

p : ⌧ ref `

0
`

0 C ⌧

pc, �,H `�`

p

0 : ⌧sub ⌧sub  ⌧, ⌧

0

pc, �,H `�`

p := p

0 : ⌧

0

sync-in-context
R[s] =

`
R[x]

´
[s/x]

pc, �,H `�`

s : ⌧ pc, �[x 7! ⌧ ],H `�`

R[x] : ⌧

0

pc, �,H `�`

R[s] : ⌧

0

heap
dom(H) = dom(H)

8loc 2 dom(H). pc, �,H `�`

H(loc) : H(loc)
pc, �,H `�`

H

Figure 10. �

sync
seq : Syntax-Directed Monomorphic Type Rules

5. (Update of Type of Environment). If pc, �,H `�`

(H, e) : ⌧

and x /2 free(H, e) then for any ⌧

0, pc, �[x 7! ⌧

0],H `�`

(H, e) : ⌧ .
6. (Redex Typing). If pc, �,H `�`

R[esub] : ⌧ then there exists a
⌧sub such that pc, �,H `�`

esub : ⌧sub.
7. (Redex Replacement). If pc, �,H `�`

R[e] : ⌧ , pc, �,H `�`

e : ⌧sub and pc, �,H `�`

e

0 : ⌧sub then pc, �,H `�`

R[e0] : ⌧ .

Proof. 1. (Program Counter). By induction on the respective type
derivations.

2. (Subtyping). By induction on the respective type derivations.
3. (Heap Update). By the type rule heap.
4. (Extension of Type of Heap). By induction on the derivation of

pc, �,H `�`

e : ⌧ .
5. (Update of Type of Environment). By induction on the deriva-

tion of pc, �,H `�`

(H, e) : ⌧ .
6. (Redex Typing). By induction on the derivation of pc, �,H `�`

R[esub] : ⌧ .
7. (Redex Replacement). By induction on the derivation of

pc, �,H `�`

R[e] : ⌧ .

Lemma 3.6 (Value Substitution in a Program). If pc, �[x 7!
⌧

x

],H `�`

p : ⌧ , pcsub  pc and pcsub, �,H `�`

v : ⌧

x

then
pc, �,H `�`

p[v/x] : ⌧ .

Proof. By induction on the derivation of pc, �[x 7! ⌧

x

],H `�`

p : ⌧ . Following are the type rules from Figure 10 applicable at the
root of this derivation.

1. var. So for some y and ⌧sub, e = y and �[x 7! ⌧

x

](y) = ⌧sub,
⌧sub  ⌧ and pc C ⌧ . Now there are two possible cases
depending on whether x is equal to y or not:
(a) x = y. So ⌧sub = ⌧

x

and y[v/x] = v. By Lemma 3.5[2b,1c]
pc, �,H `�`

v : ⌧ , that is, pc, �,H `�`

e[v/x] : ⌧ , the
requisite result.

(b) x 6= y. So y 2 dom(�) and y[v/x] = y. Then by the type
rule var pc, �,H `�`

y : ⌧ holds, that is, pc, �,H `�`

e[v/x] : ⌧ holds, the requisite result.
2. int. So for some i and `

0, e = i and ⌧ = int

`

0
Now i[v/x] = i;

then directly by int, pc, �,H `�`

e[v/x] : ⌧ holds, the requisite
result.

3. bool, location. Analogous to the case 2 above.
4. func. So for some y, p, ⌧

y

, ⌧

p

and `

0, e = �y. p, ⌧ = (⌧
y

!
⌧

p

)`

0
pc  `

0 and `

0
, �[x 7! ⌧

x

][y 7! ⌧

y

],H `�`

p : ⌧

p

. There
are two possible cases depending on whether x is equal to y or
not:
(a) x = y. So (�y. p)[v/x] = �y. p and `

0
, �[y 7! ⌧

y

],H `�`

p : ⌧

p

. Then by func, pc, �,H `�`

e[v/x] : ⌧ holds, the
requisite result.

8



(b) x 6= y. So (�y. p)[v/x] = �y.

`
p[v/x]

´
, and `

0
, �[y 7!

⌧

y

][x 7! ⌧

x

],H `�`

p : ⌧

p

holds. Now given p[v/x]
denotes capture-avoiding substitution, y 62 free(v). Then
by premise and Lemma 3.5[5] pcsub, �[y 7! ⌧

y

],H `�`

v :
⌧

x

holds. Also pcsub  `

0. Then by induction hypothesis
`

0
, �[y 7! ⌧

y

],H `�`

p[v/x] : ⌧

p

holds. Finally by func,
pc, �,H `�`

e[v/x] : ⌧ holds, the requisite result.
5. binop, app, ref , deref , assign. Directly by induction.
6. let. Similar to case 4 above.
7. if -sync, if , app-sync. Directly by induction given

Lemma 3.5[1a].

We define the type judgement pc, �,H `�`

(p, d) : ⌧ to hold iff
pc, �,H `�`

p : ⌧ , pc  ` () d = 1 and pc 6 ` () d 6= 1;
note the correlation between the security level of the context pc
and the down-counter d – a high context bi-implies synchronized
computation of the program p, while a low context bi-implies non-
synchronized computation. Also, the type judgement pc, �,H `�`

(R[s], n) : ⌧ is defined to hold iff pc, �,H `�`

R[s] : ⌧ .

Main Lemma 3.7 (Type Preservation). If pcsub, �,H `�`

H,
pcsub  pc, pc, �,H `�`

(e, d) : ⌧ and
`
H, e

´
d

�!�

`
H0, e0

´
d

0

then there exists a H0 such that H ✓ H0, pcsub, �,H0 `�`

H0 and
pc, �,H0 `�`

(e0, d0) : ⌧ .

Proof. By induction on the derivation of
`
H, e

´
d

�!�

`
H0, e0

´
d

0 .
Following are the semantics rules from Figure 8 applicable at the
root of this derivation.

1. BINOP. So for some i1 and i2, e = i1 � i2, H0 = H, for
i1 � i2 = v, e

0 = v and d

0 = d� 1.
Directly by premise pcsub, �,H `�`

H0, the first requisite
result, holds. By premise and Lemma 3.5[1a], pc C ⌧ . Then
by premise with binop and int/bool, pc, �,H `�`

(e0, d0) : ⌧ ,
the second requisite result, holds as well.

2. LET. So for some x, v and p, e = (let x = v in p), H0 = H,
e

0 = p[v/x] and d

0 = d� 1.
Directly by premise pcsub, �,H `�`

H0, the first requisite re-
sult, holds. By premise, let and Lemma 3.6 (Value Substitu-
tion in a Program) the second requisite result, pc, �,H `�`

(e0, d0) : ⌧ , holds as well.
3. IF-SYNC. So for some p, i

k

, v, b, p1, p2 and n, e =
if

v

p,ik
b then p1 else p2, d = 1, �(p)(i

k

) = n, H0 = H and
d

0 = n. Also, d = 1 implies pc  `.
Directly by premise pcsub, �,H `�`

H0, the first requisite
result, holds.
Now to prove the second requisite result we need to consider
two possible cases depending on the value of b:
(a) b = true. So e

0 = hp1iv . By premise, if -sync and sync
pc, �,H `�`

(e0, d0) : ⌧ holds, the second requisite result.
(b) b = false. Analogous to the subcase 3a above.

4. IF. So for some p, i

k

, v, b, p1 and p2, e =
if

v

p,ik
b then p1 else p2, H0 = H and d

0 = d� 1.
Directly by premise pcsub, �,H `�`

H0, the first requisite
result, holds.
Now to prove the second requisite result we need to consider
two possible cases depending on the value of b:
(a) b = true. So e

0 = p1. There again two possible cases
depending on whether d is 1 or not:

i. d = 1. So pc  ` and as per the premise of IF, �(p) =
?. Then by premise, if and Lemma 3.5[1a,1(d)i]
pc, �,H `�`

(e0, d0) : ⌧ holds, the second requisite
result.

ii. d 6= 1. So pc 6 `. Then by premise, if and
Lemma 3.5[1a,1(d)ii] pc, �,H `�`

(e0, d0) : ⌧ holds,
the second requisite result.

(b) b = false. Analogous to the subcase 4a above.
5. APP-SYNC. So for some p, i

k

, v, x, p, v

0 and n, e =
(�x. p) (v0)v

p,ik
, d = 1, �(p)(i

k

) = n, H0 = H, e

0 =˙
p[v0/x]

¸
v and d

0 = n. Also, d = 1 implies pc  `.
Directly by premise pcsub, �,H `�`

H0, the first requisite
result, holds.
By app-sync for some ⌧

x

and `

0, pc, �,H `�`

�x. p : (⌧
x

!
⌧)`

0
, `

0 6 `, pc, �,H `�`

v

0 : ⌧

x

and `

0
, �,H `�`

v : ⌧ .
Then by func, pc  `

0 and `

0
, �[x 7! ⌧

x

],H `�`

p : ⌧ .
By Lemma 3.6 (Value Substitution in a Program) `

0
, �,H `�`

p[v0/x] : ⌧ . Then by sync, pc, �,H `�`

(e0, d0) : ⌧ , the
second requisite result, holds.

6. APP. So for some p, i

k

, v, x, p and v

0, e = (�x. p) (v0)v

p,ik
,

H0 = H, e

0 = p[v0/x] and d

0 = d� 1.
Directly by premise pcsub, �,H `�`

H0, the first requisite
result, holds.
Now to prove the second requisite result we need to consider
two possible cases depending on the value of d:
(a) d = 1. So pc  `, and as per APP �(p) = ?. Then

by app, func, Lemma 3.6 (Value Substitution in a Program)
and Lemma 3.5[1a,1(d)i] pc, �,H `�`

(e0, d0) : ⌧ holds,
the second requisite result.

(b) d 6= 1. So pc 6 `. Then by app, func, Lemma 3.6 (Value
Substitution in a Program) and Lemma 3.5[1a,1(d)ii]
pc, �,H `�`

(e0, d0) : ⌧ holds, the second requisite result.
7. REF. So for some v and fresh loc, e = ref v, H0 = H [
{loc 7! v}, e

0 = loc and d

0 = d � 1. By ref for some ⌧

v

and `

0, ⌧ = ⌧

v

ref `

0
, pc  `

0, pc, �,H `�`

v : ⌧

v

and
`

0 C ⌧

v

. By Lemma 3.5[1b] pcsub, �,H `�`

v : ⌧

v

; then by
premise, Lemma 3.5[4] and heap, for H0 = H [ {loc 7! ⌧

v

},
pcsub, �,H0 `�`

H0, the first requisite result, holds, and by
location, pc, �,H0 `�`

(e0, d0) : ⌧ , the second requisite result,
holds.

8. DEREF. So for some loc and v, e = !loc, H(loc) = v, H0 = H,
e

0 = v and d

0 = d� 1.
Directly by premise pcsub, �,H `�`

H0, the first requisite
result, holds.
By deref and location for some ⌧

v

and `

0, pc, �,H `�`

loc :

⌧

v

ref `

0
, pc  `

0, H(loc) = ⌧

v

, `

0 C ⌧

v

and ⌧

v

 ⌧ . By
heap pcsub, �,H `�`

v : ⌧

v

. Then by Lemma 3.5[1b,2b]
pc, �,H0 `�`

(e0, d0) : ⌧ , the second requisite result, holds.
9. ASSIGN. So for some loc and v, e = loc := v, loc 2 dom(H),

H0 = H[loc 7! v], e

0 = v and d

0 = d� 1.
By premise and assign and location for some ⌧loc, `

0 and ⌧

v

,
H(loc) = ⌧loc, pc  `

0, pc, �,H `�`

loc : ⌧loc ref `

0
, `

0 C ⌧loc,
pc, �,H `�`

v : ⌧

v

and ⌧

v

 ⌧loc, ⌧ . Then by premise and
Lemma 3.5[1b,2b] pcsub, �,H `�`

v : ⌧loc holds.
Then by Lemma 3.5[3] pcsub, �,H `�`

H0, the first requisite
result, holds. And by Lemma 3.5[2b] pc, �,H `�`

(e0, d0) : ⌧ ,
the second requisite result, holds.

10. SYNC. So for some p, v, n and p

0, e = hpiv , d = n,`
H, p

´
n

�!�

`
H0, p0

´
n�1

, e

0 = hp0iv and d

0 = n� 1.
By sync pc  `, `

0, `

0 6 ` and `

0
, �,H `�`

p, v : ⌧ . Then
pcsub  `

0 and `

0
, �,H `�`

(p, n) : ⌧ . By induction hypothesis
there exists a H0 such that H ✓ H0, pcsub, �,H0 `�`

H0, the
first requisite result, and pc, �,H0 `�`

(p0, n � 1) : ⌧ . Then
by sync, pc, �,H0 `�`

(e0, d0) : ⌧ , the second requisite result,
holds.

9



11. SYNC-PAD. So for some v, v0 and n, e = hviv0 , d = n, H0 = H,
e

0 = e and d

0 = n� 1. Directly by premise pcsub, �,H `�`

H0

and pc, �,H `�`

(e0, d0) : ⌧ , the requisite results, hold.
12. SYNC-DONE. So for some v and v

0, e = hviv0 , d = 0, H0 = H,
e

0 = v and d

0 = 1.
Directly by premise pcsub, �,H `�`

H0, the first requisite
result, holds.
By sync pc  `, `

0, `

0 6 ` and `

0
, �,H `�`

v, v

0 : ⌧ .
By Lemma 3.5[1a] `

0 C ⌧ , implying pc C ⌧ . Then by
Lemma 3.5[1b] pc, �,H `�`

(e0, d0) : ⌧ , the second requisite
result, holds.

13. SYNC-ABORT. Similar to case 12 above.
14. CONTEXT. So for some R and esub, e = R[esub],`

H, esub
´

d

�!�

`
H0, e0sub

´
d

0 and e

0 = R[e0sub].
By Lemma 3.5[6] there exists a ⌧sub such that there exists a ⌧sub
such that pc, �,H `�`

esub : ⌧sub. By induction hypothesis,
there exists a H0 such that H ✓ H0, pcsub, �,H0 `�`

H0

and pc, �,H0 `�`

(e0sub, d
0) : ⌧sub. Then by Lemma 3.5[4,7]

pc, �,H0 `�`

(e0, d0) : ⌧ holds, the second requisite result.

Main Lemma 3.8 (Progress). If pcsub, ;,H `�`

H, pcsub  pc
and pc, ;,H `�`

(e, d) : ⌧ then either e is a value, or e is a
program and d = 0, or there exists a H0, e

0 and d

0 such that`
H, e

´
d

�!�

`
H0, e0

´
d

0 .

Proof. By induction on the derivation of pc, ;,H `�`

(e, d) :
⌧ .

Definition 3.9 (Convergence). A configuration C given a table
of sync timer functions � converges to a value v in n steps iff
C �!n

�

`
H, v

´
d

, for some H and d.

Definition 3.10 (Divergence). A configuration C given a table of
sync timer functions � diverges iff for some C

0, C �!� C

0 and C

0,
given �, in turn diverges.

Definition 3.11. A program p given a table of sync timer functions
� converges to value v in n steps (diverges) iff the configuration`
;, p

´
1 given � converges to the value v in n steps (diverges).

Definition 3.12 (Well-Formed Program). A program p given a
table of sync timer functions � is said to be well-formed iff
?, ;, ; `�`

p : ⌧ holds, for some ` and ⌧ .

Theorem 3.13 (Type Safety). A well-formed program either con-
verges to a value or diverges.

Proof. By Lemma 3.4[2] and Main Lemmas 3.7 (Type Preserva-
tion) and 3.8 (Progress).

4. Security Properties of �sync
seq

We now formally establish the security of �

sync
seq . We show �

sync
seq

is secure with respect to external timing channels by proving a
strong noninterference result [9] between the high data and the run-
ning time of a program; the term strong noninterference is used
to indicate the robustness of the result in presence of termination
channels. We prove this result by showing how executions of two
programs, which differ only in high values, are strongly bisimilar.
Strong bisimilarity is an isomorphism of expressions at all inter-
mediate steps of execution; the term strong bisimilarity indicates
the lock-step nature of such executions: they must match up step-
for-step. The bisimulation relation, to be defined, requires all low
values to be identical, while allowing high values to differ. This is
a much tighter alignment than is used in standard noninterference

results, as the prevention of timing leaks requires a tighter corre-
spondence.

Let µ : {loc} ! {loc} be an injective function from heap lo-
cations (of one run) to the heap locations (of the other run), denot-
ing the correspondence between the supposed bisimilar locations
of the respective heaps. Note the fresh heap locations generated
by the REF rule at intermediate steps during bisimulation need not
be identical; hence the need for the following binary relation, .

=
µ

,
on programs which establishes equality of low values in bisimilar
programs, except for the heap locations which are required to be
isomorphic as per µ. A program p1 is µ-equal to a program p2, that
is, p1

.

=
µ

p2, iff for p1 = loc we have p2 = µ(loc), for some loc;
for all other cases of p1 the relation is homomorphic.

Definition 4.1 (µ-Equality Relation).

1. (Values). v1
.

=
µ

v2 iff either,
(a) v1 = v2; or
(b) v1 = �x. p1, v2 = �x. p2 and p1

.

=
µ

p2, for some x; or
(c) v1 = loc and v2 = µ(loc), for some loc.

2. (Programs). p1
.

=
µ

p2 iff either,
(a) (Binary Operation). p1 = p

0
1�p

00
1 , p2 = p

0
2�p

00
2 , p01

.

=
µ

p

0
2

and p

00
1

.

=
µ

p

00
2 ; or

(b) (Let). p1 = (let x = p

0
1 in p

00
1 ), p2 = (let x = p

0
2 in p

00
2 ),

p

0
1

.

=
µ

p

0
2 and p

00
1

.

