
Mark Thober July 7, 2007

Dynamic Dependency Monitoring to Secure
Information Flow

Mark Thober

Joint work with Paritosh Shroff and Scott F. Smith

Department of Computer Science

Johns Hopkins University

CSF ’07 1

Mark Thober July 7, 2007

Motivation
• Information security is a critical requirement of software systems

– Personal information, trade secrets, national security, etc.

• Static information flow systems are well-studied

• Run-time information flow systems have been considered highly

impractical and sometimes impossible

Goal: A sound run-time information flow tracking system

CSF ’07 2

Mark Thober July 7, 2007

Background: Secure Information Flow
• Objective: ensure confidential data is not exposed to unauthorized

users

• Direct and indirect flows

– Direct:

x := h + 1;

– Indirect:

x := 1;

if (h == 0) then x := 0 else ();

The value of x encapsulates information about h

• We do not address termination, timing, or other covert channels

CSF ’07 3

Mark Thober July 7, 2007

Why Dynamic Information Flow
Security?

• Greater precision

CSF ’07 4

Mark Thober July 7, 2007

Why Dynamic Information Flow
Security?

• Greater precision

– Reject insecure executions, not whole programs

x := 0;

if (l < 10) then x := h else ();

output(deref (x));

CSF ’07 4

Mark Thober July 7, 2007

Why Dynamic Information Flow
Security?

• Greater precision

– Reject insecure executions, not whole programs

x := 0;

if (l < 10) then x := h else ();

output(deref (x));

∗ If l < 10 a leak occurs: this execution must be stopped

CSF ’07 5

Mark Thober July 7, 2007

Why Dynamic Information Flow
Security?

• Greater precision

– Reject insecure executions, not whole programs

x := 0;

if (l < 10) then x := h else ();

output(deref (x));

∗ If l < 10 a leak occurs: this execution must be stopped

∗ If l ≥ 10, no leak occurs: the execution may safely proceed

CSF ’07 6

Mark Thober July 7, 2007

Why Dynamic Information Flow
Security?

• Greater precision

– Reject insecure executions, not whole programs

– Flow- and path-sensitivity

x := 0; y := 0;

if (l < 0) then y := h else ();

if (l > 0) then x := deref (y) else ();

output(deref (x));

∗ No execution path exists where h flows into x

CSF ’07 7

Mark Thober July 7, 2007

Why Dynamic Information Flow
Security?

• Greater precision

– Reject insecure executions, not whole programs

– Flow- and path-sensitivity

x := 0; y := 0;

if (l < 0) then y := h else ();

if (l > 0) then x := deref (y) else ();

output(deref (x));

∗ No execution path exists where h flows into x

CSF ’07 8

Mark Thober July 7, 2007

Why Dynamic Information Flow
Security?

• Greater precision

– Reject insecure executions, not whole programs

– Flow- and path-sensitivity

x := 0; y := 0;

if (l < 0) then y := h else ();

if (l > 0) then x := deref (y) else ();

output(deref (x));

∗ No execution path exists where h flows into x

CSF ’07 9

Mark Thober July 7, 2007

Why Dynamic Information Flow
Security?

• Greater precision

• Dynamic Data Policies

CSF ’07 10

Mark Thober July 7, 2007

Why Dynamic Information Flow
Security?

• Greater precision

• Dynamic Data Policies

– Static analyses can only approximate the security level; policy is

part of the code

– Dynamic tracking permits the policy to be a property of the data

– Programs are easily used in different security domains, as the

policy is not tied to the code

CSF ’07 10

Mark Thober July 7, 2007

Why Dynamic Information Flow
Security?

