
Specification Diagrams for Actor Systems

Scott F. Smith
The Johns Hopkins University�������� ���� �	
�

May 15, 1998

1 Introduction

We propose here a new form of graphical notation for specifying open distributed
object systems. The primary design goal is to make a form of notation for defining
message-passing behavior that is expressive, intuitivelyunderstandable, and that
has a formal underlying semantics.

Specification diagrams are graphical structures. Many specification languages
that have achieved widespread usage have a graphical foundation: engineers can
understand and communicate more effectively by graphical means. Popular graph-
ical specification languages include Universal Modelling Language (UML) and its
predecessors [RJB98], and StateCharts [Har87]. UML is the now-standard set of
object-oriented design notations; it includes several different forms of graphical
specification notation. Our aim here is a language with similar intuitive advan-
tage but significantly greater expressivity and formal underpinnings. The language
is also designed to be useful throughout the development lifecycle, from an ini-
tial sketch of the overall architecture to detailed specifications of final compo-
nents that may serve as documentation of critical aspects oftheir behavior. Its
design was inspired by concepts from actor event diagrams [Cli81], process al-
gebra [Mil80, Hoa85], and UML Sequence Diagrams [RJB98]. Inthis particular
presentation the underlying communication assumptions weuse are those taken
from the actor model: object- and not channel-based naming,and asynchronous
fair message passing.

1.1 Actor Concepts

We provide here a very brief overview of actor concepts; see [Agh86, AMST97,
Tal97] for more complete descriptions.

1

Actors are distributed, object-based message passing entities. Since actors are
object-based, they each have a uniquename, and actors may dynamically cre-
ate other actors. Individual actors independently computein parallel, and actors
only communicate by message passing. Messages are sent asynchronously, so the
sender may continue computing immediately after a message send. Messages are
of the forma� M, indicating messageM is sent to actora. Officially, we have

Definition 1.1 (A�M �MP): Define a
 A to be a fixed countably infinite set of
actor names;M
 M to be a set of message expressions; and,

mp
 MP � A � M � A � M : κ

to be the set of message packets forκ
 Key a countable set of keys (e.g.Key �
Nat). We will write A � M � : κ� for a message packet that may or may not have a
key. The keys serve a technical purpose which is described below.

All messages must eventually arrive at their destination, but with arbitrary de-
lay. At this point they may be queued if the destination actoris busy. Additionally,
individual actor computations must never starve. These twoguarantees of progress
are the fairness assumptions of actor computation. There isno programming lan-
guage for actors; one possible language is defined in [MT97] but others are possi-
ble. A fixed semantic framework for actors has been developed[AMST97, Tal97].
We will use this framework as the basis for the developments here.

Actor systems are intended to model open distributed computation. This means
that the whole system will not be present, and the framework must assume some
external actors are interacting with the local system. Additionally, of the local
actors, only some of their names may be known by external entities; these are the
receptionists. The external actors are notated as the setχ, and the receptionists
the setρ. These sets may grow over time: the external actors will growbased on
names received in messages from the outside, and receptionists may grow if new
local names are sent out in messages.

Actor systems may be modeled by the set of possible sequencesof inputs and
outputs they may perform over time. We call one such sequence, possibly infinite,
an interaction path, and model actor system behavior by a set of such paths. The
technical details of this model are summarized in section 3.

2 Specification Diagram Notation

We begin with the graphical notation and an informal idea of its meaning. Fig-
ure 1 presents the basic diagram components. Vertical linesindicate progress in
time going down, expressing abstract causal ordering on events, with events above

2

D

D

Sequence

DD D

Parallel

D D

Fork

M

a

Send-Receive

0..

D

Loop

new x

New

Skip

EOD

M

a

Receive

M

a

Send

... ...

)

)

D D D

Choice

fresh x phi

Constrain

D

X

Recursion

{

D

{

ScopeRec. var

Xx := psi

AssignFresh

Figure 1: Specification Diagram Components

3

necessarily leading to events below. This causal ordering will be termed acausal
thread. Note there is no necessary connection between these “threads” and actors
or processes, they exist only at the semantic level: a singlethread of causality may
be multiple actors, and a single actor may have multiple threads of causality. The
components listed in Figure 1 are composed to form specification diagrams. Each
form of diagram component has a single in-edge and out-edge—the figure serves
as a grammar for the diagrams.

sequencingVertical lines (causal threads) represent necessary temporal sequenc-
ing of events.

parallel Events in the parallel diagrams have no causal ordering between them,
but are after events above and before events below.

choice One of the possible choices is taken.

fork A diagram is forked off which hereafter will have no direct causal connec-
tion to the current thread (however, messages could indirectly impose some
causality between the two).

skip Nothing.

send A message is sent.

receive A message is received by actora, possibly binding pattern variables in the
messageM, which can be used below in the diagram.

send-receiveA message is sent from one component of the diagram to another,
producing a causal cross-connection in what could have beencausally unre-
lated segments.

loop The diagram is iterated some numbern times, wheren is nondeterministically
chosen from the interval 0� � �∞. The casen � ∞ means it loops forever.

EOD Denotes the end of a causal thred in the diagram.

scope Brackets demarcate static scoping of diagram variables.

recursion A boxed diagram fragment, may refer to itself by name,X.

new A fresh diagram variablex is allocated, with arbitrary contents.

fresh A fresh diagram variablex is allocated, with contents an actor name not
currently in use.

4

constraint An arbitrary constraint is placed on the current thread of causality,
which must be met. There is no direct analogue to this notion of constraint
in programming languages: the constraint may be any mathematical expres-
sion. And, a constraint failing does not indicate an error, it indicates that
such a computation path will not arise. So, it is significantly different from
Hoare-style program assertions.

assign A variable is dynamically assigned a new value. The assignment body,ψ,
can be any sensible mathematical expression.

Specification diagrams are truly aspecificationlanguage—for internal mes-
sages, both source and target are shown, meaning there is a nonlocal constraint
on both sender and receiver of message delivery. On this point they differ from
existing forms of concurrent language.

There is no requirement that the choice be fair, in the sense that for a particular
actor computation the same branch could always be taken. However, there is a
requirement that message delivery be fair, in the sense thatany message sent must
eventually arrive at its destination.

The parallel and fork operators are similar, but parallel threads must eventually
merge, while forked threads are asymmetrical in that the forked threads need never
merge.

A top-levelspecification diagram includes an interface, notatedDρ
χ. Top-level

diagrams are modules which may be directly given semantic meaning. We will not
always include the phrase “top level” but meaning should be clear from context.