=
µ

p

00
2 ; or

(c) (If). p1 = if

v

0
1

p,vk
p

0
1 then p

00
1 else p

000
1 , p2 =

if

v

0
2

p,v

0
k

p

0
2 then p

00
2 else p

000
2 , p

0
1

.

=
µ

p

0
2, p

00
1

.

=
µ

p

00
2 ,

p

000
1

.

=
µ

p

000
2 , v

0
1

.

=
µ

v

0
2 and v

k

.

=
µ

v

0
k

; or

(d) (App). p1 = p

0
1 (p001 )

v

0
1

p,vk
, p2 = p

0
2 (p002 )

v

0
2

p,v

0
k

, p

0
1

.

=
µ

p

0
2,

p

00
1

.

=
µ

p

00
2 , v

0
1

.

=
µ

v

0
2 and v

k

.

=
µ

v

0
k

; or
(e) (Ref). p1 = ref p

0
1, p2 = ref p

0
2 and p

0
1

.

=
µ

p

0
2; or

(f) (Deref). p1 = !p01, p2 = !p02 and p

0
1

.

=
µ

p

0
2; or

(g) (Assign). p1 = (p01 := p

00
1 ), p2 = (p02 := p

00
2 ), p

0
1

.

=
µ

p

0
2

and p

00
1

.

=
µ

p

00
2 .

The notation µ � µ

0 (read as “µ composed with µ

0”) denotes
function composition.

Lemma 4.2 (Properties of µ-Equality Relation).

1. (Symmetry). If p1
.

=
µ

p2 then p2
.

=
µ

�1 p1.
2. (Reflexivity). For all p and µ, p

.

=
µ

p.
3. (Transitivity). If p1

.

=
µ

p2 and p2
.

=
µ

0
p3 then p1

.

=
µ

0�µ

p3.
4. (Structure of Programs). If p1

.

=
µ

p2 then p1 and p2 have the
same outermost structure.

5. (Substitution). If p1
.

=
µ

p2 and v1
.

=
µ

v2 then p1[v1/x]
.

=
µ

p2[v2/x].
6. (Extension of µ). If p1

.

=
µ

p2 and µ ✓ µ

0 then p1
.

=
µ

0
p2

holds.

Proof. 1. (Symmetry). By induction on the derivation of p1
.

=
µ

p2,
noting µ is an injection.

2. (Reflexivity). By induction on the structure of p, given Defini-
tion 4.1, in particular Condition 1a.

3. (Transitivity). By induction on the pair of the derivations of
p1

.

=
µ

p2 and p2
.

=
µ

0
p3, given Definition 4.1, in particular

Condition 1c.
4. (Structure of Programs). By induction on the derivation of

p1
.

=
µ

p2.
5. (Substitution). By induction on the derivation of p1

.

=
µ

p2.
6. (Extension of µ). By induction on the derivation of p1

.

=
µ

p2.

10



We now define the bisimulation relation. We write the type
judgement ‘pc, �,H `low

�`

p : ⌧ ’ to denote pc, �,H `�`

p : ⌧ and
seclevel(⌧)  `, and ‘pc, �,H `high

�`

p : ⌧ ’ for pc, �,H `�`

p : ⌧

and seclevel(⌧) 6 `.

Definition 4.3 (�sync
seq : Bisimulation Relation).

1. (Programs).
`
H1, p1

´
1 ⇠�⌧

�`µ

`
H2, p2

´
1 iff there exists a p

0
1,

p

0
2, x

k

, v

k

, v

0
k

and ⌧

k

such that,
(a) p1 = p

0
1[vk

/x

k

] and p2 = p

0
2[v

0
k

/x

k

]; and
(b) p

0
1

.

=
µ

p

0
2; and

(c) ?, �,H1 `high
�`

v

k

: ⌧

k

and ?, �,H2 `high
�`

v

0
k

: ⌧

k

; and
(d) �0 = � [ {x

k

7! ⌧

k

}; and
(e) ?, �0,H1 `�`

p

0
1 : ⌧ and ?, �0,H2 `�`

p

0
2 : ⌧ .

2. (Expressions with Synchronization Constructs).`
H1, R1[s1]

´
n

⇠�⌧

�`µ

`
H2, R2[s2]

´
n

iff there exists a x

and ⌧

0 such that,
(a) R1[s1] = (R1[x])[s1/x] and R2[s2] = (R2[x])[s2/x]; and
(b) ?, �,H1 `�`

s1 : ⌧

0 and ?, �,H2 `�`

s2 : ⌧

0; and
(c)

`
H1, R1[x]

´
1 ⇠�[{x7!⌧

0}⌧

�`µ

`
H2, R2[x]

´
1.

3. (Heaps). (H1, H1) ⇠�
�`µ

(H2, H2) iff
(a) ?, �,H1 `�`

H1 and ?, �,H2 `�`

H2; and
(b) For all loc 2 dom(µ), there exists a ⌧ such that,

H1(loc) = ⌧ = H2

`
µ(loc)

´
and

`
H1, H1(loc)

´
1 ⇠�⌧

�`µ“
H2, H2

`
µ(loc)

´”

1
.

4. (Heaps, Expressions).
`
H1, H1, e1

´
d1

⇠�⌧

�`µ

`
H2, H2, e2

´
d2

iff (H1, H1) ⇠�
�`µ

(H2, H2) and
`
H1, e1

´
d1

⇠�⌧

�`µ`
H2, e2

´
d2

.

The values v

k

and v

0
k

in case 1 above denote the high values
inside programs p1 and p2, respectively, which may be different;
hence they are elided in case 1a before establishing µ-equality
of the residual programs in case 1b. Analogously, as the code in
a synchronization construct is high, the synchronization code is
removed in case 2a, before relating the enclosing programs for
bisimilarity in case 2c. Furthermore, the down-counters of bisimilar
configurations are required to be identical.

Lemma 4.4 (�sync
seq : Properties of Bisimulation Relation).

1. (Symmetry). If
`
H1, H1, e1

´
d1

⇠�⌧

�`µ

`
H2, H2, e2

´
d2

then`
H2, H2, e2

´
d2
⇠�⌧

�`µ

�1

`
H1, H1, e1

´
d1

.
2. (Reflexivity).

(a) (Programs). If ?, �,H `�`

p : ⌧ then for all µ,`
H, p

´
1 ⇠�⌧

�`µ

`
H, p

´
1.

(b) (Expressions with Synchronization Constructs). If
?, �,H `�`

R[s] : ⌧ then for all n and µ,`
H, R[s]

´
n

⇠�⌧

�`µ

`
H, R[s]

´
n

.
(c) (Heaps). If ?, �,H `�`

H and dom(H) = {loc
k

} then for
all µ, such that µ ✓ {loc

k

7! loc
k

}, (H, H) ⇠�
�`µ

(H, H)
holds.

(d) (Heaps, Expressions). If
`
H, e

´
d

⇠�⌧

�`µ

`
H, e

´
d

and
(H, H) ⇠�

�`µ

(H, H) then
`
H, H, e

´
d

⇠�⌧

�`µ

`
H, H, e

´
d

.
3. (Transitivity). If

`
H1, H1, e1

´
d1

⇠�⌧

�`µ

`
H2, H2, e2

´
d2

and
`
H2, H2, e2

´
d2

⇠�⌧

�`µ

0
`
H3, H3, e3

´
d3

then`
H1, H1, e1

´
d1
⇠�⌧

�`(µ0�µ)

`
H3, H3, e3

´
d3

.

4. (Isomorphism). If
`
H1, e1

´
d1
⇠�⌧

�`µ

`
H2, e2

´
d2

then e1 and e2

are either both programs, or both have a sync construct.
5. (Programs). If

`
H1, p1

´
1 ⇠�⌧

�`µ

`
H2, p2

´
1 then

?, �,H1 `�`

p1 : ⌧ and ?, �,H2 `�`

p2 : ⌧ .

6. (Expressions with Synchronization Constructs). If`
H1, R1[s1]

´
n

⇠�⌧

�`µ

`
H2, R2[s2]

´
n

then ?, �,H1 `�`

R1[s1] : ⌧ and ?, �,H2 `�`

R2[s2] : ⌧ .
7. (Synchronization Constructs). If ?, �,H1 `�`

s1 : ⌧ and
?, �,H2 `�`

s2 : ⌧ then for all n and µ,
`
H1, s1

´
n

⇠�⌧

�`µ`
H2, s2

´
n

.
8. (Heaps). If (H1, H1) ⇠�

�`µ

(H2, H2) then dom(H1) =
dom(H1), dom(H2) = dom(H2), dom(µ) ✓ dom(H1) and
range(µ) ✓ dom(H2).

9. (Extension of µ). If
`
H1, e1

´
d1
⇠�⌧

�`µ

`
H2, e2

´
d2

and µ ✓ µ

0

then
`
H1, e1

´
d1
⇠�⌧

�`µ

0
`
H2, e2

´
d2

.
10. (Extension of Heaps).

(a) (Expressions). If
`
H1, e1

´
d1
⇠�⌧

�`µ

`
H2, e2

´
d2

, H1 ✓ H0
1

and H2 ✓ H0
2 then

`
H0

1, e1

´
d1
⇠�⌧

�`µ

`
H0

2, e2

´
d2

.

(b) (Heaps). If (H1, H1) ⇠�
�`µ

(H2, H2), H1 ✓ H0
1, H1 ✓

H01, H2 ✓ H0
2, H2 ✓ H02, ?, �,H0

1 `�`

H01 and
?, �,H0

2 `�`

H02 then (H0
1, H

0
1) ⇠�

�`µ

(H0
2, H

0
2).

11. (Values).
(a) (Structural Congruence). If

`
H1, v1

´
d1
⇠�⌧

�`µ

`
H2, e2

´
d2

then d1 = d2 = 1 and e2 is a value.
(b) (“High” Values). If ?, �,H1 `high

�`

v1 : ⌧ and
?, �,H2 `high

�`

v2 : ⌧ then for all µ,
`
H1, v1

´
1 ⇠�⌧

�`µ`
H2, v2

´
1.

(c) (“Low” Int/Bool Type). If
`
H1, v̂

´
1 ⇠�⌧̂

�`µ

`
H2, e2

´
1 and

seclevel(⌧̂)  ` then e2 = v̂.
12. (Heap Update with “High” Value). If (H1, H1) ⇠�

�`µ

(H2, H2) and ?, �,H1 `high
�`

v : H1(loc) then (H1, H1[loc 7!
v]) ⇠�

�`µ

(H2, H2).
13. (Binary Operation).

(a) (Structural Congruence). If
`
H1, i1 � i

0
1

´
d1

⇠;⌧

�`µ`
H2, e2

´
d2

then d1 = d2 = 1 and for some i2 and i

0
2,

e2 = i2 � i

0
2.

(b) (BINOP). If
`
H1, i1�i

0
1

´
1 ⇠�⌧

�`µ

`
H2, i2�i

0
2

´
1, i1�i

0
1 =

v1 and i2 � i

0
2 = v2 then

`
H1, v1

´
1 ⇠�⌧

�`µ

`
H2, v2

´
1.

14. (Let).
(a) (Structural Congruence). If

`
H1, let x =

v1 in p1

´
d1

⇠�⌧

�`µ

`
H2, e2

´
d2

then d1 = d2 = 1
and for some v2 and p2, e2 = (let x = v2 in p2).

(b) (LET). If
`
H1, let x = v1 in p1

´
1 ⇠�⌧

�`µ`
H2, let x = v2 in p2

´
1 then

`
H1, p1[v1/x]

´
1 ⇠�⌧

�`µ`
H2, p2[v2/x]

´
1.

15. (If).
(a) (Structural Congruence). If`

H1, if
v1
p,ik

b1 then p1T else p1F

´
d1

⇠;⌧

�`µ

`
H2, e2

´
d2

then d1 = d2 = 1 and for some v2, b2, p2T and p2F ,
e2 = if

v2
p,ik

b2 then p2T else p2F .

(b) (IF-SYNC). If
`
H1, if

v1
p,ik

b1 then p1T else p1F

´
1 ⇠�⌧

�`µ`
H2, if

v2
p,ik

b2 then p2T else p2F

´
1 and �(p)(i

k

) = n

then
`
H1, hp1T iv1

´
n

⇠�⌧

�`µ

`
H2, hp2T iv2

´
n

,`
H1, hp1T iv1

´
n

⇠�⌧

�`µ

`
H2, hp2F iv2

´
n

,`
H1, hp1F iv1

´
n

⇠�⌧

�`µ

`
H2, hp2T iv2

´
n

,`
H1, hp1F iv1

´
n

⇠�⌧

�`µ

`
H2, hp2F iv2

´
n

,`
H1, p1T

´
1 ⇠�⌧

�`µ

`
H2, p2T

´
1 and

`
H1, p1F

´
1 ⇠�⌧

�`µ`
H2, p2F

´
1.

11



(c) (IF). If
`
H1, if

v1
p,ik

b1 then p1T else p1F

´
1 ⇠�⌧

�`µ`
H2, if

v2
p,ik

b2 then p2T else p2F

´
1 and �(p) = ?

then b1 = b2,
`
H1, p1T

´
1 ⇠�⌧

�`µ

`
H2, p2T

´
1 and`

H1, p1F

´
1 ⇠�⌧

�`µ

`
H2, p2F

´
1.

16. (App).
(a) (Structural Congruence). If`

H1, (�x1. p1) (v1arg)
v1
p,ik

´
d1
⇠;⌧

�`µ

`
H2, e2

´
d2

then d1 =

d2 = 1 and for some x2, p2, v2arg and v2, e2 =
(�x2. p2) (v2arg)

v2
p,ik

.

(b) (APP-SYNC). If
`
H1, (�x1. p1) (v1arg)

v1
p,ik

´
1 ⇠�⌧

�`µ`
H2, (�x2. p2) (v2arg)

v2
p,ik

´
1 and �(p)(i

k

) = n then
`
H1, hp1[v1arg/x1]iv1

´
n

⇠�⌧

�`µ

`
H2, hp2[v2arg/x2]iv2

´
n

.
(c) (APP). If

`
H1, (�x1. p1) (v1arg)

v1
p,ik

´
1 ⇠�⌧

�`µ`
H2, (�x2. p2) (v2arg)

v2
p,ik

´
1 and �(p) = ? then x1 = x2

and
`
H1, p1[v1arg/x1]

´
1 ⇠�⌧

�`µ

`
H2, p2[v2arg/x2]

´
1.

17. (Ref).
(a) (Structural Congruence). If

`
H1, ref v1

´
d1

⇠�⌧

�`µ`
H2, e2

´
d2

then d1 = d2 = 1 and for some v2,
e2 = ref v2.

(b) (REF). If
`
H1, H1, ref v1

´
1 ⇠�⌧

�`µ

`
H2, H2, ref v2

´
1

then, for some ⌧

0 and `

0, ⌧ = ⌧

0 ref `

0
and for all loc1

and loc2 such that, loc1 /2 dom(H1) and loc2 /2 dom(H2),`
H0

1, H
0
1, loc1

´
1 ⇠�⌧

�`µ

0
`
H0

2, H
0
2, loc2

´
1 holds, such that

H01 = H1 [ {loc1 7! v1}, H02 = H2 [ {loc2 7! v2},
H0

1 = H1 [ {loc1 7! ⌧

0}, H0
2 = H2 [ {loc2 7! ⌧

0}, and
µ

0 = µ [ {loc1 7! loc2}.
18. (Deref).

(a) (Structural Congruence). If
`
H1, H1, !loc1

´
d1

⇠;⌧

�`µ`
H2, H2, e2

´
d2

then d1 = d2 = 1 and for some loc2 2
dom(H2), e2 = !loc2.

(b) (DEREF). If
`
H1, H1, !loc1

´
1 ⇠�⌧

�`µ

`
H2, H2, !loc2

´
1

then
`
H1, H1, H1(loc1)

´
1 ⇠�⌧

�`µ

`
H2, H2, H2(loc2)

´
1.

19. (Assign).
(a) (Structural Congruence). If

`
H1, H1, loc1 := v1

´
d1
⇠;⌧

�`µ`
H2, H2, e2

´
d2

then d1 = d2 = 1 and for some loc2 2
dom(H2) and v2, e2 = (loc2 := v2).

(b) (ASSIGN). If
`
H1, H1, loc1 := v1

´
1 ⇠�⌧

�`µ`
H2, H2, loc2 := v2

´
1 then

`
H1, H1[loc1 7!

v1], v1

´
1 ⇠�⌧

�`µ

`
H2, H2[loc2 7! v2], v2

´
1.

20. (Synchronization Construct).
(a) (Structural Congruence). If

`
H1, hp1iv1

´
d1

⇠�⌧

�`µ`
H2, e2

´
d2

then for some n, p2 and v2, d1 = d2 = n,
e2 = hp2iv2 and

`
H1, v1

´
1 ⇠�⌧

�`µ

`
H2, v2

´
1.

(b) (Sub-Structural Bisimilarities). If
`
H1, hv1iv

0
1
´

n1
⇠�⌧

�`µ`
H2, hv2iv

0
2
´

n2
then

`
H1, v1

´
1 ⇠�⌧

�`µ

`
H2, v2

´
1,`

H1, v1

´
1 ⇠�⌧

�`µ

`
H2, v

0
2

´
1,

`
H1, v

0
1

´
1 ⇠�⌧

�`µ`
H2, v2

´
1 and

`
H1, v

0
1

´
1 ⇠�⌧

�`µ

`
H2, v

0
2

´
1.

21. (Context).
(a) (Structural Congruence). If

`
H1, R1[e1sub ]

´
d1

⇠�⌧

�`µ`
H2, e2

´
d2

then for some R2, e2sub and ⌧sub, e2 = R2[e2sub ]

and
`
H1, e1sub

´
d1
⇠�⌧sub

�`µ

`
H2, e2sub

´
d2

.