• Greater precision

• Dynamic Data Policies

• Dynamic Languages (e.g. Perl, Javascript)

– Fundamentally dynamic operations cannot ever be tracked by

any static system and so the dynamic approach is the only

alternative

CSF ’07 11

Mark Thober July 7, 2007

Direct Flows are Easy to Track
• All direct flow paths will be taken at run-time

• Simple run-time labeling can account for these flows

x := h + 1;

• If h is labeled high, then the + operation passes along this label,

which is further propagated to the location x

CSF ’07 12

Mark Thober July 7, 2007

Challenge: Indirect Flows
• Run-time execution only takes one path

• But indirect flows arise due to branching, requiring analysis of all

paths

x := 1;

if (h == 0) then x := 0 else ();

output(deref (x));

CSF ’07 13

Mark Thober July 7, 2007

Challenge: Indirect Flows
• Run-time execution only takes one path

• But indirect flows arise due to branching, requiring analysis of all

paths

x := 1;

if (h == 0) then x := 0 else ();

output(deref (x));

– If h == 0, we can capture the indirect flow since the

assignment occurs under a high guard

CSF ’07 14

Mark Thober July 7, 2007

Challenge: Indirect Flows
• Run-time execution only takes one path

• But indirect flows arise due to branching, requiring analysis of all

paths

x := 1;

if (h == 0) then x := 0 else ();

output(deref (x));

– If h != 0, we cannot dynamically capture the indirect flow since

no assignment occurs under h, yet a leak still occurs

– Implicit indirect flow leaks occur due to paths not taken

CSF ’07 15

Mark Thober July 7, 2007

Challenge: Indirect Flows
• Run-time execution only takes one path

• But indirect flows arise due to branching, requiring analysis of all

paths

x := 1;

if (h == 0) then x := 0 else ();

output(deref (x));

If we could indicate that the data in x always depends on h,

we could soundly track information flows at run-time

CSF ’07 16

Mark Thober July 7, 2007

Dynamic Dependencies

x := 1;

if (h == 0) then x := 0 else ()

deref (x);

• How do we indicate that the data in x depends on h?

– Really, the data in x depends on the data in the conditional

branch

• How can we capture this dependency in runs where x is not

assigned under h?

CSF ’07 17

Mark Thober July 7, 2007

Dynamic Dependencies

x := 1;

if (h == 0) then x := 0 else ()

deref (x);

• Observe: Assignments are manifested at dereference

– We can leverage this to track flows in both runs

CSF ’07 18

Mark Thober July 7, 2007

Dynamic Dependencies

x := 1;

if (h == 0) then x := 0 else ()

deref (x);

• Solution: Relate the security level of data to syntactic program

points

CSF ’07 19

Mark Thober July 7, 2007

Dynamic Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

• Solution: Relate the security level of data to syntactic program

points

The dependencies are already there, we’re just tracking them.

CSF ’07 20

Mark Thober July 7, 2007

Dynamic Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

• Solution: Relate the security level of data to syntactic program

points

– The information at the conditional p1 is High (p1 7→ High)

– Since x is assigned under this conditional, then dereferenced,

p2 depends on p1 (p2 7→ p1)

– Since p2 7→ p1 and p1 7→ High, transitively p2 7→ High

Hence the value read from x must be High

CSF ’07 21

Mark Thober July 7, 2007

Capturing Dependencies
• Maintain a cache of program point dependencies that persists

across runs (2 options)

1. Build the cache dynamically, as the program runs

– Precise, but leaks are possible in early runs, before all the

dependencies are observed

2. Pre-compute a cache statically

– Sound, but static analysis will be conservative

• Maintain a cache of security labels that is local to the current run

CSF ’07 22

Mark Thober July 7, 2007

Language
• Higher-order λ-calculus with mutable state

– With let-expressions, conditionals, binary operations, ints and bools

• Conditionals, application sites, and dereference points are marked with program