In this brief paper we will use a textual notation and not the diagrammatic
notation.

2.1 Textual Notation for Diagrams

We give an equivalent textual form for diagrams. This will also be considered the
“official” syntax, and full details will be given. Diagrams may be easily mapped
into the textual syntax.

The set of variablesXd is the set of diagram variablesx, y, z, � � � used in
diagrams. These variables may take on values in some mathematical universe
U which we keep open-ended; it could be instantiated with a settheory or type
theory. We assume the basic collections of the actor theory are contained inU:
A �M �MP � true�false� U. To avoid circular mathematical definitions, we assume
U is fixed before meaning of specification diagrams is assigned. And, we assume
acq�s� for s
 U is defined and constrain it to be a finite subset ofA.

The notion of message packetMP defined earlier included an optionalkey.
Keys are necessary to give a textual representation to the send-receive edges in di-

5

agrams, constraining a send to be connected to its corresponding receive by sharing
the same key. The interaction paths will not contain keys, they are used for local
synchronization only.

Specification diagram message packetsMPd are packets ofMP parameterized
by diagram variablesXd.

Definition 2.1 (MPd �Md �Ad): Let MPd be Ad � Md � Ad � Md : κ whereAd �
�Xd � U� � A andMd � �Xd � U� � M .

The parameterε
 Xd � U is an environment interpreting free diagram vari-
ables. We use the informal convention that message expression Md � x� 1 is an
abbreviation forMd�ε� � ε�x� � 1.

Specification diagrams may now be defined officially by the following gram-
mar.

Definition 2.2 (Specification Diagram Grammar): The specification diagrams,
D
 � , are defined by the following grammar.

name textual notation
skip �� ��
sequence D1;D2

parallel D1 � D2

choice D1 � D2

scope �D�
fork � !� �D�
receive !"#"�$" �mpd�
send �"%& �mpd�
constraint # % �'!(�% �φ�
new variable %") �x�
fresh actor name �!"�* �x�
assignment x +, ψ
recursion !"#X �D
recursion variable X

whereDi
 � are diagrams, andX
 Xr is a countable set of recursion variables. A
top leveldiagram is a diagram with an interface,Dρ

χ.

Sequencing is right-associative, and binds most tightly, followed by choice and
then parallel composition binding most loosely. We use an implicit static variable
binding convention:%") �x� � �!"�* �x�, and!"#"�$" �ad � Md� : κ��, with x infor-
mally occurring inMd, all denote implicitbindings (declarations) of variablex.
� � � � � denotes a scope boundary, giving the static end of any implicit declarations
contained immediately within. The extent of a variable binding is, intuitively, all
points which causally must follow the binding, and that are at the same or deeper

6

scope boundary. Thus for instance in�%") �x� � �� �� �;x :� 5, the assignment tox
is within the scope of the%") since this assignment causally must follow the dec-
laration ofx. If � were replaced by� in this example, the assignmentx would not
be bound (in fact it would be partially bound: if the left choice were taken it would
be bound, but not if the right choice were taken).

The assignment expressionψ is informally a function onU which may refer
to variables inXd; formally, ψ
 Pω -A. /Pω -A. / �Xd � U� � U: it takes as
parameter a tuple�ρ�χ�ε� where the environmentε gives mathematical meaning to
the free variables, andψ may refer to actors inρ andχ. Predicates onU are notated
φ, and are formally predicates onPω -A. /Pω -A. / �Xd � U�. Informally, we will
write e.g. “x
 ρ” to mean a predicateφ whereφ�ρ �χ �ε� iff ε�x�
 ρ. acq�D� is
defined as�acq�s� s
 U occurs as anmpd �φ or ψ in D�.

We use the convention that01(2�3"4(#! �x�y�z� � D defines a macro. Macros
are just functions: we will be careful not to define self-referential macros. Certain
syntax is easily encodable via macros and so is not defined in the core grammar.

Definition 2.3 (Diagram Macro Library): nondeterministic i teration: 5D60777∞ �
!"#X ���D;X� � �� ���

interval iteration: 5D6 i 777 j �
%") �x�; # % �'!(�% �i 8 x 8 j �;
!"#X �# % �'!(�% �x � 0� � # % �'!(�% �x 9 0�;x :� x: 1;D;X

for fresh variablex

if-then: �� φ '*"% D1 "3�" D2 �
�# % �'!(�% �φ�;D1� � �# % �'!(�% �;φ�;D2�

while-do:)* �3" φ & D �
!"#X ��# % �'!(�% �φ�;D;X� � # % �'!(�% �;φ�

end of diagram: " & � !"#X ���� ��;X�
abort path: (< !' � # % �'!(�% �false�
initialized new: %") �x � s� � %") �x�; # % �'!(�% �x � s�
constrained new: %") �x
 S� � %") �x�; # % �'!(�% �x
 S�
constrained receipt: !"#"�$" �ad � Md
 S� �

!"#"�$" �ad � Md�; # % �'!(�% �Md
 S�

7

Translation from informal diagrams into textual notation is straightforward
from the above in all cases except the internal message edges. With these inter-
nal edges, a diagram can take on an arbitrary graph structure, and this cannot be
placed in purely textual notation. The purpose of keyed message packets is pre-
cisely to capture the 1-1 relation implied by an internal edge: the sender and re-
ceiver must be paired with no other send/receive to this message. Thus, for each
internal edge in a diagram, a fresh keyκ is assigned to it, and messagead � Md on
the message edge translated into a�"%& �ad � Md : κ� action by the sender and a
!"#"�$" �ad � Md : κ� action by the receiver.

2.2 Small Examples

We now give a series of small examples to illustrate use of thelanguage. None
of the examples attempts to seriously illustrate the usefulness of the language for
specifications, as the examples are too small; the goal here is just to give informal
clarification of the syntax and semantics.

Message Passing SemanticsMessage passing in diagrams differs from actor
programming. Diagram messages are specifications that a message was sent on
one end and actively processed on the other. For instance, consider a sink:

=�%� �a� � -!"#"�$" �a� x�.0777∞
A sink behavior in an actor is a behavior that does nothing; messages will auto-
matically queue up. At the specification level, we need to specify the receipt of
those messages that are forever ignored. The diagrams do implicitly account for
the asynchronous nature of actor communication: a message edge only constrains
the send to be before the receive, not for the two to happen simultaneously. The use
of “0 � � �∞” iteration models all possible environment behaviors. Theenvironment
may send 0, an arbitrary number, or infinitely many messages.