(b) (CONTEXT). If
`
H1, H1, R1[e1sub ]

´
d1

⇠�⌧

�`µ`
H2, H2, R2[e2sub ]

´
d2

,
`
H1, H1, e1sub

´
d1

⇠�⌧sub
�`µ

`
H2, H2, e2sub

´
d2

, H1 ✓ H0
1, H2 ✓ H0

2, µ ✓ µ

0

and
`
H0

1, H
0
1, e

0
1sub

´
d

0
1

⇠�⌧sub
�`µ

0
`
H0

2, H
0
2, e

0
2sub

´
d

0
2

then
`
H0

1, H
0
1, R1[e

0
1sub ]

´
d

0
1
⇠�⌧

�`µ

0
`
H0

2, H
0
2, R2[e

0
2sub ]

´
d

0
2
.

Proof. 1. (Symmetry). By Definition 4.3 given Lemma 4.2[1].
2. (Reflexivity).

(a) (Programs). By Definition 4.3[1] and Lemma 4.2[2].
(b) (Expressions with Synchronization Constructs). By the type

rule sync-in-context, Lemma 4.4[2a] and Definition 4.3[2].
(c) (Heaps). By Definition 4.3[3], the type rule heap and

Lemma 4.4[2a].
(d) (Heaps, Expressions). By Definition 4.3[4].

3. (Transitivity). By Definition 4.3 and Lemma 4.2[3].
4. (Isomorphism). By Definition 4.3[1,2].
5. (Programs). By Definition 4.3[1c,1e] and Lemma 3.6 (Value

Substitution in a Program).
6. (Expressions with Synchronization Constructs). By Defini-

tion 4.3[2], Lemma 4.4[5], and the type rule sync-in-context.
7. (Synchronization Constructs). By Definition 4.3[2].
8. (Heaps). By Definition 4.3[3] and the type rule heap.
9. (Extension of µ). By Definition 4.3[1,2] and Lemma 4.2[6].

10. (Extension of Heaps).
(a) (Expressions). By Definition 4.3[1,2] and Lemma 3.5[4].
(b) (Heaps). By Definition 4.3[3] and Lemma 4.4[10a].

11. (Values).
(a) (Structural Congruence). By Definition 4.3[1], in particular

Condition 1b, and Lemma 4.2[4].
(b) (“High” Values). By Definition 4.3[1], in particular Condi-

tion 1c.
(c) (“Low” Int/Bool Type). By Definition 4.3[1] and Defini-

tion 4.1[1a].
12. (Heap Update with “High” Value). The premise

(H1, H1) ⇠�
�`µ

(H2, H2), given Definition 4.3[3a], im-
plies ?, �,H1 `�`

H1 and ?, �,H2 `�`

H2. We
know ?, �,H1 `�`

v : H1(loc); then by Lemma 3.5[3]
?, �,H1 `�`

H1[loc 7! v] holds. Now there are two possible
cases:
(a) loc 62 dom(µ). By Definition 4.3[3], given the premise

(H1, H1) ⇠�
�`µ

(H2, H2) and knowing ?, �,H1 `�`

H1[loc 7! v], we get (H1, H1[loc 7! v]) ⇠�
�`µ

(H2, H2),
the requisite result.

(b) loc 2 dom(µ). By premise we know (H1, H1) ⇠�
�`µ

(H2, H2) and seclevel(H1(loc)) 6 `. Let H1(loc) = v1

and H2

`
µ(loc)

´
= v2. Then as per Definition 4.3[3b],

for H1(loc) = ⌧ ,
`
H1, v1

´
1 ⇠�⌧

�`µ

`
H2, v2

´
1 holds;

then as per Lemma 4.4[5] ?, �,H2 `high
�`

v2 : ⌧ . Now
knowing ?, �,H1 `high

�`

v : ⌧ , by Lemma 4.4[11b]`
H1, v

´
1 ⇠�⌧

�`µ

`
H2, v2

´
1 holds. Then by Defini-

tion 4.3[3] we get (H1, H1[loc 7! v]) ⇠�
�`µ

(H2, H2), the
requisite result.

13. (Binary Operation).
(a) (Structural Congruence). By Definition 4.3[1], in particular

Condition 1b, and Lemma 4.2[4].
(b) (BINOP). By Definition 4.3[1].

14. (Let).
(a) (Structural Congruence). By Definition 4.3[1], in particular

Condition 1b, and Lemma 4.2[4].
(b) (LET). By Definition 4.3[1], in particular Condition 1b, Def-

inition 4.1[2b], Lemma 3.6 (Value Substitution in a Pro-
gram) and Lemma 4.2[5].

12



15. (If).
(a) (Structural Congruence). By Definition 4.3[1], in particular

Condition 1b, and Lemma 4.2[4].
(b) (IF-SYNC). By Definition 4.3[1,2], the type rules if -sync and

sync and Definition 4.1[2c].
(c) (IF). By Definition 4.3[1], the type rule if , and Defini-

tion 4.1[2c,1a].
16. (App).

(a) (Structural Congruence). By Definition 4.3[1], in particular
Condition 1b, and Lemma 4.2[4].

(b) (APP-SYNC). By Definition 4.3[1,2], the type rules
app-sync, func and sync, Definition 4.1[2d] and
Lemma 3.6 (Value Substitution in a Program).

(c) (APP). By Definition 4.3[1], the type rule app, Defini-
tion 4.1[2d,1b], Lemma 4.2[5] and Lemma 3.6 (Value Sub-
stitution in a Program).

17. (Ref).
(a) (Structural Congruence). By Definition 4.3[1], in particular

Condition 1b, and Lemma 4.2[4].
(b) (REF). By Definition 4.3[1,3] and the type rules ref and

heap.
18. (Deref).

(a) (Structural Congruence). By Definition 4.3[4,1,3],
Lemma 4.2[4] and the premise dom(H) = dom(H) of the
type rule heap.

(b) (DEREF). By Definition 4.3[1,3] and the type rules deref and
heap.

19. (Assign).
(a) (Structural Congruence). By Definition 4.3[4,1,3],

Lemma 4.2[4] and the premise dom(H) = dom(H) of the
type rule heap.

(b) (ASSIGN). By Definition 4.3[1,3], and the type rules assign
and heap.

20. (Synchronization Construct).
(a) (Structural Congruence). By Definition 4.3[2], in particu-

lar Condition 2b, the type rule sync, Lemma 3.5[1a] and
Lemma 4.4[11b].

(b) (Sub-Structural Bisimilarities). By Definition 4.3[2],
in particular Condition 2b, the type rule sync and
Lemma 4.4[11b].

21. (Context).
(a) (Structural Congruence). By induction on the structure of

R1 given Lemma 4.2[4] and Definition 4.3[1,2].
(b) (CONTEXT). By induction on the structures of R1 and R2,

given Lemma 4.4[9,10a] and Definition 4.3[1,2].

The following lemma states that heap bisimilarity is preserved
in computations under high contexts; `

0 in the following lemma
statement denotes such a high context.

Lemma 4.5 (Preservation of Heap Bisimilarity under a High
Context, 1-step). If

`
H1, p1

´
n1

�!�

`
H01, p

0
1

´
n

0
1
, `

0 6 `,

`

0
, �,H1 `�`

p1 : ⌧1 and (H1, H1) ⇠�
�`µ

(H2, H2) then there
exists a H0

1 such that H1 ✓ H0
1, `

0
, �,H0

1 `�`

p

0
1 : ⌧1 and

(H0
1, H

0
1) ⇠�

�`µ

(H2, H2).

Proof. By induction on the derivation of
`
H1, p1

´
n1

�!�`
H01, p

0
1

´
n

0
1
. Following are the possible syntax-directed semantics

rules from Figure 8 that are applicable at the root of this derivation.

1. BINOP, LET, IF, APP and DEREF. These do not modify the heap,
that is, H01 = H1 for in the case of all these rules.

By premise and Definition 4.3[3a] ?, �,H1 `�`

H1 and
?, �,H2 `�`

H2 hold; also `

0
, �,H1 `�`

(p1, n1) : ⌧1

holds. Then by Main Lemma 3.7 (Type Preservation) there
exists a H0

1 such that H1 ✓ H0
1, ?, �,H0

1 `�`

H01 and
`

0
, �,H0

1 `�`

(p01, n
0
1) : ⌧1, that is, `

0
, �,H0

1 `�`

p

0
1 : ⌧1,

the first requisite result.
We know H1 = H01. Then by premise and Lemma 4.4[10b] we
get (H0

1, H
0
1) ⇠�

�`µ

(H2, H2), the second requisite result.
2. REF. So for some v1, p1 = ref v1 and for some fresh loc1,`

H1, p1

´
n1
�!�

`
H01, p

0
1

´
n

0
1

such that H01 = H1 [ {loc1 7!
v1}, p

0
1 = loc1 and n

0
1 = n1 � 1.

As in case 1 the first requisite result, that is, there exists a
H0

1 such that H1 ✓ H0
1 and `

0
, �,H0

1 `�`

p

0
1 : ⌧1, and

?, �,H0
1 `�`

H01 hold.
We know H1 ✓ H01. Then by premise and Lemma 4.4[10b] we
get (H0

1, H
0
1) ⇠�

�`µ

(H2, H2), the second requisite result.
3. ASSIGN. So for some loc1 and v1, p1 = (loc1 := v1), loc1 2

dom(H1) and
`
H1, p1

´
n1

�!�

`
H01, p

0
1

´
n

0
1

such that H01 =

H1[loc1 7! v1], p

0
1 = v1 and n

0
1 = n1 � 1.

As in case 1 the first requisite result, that is, there exists a
H0

1 such that H1 ✓ H0
1 and `

0
, �,H0

1 `�`

p

0
1 : ⌧1, and

?, �,H0
1 `�`

H01 hold.
By assumption, premise, Lemma 3.5[1a] and the type rules
assign and location for some ⌧1sub , `

0 C H1(loc1),
`

0
, �,H1 `�`

v1 : ⌧1sub and ⌧1sub  H1(loc1), ⌧1. Then by
Lemma 3.5[2b,1a,1b] ?, �,H1 `high

�`

v1 : H1(loc1) holds. By
Lemma 4.4[12] we get (H1, H1[loc1 7! v1]) ⇠�

�`µ

(H2, H2),
that is, (H1, H

0
1) ⇠�

�`µ

(H2, H2).
We know H1 ✓ H0

1 and ?, �,H0
1 `�`

H01. Then by
Lemma 4.4[10b] we get (H0

1, H
0
1) ⇠�

�`µ

(H2, H2), the second
requisite result.

4. CONTEXT. So for some R1, p1sub and p

0
1sub , p1 = R1[p1sub ],

and for some p

0
1sub ,

`
H1, p1sub

´
n1

�!�

`
H01, p

0
1sub

´
n

0
1

and
`
H1, p1

´
n1

�!�

`
H01, p

0
1

´
n

0
1

such that p

0
1 = R1[p

0
1sub ]. Fur-

ther by premise we know `

0
, �,H1 `�`

p1 : ⌧1; then by
Lemma 3.5[6] there exists a ⌧1sub such that `

0
, �,H1 `�`

p1sub :
⌧1sub .
By induction hypothesis there exists a H0

1 such that H1 ✓ H0
1,

`

0
, �,H0

1 `�`

p

0
1sub : ⌧1sub and (H0

1, H
0
1) ⇠�

�`µ

(H2, H2), the
second requisite result.
Now we know `

0
, �,H1 `�`

R1[p1sub ] : ⌧1, `

0
, �,H1 `�`

p1sub : ⌧1sub , H1 ✓ H0
1 and `

0
, �,H0

1 `�`

p

0
1sub : ⌧1sub ;

then by Lemma 3.5[4,7] `

0
, �,H0

1 `�`

R1[p
0
1sub ] : ⌧1, that is,

`

0
, �,H0

1 `�`

p

0
1 : ⌧1 holds, the first requisite result.

Lemma 4.6 (Preservation of Heap Bisimilarity under High Con-
text, n-steps). If

`
H1, p1

´
n1
�!n

�

`
H01, p

0
1

´
n

0
1
,
`
H2, p2

´
n2
�!n

0
�`

H02, p
0
2

´
n

0
2
, `

0
1, `

0
2 6 `, `

0
1, �,H1 `�`

p1 : ⌧1, `

0
2, �,H2 `�`

p2 : ⌧2 and (H1, H1) ⇠�
�`µ

(H2, H2), then there exists a H0
1 and

H0
2 such that H1 ✓ H0

1, H2 ✓ H0
2, `

0
1, �,H0

1 `�`

p

0
1 : ⌧1,

`

0
2, �,H0

2 `�`

p

0
2 : ⌧2 and (H0

1, H
0
1) ⇠�

�`µ

(H0
2, H

0
2).

Proof. By premise we know
`
H1, p1

´
n1

�!n

�

`
H01, p

0
1

´
n

0
1
, `

0
1 6

`, `

0
1, �,H1 `�`

p1 : ⌧1 and (H1, H1) ⇠�
�`µ

(H2, H2); by
induction on the length of the above computation given Lemma 4.5
there exists a H0

1 such that H1 ✓ H0
1, `

0
1, �,H0

1 `�`

p

0
1 :

⌧1, the first requisite result, and (H0
1, H

0
1) ⇠�

�`µ

(H2, H2). By
Lemma 4.4[1] for µ

0 = µ

�1, (H2, H2) ⇠�
�`µ

0 (H0
1, H

0
1) holds.

13



Further by premise we know
`
H2, p2

´
n2

�!n

0
�

`
H02, p

0
2

´
n

0
2
,

`

0
2 6 ` and `

0
2, �,H2 `�`

p2 : ⌧2, and from above we know
(H2, H2) ⇠�

�`µ

0 (H0
1, H

0
1); then by induction on the length of

the above computation given Lemma 4.5 there exists a H0
2 such

that H2 ✓ H0
2, `

0
2, �,H0

2 `�`

p

0
2 : ⌧2, the second requisite

result, and (H0
2, H

0
2) ⇠�

�`µ

0 (H0
1, H

0
1) hold. By Lemma 4.4[1]

(H0
1, H

0
1) ⇠�

�`µ

(H0
2, H

0
2) holds, the third requisite result.

As discussed above, only high subcomputations under high con-
texts are ever synchronized in our system; hence the following
corollary to the above lemma states the preservation of heap bisim-
ilarity in synchronized computations.

Corollary 4.7 (Preservation of Heap Bisimilarity in Syn-
chronized Computations). If

`
H1, s1

´
n1

�!�

`
H01, s

0
1

´
n

0
1
,

`
H2, s2

´
n2

�!�

`
H02, s

0
2

´
n

0
2
, ?, �,H1 `�`

s1 : ⌧1,

?, �,H2 `�`

s2 : ⌧2 and (H1, H1) ⇠�
�`µ

(H2, H2), then there
exists aH0

1 andH0
2 such thatH1 ✓ H0

1,H2 ✓ H0
2, ?, �,H0

1 `�`

s

0
1 : ⌧1, ?, �,H0

2 `�`

s

0
2 : ⌧2 and (H0

1, H
0
1) ⇠�

�`µ

(H0
2, H

0
2).

Proof. By sync, SYNC and Lemma 4.6.

The following single-step strong bisimulation lemma states:
given a pair of bisimilar configurations, if the first configuration
takes a step, then the second configuration also takes a step, and
bisimilarity is preserved in the resulting configurations.

Lemma 4.8 (�sync
seq : Strong Bisimulation, 1-step). If`

H1, e1

´
d1

�!�

`
H01, e

0
1

´
d

0
1

and
`
H1, H1, e1

´
d1

⇠;⌧

�`µ`
H2, H2, e2

´
d2

then for some H02, e

0
2 and d

0
2,

`
H2, e2

´
d2

�!�`
H02, e

0
2

´
d

0
2

holds, and there exists a H0
1, H0

2 and µ

0 such that

H1 ✓ H0
1, H2 ✓ H0

2, µ ✓ µ

0 and
`
H0

1, H
0
1, e

0
1

´
d

0
1
⇠;⌧

�`µ

0`
H0

2, H
0
2, e

0
2

´
d

0
2
.

Proof. By induction on the derivation of
`
H1, e1

´
d1

�!�`
H01, e

0
1

´
d

0
1
. Following are the possible syntax-directed semantics

rules from Figure 8 that are applicable at the root of this derivation.

1. BINOP. So for some i1, i

0
1 and v

0
1, e1 = i1 � i

0
1, i1 � i

0
1 = v

0
1

and
`
H1, e1

´
d1
�!�

`
H01, e

0
1

´
d

0
1

such that H01 = H1, e

0
1 = v

0
1

and d

0
1 = d1 � 1.

By premise
`
H1, e1

´
d1

⇠;⌧

�`µ

`
H2, e2

´
d2

holds; then by
Lemma 4.4[13a] d1 = d2 = 1 and for some i2 and i

0
2,

e2 = i2 � i

0
2. By BINOP and letting i2 � i

0
2 = v

0
2, we

get
`
H2, e2

´
d2

�!�

`
H02, e

0
2

´
d

0
2
, the first requisite result,

such that H02 = H2, e

0
2 = v

0
2 and d

0
2 = d2 � 1 =

1. Then by Lemma 4.4[13b]
`
H1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, e

0
2

´
d

0
2

holds, which in conjunction with the premise (H1, H1) ⇠;�`µ

(H2, H2) implies
`
H1, H1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, H2, e

0
2

´
d

0
2
, that

is,
`
H1, H

0
1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, H

0
2, e

0
2

´
d

0
2
, the second requisite

result.
2. LET. So for some x, v1 and p1, e1 = (let x = v1 in p1)

and
`
H1, e1

´
d1
�!�

`
H01, e

0
1

´
d

0
1

such that H01 = H1, e

0
1 =

p1[v1/x] and d

0
1 = d1 � 1.