point identifiers

– ifp e then e else e | e (e)p | derefp e

• Values are labeled with a set of program points, P, and a security level L

– 〈vL, P〉, for example 〈5Low, {p1,p3}〉

• A dependency cache maps program points to sets of program points, {p 7→ P}

• A direct flow cache maps program points to security levels, {p 7→ L}

• Run-time information flow monitoring defined via operational semantics

CSF ’07 23

Mark Thober July 7, 2007

Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1

value of h 0High

dependency cache {}

direct flow cache {}

heap {}

final value

CSF ’07 24

Mark Thober July 7, 2007

Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1

value of h 0High

dependency cache {}

direct flow cache {}

heap {x 7→ 〈1Low, {}〉}

final value

CSF ’07 25

Mark Thober July 7, 2007

Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1

value of h 0High

dependency cache {}

direct flow cache {p1 7→ High}

heap {x 7→ 〈1Low, {}〉}

final value

CSF ’07 26

Mark Thober July 7, 2007

Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1

value of h 0High

dependency cache {}

direct flow cache {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉}

final value

CSF ’07 27

Mark Thober July 7, 2007

Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1

value of h 0High

dependency cache {p2 7→ p1}

direct flow cache {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉}

final value 〈0Low, {p2}〉

CSF ’07 28

Mark Thober July 7, 2007

Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1

value of h 0High

dependency cache {p2 7→ p1}

direct flow cache {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉}

final value 0High

Transitively

CSF ’07 29

Mark Thober July 7, 2007

Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1

value of h 0High

dependency cache {p2 7→ p1}

direct flow cache {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉}

final value 0High

Transitively

Leak Detected!

CSF ’07 29

Mark Thober July 7, 2007

Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1 Run 2

value of h 0High 1High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {}

heap {x 7→ 〈0Low, {p1}〉} {}

final value 0High

Keep

Clear

CSF ’07 30

Mark Thober July 7, 2007

Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1 Run 2

value of h 0High 1High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {}

heap {x 7→ 〈0Low, {p1}〉} {x 7→ 〈1Low, {}〉}

final value 0High

CSF ’07 31

Mark Thober July 7, 2007

Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1 Run 2

value of h 0High 1High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉} {x 7→ 〈1Low, {}〉}

final value 0High

CSF ’07 32

Mark Thober July 7, 2007

Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1 Run 2

value of h 0High 1High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉} {x 7→ 〈1Low, {}〉}

final value 0High

CSF ’07 33

Mark Thober July 7, 2007

Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1 Run 2

value of h 0High 1High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉} {x 7→ 〈1Low, {}〉}

final value 0High 〈1Low, {p2}〉

CSF ’07 34

Mark Thober July 7, 2007

Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1 Run 2

value of h 0High 1High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉} {x 7→ 〈1Low, {}〉}

final value 0High 1High

Transitively

CSF ’07 35

Mark Thober July 7, 2007

Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1 Run 2

value of h 0High 1High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉} {x 7→ 〈1Low, {}〉}

final value 0High 1High

Transitively

Leak Detected!

CSF ’07 35

Mark Thober July 7, 2007

What if the Order of Execution is
Reversed?

• Executing the then branch before the else branch allowed us to

catch both leaks

• What happens if we execute the else branch first?

CSF ’07 36

Mark Thober July 7, 2007

In Reverse Order

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1a

value of h 1High

dependency cache {}

direct flow cache {}

heap {}

final value

CSF ’07 37

Mark Thober July 7, 2007

In Reverse Order

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1a

value of h 1High

dependency cache {}

direct flow cache {p1 7→ High}

heap {x 7→ 〈1Low, {}〉}

final value 〈1Low, {p2}〉

CSF ’07 38

Mark Thober July 7, 2007

In Reverse Order

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1a

value of h 1High

dependency cache {}

direct flow cache {p1 7→ High}

heap {x 7→ 〈1Low, {}〉}

final value 1Low

CSF ’07 39

Mark Thober July 7, 2007

In Reverse Order

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1a

value of h 1High

dependency cache {}

direct flow cache {p1 7→ High}

heap {x 7→ 〈1Low, {}〉}

final value 1Low

Leak NOT detected!