The interaction path semantics of the top-level diagram
=�%� �a�>a?/0 have paths

of the following form. Each path consists of a sequence of input messagesa� M.
Since the system is reactive, the environment could send 0�1�2� � � � �n� � � � or even
infinitely many such messages. No messages are sent out.

So, a point about message passing in diagrams is that messages which will
neverbe processed must be specified as arriving. Consider

-!"#"�$" �a� x�; # % �'!(�% �x 9 100� � � � .0777∞
This specification may at first look analogous to a synchronization constraint that
only processes messages with contents larger than 100. However, a synchroniza-
tion constraint of this form will implicitly forever ignoremessages with contents

8

less than 100. The above specification instead constrains the environment: it re-
quires that such messages will in fact never be sent. Specifications which constrain
the environment arepartial.

Ticker A ticker is a simple actor which increments a counter upon receipt of a
'�#� message, and replies to' �2 " messages with the current time. First, a partial
specification of a ticker is given which only specifies that time replies are numer-
ical, not that the number of tick inputs is counted. This shows how specifications
may underconstrain the program space.

@(!' �(3A �#�"! �a� �
-!"#"�$" �a� ' �#� �.0777∞ �
-!"#"�$" �a� ' �2 "@x�; %") �y
 Nat�; �"%& �x� !"�3B �y��.0777∞

The possible interaction paths for the top-level diagram
@(!' �(3A �#�"!>a� /0

may be informally described as any path satisfying the following. For eacha �
'�2 "@c input in the path, there is later ac� !"�3B �n� output for arbitraryn
 Nat,
and all outputs are!"� 3B messages so paired. There also may be any number,
including infinitely many,a� ' �#� input messages in any order.

Next we give a high-level specification of the full ticker: itgives a sequence of
replies to' �2 " messages in a non-decreasing sequence.

A �#�"! �a� �
-!"#"�$" �a� ' �#� �.0777∞ �%") �# C%'
 Nat�;
-!"#"�$" �a� ' �2 "@x�; %") �y
 Nat�;
C%' +, # C%' � y; �"%& �x� !"� 3B �# C%'��.0777∞

The actual implementation of a ticker we are specifying sends '�#� messages
to itself to increment the counter: every time it receives a'�#�, it increments the
counter and sends itself another' �#�. A low-level specification which is more
close to an actual implementation is

D%'"% �� %(3A�#�"!�a� �
�"%& �a� '�#��; %") �# C%' � 0�;
-�!"#"�$" �a� '�#� �;
C%' +, # C%' � 1; �"%& �a� ' �#� ��
� �!"#"�$" �a� '�2 "@x�; �"%& �x� !"� 3B �# C%'���.0777∞

9

Note that' �#� messages could in theory be sent by the environment. We then
desire to establish equivalences on top-level diagrams such as

A �#�"! �a�>a?/0 E� D%'"% �� %(3A �#�"!�a�>a?/0

to show a high-level specification is equivalent to a low-level one. Extensional
equivalenceE� is defined in Section 5.

The above diagrams have a restricted acceptable message input set: messages
must be in�' �#� �' �2 "�, and so the diagrams are partial. It is not difficult to
extend a diagram to a diagram without acceptable message restrictions:

F 2� 3"'"A �#�"! �a� �
� !� � 5!"#"�$" �a� x�; # % �'!(�% �msgMeth�x� G
 �' �#� �' �2 "��60777∞ �;
A�#�"! �a�

Ticker Factory This example shows how a fresh actor may be dynamically gen-
erated.

A �#�"!H(#' !B �a� �
-!"#"�$" �a� %")@c�;
�!"�* �x�;
� !� �A �#�"! �x��;
�"%& �c� !"� 3B �x��.0777∞

Function Composer We assume as given two mathematical functionsF andG
which are defined over all possible messages. First we specify an abstract function-
computer behavior.

HC% #'� % �a� f � �
-� !� �!"#"�$" �a� # 2�C'" �x�@c�; �"%& �c� !"� 3B � f �x���.0777∞

If the � !� above was not present, the specification would implicitly order the
function calls. However, since the function call order is irrelevant, the forkless
specification would show causal ordering that was not necessary. The forking and
forkless versions are in fact equivalent, however, in the sense that they specify the
same set of interaction paths.

An actor which computesG I F is then specified asHC% #' � % �a�G I F �. A
hypothetical implementation may use two distinct actorsHC% #' � % �aF �F � and
HC% #' � % �aG �G� to computeF andG respectively, and a

F 2� �"! actor used
to put together the composition. The system with these threeactors should meet
the above specification. The

F 2� �"! is specified as follows.

10

F 2� �"! �a� f �g�af �ag� �
-!"#"�$" �a� # 2�C'" �x�@c�;
�!"�* �xf �; �"%& �af � # 2�C'" �x�@xf �; !"#"�$" �xf � !"� 3B �x��;�!"�* �xg�; �"%& �ag � # 2�C'" �x�@xg�; !"#"�$" �xg � !"� 3B �x��;�"%& �c� !"� 3B �x��.0777∞

The complete low-level specification is then the parallel composition of these
three:

HC% #'� %F 2� �"! �a�F�G�aF �aG� �F 2� �"! �a�F�G�aF �aG� � HC% #'� % �aF �F � � HC% #' � % �aG �G�
In an open distrubuted system, components may be designed asseparate top-level
diagrams and then composed. In particular for large systemsfor which the de-
sign is distributed across different political entities, object-based components are
composed. For this example, the top-level composition is defined as follows.

HC% #'� %F 2� �"!4 &C3"�a�F�G�aF �aG�>a?/0 �F 2� �"! �a�F�G�aF �aG�>a?>aF JaG? � HC% #'� % �aF �F �>aF ?
/0 � HC% #'� % �aG �G�>aG?

/0

where � is not the composition operator on diagrams, but the composition opera-
tor on top-level specifications. Theorem 5.3 below may be used to show the two
methods for composition produce the same specification:

HC% #' � %F 2� �"!�a�F�G�aF �aG�>a?/0 E� HC% #' � %F 2� �"!4 &C 3"�a�G I F �>a?/0

This specification is equivalent to the abstractHC% #' � % �a�G I F �:

HC% #'� %F 2� �"!�a�F�G�aF �aG�>a?/0 E� HC% #'� % �a�G I F �>a?/0

We sketch how an argument to establish this equivalence would proceed. The
first step is to perform a “zipping” transformation onHC% #' � %F 2� �"! to con-
nect send and receive to give send-receive cross-edges. This is a point where the di-
agrammatic semantics becomes significantly more readable than the textual form.