By premise
`
H1, e1

´
d1

⇠;⌧

�`µ

`
H2, e2

´
d2

holds; then by
Lemma 4.4[14a] d1 = d2 = 1 and for some v2 and p2, e2 =
(let x = v2 in p2). By LET

`
H2, e2

´
d2
�!�

`
H02, e

0
2

´
d

0
2
, the

first requisite result, such that H02 = H2, e

0
2 = e2next [v2/x], and

d

0
2 = d2�1 = 1. Then by Lemma 4.4[14b]

`
H1, e

0
1

´
d

0
1
⇠;⌧

�`µ`
H2, e

0
2

´
d

0
2

holds, which in conjunction with the premise

(H1, H1) ⇠;�`µ

(H2, H2) implies
`
H1, H1, e

0
1

´
d

0
1
⇠;⌧

�`µ`
H2, H2, e

0
2

´
d

0
2
, that is,

`
H1, H

0
1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, H

0
2, e

0
2

´
d

0
2
,

the second requisite result.
3. IF-SYNC. So for some p, i

k

, v1, b1, p1T and p1F , e1 =
if

v1
p,i

b1 then p1T else p1F and for some n, �(p)(i
k

) = n.
By premise

`
H1, e1

´
d1

⇠;⌧

�`µ

`
H2, e2

´
d2

holds; then by
Lemma 4.4[15a] d1 = d2 = 1 and for some v2, b2, p2T

and p2F , e2 = if

v2
p,ik

b2 then p2T else p2F . Now there are two
possible cases depending on the value of b1:
(a) b1 = true. As per IF-SYNC

`
H1, e1

´
d1
�!�

`
H01, e

0
1

´
d

0
1

such that H01 = H1, e

0
1 = hp1T iv1 and d

0
1 = n. There are

again two possible cases depending on the value of b2:
i. b2 = true. By IF-SYNC

`
H2, e2

´
d2
�!�

`
H02, e

0
2

´
d

0
2
,

the first requisite result, such that H02 = H2, e

0
2 =

hp2T iv2 , and d

0
2 = n.

We know
`
H1, e1

´
d1

⇠;⌧

�`µ

`
H2, e2

´
d2

; then by
Lemma 4.4[15b]

`
H1, e

0
1

´
n

⇠;⌧

�`µ

`
H2, e

0
2

´
n

, that is,`
H1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, e

0
2

´
d

0
2

holds, which in con-

junction with the premise (H1, H1) ⇠;�`µ

(H2, H2)

implies
`
H1, H1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, H2, e

0
2

´
d

0
2
, that is,

`
H1, H

0
1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, H

0
2, e

0
2

´
d

0
2
, the second req-

uisite result.
ii. b2 = false. Analogous to the subsubcase 3(a)i above.

By IF-SYNC
`
H2, e2

´
d2

�!�

`
H02, e

0
2

´
d

0
2
, the first

requisite result, such that H02 = H2, e

0
2 = hp2F iv2 and

d

0
2 = n.

We know
`
H1, e1

´
d1

⇠;⌧

�`µ

`
H2, e2

´
d2

; then by
Lemma 4.4[15b]

`
H1, e

0
1

´
n

⇠;⌧

�`µ

`
H2, e

0
2

´
n

, that is,`
H1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, e

0
2

´
d

0
2

holds, which in con-

junction with the premise (H1, H1) ⇠;�`µ

(H2, H2)

implies
`
H1, H1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, H2, e

0
2

´
d

0
2
, that is,

`
H1, H

0
1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, H

0
2, e

0
2

´
d

0
2
, the second req-

uisite result.
(b) b2 = false. Analogous to the subcase 3a above.

4. APP-SYNC. (Similar to case 3 above.) So for some p, i

k

, v1,
x1, p1 and v1arg , e1 = (�x1. p1) (v1arg)

v1
p,ik

and for some n,
�(p)(i

k

) = n.
By premise

`
H1, e1

´
d1

⇠;⌧

�`µ

`
H2, e2

´
d2

holds; then by
Lemma 4.4[16a] d1 = d2 = 1 and for some v2, x2, p2 and
v2arg , e2 = (�x2. p2) (v2arg)

v2
p,ik

.
Then as per APP-SYNC

`
H1, e1

´
d1

�!�

`
H01, e

0
1

´
d

0
1

such
that H01 = H1, e

0
1 =

˙
p1[v1arg/x1]

¸
v1 and d

0
1 = n; and`

H2, e2

´
d2

�!�

`
H02, e

0
2

´
d

0
2
, the first requisite result, such

that H02 = H2, e

0
2 =

˙
p2[v2arg/x2]

¸
v2 , and d

0
2 = n.

We know
`
H1, e1

´
d1

⇠;⌧

�`µ

`
H2, e2

´
d2

; then by
Lemma 4.4[16b]

`
H1, e

0
1

´
n

⇠;⌧

�`µ

`
H2, e

0
2

´
n

, that is,`
H1, e

0
1

´
d

0
1

⇠;⌧

�`µ

`
H2, e

0
2

´
d

0
2

holds, which in con-

junction with the premise (H1, H1) ⇠;�`µ

(H2, H2)

implies
`
H1, H1, e

0
1

´
d

0
1

⇠;⌧

�`µ

`
H2, H2, e

0
2

´
d

0
2
, that is,

`
H1, H

0
1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, H

0
2, e

0
2

´
d

0
2
, the second requisite

result.

14



5. IF. So for some p, i

k

, v1, b1, p1T and p1F , e1 =
if

v1
p,ik

b1 then p1T else p1F .
By premise

`
H1, e1

´
d1

⇠;⌧

�`µ

`
H2, e2

´
d2

holds; then by
Lemma 4.4[15a] d1 = d2 = 1 and for some v2, b2, p2T

and p2F , e2 = if

v2
p,ik

b2 then p2T else p2F . Now there are two
possible cases depending on the value of b1:
(a) b1 = true. As per IF

`
H1, e1

´
d1
�!�

`
H01, e

0
1

´
d

0
1

such that
H01 = H1, e

0
1 = p1T , d

0
1 = d1 � 1 = 1 and �(p) = ?.

Then by Lemma 4.4[15c] b1 = b2 = true.
By IF

`
H2, e2

´
d2

�!�

`
H02, e

0
2

´
d

0
2
, the first requi-

site result, such that H02 = H2, e

0
2 = p2T and

d

0
2 = d2 � 1 = 1. Then by Lemma 4.4[15c]`
H1, e

0
1

´
d

0
1

⇠;⌧

�`µ

`
H2, e

0
2

´
d

0
2

holds, which in con-

junction with the premise (H1, H1) ⇠;�`µ

(H2, H2)

implies
`
H1, H1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, H2, e

0
2

´
d

0
2
, that is,

`
H1, H

0
1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, H

0
2, e

0
2

´
d

0
2
, the second requisite

result.
(b) b1 = false. Analogous to the subcase 5a.

6. APP. (Similar to case 5 above.) So for some p, i

k

, v1, x1, p1

and v1arg , e1 = (�x1. p1) (v1arg)
v1
p,ik

.
By premise

`
H1, e1

´
d1

⇠;⌧

�`µ

`
H2, e2

´
d2

holds; then by
Lemma 4.4[16a] d1 = d2 = 1 and for some v2, x2, p2 and
v2arg , e2 = (�x2. p2) (v2arg)

v2
p,ik

.
As per APP

`
H1, e1

´
d1
�!�

`
H01, e

0
1

´
d

0
1

such that H01 = H1,
e

0
1 = p1[v1arg/x1], d

0
1 = d1 � 1 = 1 and �(p) = ?; and`

H2, e2

´
d2

�!�

`
H02, e

0
2

´
d

0
2
, the first requisite result, such

that H02 = H2, e

0
2 = p2[v2arg/x2] and d

0
2 = d2 � 1 =

1. Then by Lemma 4.4[16c]
`
H1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, e

0
2

´
d

0
2

holds, which in conjunction with the premise (H1, H1) ⇠;�`µ

(H2, H2) implies
`
H1, H1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, H2, e

0
2

´
d

0
2
, that

is,
`
H1, H

0
1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, H

0
2, e

0
2

´
d

0
2
, the second requisite

result.
7. REF. So for some v1, e1 = ref v1, and for some fresh loc1,`

H1, e1

´
d1
�!�

`
H01, e

0
1

´
d

0 such that H01 = H1 [ {loc1 7!
v1}, e

0
1 = loc1 and d

0
1 = d1 � 1.

By premise
`
H1, e1

´
d1

⇠;⌧

�`µ

`
H2, e2

´
d2

holds; then by
Lemma 4.4[17a] d1 = d2 = 1 and for some v2,
e2 = ref v2. By REF for some fresh loc2,

`
H2, e2

´
d2

�!�`
H02, e

0
2

´
d

0
2
, the first requisite result, such that H02 = H2 [

{loc2 7! v2}, e

0
2 = loc2 and d

0
2 = d2 � 1 = 1.

Now loc1 and loc2 are fresh implying loc1 62 dom(H1) and
loc2 62 dom(H2). We know by premise

`
H1, H1, e1

´
d1
⇠;⌧

�`µ`
H2, H2, e2

´
d2

; then by Lemma 4.4[17b] for some ⌧

0 and `

0,

⌧ = ⌧

0 ref `

0
and

`
H0

1, H
0
1, loc1

´
d

0
1
⇠;⌧

�`µ

0
`
H0

2, H
0
2, loc2

´
d

0
2
,

that is,
`
H0

1, H
0
1, e

0
1

´
d

0
1
⇠;⌧

�`µ

0
`
H0

2, H
0
2, e

0
2

´
d

0
2
, the second

requisite result, where H0
1 = H1 [ {loc1 7! ⌧

0}, H0
2 =

H2 [ {loc2 7! ⌧

0} and µ

0 = µ [ {loc1 7! loc2}.
8. DEREF. So for some loc1, e1 = !loc1, and for H1(loc1) = v1,`

H1, e1

´
d1

�!�

`
H01, e

0
1

´
d

0
1

such that H01 = H1, e

0
1 = v1,

and d

0
1 = d1 � 1.

By premise
`
H1, H1, e1

´
d1

⇠;⌧

�`µ

`
H2, H2, e2

´
d2

holds;
then by Lemma 4.4[18a] d1 = d2 = 1 and for
some loc2 2 dom(H2), e2 = !loc2. By DEREF for
H2(loc2) = v2,

`
H2, e2

´
d2

�!�

`
H02, e

0
2

´
d

0
2
, the first

requisite result, such that H02 = H2, e

0
2 = v2 and

d

0
2 = d2 � 1 = 1. Then by Lemma 4.4[18b]`
H1, H1, H1(loc1)

´
d

0
1
⇠;⌧

�`µ

`
H2, H2, H2(loc2)

´
d

0
2
, that is,

`
H1, H

0
1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, H

0
2, e

0
2

´
d

0
2

holds, the second req-
uisite result.

9. ASSIGN. So for some loc1 and v1, e1 = (loc1 := v1), loc1 2
dom(H1) and

`
H1, e1

´
d1

�!�

`
H01, e

0
1

´
d

0
1

such that H01 =

H1[loc1 7! v1], e

0
1 = v1 and d

0
1 = d1 � 1.

By premise
`
H1, H1, e1

´
d1

⇠;⌧

�`µ

`
H2, H2, e2

´
d2

holds;
then by Lemma 4.4[19a] d1 = d2 = 1 and for some
loc2 2 dom(H2), and v2, e2 = (loc2 := v2). By ASSIGN`
H2, e2

´
d2

�!�

`
H02, e

0
2

´
d

0
2
, the first requisite result, such

that H02 = H2[loc2 7! v2], e

0
2 = v2, and d

0
2 = d2 � 1 = 1.

Then by Lemma 4.4[19b]
`
H1, H1[loc1 7! v1], v1

´
d

0
1
⇠;⌧

�`µ`
H2, H2[loc2 7! v2], v2

´
d

0
2
, that is,

`
H1, H

0
1, e

0
1

´
d

0
1
⇠;⌧

�`µ`
H2, H

0
2, e

0
2

´
d

0
2

holds, the second requisite result.

10. SYNC. So for some s1, p1, v1, e

0
1, s

0
1, p

0
1 and n, e1 =

s1 = hp1iv1 , d1 = n,
`
H1, p1

´
n

�!�

`
H01, p

0
1

´
n�1

and`
H1, e1

´
d1

�!�

`
H01, e

0
1

´
d

0
1

such that e

0
1 = s

0
1 = hp01iv1

and d

0
1 = d1 � 1; hence d1 > 0, that is, n > 0.

By premise (H1, H1) ⇠;�`µ

(H2, H2) and
`
H1, e1

´
d1
⇠;⌧

�`µ`
H2, e2

´
d2

hold; then by Lemma 4.4[20a] for some p2, v2

and s2, e2 = s2 = hp2iv2 and d1 = d2 = n, and by
Definition 4.3[3a] ?, ;,H2 `�`

H2.
We know

`
H1, s1

´
d1
⇠;⌧

�`µ

`
H2, s2

´
d2

; then by Lemma 4.4[6]
?, ;,H1 `�`

s1 : ⌧ and ?, ;,H2 `�`

s2 :
⌧ ; hence ?, ;,H2 `�`

(H2, s2)n

: ⌧ holds. By
Main Lemma 3.8 (Progress) there exists a H02, e

0
2 and d

0
2 such

that (H2, s2)n

�!�

`
H02, e

0
2

´
d

0
2
, that is,

`
H2, e2

´
d2

�!�`
H02, e

0
2

´
d

0
2
, the first requisite result.

By SYNC d

0
2 = n�1, that is, d02 = d2�1, and for some s

0
2 and

p

0
2, e

0
2 = s

0
2 = hp02iv2 . By Corollary 4.7 (Preservation of Heap

Bisimilarity under Synchronized Computation) there exists a
H0

1 and H0
2 such that H1 ✓ H0

1, H2 ✓ H0
2, ?, ;,H0

1 `�`

e

0
1 : ⌧ , ?, ;,H0

2 `�`

e

0
2 : ⌧ and (H0

1, H
0
1) ⇠;�`µ

(H0
2, H

0
2).

By Lemma 4.4[7]
`
H0

1, s
0
1

´
n�1

⇠;⌧

�`µ

`
H0

2, s
0
2

´
n�1

, that is,`
H0

1, e
0
1

´
d

0
1
⇠;⌧

�`µ

`
H0

2, e
0
2

´
d

0
2
. Knowing (H0

1, H
0
1) ⇠;�`µ

(H0
2, H

0
2) by Definition 4.3[4] we get

`
H1, H

0
1, e

0
1

´
d

0
1
⇠;⌧

�`µ`
H2, H

0
2, e

0
2

´
d

0
2
, the second requisite result.

11. SYNC-PAD. Similar to the case 10 above.
12. SYNC-DONE. So for some v

0
1 and v1, e1 = hv01iv1 , d1 = 0 and`

H1, e1

´
d1
�!�

`
H01, e

0
1

´
d

0
1

such that H01 = H1, e

0
1 = v

0
1 and

d

0
1 = 1.

By premise (H1, H1) ⇠;�`µ

(H2, H2) and
`
H1, e1

´
d1
⇠;⌧

�`µ`
H2, e2

´
d2

hold; then by Lemma 4.4[20a] for some p2, and v2,
e2 = hp2iv2 and d1 = d2 = 0. Now there are two possible
cases depending on whether p2 is a value or not:
(a) p2 = v

0
2, for some v

0
2. By SYNC-DONE

`
H2, e2

´
d2
�!�`

H02, e
0
2

´
d

0
2
, the first requisite result, such that H02 = H2,

e

0
2 = v

0
2 and d

0
2 = 1. Then by Lemma 4.4[20b]`

H1, e
0
1

´
d

0
1

⇠;⌧

�`µ

`
H2, e

0
2

´
d

0
2

holds, which in con-

junction with the premise (H1, H1) ⇠;�`µ

(H2, H2)

implies
`
H1, H1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, H2, e

0
2

´
d

0
2
, that is,

15



`
H1, H

0
1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, H

0
2, e

0
2

´
d

0
2
, the second requisite

result.
(b) p2 is not a value. By SYNC-ABORT

`
H2, e2

´
d2

�!�`
H02, e

0
2

´
d

0
2
, the first requisite result, such that H02 = H2,

e

0
2 = v2 and d

0
2 = 1. Then by Lemma 4.4[20b]`

H1, e
0
1

´
d

0
1

⇠;⌧

�`µ

`
H2, e

0
2

´
d

0
2

holds, which in con-

junction with the premise (H1, H1) ⇠;�`µ

(H2, H2)

implies
`
H1, H1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, H2, e

0
2

´
d

0
2
, that is,

`
H1, H

0
1, e

0
1

´
d

0
1
⇠;⌧

�`µ

`
H2, H

0
2, e

0
2

´
d

0
2
, the second requisite

result.
13. SYNC-ABORT. Analogous to the case 12 above given

Lemma 4.4[20b].
14. CONTEXT. So for some R1, e1sub and e

0
1sub , e1 = R1[e1sub ]

and for some e

0
1sub ,

`
H1, e1sub

´
d1

�!�

`
H01, e

0
1sub

´
d

0
1

and
`
H1, e1

´
d1
�!�

`
H01, e

0
1

´
d

0
1

such that e

0
1 = R1[e

0
1sub ].

By premise (H1, H1) ⇠;�`µ

(H2, H2) and
`
H1, e1

´
d1
⇠;⌧

�`µ`
H2, e2

´
d2

hold; then by Lemma 4.4[21a] for some R2,

e2sub and ⌧sub, e2 = R2[e2sub ] and
`
H1, e1sub

´
d1

⇠;⌧sub
�`µ`

H2, e2sub

´
d2

.
Knowing (H1, H1) ⇠;�`µ

(H2, H2), by Definition 4.3[4] we
get

`
H1, H1, e1sub

´
d1
⇠;⌧sub

�`µ

`
H2, H2, e2sub

´
d2

. By assumption
we know

`
H1, e1sub

´
d1
�!�

`
H01, e

0
1sub

´
d

0
1
. Then by induction

hypothesis for some H02, e

0
2sub and d

0
2,

`
H2, e2sub

´
d2

�!�`
H02, e

0
2sub

´
d

0
2
, and there exists a H0

1, H0
2 and µ

0, such that

H1 ✓ H0
1, H2 ✓ H0

2, µ ✓ µ

0 and
`
H0

1, H
0
1, e

0
1sub

´
d

0
1
⇠;⌧

�`µ

0`
H0

2, H
0
2, e

0
2sub

´
d

0
2
.