CSF ’07 39

Mark Thober July 7, 2007

In Reverse Order

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1a Run 2a

value of h 1High 0High

dependency cache {} {}

direct flow cache {p1 7→ High} {}

heap {x 7→ 〈1Low, {}〉} {}

final value 1Low

CSF ’07 40

Mark Thober July 7, 2007

In Reverse Order

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1a Run 2a

value of h 1High 0High

dependency cache {} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈1Low, {}〉} {x 7→ 〈0Low, {p1}〉}

final value 1Low 〈0Low, {p2}〉

CSF ’07 41

Mark Thober July 7, 2007

In Reverse Order

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1a Run 2a

value of h 1High 0High

dependency cache {} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈1Low, {}〉} {x 7→ 〈0Low, {p1}〉}

final value 1Low 0High

CSF ’07 42

Mark Thober July 7, 2007

In Reverse Order

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1a Run 2a

value of h 1High 0High

dependency cache {} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈1Low, {}〉} {x 7→ 〈0Low, {p1}〉}

final value 1Low 0High

Leak Detected!

CSF ’07 42

Mark Thober July 7, 2007

Important Observations
• The size of the dependency cache is important

– Missing dependencies may permit leaks

• The ordering of executions matters

– Only certain trouble-some orderings cause leaks, where the

branch without the assignment is executed first

CSF ’07 43

Mark Thober July 7, 2007

Partial Dynamic Noninterference

Theorem 1. If r1 and r2 are two runs of a program that both terminate

and differ only in high inputs, and both runs result in values labeled low,

then these values are identical.

Proof. By bisimulation of the low computation.

CSF ’07 44

Mark Thober July 7, 2007

What if we want Full Noninterference?

• In many cases, no leaks can be tolerated!

CSF ’07 45

Mark Thober July 7, 2007

Use a Fixed Point Dependency Cache
• A cache that contains all the program dependencies, and will never

grow during computation

• How to find a Fixed Point Dependency Cache?

– Through testing

∗ Will be more precise, but it is undecidable in general to always

be sure all dependencies are captured

– With a static analysis

∗ Will contain all dependencies, but be conservative

CSF ’07 46

Mark Thober July 7, 2007

Use a Fixed Point Dependency Cache
• A cache that contains all the program dependencies, and will never

grow during computation

• How to find a Fixed Point Dependency Cache?

– Through testing

∗ Will be more precise, but it is undecidable in general to always

be sure all dependencies are captured

– With a static analysis

∗ Will contain all dependencies, but be conservative

• Still better than a completely static system, due to run-time

precision, dynamic policies, etc.

CSF ’07 46

Mark Thober July 7, 2007

Use a Fixed Point Dependency Cache
• A cache that contains all the program dependencies, and will never

grow during computation

• How to find a Fixed Point Dependency Cache?

– Through testing

∗ Will be more precise, but it is undecidable in general to always

be sure all dependencies are captured

– With a static analysis

∗ Will contain all dependencies, but be conservative

• Still better than a completely static system, due to run-time

precision, dynamic policies, etc.

See paper for details.

CSF ’07 46

Mark Thober July 7, 2007

All Leaks Detected with Full Cache

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1b Run 2b

value of h 1High 0High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈1Low, {}〉} {x 7→ 〈0Low, {p1}〉}

final value 1High 0High

CSF ’07 47

Mark Thober July 7, 2007

All Leaks Detected with Full Cache

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1b Run 2b

value of h 1High 0High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈1Low, {}〉} {x 7→ 〈0Low, {p1}〉}

final value 1High 0High

Leak Detected! Leak Detected!