K���"&HC% #' � %F 2� �"!�a� f �g�af �ag� �
-!"#"�$" �a� # 2�C'" �x�@c�; �!"�* �xf �; �!"�* �xg�;�"%& �af � # 2�C'" �x�@xf : κ f �; !"#"�$" �xf � !"�3B � f �x�� : κLf �;�"%& �ag � # 2�C'" �x�@xg : κg�; !"#"�$" �xg � !"�3B �g�x�� : κLg�;�"%& �c� !"� 3B �x��.0777∞ �
-� !� �!"#"�$" �af � # 2�C'" �x�@xf : κ f �; �"%& �xf � !"� 3B � f �x� : κLf ��.0777∞ �
-� !� �!"#"�$" �ag � # 2�C'" �x�@xg : κg�; �"%& �xg � !"� 3B �g�x� : κLg��.0777∞

11

The
K���"&HC% #' � %F 2� �"! is an intermediate stage in the incremental trans-

lation of HC% #'� %F 2� �"! to HC% #'� %. By proving

HC% #'� %F 2� �"! �a�F�G�aF �aG�>a?/0 E�K���"&HC% #' � %F 2� �"!�a�F�G�aF �aG�>a?/0 E�
HC% #'� % �a�G I F �>a?/0

the desired equivalence is established.

Simple Memory Cell
F"33 �a� �

%") �x�; MN #"33 $(3C" O �% �' �(33B (!< �'!(!B NP
- �!"#"�$" �a� �"' �v�@c�; MN #Q$ (!" �(''"!% $(! �(< 3"� NP
x +, v;
�"%& �c� (#���
��!"#"�$" �a� R"'@c�;
�"%& �c� !"�3B �x�� .077∞

A top-level specification for a memory cell is then
F"33 �a�>a?/0 . Another pow-

erful idea is to write a partial specification which only responds to message input
patterns that are semantically sensible. For instance, fora cell, receipt of aR"' be-
fore any�"' messages have arrived is unreasonable; we thus make a specification
which constrains the environment to never do this.

0%$ �! %2 "%'F % �'!(�% �%RF"33�a� �
%") �x � C%&"��%"&�; MN #"33 �% �'�(33B C%&"��%"& NP
- �!"#"�$" �a� �"' �v�@c�;
x +, v;
�"%& �c� (#���
��!"#"�$" �a� R"'@c�; # % �'!(�% �x G� C%&"��%"&�
�"%& �c� !"�3B �x�� .077∞

Environment constraints are a powerful aspect of specification diagrams. Such
specifications are partial: they are not defined for all patterns of input. Composition
with such specifications is also partial, as it may fail sincethe specification is not
fully reactive. However, the concept of satisfaction of an environment-constrained
specification is a difficult one and so now we will generally study complete speci-
fications only.

12

3 A Path-Based Framework for Actors

In this section we briefly review the semantic framework usedto model actor
systems; this framework will then be used to model specification diagrams. See
[Tal97] for details; here we provide a terse and simplified presentation. We use
a path-based (trace-based) semantics: an open, nondeterministic system is inter-
preted as a set ofinteraction paths. Each path is a possibly infinite list of input
and output actions. Interaction path semantics models an actor system in terms
of the possible interactions (patterns of message passing)it can have with its en-
vironment. Interaction semantics does not let us use any information about inter-
nal computations or what actors may be initially present or known beyond those
specificed in the interface. A specification diagram is givenmeaning as a set of
interaction paths, so the meaning of a diagramD may be the same as the meaning
of some actor program implementation. If this is in fact the case, we can assert that
the implementation meets the specificationD.

Interfaces An actor system interface is a pairρ
χ of disjoint finite sets of actor

names.ρ specifies the receptionists andχ specifies the external actors known to
the system.

We define parallel composition of interfaces by

ρ1
χ1 S� ρ2

χ2 iff ρ1 T ρ2 � /0
ρ1
χ1 � ρ2

χ2 � ρ1Uρ2V
χ1Uχ2WX Vρ1Uρ2W, providedρ1

χ1 S� ρ2
χ2

Events In order to distinguish differrent occurrences of message packets with the
same contents we use a set,E, of events. Each event,e, contains a message packet,
pkt�e�
 MP. We let e range overE and E range overP -E.. We write �% �e� to
distinguish the arrival of a message from outside the systemfrom its deliverye.
We also write C' �e� to distinguish delivery of a message to the environment from
from the actual delivery to the target actor. We letYE be the set of events extended
by these input/output events

YE � E � �% �E� � C' �E�
and we letẽ range overYE andYE range overP -YE.. We will use a simple theory of
potentially infinite lists, notated-x1 �x2 � � � � �xk � � � � .. List concatenation is written

-� � � . Z -� � � ., and for the case where the first list is infinite returns that as the result.
Unit for concatenation is the empty list,- .. SList is the set of lists with elements
from S.

13

Interaction Paths An interaction path is a possibly infinite list of input/output
events,

π � -ẽ1 �ẽ2 � � � � �ẽk � � � � .
 ��% �E� � C' �E��List �
It represents a potentially infinite sequence of interactions of a system with its en-
vironment as observed by some hypothetical observer.πρ

χ represents an interfaced
interaction path, a path with the indicated interface. All of the interaction paths
constructed in this paper are constrained to obey theEPLawof [Tal97]. EPLaw�π�
requires inputs ofπ to be to receptionists or names sent in a previous output, and
outputs to be to external actors or actors whose name was received in a previous
input. EPLawcorresponds to the Baker-Hewitt locality laws governing how actors
become acquainted with one another.

3.1 Interaction Path Sets and their Algebra

An interaction path models one possible way a system might interact with its en-
vironment. We model the behavior of a system by sets of interfaced interaction
paths,Ip.

Parallel Composition We define composability and composition on interaction
path sets. The basic operation for composing paths is dovetailing two interaction
paths,π0 [π1. This operation is defined in terms of precursorπ0 [0 π1, which is
the greatest symmetric function closed under the following(in the following we
abuse notation and write-� � � . ZSto mean� -� � � . Z s s
 S�).

�0� - . [0 π � �π�
�1� -�% �e�. Zπ0 [0 - C' �e�. Zπ1 � π0 [0 π1�2� -ẽ0. Zπ0 [0 -ẽ1. Zπ1 �

�-ẽ0. Z �π0 [0 -ẽ1. Zπ1�� �
� -ẽ1. Z �-ẽ0. Zπ0 [0 π1��

Then,π0 [π1 is defined asπ0 [0 π1 with the pathsπ
 π0 [0 π1 that after some
point forever starve events from one ofπ0 or π1 removed.