Then by CONTEXT
`
H2, e2

´
d2

�!�

`
H02, e

0
2

´
d

0
2
, the

first requisite result, such that e

0
2 = R2[e

0
2sub ]. Fi-

nally by Lemma 4.4[21b]
`
H0

1, H
0
1, R1[e

0
1sub ]

´
d

0
1

⇠;⌧

�`µ

0
`
H0

2, H
0
2, R2[e

0
2sub ]

´
d

0
2
, that is,

`
H0

1, H
0
1, e

0
1

´
d

0
1

⇠;⌧

�`µ

0`
H0

2, H
0
2, e

0
2

´
d

0
2

holds, the second requisite result.

The following n-step strong bisimulation lemma states: given
a pair of bisimilar configurations, if the first configuration takes n

steps, then the second configuration also take n steps, and bisimi-
larity is preserved in the resulting configurations.

Lemma 4.9 (�sync
seq : Strong Bisimulation, n-steps). If`

H1, e1

´
d1

�!n

�

`
H01, e

0
1

´
d

0
1

and
`
H1, H1, e1

´
d1

⇠;⌧

�`µ`
H2, H2, e2

´
d2

then for some H02, e

0
2 and d

0
2,

`
H2, e2

´
d2

�!n

�`
H02, e

0
2

´
d

0
2

holds, and there exists a H0
1, H0

2 and µ

0 such that

H1 ✓ H0
1, H2 ✓ H0

2, µ ✓ µ

0 and
`
H0

1, H
0
1, e

0
1

´
d

0
1
⇠;⌧

�`µ

0`
H0

2, H
0
2, e

0
2

´
d

0
2
.

Proof. By induction on the derivation of
`
H1, e1

´
d1

�!n

�`
H01, e

0
1

´
d

0
1

given Lemma 4.8 (�sync
seq : Strong Bisimulation, 1-

step).

The strong bisimulation lemma then entails the following strong
noninterference property. It states: if one run of a program con-
verges to a low integral or boolean value in a certain number of
steps, then a second run of that program, but possibly differing in

high values from the first run, also converges to the same value and
in the same number of steps as the first one.

Theorem 4.10 (�sync
seq : Strong Noninterference). If

?, {x
k

7! ⌧

k

}, ; `low
�`

p : ⌧̂ , ?, ;, ; `high
�`

v

k

, v

0
k

: ⌧

k

,
p1 = p[v

k

/x

k

], p2 = p[v0
k

/x

k

], and p1 given � converges
to a value v̂ in n steps, then p2 given � converges to the same
value v̂ in n steps.

Proof. By premise, for some H1 and d1,
`
;, p1

´
1 �!n

�`
H1, v̂

´
d1

and Definition 4.3[1,3,4]
`
;, ;, p1

´
1 ⇠;⌧̂

�`;`
;, ;, p2

´
1. Then by Lemma 4.9 (�sync

seq : Strong Bisimulation,
n-steps) for some H2, e2 and d2,

`
;, p2

´
1 �!n

�

`
H2, e2

´
d2

, and
there exists a H1, H2 and µ such that ; ✓ H1, ; ✓ H2, ; ✓ µ

and
`
H1, H1, v̂

´
d1
⇠;⌧̂

�`µ

`
H2, H2, e2

´
d2

. By Definition 4.3[4,1]
`
H1, v̂

´
d1

⇠;⌧̂

�`µ

`
H2, e2

´
d2

and d1 = d2 = 1; then by
Lemma 4.4[11c] e2 = v̂. That is, p2 given � converges to the
value v̂ in n steps, the requisite result.

The following corollary to the above lemma states the strong
noninterference property in presence of divergence.

Corollary 4.11 (�sync
seq : Strong Noninterference under Divergence).

If ?, {x
k

7! ⌧

k

}, ; `low
�`

p : ⌧̂ , ?, ;, ; `high
�`

v

k

, v

0
k

: ⌧

k

, p1 =

p[v
k

/x

k

], p2 = p[v0
k

/x

k

], and p1 given � diverges, then p2 given
� diverges as well.

Proof. By Lemma 3.6 (Value Substitution in a Program), Theo-
rem 3.13 (Type Safety) and Theorem 4.10 (�sync

seq : Strong Nonin-
terference).

The combination of Theorem 4.10 and Corollary 4.11 imply the
security of timing and termination channels in �

sync
seq .

Definition 4.12 (Secure Program). A program p given a table of
sync timer functions � is secure iff for free(p) = {x

k

} and for all
i

k

and i

0
k

, either both p[i
k

/x

k

] and p[i0
k

/x

k

] given � converge to
the same value in the same number of steps, or both diverge.

Definition 4.13 (Secure-Typed Program). A program p

given a table of sync timer functions � is secure-typed iff
?, {x

k

7! int

`k}, ; `low
�`

p : ⌧̂ , where free(p) = {x
k

}, `

k

6 `

and some ⌧̂ .

The following corollary to the above noninterference lemmas
directly states the security guarantee of �

sync
seq – �

sync
seq is secure with

respect to external timing channels.

Theorem 4.14 (Security of �

sync
seq ). Secure-typed programs are se-

cure.

Proof. By Theorem 4.10 (�sync
seq : Strong Noninterference) and

Corollary 4.11 (�sync
seq : Strong Noninterference under Divergence).

5. The �sync
concD Runtime System

We now show how the results of the previous section can directly
generalize to the case of concurrent execution, with a deterministic
scheduler in this section, and with a nondeterministic scheduler in
the following section. Here we formalize the �

sync
concD system as an

extension to �

sync
seq . The syntax for �

sync
concD appears in Figure 11 and

its small-step operational semantics in Figure 12, as addendums to
Figures 7 and 8 respectively. The trace t denotes the scheduling his-
tory – the interleavings thus far – of a pool of threads; it represents
the internal timing behavior of concurrent programs, as discussed
in Section 2. The scheduler D denotes an arbitrary deterministic

16



t ::= ✏ | t, n trace
Ĥ ::= {loc}! {v̂} heap with only integer/boolean values
D : N⇥ {t}⇥ {Ĥ}! N deterministic scheduler
⇣ ::= (e, d) thread
T ::= ⇣ pool of threads
C ::=

`
H, T

´
t

concurrent runtime configuration
L ::= {loc} set of “low integer/boolean” heap locations
⌥ ::= ⌧ pool of types
Ĥ ::= {loc}! {⌧̂} type of heap with only int/bool types

Figure 11. �

sync
concD : Syntax and Type Grammar

THREAD
⇣ = (e, d)

`
H, e

´
d

�!�

`
H0, e0

´
d

0 ⇣

0 = (e0, d0)

(H, ⇣) �!� (H0, ⇣0)

THREAD-POOL NEXT-SCHEDULE
T[i] = ⇣

i

(H, ⇣

i

) �!� (H0, ⇣0
i

)
`
H, T

´
t

�!�i

`
H0, T[i 7! ⇣

0
i

]
´
t,i

THREAD-POOL D
|T | = k

Ĥlow = HdL D`
k, t, Ĥlow

´
= i

`
H, T

´
t

�!�i

`
H0, T0

´
t

0`
H, T

´
t

�!�LD
`
H0, T0

´
t

0

Figure 12. �

sync
concD : Syntax-Directed Small-Step Operational Se-

mantics

scheduler (possibly chosen by an attacker), and is parameterized
over a 3-tuple: the number of threads in the thread pool, the trace
so far, and a low portion of the heap with only integer or boolean
values; it returns an index into the thread pool for the next sched-
uled thread. Each thread ⇣ is a pair of an expression e and a down-
counter d.

The small-step reduction relations�!�i

and�!�LD , for a ta-
ble of sync timer functions �, the next scheduled thread i, a set of
low integer/boolean heap locations L (to be fed to the scheduler),
and a deterministic scheduler D, are each defined over configu-
rations

`
H, T

´
t

, where the heap H is shared amongst all threads
in the thread pool T; the n-step reflexive and transitive closure
of �!�LD is denoted as �!n

�LD . The down-counter in a thread
is decremented via the THREAD rule only when the thread is un-
der execution, meaning only the cumulative scheduled time of a
thread, and not the wall-clock time, is counted towards the syn-
chronized execution time of a branching statement in that thread.
The restricted-to operator d is defined as: HdL = H0 iff H0 ✓ H
and dom(H) = L, and the indexing operation on a thread pool T
is defined as: T[i] = ⇣

i

iff T = ⇣

k

, for some ⇣

k

, and 1  i  k.
The thread update operation T[i 7! ⇣

0
i

], where i denotes the index
of the thread to be updated to ⇣

0
i

, is defined to be equal to T0 iff
T = ⇣1, . . . , ⇣i

, . . . , ⇣

k

, for some ⇣

k

, and T0 = ⇣1, . . . , ⇣
0
i

, . . . , ⇣

k

;
while the number of threads in a thread pool is defined as: |T | = k

iff T = ⇣

k

, for some ⇣

k

. For technical ease the scheduler is in-
voked after each step, via the rule THREAD-POOL D; more liberal
scheduling policies are subsumed by this approach.

�

sync
concD does not support dynamic thread creation, or explicit

thread yielding. The former can be incorporated using the thread
pool partitioning technique of [34]; while the latter is directly
encodable in our system. A thread ⇣ wanting to yield control can
do so by simply setting a specific location in the portion of the heap
passed to the scheduler – Ĥlow in the rule THREAD-POOL D – thus

informing the scheduler of its intent to yield. As only low heap
locations are observable to the scheduler, yielding is disallowed
under high guards – yielding has direct impact on the interleavings
of threads, and hence must be prohibited in high contexts to prevent
internal timing leaks; [34] enforces the same restriction.

5.1 Security Properties of �

sync
concD

We now formally establish the security guarantee of �

sync
concD . We

show �

sync
concD is secure with respect to both external and internal

timing channels by proving a strong noninterference result between
high data and the external and internal timing behavior of con-
current programs. We demonstrate how executions of two pools
of threads, which differ only in high values, are strongly bisimi-
lar. Strong bisimilarity implies isomorphism of the pools of threads
at all intermediate steps of execution; as for �

sync
seq , the term strong

bisimilarity indicates the lock-stepness of bisimilar executions. The
bisimulation relation, defined below, essentially requires all low
values in corresponding threads as well as the interleavings of the
concurrent executions to be identical, while allowing high values
to differ; it is an addendum to �

sync
seq ’s bisimulation relation (Def-

inition 4.3). We define the predicate seclevel(H)  ` to hold iff
8⌧ 2 range(H). seclevel(⌧)  `.

Definition 5.1 (�sync
concD : Bisimulation Relation).

1. (Threads). (H1, ⇣1) ⇠�⌧

�`µ

(H2, ⇣2) iff ⇣1 = (e1, d1), ⇣2 =

(e2, d2) and
`
H1, e1

´
d1
⇠�⌧

�`µ

`
H2, e2

´
d2

.

2. (Pools of Threads).
`
H1, T1

´
t1
⇠�⌥

�`µ

`
H2, T2

´
t2

iff t1 = t2

and for some ⇣

k

, ⇣

0
k

and ⌧

k

,
(a) T1 = ⇣

k

, T2 = ⇣

0
k

, and ⌥ = ⌧

k

; and
(b) 81  i  k. (H1, ⇣i

) ⇠�⌧i
�`µ

(H2, ⇣
0
i

).
3. (Heaps). (H1, H1) ⇠�

�`µL (H2, H2) iff for some Ĥ,
(a) H1dL = H2dL = Ĥ, and seclevel(Ĥ)  `; and
(b) 8loc 2 L. loc 7! loc 2 µ, and (H1, H1) ⇠�

�`µ

(H2, H2).
4. (Heaps, Threads). (H1, H1, ⇣1) ⇠�⌧

�`µ

(H2, H2, ⇣2) iff
(H1, H1) ⇠�

�`µ

(H2, H2) and (H1, ⇣1) ⇠�⌧

�`µ

(H2, T2).
5. (Heaps, Pools of Threads).

`
H1, H1, T1

´
t1

⇠�⌥
�`µL`

H2, H2, T2

´
t2

iff (H1, H1) ⇠�
�`µL (H2, H2) and`

H1, T1

´
t1
⇠�⌥

�`µ

`
H2, T2

´
t2

.

As discussed in Section 2, the trace of a concurrent execution con-
stitutes an internal timing channel, and hence must exhibit low be-
havior; accordingly the case 2 above requires the traces of bisimilar
configurations, t1 and t2, to be identical. Further the corresponding
threads in bisimilar thread pools are required to be bisimilar. The
portions of bisimilar heaps to be passed to the scheduler, as in-
dicated by L, are restricted to contain only low integral or boolean
values by the condition 3a – low function values may have high val-
ues wrapped inside them as per Definition 4.3[1], while low heap
locations may store high values as implied by the type rule loca-
tion; hence neither is guaranteed to be independent of high data,
and thus cannot be passed to the scheduler without potentially vio-
lating noninterference. The other two parameters to the scheduler,
the number of threads in the thread pool and the trace, are both
low, thus guaranteeing the scheduler behavior is low as well. Fur-
ther the above bisimulation relation is scheduler-independent, akin
to the one in [38].

Lemma 5.2 ( �

sync
concD : Properties of Bisimulation Relation).

1. (Symmetry).
(a) (Heaps, Threads). If (H1, H1, ⇣1) ⇠�⌧

�`µ

(H2, H2, ⇣2) then
(H2, H2, ⇣2) ⇠�⌧

�`µ

�1 (H1, H1, ⇣1).

17



(b) (Heaps, Pools of Threads). If
`
H1, H1, T1

´
t1

⇠�⌥
�`µL`

H2, H2, T2

´
t2

then
`
H2, H2, T2

´
t2

⇠�⌥
�`µ

�1L`
H1, H1, T1

´
t1

.
2. (Reflexivity).

(a) (Threads). If ⇣ = (e, d) and
`
H, e

´
d

⇠�⌧

�`µ

`
H, e

´
d

then
(H, ⇣) ⇠�⌧

�`µ

(H, ⇣).
(b) (Pool of Threads). If T = ⇣

k

, ⌥ = ⌧

k

and 81  i 
k. (H, ⇣

i

) ⇠�⌧i
�`µ

(H, ⇣

i

) then for any t,
`
H, T

´
t

⇠�⌥
�`µ`

H, T
´
t

.
(c) (Heaps). If (H, H) ⇠�

�`µ

(H, H), HdL = Ĥ,
seclevel(Ĥ)  ` and 8loc 2 L. loc 7! loc 2 µ, then
(H, H) ⇠�

�`µL (H, H).
(d) (Heaps, Threads). If ⇣ = (e, d),

`
H, e

´
d

⇠�⌧

�`µ

`
H, e

´
d

and (H, H) ⇠�
�`µ

(H, H) then (H, H, ⇣) ⇠�⌧

�`µ

(H, H, ⇣).
(e) (Heaps, Pools of Threads). If

`
H, T

´
t

⇠�⌥
�`µ

`
H, T

´
t

and (H, H) ⇠�
�`µL (H, H) then

`
H, H, T

´
t

⇠�⌥
�`µL`

H, H, T
´
t

.
3. (Transitivity).

(a) (Heaps, Threads). If (H1, H1, ⇣1) ⇠�⌧

�`µ

(H2, H2, ⇣2) and
(H2, H2, ⇣2) ⇠�⌧

�`µ

0 (H3, H3, ⇣3) then for µ

00 = µ

0 � µ,
(H1, H1, ⇣1) ⇠�⌧

�`µ

00 (H3, H3, ⇣3).
(b) (Heaps, Pools of Threads). If

`
H1, H1, T1

´
t1

⇠�⌥
�`µL`

H2, H2, T2

´
t2

and
`
H2, H2, T2

´
t2

⇠�⌥
�`µ

0L`
H3, H3, T3

´
t3

then for µ

00 = µ

0 � µ,`
H1, H1, T1

´
t1
⇠�⌥

�`µ

00L
`
H3, H3, T3

´
t3

.
4. (Extension of Types of Heaps and µ).

(a) (Threads). If (H1, ⇣1) ⇠�⌧

�`µ

(H2, ⇣2), H1 ✓ H0
1, H2 ✓

H0
2 and µ ✓ µ

0 then (H0
1, ⇣1) ⇠�⌧

�`µ

0 (H0
2, ⇣2).

(b) (Pools of Threads). If
`
H1, T1

´
t1
⇠�⌥

�`µ

`
H2, T2

´
t2

, H1 ✓
H0

1, H2 ✓ H0
2 and µ ✓ µ

0 then
`
H0

1, T1

´
t1

⇠�⌥
�`µ

0`
H0

2, T2

´
t2

.
5. (Equality of Int/Bool Typed “Low” Sub-Heaps). If

(H1, H1) ⇠�
�`µL (H2, H2) then H1dL = H2dL.

Proof. 1. (Symmetry).
(a) (Heaps, Threads). By Definition 5.1[4,1] and

Lemma 4.4[1].
(b) (Heaps, Pools of Threads). By Definition 5.1[5,2] and

Lemma 5.2[1a].
2. (Reflexivity). By Definition 5.1.
3. (Transitivity).

(a) (Heaps, Threads). By Definition 5.1[4,1] and
Lemma 4.4[3].

(b) (Heaps, Pools of Threads). By Definition 5.1[5,2] and
Lemma 5.2[3a].