CSF ’07 47

Mark Thober July 7, 2007

Better Precision at Run-time
x := 0; y := 0;

ifp1
(l < 0) then y := h else ()

ifp2
(l > 0) then x := derefp3

(y) else ()

derefp4
(x);

Run 1, with Fixed Point Dependency Cache

value of l, h -1Low, 1High

dependency cache {p3 7→ {p1,p2}, p4 7→ {p2,p3}}

direct flow cache {p1 7→ Low,p2 7→ Low}

heap {x 7→ 〈0Low, {}〉, y 7→ 〈1High, {p1}〉}

final value 〈0Low,{p4}〉

CSF ’07 48

Mark Thober July 7, 2007

Better Precision at Run-time
x := 0; y := 0;

ifp1
(l < 0) then y := h else ()

ifp2
(l > 0) then x := derefp3

(y) else ()

derefp4
(x);

Run 1, with Fixed Point Dependency Cache

value of l, h -1Low, 1High

dependency cache {p3 7→ {p1,p2}, p4 7→ {p2,p3}}

direct flow cache {p1 7→ Low,p2 7→ Low}

heap {x 7→ 〈0Low, {}〉, y 7→ 〈1High, {p1}〉}

final value 〈0Low,{p4}〉 p2 is Low, p3 is undefined

CSF ’07 48

Mark Thober July 7, 2007

Better Precision at Run-time
x := 0; y := 0;
ifp1

(l < 0) then y := h else ()
ifp2

(l > 0) then x := derefp3
(y) else ()

derefp4
(x);

Run 1, with Fixed Point Dependency Cache

value of l, h -1Low, 1High

dependency cache {p3 7→ {p1,p2}, p4 7→ {p2,p3}}

direct flow cache {p1 7→ Low,p2 7→ Low}

heap {x 7→ 〈0Low, {}〉, y 7→ 〈1High, {p1}〉}

final value 0Low

CSF ’07 49

Mark Thober July 7, 2007

Better Precision at Run-time
x := 0; y := 0;
ifp1

(l < 0) then y := h else ()
ifp2

(l > 0) then x := derefp3
(y) else ()

derefp4
(x);

Run 1, with Fixed Point Dependency Cache

value of l, h -1Low, 1High

dependency cache {p3 7→ {p1,p2}, p4 7→ {p2,p3}}

direct flow cache {p1 7→ Low,p2 7→ Low}

heap {x 7→ 〈0Low, {}〉, y 7→ 〈1High, {p1}〉}

final value 0Low

No False Positive!

CSF ’07 49

Mark Thober July 7, 2007

Dynamic Noninterference

Theorem 2. If r1 and r2 are two runs of a program that begin with a

fixed point of dependencies, both terminate, and differ only in high

inputs, and either run results in a value labeled low, then both runs

result in low values, and these values are identical.

Proof. Follows from Partial Dynamic Noninterference result, and

Definition of a Fixed Point Dependency Cache.

CSF ’07 50

Mark Thober July 7, 2007

Bonus: Static Noninterference

• A sound run-time system is a perfect set-up for Static

Noninterference

• Static Noninterference can now be proved directly by Subject

Reduction over the labelled semantics, using the Dynamic

Noninterference property

CSF ’07 51

Mark Thober July 7, 2007

Related Work
• Le Guernic et. al.

– Label tracking in a small imperative language with while-loops,

conditionals, and assignment

– Uses a static analysis at run-time to discover flows in branches

not taken

• A few hybrid systems that track direct flows at run-time and use a

pre-process analysis for indirect flows

– Not interprocedural, and no proofs

• Many other works on dynamic aspects of information flow

CSF ’07 52

Mark Thober July 7, 2007

Future Work
• Improve the current system

– Interactive IO, exceptions, etc.

• Efficiency

– Precomputing cache closure, soft-typing, etc.

• Declassification

• Dynamic policy changes

• Run-time auditing

• Other dependency-related problems

– Slicing, optimization, debugging

CSF ’07 53

Mark Thober July 7, 2007

Conclusion
• A sound, run-time dependency tracking system for monitoring direct

and indirect information flows

– Dependencies can be captured dynamically or approximated

statically

• Provides increased precision and dynamically defined policies

• New proof technique for dynamic (and static) noninterference

• Much more work to be done on dynamic information flow tracking!!

CSF ’07 54

