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Motivation
• Information security is a critical requirement of software systems

– Personal information, trade secrets, national security, etc.

• Static information flow systems are well-studied

• Run-time information flow systems have been considered highly

impractical and sometimes impossible

Goal: A sound run-time information flow tracking system
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Background: Secure Information Flow
• Objective: ensure confidential data is not exposed to unauthorized

users

• Direct and indirect flows

– Direct:

x := h + 1;

– Indirect:

x := 1;

if (h == 0) then x := 0 else ();

The value of x encapsulates information about h

• We do not address termination, timing, or other covert channels
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Why Dynamic Information Flow
Security?

• Greater precision
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Why Dynamic Information Flow
Security?

• Greater precision

– Reject insecure executions, not whole programs

x := 0;

if (l < 10) then x := h else ();

output(deref (x));
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Why Dynamic Information Flow
Security?

• Greater precision

– Reject insecure executions, not whole programs

x := 0;

if (l < 10) then x := h else ();

output(deref (x));

∗ If l < 10 a leak occurs: this execution must be stopped
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Why Dynamic Information Flow
Security?

• Greater precision

– Reject insecure executions, not whole programs

x := 0;

if (l < 10) then x := h else ();

output(deref (x));

∗ If l < 10 a leak occurs: this execution must be stopped

∗ If l ≥ 10, no leak occurs: the execution may safely proceed
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Why Dynamic Information Flow
Security?

• Greater precision

– Reject insecure executions, not whole programs

– Flow- and path-sensitivity

x := 0; y := 0;

if (l < 0) then y := h else ();

if (l > 0) then x := deref (y) else ();

output(deref (x));

∗ No execution path exists where h flows into x
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Why Dynamic Information Flow
Security?

• Greater precision

– Reject insecure executions, not whole programs

– Flow- and path-sensitivity

x := 0; y := 0;

if (l < 0) then y := h else ();

if (l > 0) then x := deref (y) else ();

output(deref (x));

∗ No execution path exists where h flows into x
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Why Dynamic Information Flow
Security?

• Greater precision

• Dynamic Data Policies
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Why Dynamic Information Flow
Security?

• Greater precision

• Dynamic Data Policies

– Static analyses can only approximate the security level; policy is

part of the code

– Dynamic tracking permits the policy to be a property of the data

– Programs are easily used in different security domains, as the

policy is not tied to the code
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Why Dynamic Information Flow
Security?

• Greater precision

• Dynamic Data Policies

• Dynamic Languages (e.g. Perl, Javascript)

– Fundamentally dynamic operations cannot ever be tracked by

any static system and so the dynamic approach is the only

alternative
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Direct Flows are Easy to Track
• All direct flow paths will be taken at run-time

• Simple run-time labeling can account for these flows

x := h + 1;

• If h is labeled high, then the + operation passes along this label,

which is further propagated to the location x
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Challenge: Indirect Flows
• Run-time execution only takes one path

• But indirect flows arise due to branching, requiring analysis of all

paths

x := 1;

if (h == 0) then x := 0 else ();

output(deref (x));
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Challenge: Indirect Flows
• Run-time execution only takes one path

• But indirect flows arise due to branching, requiring analysis of all

paths

x := 1;

if (h == 0) then x := 0 else ();

output(deref (x));

– If h == 0, we can capture the indirect flow since the

assignment occurs under a high guard
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Challenge: Indirect Flows
• Run-time execution only takes one path

• But indirect flows arise due to branching, requiring analysis of all

paths

x := 1;

if (h == 0) then x := 0 else ();

output(deref (x));

– If h != 0, we cannot dynamically capture the indirect flow since

no assignment occurs under h, yet a leak still occurs

– Implicit indirect flow leaks occur due to paths not taken

CSF ’07 15



Mark Thober July 7, 2007

Challenge: Indirect Flows
• Run-time execution only takes one path

• But indirect flows arise due to branching, requiring analysis of all

paths

x := 1;

if (h == 0) then x := 0 else ();

output(deref (x));

If we could indicate that the data in x always depends on h,

we could soundly track information flows at run-time
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Dynamic Dependencies

x := 1;

if (h == 0) then x := 0 else ()

deref (x);

• How do we indicate that the data in x depends on h?