Define composability and parallel composition for path setsIp0 and Ip1 with
interfacesρ0

χ0 andρ1
χ1 as

Ip0 S� Ip1 iff ρ0
χ0 S� ρ1

χ1

Ip0 � Ip1 � �πρ
χ �\ π0

ρ0
χ0
 Ip0 �π1

ρ1
χ1
 Ip1��π
 π0 [π1 � π0 andπ1 share no events ˜e� andEPLaw�π���

whereρ
χ � ρ0

χ0 � ρ1
χ1, providedρ0

χ0 S� ρ1
χ1.

14

Restriction The restriction ofIp with interfaceρ
χ to ρL is defined by

Ip]ρL � �πρ^
χ πρ

χ
 Ip andπ contains no�% �a� M� events fora
 �ρ : ρL ��
Renaming Renaming of interaction paths,_α �π�, is pointwise on each event in
the path, and renaming on path sets_α �Ip� is pointwise on each element of the set.

4 Operational Semantics of Diagrams

Diagrams are given meaning in this section via an operational semantics. The goal
is to give a set of interaction paths defining the behavior of top-level diagramsDρ

χ.
This is accomplished by defining a single-step relation mapping configurations to
configurations, the transitive closure of which yields a setof computation paths. In
this sense it is a standard presentation of operational semantics of actors [AMST97,
Tal97]. The main difference with these previous works is more post-processing is
required to remove paths that are not admissible. A configuration is of the form

Dρ
χ µ

Whereρ �χ are the current receptionists and external actor names, andµ � E is
a set of messages in transit, either to be sent out of the system or to be received
locally. Since each message is a unique event, it is possibleto have two messages
with identical target and contents inµ.

4.1 Preliminaries

Before presenting the operational semantics, we need to define two concepts. We
use a small-step semantics based on factoring a diagramD expression into a re-
dex Drdx and reduction (a.k.a. evaluation) contextR, D � R-Drdx.. Notation is
also needed for looking up, modifying, and extending variable bindings. The con-
cepts of reduction context and environment are in fact intertwined: environments
are local to particular points in reduction (so e.g. parallel threads may have dif-
fering environments) and so are spread around the reductioncontext. These local
environments are functionsγi
 Xd � U which hold the current state of diagram
variablesXd, and map only finitely many variables to non-` values,`
 U being
a special meta-value indicating undefined. A small additionto the language syntax
is used to bind variables inside the executing diagram:�aγ : D

a� indicates a lexical
scoping construct�D� under which execution is actively occurring, with current
local environmentγ.

15

Reduction contextsR (a.k.a. evaluation contexts) are used to isolate the next
redex to be reduced. Their grammar is

R� b or R � D or D � Ror R;D or �aγ : R
a�

R-D. denotes the act of replacing the (unique)b in Rwith diagramD. We will need
notation for reduction contexts defined as above but withoutthe �aγ : R

a� case; they
will be notatedRX .

Notation is next defined for manipulation of the environment. The basic op-
erations needed includeR@x to look up the value ofx in the environments ofR,
R@x +, s to modify the value of already-declared variablex, andR� x +, s to add
a new definition ofx in the innermost lexical level.ε�R� extracts the environment
from R in the form of a function from diagram variables to values.

Definition 4.1 (R@x�R@x +, s�R� x +, s, ε�R�): Letting

R� RX
0 -�aγ1 : � � �RX

n -�aγn : RX
nc1

a�. � � � a�. �
define

lookup R@x is γi �x� wherei is the largest number less than or equal ton with
γi �x� G� `, or ` if all γi �x� � ` .

modify R@x +, s is RX
0 -�aγ1 : � � �RX

i -�aγLi : � � �RX
n -�aγn : RX

nc1

a�. � � � a�. � � � a�. wherei is
the largest number less than or equal ton with γi �x� G� `, andγLi � γi at all
points exceptγLi �x� � s. If no suchi exists,R is unchanged.

extend R� x +, s is RX
0 -�aγ1 : � � �RX

n -�aγLn : RX
nc1

a�. � � � a�. for γLn � γn at all points ex-
ceptγLn�x� � s.

extract ε�R� � f where f �x� � R@x. Dom�ε�R�� � �x �ε�R�� �x� G� ` �.
acquaintancesacq�D� is

d
MdeD

acq�Md� � d
φeD

acq�φ� � d
ψeD

acq�ψ� � d
adeD

acq�ad� � d
γeD

d
xeXd

acq�γ�x��

where “f
 D” here means occurrence as a subterm inD. acq�R� is defined
identically toacq�D� except with the last clause beingg1h ihngxeXd

acq�γn �x��.
4.2 The Semantic Definition

In this section we define the semantic meaning function--Dρ
χ.. mapping top-level

diagrams to sets of interaction paths that describe the input-output behavior of the
diagram.

16

Dρ
χ µ ij

V
eW::� Dρ

χ^ �µ� �e��
wheree kl µ, χm n χ o pacqpeq r ρq, pktpeq is not keyed,targetpeq l ρ, and
pacqpDq o acqpµqq s acqpeq t ρ o χ

Dρ
χ �µ� �e�� uvw

V
eW:::� Dρ^

χ µ
wheree kl µ, ρm n ρ o pacqpeqq r χq, pktpeq is not keyed, andtargetpeq l χ

R-�� ��;D.ρχ µ xyz:� R-D.ρχ µ

R-�� �� � �� ��.ρχ µ {|}:� R-�� ��.ρχ µ

R-Dl � Dr .ρχ µ ~�uuxy
V
l W:::::� R-Dl .ρχ µ

and similarly for������pr q
R-� !� �D�.ρχ µ �u}�::� �R-�� ��. � RL -D.�ρ

χ µ
where forRn R�0 ���γ1 : � � �R�n ���γn : R�n�1

��� � � � ���, Rm n ��γ1 : � � � ��γn : � �� � � � ��
R-!"#"�$" �ad � Md� : κ��.ρχ �µ� �e�� }y~y i�y