4. (Extension of Types of Heaps and µ).
(a) (Threads). By Definition 5.1[1] and Lemma 4.4[10a,9].
(b) (Pools of Threads). By Definition 5.1[2] and

Lemma 5.2[4a].
5. (Equality of Int/Bool Typed “Low” Sub-Heaps). By Defini-

tion 5.1[3], Definition 4.3[3] and Lemma 4.4[11c].

The following single-step strong bisimulation lemma states:
given a pair of bisimilar configurations, if the first configuration
steps, then the second configuration also steps, and bisimilarity
is preserved in the resulting configurations. For the most part the

lemma follows directly from Lemma 4.8 (�sync
seq : Strong Bisimu-

lation, 1-step); the only exception being the isomorphism of the
traces in case 3 below, which is a direct consequence of low sched-
uler behavior.

Lemma 5.3 (�sync
concD : Strong Bisimulation, 1-step).

1. (Threads). If (H1, ⇣1) �!� (H01, ⇣
0
1) and (H1, H1, ⇣1) ⇠;⌧

�`µ

(H2, H2, ⇣2) then for some H02 and ⇣

0
2, (H2, ⇣2) �!� (H02, ⇣

0
2)

holds, and there exists a H0
1, H0

2 and µ

0 such that H1 ✓ H0
1,

H2 ✓ H0
2, µ ✓ µ

0 and (H0
1, H

0
1, ⇣

0
1) ⇠;⌧

�`µ

0 (H0
2, H

0
2, ⇣

0
2).

2. (Pools of Threads with Next Schedule). If
`
H1, T1

´
t1
�!�i`

H01, T
0
1

´
t

0
1

and
`
H1, H1, T1

´
t1
⇠;⌥�`µL

`
H2, H2, T2

´
t2

then
for some H02, T02 and t

0
2,

`
H2, T2

´
t2
�!�i

`
H02, T

0
2

´
t

0
2

holds,
and there exists a H0

1, H0
2 and µ

0 such that H1 ✓ H0
1, H2 ✓

H0
2, µ ✓ µ

0 and
`
H0

1, H
0
1, T

0
1

´
t

0
1
⇠;⌥�`µ

0L
`
H0

2, H
0
2, T

0
2

´
t

0
2
.

3. (Pools of Threads with Deterministic Scheduler). If`
H1, T1

´
t1
�!�LD

`
H01, T

0
1

´
t

0
1

and
`
H1, H1, T1

´
t1
⇠;⌥�`µL`

H2, H2, T2

´
t2

then for some H02, T02 and t

0
2,`

H2, T2

´
t2

�!�LD
`
H02, T

0
2

´
t

0
2

holds, and there exists a
H0

1, H0
2 and µ

0 such that H1 ✓ H0
1, H2 ✓ H0

2, µ ✓ µ

0 and`
H0

1, H
0
1, T

0
1

´
t

0
1
⇠;⌥�`µ

0L
`
H0

2, H
0
2, T

0
2

´
t

0
2
.

Proof. 1. (Threads). By premise (H1, ⇣1) �!� (H01, ⇣
0
1); as

per THREAD for some e1, d1, e

0
1 and d

0
1, ⇣1 = (e1, d1),`

H1, e1

´
d1
�!�

`
H01, e

0
1

´
d

0
1

and ⇣

0
1 = (e01, d

0
1).

By premise (H1, H1) ⇠;�`µ

(H2, H2) and (H1, ⇣1) ⇠;⌧

�`µ

(H2, T2) hold, and by Definition 5.1[1] for some e2 and d2,
⇣2 = (e2, d2) and

`
H1, e1

´
d1

⇠;⌧

�`µ

`
H2, e2

´
d2

. Then by
Definition 4.3[4]

`
H1, H1, e1

´
d1
⇠;⌧

�`µ

`
H2, H2, e2

´
d2

.
By Lemma 4.8 (�sync

seq : Strong Bisimulation, 1-step) for some
H02, e

0
2 and d

0
2,

`
H2, e2

´
d2
�!�

`
H02, e

0
2

´
d

0
2
, and there exists

a H0
1, H0

2 and µ

0, such that H1 ✓ H0
1, H2 ✓ H0

2, µ ✓ µ

0

and
`
H0

1, H
0
1, e

0
1

´
d

0
1
⇠;⌧

�`µ

0
`
H0

2, H
0
2, e

0
2

´
d

0
2
. By THREAD for

⇣

0
2 = (e02, d

0
2), (H2, ⇣2) �!� (H02, ⇣

0
2), the first requisite

result. Then by Definition 4.3[4] and Definition 5.1[1,4] we get
(H0

1, H
0
1, ⇣

0
1) ⇠;⌧

�`µ

0 (H0
2, H

0
2, ⇣

0
2), the second requisite result.

2. (Pools of Threads with Next Schedule). By premise`
H1, T1

´
t1

�!�i

`
H01, T

0
1

´
t

0
1
; as per THREAD-

POOL NEXT-SCHEDULE for some ⇣1k and ⇣

0
1i

, T1 = ⇣1k ,
(H, ⇣1i) �!� (H01, ⇣

0
1i

), T01 = T1[i 7! ⇣

0
1i

] and t

0
1 = t1, i.

By premise (H1, H1) ⇠;�`µL (H2, H2) and
`
H1, T1

´
t1
⇠;⌥�`µ`

H2, T2

´
t2

hold. Then by Definition 5.1[2] t1 = t2

and for some ⇣2k and ⌧

k

, T2 = ⇣2k , ⌥ = ⌧

k

and (H1, ⇣1i) ⇠;⌧i
�`µ

(H2, ⇣2i). By Definition 5.1[4]
(H1, H1, ⇣1i) ⇠

;⌧i
�`µ

(H2, H2, ⇣2i).
By Lemma 5.3[1] for some H02 and ⇣

0
2i

, (H2, ⇣2i) �!�

(H02, ⇣
0
2i

), and there exists aH0
1,H0

2 and µ

0 such thatH1 ✓ H0
1,

H2 ✓ H0
2, µ ✓ µ

0 and (H0
1, H

0
1, ⇣

0
1i

) ⇠;⌧i
�`µ

0 (H0
2, H

0
2, ⇣

0
2i

). By
THREAD-POOL NEXT-SCHEDULE for T02 = T2[i 7! ⇣

0
2i

] and
t

0
2 = t2, i,

`
H2, T2

´
t2
�!�i

`
H02, T

0
2

´
t

0
2

holds, the first req-
uisite result. Further knowing t1 = t2 and t

0
1 = t1, i implies

t

0
1 = t

0
2. Finally by Definition 5.1[4,2,5] and Lemma 5.2[4] we

get
`
H0

1, H
0
1, T

0
1

´
t

0
1
⇠;⌥�`µ

0L
`
H0

2, H
0
2, T

0
2

´
t

0
2
, the second requi-

site result.
3. (Pools of Threads with Deterministic Scheduler). By premise`

H1, T1

´
t1

�!�LD
`
H01, T

0
1

´
t

0
1
; as per THREAD-POOL D

18



for some ⇣1k , Ĥlow and i, T1 = ⇣1k , Ĥlow = H1dL,
D(k, t1, Ĥlow) = i and

`
H1, T1

´
t1
�!�i

`
H01, T

0
1

´
t

0
1
.

By premise (H1, H1) ⇠;�`µL (H2, H2) and
`
H1, T1

´
t1
⇠;⌥�`µ`

H2, T2

´
t2

hold. Then by Lemma 5.2[5] H1dL = H2dL =

Ĥlow, and by Definition 5.1[2] t1 = t2 and for some ⇣2k ,
T2 = ⇣2k . So D(k, t2, Ĥlow) = D(k, t1, Ĥlow) = i.
Now we know

`
H1, T1

´
t1

�!�i

`
H01, T

0
1

´
t

0
1

and
`
H1, H1, T1

´
t1

⇠;⌥�`µL
`
H2, H2, T2

´
t2

; by Lemma 5.3[2]
for some H02, T02 and t

0
2,

`
H2, T2

´
t2
�!�i

`
H02, T

0
2

´
t

0
2
, and

there exists a H0
1, H0

2 and µ

0 such that H1 ✓ H0
1, H2 ✓ H0

2,
µ ✓ µ

0 and
`
H0

1, H
0
1, T

0
1

´
t

0
1

⇠;⌥�`µ

0L
`
H0

2, H
0
2, T

0
2

´
t

0
2
,

the second requisite result. Then by THREAD-POOL D`
H2, T2

´
t2

�!�LD
`
H02, T

0
2

´
t

0
2

holds, the first requisite
result.

The following n-step strong bisimulation lemma then states:
given a pair of bisimilar configurations, if the first pool of threads
takes n steps with a certain sequence of interleavings, then the
second thread pool also exhibits the same external and internal
timing behavior, that is, it also takes n steps, and with the same
sequence of interleavings, respectively, as the first one; further
bisimilarity is preserved in the resulting configurations.

Lemma 5.4 (�sync
concD : Strong Bisimulation, n-steps). If`

H1, T1

´
t1

�!n

�LD
`
H01, T

0
1

´
t

0
1

and
`
H1, H1, T1

´
t1

⇠;⌥�`µL`
H2, H2, T2

´
t2

then for some H02, T02 and t

0
2,

`
H2, T2

´
t2
�!n

�LD`
H02, T

0
2

´
t

0
2

holds, and there exists a H0
1, H0

2 and µ

0 such that

H1 ✓ H0
1, H2 ✓ H0

2, µ ✓ µ

0 and
`
H0

1, H
0
1, T

0
1

´
t

0
1
⇠;⌥�`µ

0L`
H0

2, H
0
2, T

0
2

´
t

0
2
.

Proof. By induction on the derivation of
`
H1, T1

´
t1

�!n

�LD`
H01, T

0
1

´
t

0
1

given Lemma 5.3[3].

Definition 5.5 (Convergence under a Deterministic Scheduler). A
thread i in a configuration C, given a table of sync timer functions
�, a set of heap locations L, and a deterministic scheduler D,
converges to a value v in n steps iff C �!n

�LD
`
H, T

´
t

for some
H, T and t, and T[i] = (v, d), for some d.

The following lemma, entailed by the strong bisimulation
lemma, then formalizes the property of strong noninterference ex-
hibited by �

sync
concD . It states: if a thread in one run of a concurrent

program converges to a low integral or boolean value in a certain
number of steps, then the same thread in a second run of that con-
current program, but possibly differing in high values from the first
run, also converges to the same value and in the same number of
steps as the first one.

We define the type judgement pc, �,H `�`

(H, T) : ⌥, where
T = ⇣

k

and ⌥ = ⌧

k

, to hold iff pc, �,H `�`

H and 81  i 
k. pc, �,H `�`

⇣

i

: ⌧

i

. The indexing operation on a type pool is
defined as on a thread pool. The multi-substitution ⇣[v

k

/x

k

], where
⇣ = (e, d), is shorthand for ⇣

0 such that ⇣

0 =
`
e[v

k

/x

k

], d
´
, and

the multi-substitution T[v
k

/x

k

], where T = ⇣

g

, is shorthand for
T0 such that T0 = ⇣

0
g

and 81  i  g. ⇣

0
i

= ⇣

i

[v
k

/x

k

]; while
(H, T)[v

k

/x

k

] abbreviates
`
H[v

k

/x

k

], T[v
k

/x

k

]
´
.

Theorem 5.6 (�sync
concD : Strong Noninterference). If

?, {x
k

7! ⌧

k

},H `�`

(H, T) : ⌥, ⌥[i] = ⌧̂ , HdL = Ĥ,

� ::= n discrete distribution of thread indices
N : N⇥ {t}⇥ {Ĥ}! {�} nondeterministic scheduler

Figure 13. �

sync
concN : Syntax Grammar

THREAD-POOL N
|T | = k Ĥlow = HdL

N `
k, t, Ĥlow

´
= � i 2 �

`
H, T

´
t

�!�i

`
H0, T0

´
t

0`
H, T

´
t

�!�LN
`
H0, T0

´
t

0

Figure 14. �

sync
concN : Syntax-Directed Small-Step Operational Se-

mantics

seclevel(⌧̂), seclevel(Ĥ)  `, ?, ;, ; `high
�`

v

k

, v

0
k

: ⌧

k

,
(H1, T1) = (H, T)[v

k

/x

k

], (H2, T2) = (H, T)[v0
k

/x

k

] and
the thread i in

`
H1, T1

´
✏

given �, L and a deterministic scheduler
D converges to a value v̂ in n steps, then the thread i in

`
H2, T2

´
✏

given �, L and D converges to the same value v̂ in n steps.

Proof. By premise for some H01, T01, t01 and d

0
1,

`
H1, T1

´
✏

�!n

�LD`
H01, T

0
1

´
t

0
1

and T01[i] = (v̂, d

0
1). Let L = {loc

k

},

for some loc
k

, and µ = {loc
k

7! loc
k

}; then by Defini-
tion 5.1 and 4.3[1,3]

`
H, H1, T1

´
✏

⇠;⌥�`µL
`
H, H2, T2

´
✏

. By
Lemma 5.4 (�sync

concD : Strong Bisimulation, n-steps) for some H02,
T02 and t

0
2,

`
H2, T2

´
✏

�!n

�LD
`
H02, T

0
2

´
t

0
2

holds, and there ex-
ists a H0

1, H0
2 and µ

0 such that H ✓ H0
1, H ✓ H0

2, µ ✓ µ

0

and
`
H0

1, H
0
1, T

0
1

´
t

0
1
⇠;⌥�`µ

0L
`
H0

2, H
0
2, T

0
2

´
t

0
2
. By Definition 5.1[5]

`
H0

1, T
0
1

´
t

0
1
⇠;⌥�`µ

0L
`
H0

2, T
0
2

´
t

0
2

holds. Then by Definition 5.1[2,1]
and Definition 4.3[1], for some e

0
2 and d

0
2 such that T02[i] =

(e02, d
0
2),

`
H0

1, v̂
´

d

0
1
⇠;⌧̂

�`µ

0
`
H0

2, e
0
2

´
d

0
2

and d

0
1 = d

0
2 = 1; by

Lemma 4.4[11c] e

0
2 = v̂. That is, the thread i in

`
H2, T2

´
✏

given
�, L and D converges to the value v̂ in n steps, the requisite result.

6. The �sync
concN Runtime System

We now extend �

sync
concD to �

sync
concN , which incorporates nondetermin-

ism into the scheduler. The language syntax for �

sync
concN appears in

Figure 13, and its small-step operational semantics in Figure 14,
as addendums to Figures 11 and 12 respectively. The scheduler N
denotes an arbitrary nondeterministic scheduler (possibly chosen
by an attacker), and is parameterized over the same 3-tuple as the
deterministic scheduler D in �

sync
concD ; however, unlike D, it returns

a discrete distribution � of indices into the thread pool denoting
the probability of each thread to be scheduled next – an index can
occur multiple times in the distribution �, and the more times an in-
dex occurs, the greater the likelihood of the corresponding thread to
be chosen. The operational semantics rule THREAD-POOL N ran-
domly picks an index from � choosing the next scheduled thread;
we write i 2 � iff � = . . . i . . .. The small-step reduction rela-
tion�!�LN and its n-step version�!n

�LN are defined analogous
to the reduction relations �!�LD and �!n

�LD , respectively, for
�

sync
concD .

Our nondeterministic scheduler N is similar to the one in [38],
but the latter assigns continuous (real-number) likelihoods to the
threads being scheduled, while N employs discrete probabilities;
our discrete probabilities can however be made arbitrarily precise
as the distribution � may be arbitrarily large. We take a discrete
probability approach as it allows for a simpler formalism.

19



C ::= C | C discrete distribution of runtime configurations
H ::= H | H discrete distribution of types of heaps
u ::= µ | u discrete distribution of µ’s
�̂ ::= v̂ discrete distribution of integer/boolean values

Figure 15. �

sync
concN (All-Paths-In-Parallel): Grammar (for proof of

probabilistic noninterference only)

THREAD-POOL N ALL-PATHS
C =

`
H, T

´
t

T = ⇣

k

Ĥlow = HdL N `
k, t, Ĥlow

´
= � � = i1, . . . , i

n

8i 2 i1, . . . , i

n

. C �!�i

C
i

C = C
i1 , . . . , C

in

C ;�LN C

CONFIGURATION-DISTRIBUTION
C = C1, . . . ,C

k

81  i  k. C
i

;�LN C0
i

C0 = C01, . . . ,C0
k

C ;�LN C0

Figure 16. �

sync
concN (All-Paths-In-Parallel): Operational Semantics

(for proof of probabilistic noninterference only)

6.1 Security Properties of �

sync
concN

The discrete probability distribution permits us to prove the prob-
abilistic noninterference result [38] for �

sync
concN using a technique

which aligns better with those used for �

sync
seq and �

sync
concD . Our proof

technique is as follows: execute in parallel all possible paths indi-
cated by the nondeterministic scheduler, and show the final discrete
distribution of low values and their timings are independent of high
data. To this end we define an all-paths-in-parallel semantics, corre-
sponding the semantics of �

sync
concN , in Figure 16, and the correspond-

ing grammar appears in Figure 15. It captures, in parallel, all possi-
ble interleavings of a concurrent program under a nondeterministic
scheduler. The reduction relation ;�LN , for a table of sync timer
functions �, a set of low integral or boolean heap locations L, and
a nondeterministic scheduler N , is defined over discrete distribu-
tions of configurations C; the corresponding n-step reflexive and
transitive closure is denoted as ;n

�LN .
The following lemma states the soundness of the all-paths-in-

parallel semantics relative to the operational semantics of �

sync
concN .

We write C 2 C iff either, C = C, or for some C
k

, C = C
k

andW
1ik

C 2 C
i

.

Lemma 6.1 (Soundness of All-Paths-In-Parallel Semantics). If
C �!n

�LN C0, C 2 C and C ;n

�LN C0 then C0 2 C0.

Proof. By induction on the derivation of C ;n

�LN C0.