– Really, the data in x depends on the data in the conditional

branch

• How can we capture this dependency in runs where x is not

assigned under h?
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Dynamic Dependencies

x := 1;

if (h == 0) then x := 0 else ()

deref (x);

• Observe: Assignments are manifested at dereference

– We can leverage this to track flows in both runs
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Dynamic Dependencies

x := 1;

if (h == 0) then x := 0 else ()

deref (x);

• Solution: Relate the security level of data to syntactic program

points
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Dynamic Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

• Solution: Relate the security level of data to syntactic program

points

The dependencies are already there, we’re just tracking them.
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Dynamic Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

• Solution: Relate the security level of data to syntactic program

points

– The information at the conditional p1 is High (p1 7→ High)

– Since x is assigned under this conditional, then dereferenced,

p2 depends on p1 (p2 7→ p1)

– Since p2 7→ p1 and p1 7→ High, transitively p2 7→ High

Hence the value read from x must be High
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Capturing Dependencies
• Maintain a cache of program point dependencies that persists

across runs (2 options)

1. Build the cache dynamically, as the program runs

– Precise, but leaks are possible in early runs, before all the

dependencies are observed

2. Pre-compute a cache statically

– Sound, but static analysis will be conservative

• Maintain a cache of security labels that is local to the current run
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Language
• Higher-order λ-calculus with mutable state

– With let-expressions, conditionals, binary operations, ints and bools

• Conditionals, application sites, and dereference points are marked with program

point identifiers

– ifp e then e else e | e (e)p | derefp e

• Values are labeled with a set of program points, P, and a security level L

– 〈vL, P〉, for example 〈5Low, {p1,p3}〉

• A dependency cache maps program points to sets of program points, {p 7→ P}

• A direct flow cache maps program points to security levels, {p 7→ L}

• Run-time information flow monitoring defined via operational semantics
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Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1

value of h 0High

dependency cache {}

direct flow cache {}

heap {}

final value
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Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1

value of h 0High

dependency cache {}

direct flow cache {}

heap {x 7→ 〈1Low, {}〉}

final value
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Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1

value of h 0High

dependency cache {}

direct flow cache {p1 7→ High}

heap {x 7→ 〈1Low, {}〉}

final value
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Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1

value of h 0High

dependency cache {}

direct flow cache {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉}

final value
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Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1

value of h 0High

dependency cache {p2 7→ p1}

direct flow cache {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉}

final value 〈0Low, {p2}〉
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Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1

value of h 0High

dependency cache {p2 7→ p1}

direct flow cache {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉}

final value 0High

Transitively

CSF ’07 29



Mark Thober July 7, 2007

Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1

value of h 0High

dependency cache {p2 7→ p1}

direct flow cache {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉}

final value 0High

Transitively

Leak Detected!
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Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1 Run 2

value of h 0High 1High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {}

heap {x 7→ 〈0Low, {p1}〉} {}

final value 0High

Keep

Clear
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Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1 Run 2

value of h 0High 1High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {}

heap {x 7→ 〈0Low, {p1}〉} {x 7→ 〈1Low, {}〉}

final value 0High
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Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1 Run 2

value of h 0High 1High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉} {x 7→ 〈1Low, {}〉}

final value 0High
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Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1 Run 2

value of h 0High 1High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉} {x 7→ 〈1Low, {}〉}

final value 0High
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Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1 Run 2

value of h 0High 1High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉} {x 7→ 〈1Low, {}〉}

final value 0High 〈1Low, {p2}〉
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Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1 Run 2

value of h 0High 1High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉} {x 7→ 〈1Low, {}〉}

final value 0High 1High

Transitively
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Dynamically Capturing Dependencies

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1 Run 2

value of h 0High 1High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈0Low, {p1}〉} {x 7→ 〈1Low, {}〉}

final value 0High 1High

Transitively

Leak Detected!
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What if the Order of Execution is
Reversed?