V
eW::::::�RL -�� ��.ρχ µ

whereRm n R� x �� s, andpktpeq n adpεpRqq � MdpεpRm qq� : κ
�

R-�"%& �ad � Md� : κ��.ρχ µ xyj�
V
eW::::� R-�� ��.ρχ �µ� �e��

wherepktpeq n ad pεpRqq � MdpεpRqq� : κ
�

ande is a fresh event

R-% ") �x�.ρχ µ jy�
V
sW:::� �R� x +, s� -�� ��.ρχ µ

whereacqpsq t ρ o χ o acqpRq o acqpµq
R-�!"�* �x�.ρχ µ �}yx�

V
aW:::::� �R� x +, s� -�� ��.ρχ µ

wherea kl ρ o χ o acqpR��� ���q o acqpµq
R-# % �'!(�% �φ�.ρχ µ ~uj xw}| ij::::::�R-�� ��.ρχ µ

whereφpρ �χ �εpRqq holds

R-x +, ψ.ρχ µ |xxi�j::::� �RL -�� ��.ρχ µ
whereRm n R@px �� ψpρ �χ �εpRqqq

R-!"#X �D.ρχ µ }y~v}xiuj::::::�R-D -�!"#X �D��X..ρχ µ

R-�D�.ρχ µ x~u{y� ij:::::� R-�a�λx�` � : D
a�.ρχ µ

R-�aγ : �� �� a�.ρχ µ x~u{y�uvw::::::�R-�� ��.ρχ µ

Figure 2: Single-Step Computation for Diagrams

17

Definition 4.2: The single-step computation relation on diagram configurations is
defined in Figure 2.

For each of the rules except�% � C', the redexis theDrdx for left-hand-side
R-Drdx..
Definition 4.3: Given a top-level diagramD0

ρ0
χ0, define

raw event paths --D0
ρ0
χ0 ..raw �

� -3(<0 � 3(<1 � � � � � 3(<n � � � � .
D0

ρ0
χ0

/0 �|�0::� D1
ρ1
χ1 µ1 �|�1::� � � � �|�n 1:::� Dn

ρn
χn µn �|�n::� � � � �

progress --D0
ρ0
χ0 ..progress� �π π
 --D0

ρ0
χ0 ..raw and for all configurationsDi

ρi
χi µi

arising inπ, if Di � R-D. for someR�D, then there is a later configuration

RL -D.ρi¡ j
χi¡ j

µic j �|� i¡ j:::� with redex the same subterm occurrenceD�.
fair --D0

ρ0
χ0 ..fair � �π π
 --D0

ρ0
χ0 ..progressand each evente placed inµ during π’s

computation is eventually removed fromµ at some later point in the compu-
tation �

interaction paths --D0
ρ
χ..IP � �πρ

χ π0
 --D0
ρ
χ..fair, π is π0 with all events not of

the form �% �e�� C' �e� removed, and the events�% �e�� C' �e� in π are all
unique�.

The semantics of a top-level diagram,--Dρ
χ.., is then--�D�ρ

χ..IP.

4.3 Commentary on the Definition

The single-step computation rules themselves are for the most part familiar terri-
tory for operational semantics presentations, with a few different aspects. They
represent a language with syntax something like CSP, and asynchronous message
passing and name handling modelled on the actor approach. Weprovide some
commentry on what are perhaps some of the nonstandard aspects of the rules.

The �(! rule could just as well map�� �� � D to D. The!"#"�$" rule con-
tains implicit pattern-matching. Diagram variables inMd are considered pattern
variables, and are matched against the evente. Note that the receiverad could it-
self be a diagram variable, but this is not considered part ofthe pattern: it is not
possible to receive a message destined for an arbitrary actor. acq�s̄� � acq�e� holds
by the pattern match. In both send and receive, the keysκ are not “κd”–they are
simple constants and cannot be variables which are defined inthe environment.
The%") rule allocates variablex at the current lexical scoping level, and gives it an

18

arbitrary value based on the names of actors currently known. �!"�* , on the other
hand, assigns a single actor name tox which is not currently known. In either rule,
if x were already declared within the current lexical level, theold value is replaced.
(���R% updates a variable based onψ. The side condition only fails for the case a
variable is assigned to which was never declared; this will cause the computation
to get stuck and thus ruled out by lack of progress.# % �'!(�% only continues to
compute when the constraint holds; if not the computation isstuck and is ruled out
by the progress requirement.

The most unusual aspect of the semantics lies in the details of the progress
requirement. This requirement is significantly stronger than standard fairness re-
quirements, and makes the computation system unrealizable. In fact, even with-
out requiring progress the computation system is unrealizable because predicates
φ�ρ �χ �ε� may be undecidable, and thus for instance a deterministic halting-problem
solver may be defined. However, assuming predicates must be decidable, the pro-
gressing paths still may not be realized by some actor computation. An example of
such a non-realizable diagram is:

%") �% 2 !"¢"! � � false�;
- �!"#"�$" �a� 0�; # % �'!(�% �;% 2 !"¢"! ��;
% 2 !"¢"! � +, true; �"%& �c� 1��
��!"#"�$" �a� x�; # % �'!(�% �; �x � 0 £ % 2 !"¢"! ���;
�"%& �c� 0�� .077∞

it replies 0 to all inputs, except thelast 0 inputmayget a 1 reply. No realizable
system can forsee the future to know when the last input of a particular form has
arrived.

Progress rules out any computation path which contains a parallel computation
that is stuck,i.e., does not reduce. The phrase “subterm occurrence”, in analogy to
the concept ofresidual in the lambda-calculus, denotes a particular occurrence of
a subterm, because the same syntax may in theory occur multiple times in a single
term. Each ocurrence must progress. A fully formal definition may be obtained by
decorating each subterm with a unique label.

Particular computation paths that progress rules out include

b paths with false constraints such asR-# % �'!(�% �x � 0�.ρχ µ whereR@x �
1;

b paths which attempt receipt of a message on an unused local actor name,
such asR-!"#"�$" �a� Md� : κ��.ρχ /0 for actora G
 ρ� χ that is never sent out
of the configuration and which is sent no messages locally;

19

b paths which attempt receipt of a message,R-!"#"�$"�a� Md� : κ��.ρχ /0 where
in this particular computation path the environment will�% no such message
and it will not be sent locally either;

b paths which attempt receipt of a message on an external actorname, or send
of a keyed packet to an external actor;

b assignments to variables that do not exist in the environment, R-x +, 0.ρχ µ for
R@x � ` .

The above cases (excepting the first) are often a product of anill-conceived di-
agram design. However, There is no firm line that may be drawn between the well-
conceived and ill-conceived diagrams: well-conceived diagrams, when composed
with other diagrams, may appear ill-conceived. Nonetheless a simple conserva-
tive aproximation of ill-conceived diagrams is possible that detects many obvious
errors.