�

sync
concN is proved to be probabilistically noninterfering by show-

ing that all-paths-in-parallel executions of two pools of threads,
which differ only in high values, are strongly bisimilar. Strong
bisimilarity implies isomorphism of the distributions of configu-
rations at all intermediate steps of the all-paths-in-parallel execu-
tion, with the term strong bisimilarity indicating the lock-stepness
of bisimilar executions as before. The bisimulation relation, defined
below, inductively entails the bisimilarity of corresponding config-
urations; it is an addendum to �

sync
concD ’s bisimulation relation (Defi-

nition 5.1).

Definition 6.2 (�sync
concN : Bisimulation Relation).

1. (Configurations). (H1, C1) ⇠�⌥
�`µL (H2, C2) iff C1 =`

H1, T1

´
t1

, C2 =
`
H2, T2

´
t2

and
`
H1, H1, T1

´
t1

⇠�⌥
�`µL`

H2, H2, T2

´
t2

.

2. (Distributions of Configurations). (H1,C1) ⇠�⌥
�`uL (H2,C2)

iff for some H0
k

, H00
k

, C0
k

, C00
k

, and u
k

, H1 = H0
k

, H2 =

H00
k

, C1 = C0
k

, C2 = C00
k

, u = u
k

, and 81  i 
k. (H0

i

,C0
i

) ⇠�⌥
�`uiL (H00

i

,C00
i

).

Note the above bisimulation relation is scheduler-independent,
akin to the one in [38].

The inverse of a pool of µ’s, u�1 is defined as, u�1 = µ

�1 if
u = µ, and u�1 = u�1

1 , . . . ,u�1
k

if u = u
k

. Analogously, the
composition of distributions of µ’s is defined as, u �u0 = µ � µ

0 if
u = µ and u0 = µ

0, and u �u0 = u1 �u01, . . . ,uk

�u0
k

if u = u
k

and u0 = u0
k

.

Lemma 6.3 (�sync
concN : Properties of Bisimulation Relation).

1. (Symmetry). If (H1,C1) ⇠�⌥
�`uL (H2,C2) then

(H2,C2) ⇠�⌥
�`u�1L (H1,C1).

2. (Reflexivity).
(a) (Configurations). If C =

`
H, T

´
t

and
`
H, H, T

´
t

⇠�⌥
�`µL`

H, H, T
´
t

then (H, C) ⇠�⌥
�`µL (H, C).

(b) (Distributions of Configurations). If H = H
k

, C = C
k

,
u = u

k

, and 8i. 1  i  k =) (H
i

,C
i

) ⇠�⌥
�`uiL

(H
i

,C
i

), then (H,C) ⇠�⌥
�`uL (H,C).

3. (Transitivity). If (H1,C1) ⇠�⌥
�`uL (H2,C2) and

(H2,C2) ⇠�⌥
�`u0L (H3,C3) then for u00 = u0 � u,

(H1,C1) ⇠�⌥
�`u00L (H3,C3).

Proof. 1. (Symmetry). By Definition 6.2 given Lemma 5.2[1b].
2. (Reflexivity). By Definition 6.2.
3. (Transitivity). By Definition 6.2 and Lemma 5.2[3b].

The following single-step strong bisimulation lemma states:
given a pair of bisimilar (distributions of) configurations, if the first
one steps (all-paths-in-parallel), then the second one also steps (all-
paths-in-parallel), and bisimilarity is preserved in the resulting (dis-
tributions of) configurations. For the most part the lemma follows
directly from Lemma 5.3[2]; the only exception being the isomor-
phism of the traces in case 2 below, which is a direct consequence
of low scheduler behavior.

We write H1 ✓ H2 if either, for some H1 and H2, H1 = H1,
H2 = H2 and H1 ✓ H2, or for some H1k and H2k , H1 = H1k ,
H2 = H2k and H1k ✓ H2k . Analogously we write u1 ✓ u2 if
either, for some µ1 and µ2, u1 = µ1, u2 = µ2 and µ1 ✓ µ2, or
for some u1k and u2k , u1 = u1k , u2 = u2k and u1k ✓ u2k .

Lemma 6.4 (�sync
concN : Strong Bisimulation, 1-step).

1. (Configurations). If C1 �!�i

C01 and (H1, C1) ⇠;⌥�`µL
(H2, C2) then for some C02, C2 �!�i

C02 holds, and there
exists a H0

1, H0
2 and µ

0 such that H1 ✓ H0
1, H2 ✓ H0

2, µ ✓ µ

0

and (H0
1, C

0
1) ⇠;⌥�`µ

0L (H0
2, C

0
2).

2. (Distributions of Configurations). If C1 ;�LN C0
1 and

(H1,C1) ⇠;⌥�`uL (H2,C2) then for some C0
2, C2 ;�LN C0

2

holds, and there exists a H01, H02 and u0 such that H1 ✓ H01,
H2 ✓ H02, u ✓ u0 and (H01,C0

1) ⇠;⌥�`u0L (H02,C0
2).

Proof. 1. (Configurations). By Definition 6.2[1] and
Lemma 5.3[2].

2. (Distributions of Configurations). By induction on the deriva-
tion of C1 ;�LN C0

1. Following are the possible semantics
rule from Figure 16 applicable at the root of this derivation.
(a) THREAD-POOL N ALL-PATHS. For some C1, H1, T1, t1,

⇣1k , Ĥlow, �, i

n

and C1i1
, . . . , C1in

, C1 = C1, C1 =`
H1, T1

´
t1

, T1 = ⇣1k , Ĥlow = H1dL, N (k, t1, Ĥlow) = �,

20



� = i1, . . . , in, 8i 2 i1, . . . , in. C1 �!�i

C1i and
C0

1 = C1i1
, . . . , C1in

.
By premise we know (H1,C1) ⇠;⌥�`uL (H2,C2); then
knowing C1 = C1 by Definition 6.2[2] for some C2, H1,
H2 and µ, C2 = C2, H1 = H1, H2 = H2, u = µ

and (H1, C1) ⇠;⌥�`µL (H2, C2). We know for all i 2
i1, . . . , in, C1 �!�i

C1i ; then by applying Lemma 6.4[1]
to each of the aforementioned reductions we get, for all
i 2 i1, . . . , in, there exists a C2i such that C2 �!�i

C2i

and there exists a H1i , H2i and µ

i

such that H1 ✓ H1i ,
H2 ✓ H2i , µ ✓ µ

i

and (H1i , C1i) ⇠;⌥�`µiL (H2i , C2i).
Letting H01 = H1i1

, . . . ,H1in
, H02 = H2i1

, . . . ,H2in

and u0 = µ

i1 , . . . , µ

in , by Definition 6.2[2] we get
(H01, C1i1

, . . . , C1in
) ⇠;⌥�`u0L (H02, C2i1

, . . . , C2in
).

By premise we know (H1,C1) ⇠;⌥�`uL (H2,C2),
that is, (H1, C1) ⇠;⌥�`µL (H2, C2). We also know
C1 =

`
H1, T1

´
t1

. Then by Definition 6.2[1] for
some H2, T2 and t2, C2 =

`
H2, T2

´
t2

and
`
H1, H1, T1

´
t1

⇠;⌥�`µL
`
H2, H2, T2

´
t2

; by Defini-
tion 5.1[5,2] we get (H1, H1) ⇠;�`µL (H2, H2), t1 = t2

and for some ⇣2k , T2 = ⇣2k . By Lemma 5.2[5] H1dL =

H2dL = Ĥlow. Hence N (k, t2, Ĥlow) = N (k, t1, Ĥlow) =
�. Then by THREAD-POOL N ALL-PATHS for C0

2 =
C2i1

, . . . , C2in
, C2 ;�LN C0

2, that is, C2 ;�LN C0
2

holds, the first requisite result.
We know (H01, C1i1

, . . . , C1in
) ⇠;⌥�`u0L

(H02, C2i1
, . . . , C2in

), that is, (H01,C0
1) ⇠;⌥�`u0L (H02,C0

2),
the second requisite result.

(b) CONFIGURATION-DISTRIBUTION. For some C1k , and
C0

1k
, C1 = C11 , . . . ,C1k , 81  i  k. C1i ;�LN C0

1i
,

and C0
1 = C0

11 , . . . ,C0
1k

.
By premise (H1,C1) ⇠;⌥�`uL (H2,C2); then by Defini-
tion 6.2[2] for some C2k , H1k , H2k , and u

k

, C2 = C2k ,
H1 = H1k , H2 = H2k , u = u

k

, and for all i such that
1  i  k, (H1i ,C1i) ⇠;⌥�`uiL (H2i ,C2i) holds.
By induction hypothesis for all i such that 1  i  k, for
some C0

2i
, C2i ;�LN C0

2i
, and there exists a H01i

, H02i

and u0
i

such that H1i ✓ H01i
, H2i ✓ H02i

, u
i

✓ u0
i

and
(H01i

,C0
1i

) ⇠;⌥�`u0iL (H02i
,C0

2i
).

By CONFIGURATION-DISTRIBUTION, letting C0
2 =

C0
21 , . . . ,C0

2k
, C2 ;�LN C0

2, the first requisite result.
Then by Definition 6.2[2], for H01 = H011 , . . . , H01k

, H02 =

H021 , . . . , H02k
and u0 = u01, . . . ,u

0
k

, (H01,C0
1) ⇠;⌥�`u0L

(H02,C0
2) holds, the second requisite result.

The following n-step strong bisimulation lemma then states:
given a pair of bisimilar (distributions of) configurations, if the first
one takes n steps (all-paths-in-parallel), then the second one also
takes n steps (all-paths-in-parallel), and bisimilarity is preserved in
the resulting (distributions of) configurations.

Lemma 6.5 (�sync
concN : Strong Bisimulation, n-steps). If C1 ;n

�LN
C0

1 and (H1,C1) ⇠;⌥�`uL (H2,C2) then for some C0
2, C2 ;n

�LN
C0

2 holds, and there exists a H01, H02 and u0 such that H1 ✓ H01,
H2 ✓ H02, u ✓ u0 and (H01,C0

1) ⇠;⌥�`u0L (H02,C0
2).

Proof. By induction on the derivation of C1 ;n

�LN C0
1 given

Lemma 6.4[2].

The concatenation operator @ on �̂’s is defined as, �̂1@�̂2 =
�̂3 iff �̂1 = v̂

j

, �̂2 = v̂

0
k

and �̂3 = v̂1, . . . , v̂j

, v̂

0
1, . . . , v̂

0
k

.

Definition 6.6 (Ground to Discrete Distribution of Values).

1. (Configuration). bCc
i

= v̂ if C =
`
H, T

´
t

and T[i] = (v̂, d),
for some H, t and d; otherwise bCc

i

= ·.
2. (Distribution of Configurations). bCc

i

= �̂ iff C = C
k

,
81  j  k. bC

j

c
i

= �̂
j

, and �̂ = �̂1@ . . . @�̂
k

.

Lemma 6.7 (“Low” Int/Bool Type). If (H1,C1) ⇠�⌥
�`uL (H2,C2),

⌥[i] = ⌧̂ seclevel(⌧̂)  ` and bC1ci

= �̂ then bC2ci

= �̂.

Proof. By Definition 6.2, Definition 5.1, Definition 4.3[1],
Lemma 4.4[11c] and Definition 6.6.

The following defines the convergence of a thread to a distribu-
tion of values under a nondeterministic scheduler.

Definition 6.8 (Convergence under a Nondeterministic Scheduler).
A thread i in a configuration C, given a table of sync timer functions
�, a set of heap locations L and a nondeterministic scheduler N ,
converges to a distribution of values �̂ in n steps iff C ;n

�LN C,
for some C, and bCc

i

= �̂.

The strong bisimulation lemma then entails the following prop-
erty of probabilistic noninterference for �

sync
concN . It states: if a thread

in a concurrent configuration converges to a certain distribution of
low integral or boolean values after a certain number of steps, then
the same thread in that concurrent configuration, but possibly dif-
fering in high values from the first one, converges to the same dis-
tribution of values after the same number of steps as the first one.

Theorem 6.9 (�sync
concN : Probabilistic Noninterference). If

?, {x
k

7! ⌧

k

},H `�`

(H, T) : ⌥, ⌥[i] = ⌧̂ , HdL = Ĥ,
seclevel(⌧̂), seclevel(Ĥ)  `, ?, ;, ; `high

�`

v

k

, v

0
k

: ⌧

k

,
(H1, T1) = (H, T)[v

k

/x

k

], (H2, T2) = (H, T)[v0
k

/x

k

] and
the thread i in

`
H1, T1

´
✏

given �, L and a nondeterministic
scheduler N converges to a distribution of values �̂ in n steps,
then the thread i in

`
H2, T2

´
✏

given �, L and N converges to the
same distribution of values �̂ in n steps.

Proof. By premise for C1 =
`
H1, T1

´
✏

and some C0
1,

C1 ;n

�LN C0
1 and bC0

1ci

= �̂. Let L = {loc
k

},
for some loc

k

, and µ = {loc
k

7! loc
k

}; by Definition 5.1
and 4.3[1,3]

`
H, H1, T1

´
✏

⇠;⌥�`µL
`
H, H2, T2

´
✏

. Then by Defi-
nition 6.2[1] for C2 =

`
H2, T2

´
✏

, (H, C1) ⇠;⌥�`µL (H, C2). By
Lemma 6.5 (�sync

concN : Strong Bisimulation, n-steps) for some C0
2,

C2 ;n

�LN C0
2 holds, and there exists a H01, H02 and u0 such that

H1 ✓ H01, H2 ✓ H02, µ ✓ u0 and (H01,C0
1) ⇠;⌥�`u0L (H02,C0

2).
Then by Lemma 6.7 bC0

2ci

= �̂. That is, the thread i in
`
H2, T2

´
✏

given �, L and N converges to the distribution of values �̂ in n

steps, the requisite result.

Note the above result holds for all nondeterministic schedulers
N , that is, it is scheduler-independent [38].

7. Related Work
Since the seminal work of Volpano and Smith [44] much work has
been done to secure timing channels in programming languages.
However, all the efforts focus on static analyses; to our knowledge
there is no language-based runtime approach to secure timing chan-
nels. Further, most existing works [43, 38, 47, 42, 34, 3] concen-
trate on closing the internal timing channels, leaving the external

21



ones vulnerable to attacks. Our dynamic synchronization technique
secures both external and internal timing channels.

The program transformation approach of Agat [1] is the only
known language-based technique to secure both external and in-
ternal timing channels. It equalizes the execution times of high
branches by a program transformation which pads each branch
with instructions that pretend to execute the other branch as well.
Various extensions to Agat’s approach have been proposed – [38]
employed a minor variant to secure internal timing channels in
the context of multi-threaded programs (using skip instructions
and dummy forks instead of the “skip-commands”, skipAsn and
skipIf, used by Agat), [10] augmented Agat’s work towards a
bytecode-like language, while [46] adapted it to secure typed as-
sembly languages [27]. Recently a variant based on unification,
which generates programs smaller in size, has been proposed [19].

The aforementioned works, however, have limited expressive-
ness in that they do not appear to generalize to incorporate higher-
order functions – the exact target code of a branching statement
is assumed to be known statically in these works, whereas higher-
order function invocations are dynamic in that the exact code to be
invoked is only known at runtime. Furthermore, none except [10]
allow looping executions on high guards, that is, executions whose
running times may depend on secret data – the execution times of
such recursive computations are inherently tied to secret informa-
tion (the high terminating condition) and it does not seem possible
to secure them via static approaches without imposing severe re-
strictions such as the disallowance of subsequent low outputs [10].
We support both fully higher-order function invocations as well as
recursive computations with high terminating conditions.

On the other hand, our dynamic synchronization technique en-
dures an overhead of computing the sync times at runtime, and then
handling the setting and expiration of the synchronization timers. In
practice a hybrid approach may be best: use Agat’s technique wher-
ever applicable, and use our dynamic synchronization technique to
secure cases the former cannot handle.

A recent work by Barthe et al. [4] proposed a variant of Agat’s
cross-copying technique based on a transaction mechanism. Each
branch is wrapped in a transaction and then sequentially composed
with the other corresponding branch. The transaction around the
original branch is committed, while the cross-copied transaction is
aborted. This technique is applicable to object-oriented languages
with exceptions and methods calls. However it suffers from the
same limitations as Agat’s cross-copying approach, in that nei-
ther high-recursive programs nor higher-order function applica-
tions (dynamic dispatch in their object-oriented context) are sup-
ported. Additionally, unlike Agat’s, this work suffers from a run-
time overhead of committing and aborting transactions. Neither it
is clear if it is applicable in a concurrent setting.

Molnar et al. [26] proposed methods to secure C programs
against side-channel attacks. It performs a C-to-C program trans-
formation to ensure both branches of conditional branching state-
ments are executed but only results from the branch that would have
been executed in the original program are retained through logical
masking. The approach has been formalized for a simple imperative
language called IncredibL, with only bounded loops (loops that can
be fully unrolled statically), if statements and straight-line assign-
ments. It is unclear if the proposed techniques would generalize to
a richer language.

Neilson and Schwartzbach [28] presented a domain-specific im-
perative programming language called SMCL for Secure Multi-
party Computation (SMC). To prevent timing leaks its runtime se-
mantics evaluates both branches of if statements with a secret con-
ditionals in sequence and on copies of the local state. After these
executions, the results of both branches are merged such that only
those of the valid branch are retained. It does not allows loops on

secret conditionals nor calls to recursive functions guarded by high
conditions.

Kobayashi and Shirane [15] proposed a Java virtual machine
language based type system for timing-sensitive noninterference.
The system relies on the computation of control dependency for
identifying sensitive regions, and closes timing channels in sequen-
tial code by inserting a delay linear with respect to the normal exe-
cution time. It does not support objects or subroutines.