• Executing the then branch before the else branch allowed us to

catch both leaks

• What happens if we execute the else branch first?
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In Reverse Order

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1a

value of h 1High

dependency cache {}

direct flow cache {}

heap {}

final value
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In Reverse Order

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1a

value of h 1High

dependency cache {}

direct flow cache {p1 7→ High}

heap {x 7→ 〈1Low, {}〉}

final value 〈1Low, {p2}〉
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In Reverse Order

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1a

value of h 1High

dependency cache {}

direct flow cache {p1 7→ High}

heap {x 7→ 〈1Low, {}〉}

final value 1Low
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In Reverse Order

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1a

value of h 1High

dependency cache {}

direct flow cache {p1 7→ High}

heap {x 7→ 〈1Low, {}〉}

final value 1Low

Leak NOT detected!
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In Reverse Order

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1a Run 2a

value of h 1High 0High

dependency cache {} {}

direct flow cache {p1 7→ High} {}

heap {x 7→ 〈1Low, {}〉} {}

final value 1Low
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In Reverse Order

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1a Run 2a

value of h 1High 0High

dependency cache {} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈1Low, {}〉} {x 7→ 〈0Low, {p1}〉}

final value 1Low 〈0Low, {p2}〉

CSF ’07 41



Mark Thober July 7, 2007

In Reverse Order

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1a Run 2a

value of h 1High 0High

dependency cache {} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈1Low, {}〉} {x 7→ 〈0Low, {p1}〉}

final value 1Low 0High
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In Reverse Order

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1a Run 2a

value of h 1High 0High

dependency cache {} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈1Low, {}〉} {x 7→ 〈0Low, {p1}〉}

final value 1Low 0High

Leak Detected!
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Important Observations
• The size of the dependency cache is important

– Missing dependencies may permit leaks

• The ordering of executions matters

– Only certain trouble-some orderings cause leaks, where the

branch without the assignment is executed first
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Partial Dynamic Noninterference

Theorem 1. If r1 and r2 are two runs of a program that both terminate

and differ only in high inputs, and both runs result in values labeled low,

then these values are identical.

Proof. By bisimulation of the low computation.
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What if we want Full Noninterference?

• In many cases, no leaks can be tolerated!
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Use a Fixed Point Dependency Cache
• A cache that contains all the program dependencies, and will never

grow during computation

• How to find a Fixed Point Dependency Cache?

– Through testing

∗ Will be more precise, but it is undecidable in general to always

be sure all dependencies are captured

– With a static analysis

∗ Will contain all dependencies, but be conservative
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Use a Fixed Point Dependency Cache
• A cache that contains all the program dependencies, and will never

grow during computation

• How to find a Fixed Point Dependency Cache?

– Through testing

∗ Will be more precise, but it is undecidable in general to always

be sure all dependencies are captured

– With a static analysis

∗ Will contain all dependencies, but be conservative

• Still better than a completely static system, due to run-time

precision, dynamic policies, etc.
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Use a Fixed Point Dependency Cache
• A cache that contains all the program dependencies, and will never

grow during computation

• How to find a Fixed Point Dependency Cache?

– Through testing

∗ Will be more precise, but it is undecidable in general to always

be sure all dependencies are captured

– With a static analysis

∗ Will contain all dependencies, but be conservative

• Still better than a completely static system, due to run-time

precision, dynamic policies, etc.