Definition 4.4: A diagramDρ
χ is ill-conceivedif --Dρ

χ.. � /0. Other diagrams besides
these may reasonably be classified as ill-conceived.

If a diagram has no paths, it cannot be sensible. There are other diagrams which
are intuitively not sensible, but there is no firmer line thatcan be drawn between
sensible and not. ConsiderD that contain a subterm occurrenceDl � Dr for which
all computation paths in--�D�ρ

χ..fair
either invariably reduce this occurrence redex

by #* �#" �l �, or invariably by#* �#" �r �. These choice operators may thus be
simplified away to the always-chosen case only, and this may be due to an ill-
conceived expression in the case never taken. However, it could also be due to
the fact that in the context the subterm occurs in, the path not taken is not used,
because the specification is more general than the current usage. For this reason,
such cases are not invariably classified as ill-conceived.

An example which shows a need for keys is

%") �x�; ��x +, 1;�"%& �a� x : κ� � x +, 2;�"%& �a� x : κL �� ��!"#"�$" �a� x : κ���!"#"�$" �a� x : κL �; ��� �� � �# % �'!(�% �x G� 2�; �"%& �a� ¤¥¦ ������
—if the keys were removed, aκ-κL communication could occur and¤¥¦ could be
sent toa.

5 Toward an Algebra of Diagrams

We now outline the algebra of diagrams; work remains to be done in this area. See
[Tal97] for full definition of the algebra of interaction path sets; basic definitions

20

were given previously in section 3. The algebra on diagrams is directly lifted from
the algebra onIp sets vie the semantic meaning function for diagrams,--Dρ

χ... When
performing algebraic reasoning on diagrams, we use the convention thatDρ

χ in
fact stands for its interaction path semantics,--Dρ

χ... The algebraic operations on
diagrams are inherited from the algebraic operations on interaction path sets:

Definition 5.1 (Composition, Restriction, Renaming):

D1
ρ1
χ1 � D2

ρ2
χ2 means --D1

ρ1
χ1.. � --D2

ρ2
χ2 ..

Dρ
χ]ρL means --Dρ

χ..]ρL_α�Dρ
χ� means_α �--Dρ

χ..�
The notion of equivalence desired for top-level diagrams isanextensionalone:

we are not interested in internal structure of the diagrams,only that an actor con-
figuration satisfies one specification if and only if it satisfies another. Thus two
diagrams are defined to be equivalent when their interactionpaths are the same.

Definition 5.2 (Extensional Equivalence of Diagrams):D1
ρ1
χ1 E� D2

ρ2
χ2 iff --D1

ρ1
χ1 .. �--D2

ρ2
χ2...
Note that we useE� for extensional equivalence, reserving� for syntactic iden-

tity of diagrams.
The composition of top-level diagrams is achieved just by forming a new di-

agram which places the composed diagrams in parallel. This allows for modular
construction of diagrams and modular reasoning about diagram properties.

Theorem 5.3:

D1
ρ1
χ1 � D2

ρ2
χ2 E� ��D1� � �D2�� �ρ1

χ1 � ρ2
χ2 � �

providedρ1
χ1 S� ρ2

χ2 and for each!"#"�$" �ad �mpd� occurring inD1, by inspection,
ad G
 ρ2, and similarly forD2.

The “by inspection” condition perhaps needs elaborating. One conservative in-
terpretation would be that eitherad � a for a
 ρ1, or ad � x andε�x�
 ρ1 for all ε
arising in --D1

ρ
χ... This condition is needed to guarantee messages are destined for

one component or the other, and not both. In section 2 theHC% #' � %F 2� �"!
uses this theorem to show its components may be defined as separate top-level di-
agrams and composed. After components are composed,�"%& and!"#"�$" mes-
sages between the two components may be matched to give�"%&§!"#"�$" edges.
The function composer example also illustrates this transformation. A future goal
is a fully rigorous justification of this operation.

Restriction is elementary if newly restricted receptionists were in fact sent no
messages in the specification:

21

Lemma 5.4:

DρUρ^
χ]ρ E� Dρ

χ

provided for each!"#"�$" �ad �mpd� occurring inD, by inspection,ad G
 ρL.
What is defined here is equivalence on top-level diagrams. Ingeneral it will

be desirable to define equivalance on diagram fragments; thenatural idea is to use
some sort of contextual equivalencea la Plotkin. We leave that topic for future
work.

6 Related Work

There are a wide variety of notations for concurrent/distributed system specifica-
tion. Different forms of specification have different strengths and weaknesses, and
for large systems a number of different techniques will probably be needed in par-
allel. We briefly review some of the current schools by way of background.

Process Algebras Process algebra notation may be used to formally specify the
communication actions of concurrent systems, and this was in fact one of the orig-
inal goals of CCS [Mil80]. Process algebra and specificationdiagrams in fact
share some significant similarities. Parallel compositionis of a similar sort in both;
choice in specification diagrams could be viewed as a generalization of CCS’ exter-
nal choice operator. message send and receive is analogous to the related concepts
in theπ-calculus [MPW92, HT91], although theπ-calculus restricts data passed to
be a channel name, and is in the classical presentation, synchronous as opposed
to asynchronous. Name-passing and dynamic name creation are important to dis-
tributed systems and are treated in specification diagrams as well as theπ calculus.
The trace-based semantic framework is a concept shared withCSP [Hoa85].

There are differences as well, and the most important ones are found beneath
the surface in the semantics of operators and not their syntax. The object-based
behavior of specification diagrams is enforced by the interfaces; for this there is no
analogue in process algebra since it is not object-based. There is a subtle difference
in the meaning given to specification diagrams in comparisonto process algebra.
Simply put, process algebra is given a purely operational, realizable, interpretation.
Even though specification diagrams have an operational semantics, this semantics
is not realizable. If a constraint fails during computation, the computationnever
happened; it disappears from the set of possible paths. Constraints themselves may
not be decidable properties. Specifications written in process algebra notation ad-
mit the possibility of deadlock since the environment may not send a particular

22

desired message. Specification diagrams, on the other hand,constrain the envi-
ronment so that deadlock implicitly cannot occur; instead,either a specification
is ill-formed, or composition of specifications will fail. Deadlock can in fact be
specifiedin specification diagrams, by actively ignoring all input. The

=�%� ex-
ample earlier is such an example. Specification diagrams allow communication to
be constrained both at send and receive by cross-edges, so operationally speaking,
if a message is not received by its intended receiver, that computation path never
happened. There are advantages and disadvantages of uncomputable specification
languages. The main advantage of uncomputable languages istheir expressivity.
The main advantage of computable languages is they generally possess more de-
cidable properties.