On a different note, Siveroni et al.[40, 31] apply a padding tech-
nique, similar to but more efficient than Agat’s, to transform two
processes to have indistinguishable timing behavior. The work is
not programming language specific, but based probabilistic transi-
tion systems (PTS) [12]. In principle it is adaptable to any proba-
bilistic language whose semantics can be expressed in terms of a
PTS model, as for example our �

sync
concN language.

8. Towards a Realistic System
Language Expressiveness The �

sync
seq language does not support

exceptions or interactive inputs and outputs. Existing works [7, 4]
have studied exceptions in the context of timing channels and have
shown disallowing exceptions thrown in high contexts from escap-
ing to low contexts prevents timing leaks. �

sync
seq can be extended

to incorporate exceptions using the same restriction – the synchro-
nization construct delineates the enclosed high context from the
enclosing low context, so exceptions must be disallowed from es-
caping the synchronization construct; exceptions not handled inside
the synchronization context must be ignored. Interactive inputs and
outputs can be incorporated using a similar philosophy; low inputs
and outputs must both be disallowed in high contexts – requests
for low inputs in high contexts must be fulfilled with dummy val-
ues instead, and low outputs in high contexts must be omitted, as
in [21].

The �

sync
concD and �

sync
concN languages do not support dynamic thread

creation. Existing works [38, 34] have studied dynamic thread cre-
ation in the context of timing channels – [38] proposed cross-
copying the fork instructions in high branching statements as
dummy forks, along the lines of Agat’s technique, to secure tim-
ing channels; while [34] suggested partitioning the thread pool into
low and high parts, such that threads created in high contexts are
“hidden” in the high part, while the low part contains threads gen-
erated in low contexts; the timings of the high threads are hidden,
via the scheduler, from those of the low threads. We believe �

sync
concD

and �

sync
concN can be extended to incorporate forking following the

thread pool partitioning technique [34].
Sabelfeld [35] studied the effects of synchronization primitives

such as semaphores on timing channels, and concluded all synchro-
nizations on high semaphores or in high contexts are susceptible to
information leaks; �

sync
concD and �

sync
concN can be extended to incorpo-

rate synchronization along the same lines. Further we believe our
techniques are adaptable to distributed programs as well along the
lines of [23, 36].

Our formal model does not support declassification of secure
data, a desirable feature in practice. One interesting aspect of our
runtime technique is the parameterization of the sync times on low
values; when coupled with declassification this parameterization
can provide a mechanism to declassify just the timing channels. For
example, if one or more parameters to a sync timer function (the i

k

of IF-SYNC and APP-SYNC rules in Figure 8) is declassified, only
the associated timing channel has in effect been allowed to dissem-
inate high information, and if there are no attackers observing that
timing channel the high data remains secret.

Implementation of Sync Timers Interval timers provided by
modern operating systems can be used to realize our dynamic syn-
chronization technique. On Unix the setitimer function, included

22



in <sys/time.h>, provides a mechanism for a process to inter-
rupt itself in the future by setting a timer; the process receives a sig-
nal when the timer expires. ITIMER VIRTUAL is an interval timer
which counts the actual execution time of a process (its virtual
time), and sends a sigvtalrm signal to the process when it ex-
pires. The virtual timer can be used to directly realize our dynamic
synchronization technique: a compiler or a preprocessor can instru-
ment the source program such that just before executing the code to
be synchronized, ITIMER VIRTUAL is set to the sync time indicated
by the associated sync timer function. The sigvtalrm handler can
then realize the SYNC-DONE and SYNC-ABORT rules of Figure 8.
To be more precise, consider the following �

sync
seq program fragment,

let y = (ifv
p,vk

p then p1 else p2) in . . . (5)
where the guard p is typed high, implying the computation
of branching statement p must be synchronized. The following
Caml [22] program fragment implements our dynamic synchro-
nization technique for (5):

let f = fun -> failwith “timeout” in

Sys.set signal (Sys.sigvtalrm) (Sys.Signal handle f);
. . .
let h = p in let x = ref v in let sync time = �(p)(v

k

) in

try

Unix.setitimer Unix.ITIMER VIRTUAL sync time;
x := if h then p1 else p2;
while true do () done (* analogue of SYNC-PAD *)

with

Failure “timeout” -> ();
let y = !x in . . .

(6)

Note we have empirically validated the above program frag-
ment in OCaml 3.10.1 on Linux. Caml libraries provide the
Unix.setitimer system call which sets the virtual timer
ITIMER VIRTUAL to sync time, and the Sys.set signal function
which installs a signal handler f for the signal sigvtalrm gen-
erated when ITIMER VIRTUAL expires. The nonterminating loop
‘while true do () done’ captures the semantics of the SYNC-PAD
rule in Figure 8 – if the computation of the preceding branch-
ing statement terminates before the timer expires the while-loop
pads out the residual sync time. Observe the signal handler f

for sigvtalrm simply throws the exception Failure “timeout”
when the sync timer expires; the exception is caught and discarded
by the try-catch statement, and the control is then transferred
to the next statement ‘let y = !x in . . .’. Also notice the com-
puted value of the branching statement is assigned to the same heap
location, referenced by the variable x, as the default placeholder
value v; in effect the value of !x flowing into y is the value of the
branch computation if the sync timer expired after the assignment
‘x := if h then p1 else p2’ had happened; otherwise the default
placeholder value flows into y.

Note the transformation illustrated above, from program frag-
ment (5) to the program fragment (6), is generic and applicable to
function application statements as well; further it can be done au-
tomatically by a preprocessor, and to target languages other than
Caml (in C, for example, siglongjmp() can be used to perform
the nonlocal transfer of control via the signal handler, as opposed
to an exception in the above illustration). Also the above imple-
mentation denotes only one of the possibly many ways to realize
our dynamic synchronization technique; the above method has the
advantage of using mechanisms readily available on existing sys-
tems. It may be possible to devise more efficient techniques, say
for example without the overhead of systems calls and/or context-
switching; the exploration of such mechanisms is a direction for
future investigation.

The resolution of interval timers provided by the setitimer

function is in microseconds; if deemed too coarse, the POSIX.1b
high resolution timers (HRTs) provide higher resolution timers in

nanoseconds, and can be used instead. However a resolution in
the order of nanoseconds is unlikely to impart better efficiency
given the overhead of setting up the interval timers along with
the subsequent handling of the timer interrupts, both of which are
system calls involving context-switching, is nonetheless likely to be
on the order of microseconds on modern machines. In fact, given
the overhead of runtime synchronization it may be too expensive
to individually synchronize each branching statement of a high
guard, especially if it is in a tight loop. Coarser granularities for
synchronization could be used to amortize the associated overhead;
for example, it may be more efficient to synchronize the execution
of an entire loop as opposed to each individual branching statement
inside it each time around. The exploration of such optimizations
is an important direction for future research.

In typical multiprocessing environments there is likely to be
some delay in the arrival of the timer interrupt after the correspond-
ing timer has expired, depending on the system load, CPU pipelin-
ing, and other factors. However such delays are likely to be “ran-
dom”, that is, likely governed by factors extraneous to the process
under synchronization, thus independent of the values, both high
and low, local to the process. Such potential delays are, therefore,
unlikely to leak information; however a closer scrutiny is desirable
to confirm the lack of useful information in such delays.

Securing Resource Channels Time is a form of resource. Recall
our philosophy behind securing timing channels is to fix the execu-
tion times of high computations based on low values, and if a high
computation does not finish in the allotted time then it is aborted
and replaced with a placeholder value. A similar philosophy can be
applied to other forms of resource channels as well.

Memory usage is a form of resource channel – the memory con-
sumption pattern of a program may depend on secret data, and that
could be used by the attacker to gain classified information. For
example, one branch of a high branching statement may allocate
a lot more memory than the other branch; an attacker could then
gain information on the secret guard by tracking the memory usage
of that program. One potential approach to securing such memory
usage channels is to preallocate a fixed amount of memory for use
by the high portion of a program computation; if the high computa-
tion exhausts the preallocated memory then the bluffing technique
takes over, and all further requests for memory by the high com-
putation are satisfied by recycling memory from the preallocated
space. Analogous to sync times, the amount of preallocated high
memory may be parameterized over low values.

The technique sketched above for securing memory usage chan-
nels can be made robust in presence of garbage collection as well –
the high memory is clearly demarcated, hence the garbage collec-
tor can be restricted to spend a fixed amount of time to clean the
high memory regardless of the amount of garbage in it; as above,
the bluffing technique provides a fallback in case the high memory
runs out of space or the collection time-limit is exceeded.

Other forms of resource channel such as those associated with
utilization of disc space, network sockets, etc. can be secured in
a similar manner: by fixing the usage of high computation. The
bluffing technique is critical to the soundness of this approach,
providing a fallback when such resource fixtures are found to be
inadequate.

Guarding against Cache Attacks Consider the following pro-
gram, adapted from [2],

z := x;
if (h == 1) then z := x else z := y;
output

low(“done”);
(7)

where h holds a single high bit. Assuming neither x nor y is
in the cpu cache before the execution of this code, the running
time of the branching statement is likely to reveal the value of

23



h – the value of x will likely be cached after the first assignment
z := x; hence the later assignment z := x in the then-branch
will probably run a bit faster than the assignment z := y in the
else-branch. This variance in the running time can be used by an
attacker to gain information on h. Such information leaks induced
by variance in cache behavior are referred to as cache leaks, and
the corresponding attacks are called cache attacks. The capacity
of covert timing channels implemented through cache leaks is not
likely to be very high but it is certainly high enough to warrant
attention, as shown in [2] via a simple experiment; since then many
attacks exploiting the timing variability due to cache effects have
been demonstrated [30, 29].

Our dynamic synchronization technique equalizes the running
times of corresponding branches regardless of the state of the
cache; hence, it would be robust against cache attacks for pro-
gram (7). However, our technique does not synchronize the caches
at the end of different executions of a high branching statement.
Consider the following variant of the above program,

if (h == 1) then z := x else z := y;
z := x;
output

low(“done”);
(8)

Again assuming neither x nor y is in the cache before the execution
of (8), if the then-branch is taken, x is likely to be in the cache,
and y likely not, at the end the branching statement; the opposite
holds if the else-branch were taken. Consequently, the subsequent
assignment z := x may run a bit faster in the case of then-branch
compared to the else-branch, revealing the value of h via the timing
of the low output “done”.

One simple mitigation strategy would be to flush the entire
cache at the end of each synchronized run of a branch, wiping out
any possible correlation between the high guard and cached values.
The cache can be flushed by reading enough garbage into it [2].

9. Conclusion
We have demonstrated how timing channels can be provably elim-
inated in both sequential and concurrent programs, in presence
of deterministic as well as nondeterministic schedulers. Our tech-
niques advance the current state of the art by showing how timing
channels can be eliminated in programs with higher-order func-
tions, with recursive computations under high guards, and in the
presence of libraries for which the source code is not available. We
have illustrated how our dynamic synchronization technique can
be realized on standard computing platforms using interval timers.
Furthermore, we believe the technique of bluff computation holds
promise in securing resource channels as well. Our solution is gen-
eral and can be incorporated into arbitrary software products.

The paper makes several technical contributions. Our strong
bisimulation proof technique is a general technique for proving
noninterference in presence of timing channels. Our method of
employing discrete probability distributions, and the associated all-
paths-in-parallel operational semantics, allows for a more direct
proof of probabilistic noninterference in concurrent programs. The
notion of bluff computation generalizes the lenient execution model
of [7] to be more broadly applicable.

References
[1] J. Agat. Transforming out timing leaks. In POPL, 2000. 1, 3, 4, 22

[2] J. Agat and D. Sands. On confidentiality and algorithms. In SP, 2001.
1, 4, 23, 24

[3] G. Barthe, T. Rezk, A. Russo, and A. Sabelfeld. Security of
multithreaded programs by compilation. In ESORICS, 2007. 1,
21

[4] G. Barthe, T. Rezk, and M. Warnier. Preventing timing leaks through
transactional branching instructions. In QAPL, 2005. 22

[5] G. Boudol and I. Castellani. Noninterference for concurrent
programs. In ICALP, 2001. 1, 4

[6] D. Brumley and D. Boneh. Remote timing attacks are practical. In
USENIX Security Symposium, 2003. 1

[7] Z. Deng and G. Smith. Lenient array operations for practical secure
information flow. In CSFW, 2004. 3, 22, 24

[8] D. E. R. Denning. Cryptography and Data Security. 1982. 6

[9] J. A. Goguen and J. Meseguer. Security policies and security models.
In IEEE Symposium on Security and Privacy, 1982. 1, 10

[10] D. Hedin and D. Sands. Timing aware information flow security for
a javacard-like bytecode. In BYTECODE, 2005. 1, 22

[11] W.-M. Hu. Reducing timing channels with fuzzy time. In IEEE
Symposium Research in Security and Privacy, 1991. 1

[12] B. Jonsson, K. Larsen, and W. Yi. Probabilistic extensions of process
algebras. In Handbook of Process Algebra, 2001. 22

[13] M. H. Kang and I. S. Moskowitz. A pump for rapid, reliable, secure
communication. In CCS, 1993. 1

[14] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side channel
cryptanalysis of product ciphers. In ESORICS, 1998. 1

[15] N. Kobayashi and K. Shirane. Type-based information flow analysis
for a low-level language. In APLAS, 2002. 22

[16] P. Kocher, J. Jaffe, and B. Jun. Using unpredictable information to
minimize leakage from smartcards and other cryptosystems. In USA
patent, International Publication number WO 99/63696, 1999. 1

[17] P. C. Kocher. Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems. In CRYPTO, 1996. 1

[18] B. Köpf and D. Basin. Timing-sensitive information flow analysis for
synchronous systems. In ESORICS, 2006. 1

[19] B. Köpf and H. Mantel. Eliminating implicit information leaks by
transformational typing and unification. In FAST, 2005. 22

[20] B. W. Lampson. A note on the confinement problem. Communica-
tions of the ACM, 16(10):613–615, 1973. 1

[21] G. Le Guernic, A. Banerjee, T. Jensen, and D. A. Schmidt. Automata-
based confidentiality monitoring. In ASIAN, 2006. 22

[22] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The
Caml Language. http://caml.inria.fr/. 2, 23

[23] H. Mantel and A. Sabelfeld. A unifying approach to the security of
distributed and multi-threaded programs. J. Comput. Secur., 2003. 22

[24] D. May, H. L. Muller, and N. P. Smart. Non-deterministic processors.
In ACISP ’01: Proceedings of the 6th Australasian Conference on
Information Security and Privacy, pages 115–129, London, UK,
2001. Springer-Verlag. 1

[25] D. May, H. L. Muller, and N. P. Smart. Random register renaming
to foil dpa. In CHES ’01: Proceedings of the Third International
Workshop on Cryptographic Hardware and Embedded Systems, 2001.
1

[26] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner. The program
counter security model: Automatic detection and removal of control-
flow side channel attacks. In ICISC, 2005. 22

[27] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system f to
typed assembly language. In POPL ’98: Symposium on Principles of
programming languages, 1998. 22

[28] J. D. Nielsen and M. I. Schwartzbach. A domain-specific program-
ming language for secure multiparty computation. In PLAS, 2007.
22

[29] D. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermea-
sures: the case of aes, 2005. 24

[30] D. Page. Defending against cache based side-channel attacks.
Information Security Technical Report, 2003. 24

24

http://caml.inria.fr/


[31] A. D. Pierro, C. Hankin, I. Siveroni, and H. Wiklicky. Tempus fugit:
How to plug it. The Journal of Logic and Algebraic Programming 72
(2007) 173190, 2007. 22

[32] F. Pottier and V. Simonet. Information flow inference for ML.
TOPLAS, 2003. 6, 7

[33] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obtaining
digital signatures and public-key cryptosystems. In Communications
of the ACM, 1978. 2

[34] A. Russo and A. Sabelfeld. Securing interaction between threads and
the scheduler. In CSFW, 2006. 1, 17, 21, 22

[35] A. Sabelfeld. The impact of synchronisation on secure information
flow in concurrent programs. In PSI ’02: Perspectives of System
Informatics, 2001. 22

[36] A. Sabelfeld and H. Mantel. Static confidentiality enforcement for
distributed programs. In SAS’02: Symposium on Static Analysis,
2002. 22

[37] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 2003.
1

[38] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-
threaded programs. In CSFW, 2000. 1, 17, 19, 20, 21, 22

[39] P. Shroff, S. F. Smith, and M. Thober. Dynamic dependency
monitoring to secure information flow. In CSF, 2007. 6

[40] I. Siveroni. Filling out the gaps: A padding algorithm for transforming
out timing leaks. Proceedings of the Third Workshop on Quantitative
Aspects of Programming Languages (QAPL 2005), 2005. 22

[41] G. Smith. A new type system for secure information flow. In CSFW,
2001. 1, 4

[42] G. Smith. Improved typings for probabilistic noninterference in a
multi-threaded language. Journal of Computer Security, 2006. 21

[43] G. Smith and D. Volpano. Secure information flow in a multi-threaded
imperative language. In POPL, 1998. 1, 21

[44] Volpano and Smith. Eliminating covert flows with minimum typings.
In CSFW, 1997. 21

[45] R. Wilhelm et al. The worst-case execution time problem – overview
of methods and survey of tools. TECS, 2007. 3

[46] D. Yu and N. Islam. A typed assembly language for confidentiality.
In APLAS, 2007. 22

[47] S. Zdancewic and A. Myers. Observational determinism for
concurrent program security. CSFW, 2003. 1, 4, 21

[48] Y. Zhou and D. Feng. Side-channel attacks: Ten years after its
publication and the impacts on cryptographic module security testing.
In Cryptology ePrint Archive, Report 2005/388, 2005. 1

25


	Introduction
	Overview
	The syncseq Runtime System
	A Type System for syncseq

	Security Properties of syncseq
	The syncconcD Runtime System
	Security Properties of syncconcD

	The syncconcN Runtime System
	Security Properties of syncconcN

	Related Work
	Towards a Realistic System
	Conclusion