See paper for details.
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All Leaks Detected with Full Cache

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1b Run 2b

value of h 1High 0High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈1Low, {}〉} {x 7→ 〈0Low, {p1}〉}

final value 1High 0High
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All Leaks Detected with Full Cache

x := 1;

ifp1
(h == 0) then x := 0 else ()

derefp2
(x);

Run 1b Run 2b

value of h 1High 0High

dependency cache {p2 7→ p1} {p2 7→ p1}

direct flow cache {p1 7→ High} {p1 7→ High}

heap {x 7→ 〈1Low, {}〉} {x 7→ 〈0Low, {p1}〉}

final value 1High 0High

Leak Detected! Leak Detected!
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Better Precision at Run-time
x := 0; y := 0;

ifp1
(l < 0) then y := h else ()

ifp2
(l > 0) then x := derefp3

(y) else ()

derefp4
(x);

Run 1, with Fixed Point Dependency Cache

value of l, h -1Low, 1High

dependency cache {p3 7→ {p1,p2}, p4 7→ {p2,p3}}

direct flow cache {p1 7→ Low,p2 7→ Low}

heap {x 7→ 〈0Low, {}〉, y 7→ 〈1High, {p1}〉}

final value 〈0Low,{p4}〉
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Better Precision at Run-time
x := 0; y := 0;

ifp1
(l < 0) then y := h else ()

ifp2
(l > 0) then x := derefp3

(y) else ()

derefp4
(x);

Run 1, with Fixed Point Dependency Cache

value of l, h -1Low, 1High

dependency cache {p3 7→ {p1,p2}, p4 7→ {p2,p3}}

direct flow cache {p1 7→ Low,p2 7→ Low}

heap {x 7→ 〈0Low, {}〉, y 7→ 〈1High, {p1}〉}

final value 〈0Low,{p4}〉 p2 is Low, p3 is undefined
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Better Precision at Run-time
x := 0; y := 0;
ifp1

(l < 0) then y := h else ()
ifp2

(l > 0) then x := derefp3
(y) else ()

derefp4
(x);

Run 1, with Fixed Point Dependency Cache

value of l, h -1Low, 1High

dependency cache {p3 7→ {p1,p2}, p4 7→ {p2,p3}}

direct flow cache {p1 7→ Low,p2 7→ Low}

heap {x 7→ 〈0Low, {}〉, y 7→ 〈1High, {p1}〉}

final value 0Low
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Better Precision at Run-time
x := 0; y := 0;
ifp1

(l < 0) then y := h else ()
ifp2

(l > 0) then x := derefp3
(y) else ()

derefp4
(x);

Run 1, with Fixed Point Dependency Cache

value of l, h -1Low, 1High

dependency cache {p3 7→ {p1,p2}, p4 7→ {p2,p3}}

direct flow cache {p1 7→ Low,p2 7→ Low}

heap {x 7→ 〈0Low, {}〉, y 7→ 〈1High, {p1}〉}

final value 0Low

No False Positive!
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Dynamic Noninterference

Theorem 2. If r1 and r2 are two runs of a program that begin with a

fixed point of dependencies, both terminate, and differ only in high

inputs, and either run results in a value labeled low, then both runs

result in low values, and these values are identical.

Proof. Follows from Partial Dynamic Noninterference result, and

Definition of a Fixed Point Dependency Cache.
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Bonus: Static Noninterference

• A sound run-time system is a perfect set-up for Static

Noninterference

• Static Noninterference can now be proved directly by Subject

Reduction over the labelled semantics, using the Dynamic

Noninterference property
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Related Work
• Le Guernic et. al.

– Label tracking in a small imperative language with while-loops,

conditionals, and assignment

– Uses a static analysis at run-time to discover flows in branches

not taken

• A few hybrid systems that track direct flows at run-time and use a

pre-process analysis for indirect flows

– Not interprocedural, and no proofs

• Many other works on dynamic aspects of information flow
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Future Work
• Improve the current system

– Interactive IO, exceptions, etc.

• Efficiency

– Precomputing cache closure, soft-typing, etc.

• Declassification

• Dynamic policy changes

• Run-time auditing

• Other dependency-related problems

– Slicing, optimization, debugging
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Conclusion
• A sound, run-time dependency tracking system for monitoring direct

and indirect information flows

– Dependencies can be captured dynamically or approximated

statically

• Provides increased precision and dynamically defined policies

• New proof technique for dynamic (and static) noninterference

• Much more work to be done on dynamic information flow tracking!!
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