Choice in specification diagrams could be called “extremelyexternal” if the
nomenclature of internal/external choice of CCS is used. Internal choice is a ran-
dom coin flip which irrevocably picks one of two paths. External choice in its
general form is a guarded choice; the path chosen must have the guard condition
holding. In specification diagrams, the constraints allow achoice to be “un-chosen”
even after it had been started, not just at the beginning. This is not an operational
notion, but is useful in certain cases to allow for succinct specification of concur-
rent object behavior.

�% �ad � x�; � C' �aLd � x�; �% �ad � y�; # % �'!(�% �y 9 0�� � �� ��
–This specification has odd behavior of only forwarding a message when thenext
message is a positive number.

A number of full specification languages based on process algebra have been
developed; examples include LOTOS [BB87], which is based onCSP; it is now an
an ISO standard. Esterel [BG92] is a process algebra based specification language
with a synchronous execution semantics.

Temporal Logic Temporal logic formulae have been extensively used as a means
for logical specification of concurrent and distributed systems [JM86, MP92, Lam94].
While logics may express an extremely broad collection of properties, a significant
disadvantage is the need for large, complex formulae to specify nontrivial systems:
readability of specifications becomes a serious issue even for small specifications,
and users thus require more advanced training. Specification diagrams are not a
logic; as such, they cannot logically assert global properties of programs, only lo-
cal properties via constraints. The equational theory of specification diagrams will
provide the basis for more abstract reasoning about actor system components.

Automata-Based Formalisms Finite automata are useful for specifying systems
which have a strong state-based behavior. They lack expressivity, but make up

23

for this lack by their amenability to automatic verificationby state-space search
techniques.

The StateCharts formalism [Har87] has become particularlypopular in indus-
try. States of the automaton represent states of the system (where certain invari-
ant properties hold), and state transitions represent actions. The StateCharts for-
malism has features beyond simple finite automata, including the ability to nest
and compose automata. This syntactic sugar makes it feasible to write specifica-
tions. Automata are also graphical and so serve as good visual specifications. Their
primary weakness is that a complex software system may not have a meaningful
global state, and properties of such systems are more naturally expressed in terms
of events and relations on events. UML notation includes a StateCharts-based style
of diagram. A formal semantics of StateCharts has been defined [HPPSS87], but
the tools are not sound with respect to a formal semantics andso the effort is not
completely satisfactory.

Message-Passing DiagramsMessage-passing diagrams are a common form of
informal graphical specification. A message-passing diagram has a time-line show-
ing the message-passing behavior between different components. Unlike the other
approaches described above, message passing specifications are usually object-
based and can be asynchronous. The UML Sequence Diagram [RJB98] (derived in
turn from the event trace diagram of [et al91]) is a simple form of message passing
diagram for rpc-style communication. Specfication diagrams can be viewed as a
major extension of UML sequence diagram notation. In the actor model, event di-
agrams [Gre75, Hew77] model actor computation in terms of message-passing be-
tween actors. Clinger[Cli81] formalizes event diagrams asmathematical structures
and defines a formal semantics mapping actor system descriptions to sets event
diagrams. More generally sets of event diagrams can be thought of as abstract
specifications. These have rich mathematical structure but, are in general highly
undecidable. Specification diagrams were partly inspired by event diagrams, and
can be viewed as a condensation of a possibly infinite set of possibly infinite-sized
event diagrams to one, finite, representation.

Acknowledgements

Thanks to Carolyn Talcott for many discussions and for comments on several ver-
sions of this document. Also thanks to Gul Agha and Ian Mason for helpful com-
ments.

24

References

[Agh86] G. Agha.Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, Cambridge, Mass., 1986.

[AMST97] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. Afoundation
for actor computation.Journal of Functional Programming, 7:1–72,
1997.

[BB87] T. Bolognesi and E. Brinksma. Introduction to the ISOspecification
language LOTOS.Computer Networks and ISDN Systems, 14:25–59,
1987.

[BG92] G. Berry and G. Gonthier. The ESTEREL synchronous programming
language: design, semantics, implementation.Science of Computer
Programming, 19(2):87–152, November 1992.

[Cli81] W. D. Clinger. Foundations of Actor Semantics. PhD thesis, MIT,
1981. MIT Artificial Intelligence Laboratory AI-TR-633.

[et al91] J. Rumbaughet al. Object-Oriented Modeling and Design. Prentice-
Hall, 1991.

[Gre75] I. Greif. Semantics of communicating parallel processes. Technical
Report 154, MIT, Project MAC, 1975.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems.Sci-
ence of Computer Programming, 8(3):231–274, June 1987.

[Hew77] C. Hewitt. Viewing control structures as patterns of passing messages.
Journal of Artificial Intelligence, 8(3):323–364, 1977.

[Hoa85] C. A. R. Hoare.Communicating Sequential Processes. Prentice-Hall,
1985.

[HPPSS87] D. Harel, A. Pnueli, J. Pruzan-Schmidt, and R. Sherman. On the for-
mal semantics of statecharts. InProceedings2nd Annual Symposium
on Logic in Computer Science,Ithaca, New York, pages 54–64, 1987.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asynchronous
communication. In Pierre America, editor,Proceedings of the Euro-
pean Conference on Object-Oriented Programming (ECOOP), vol-
ume 512 ofLecture Notes in Computer Science, pages 133–147.
Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1991.

25

[JM86] Farnam Jahanian and Aloysius Mok. Safety analysis oftiming proper-
ties in real-time systems.IEEE Transaction on Software Engineering,
12(9):890–904, 1986.

[Lam94] L. Lamport. The temporal logic of actions.ACM TOPLAS, 16(3):872–
923, May 1994.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer Verlag, 1980.

[MP92] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Con-
current Systems: Specification. Springer Verlag, 1992.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes
(Parts I and II).Information and Computation, 100:1–77, 1992.

[MT97] I. A. Mason and C. L. Talcott. A semantically sound actor translation,
1997. submitted.

[RJB98] Jim Rumbaugh, Ivar Jacobson, and Grady Booch.Unified Modeling
Language Reference Manual. Addison-Wesley, 1998.

[Tal97] C. L. Talcott. Composable semantic models for actortheories. In
T. Ito M. Abadi, editor,Theoretical Aspects of Computer Science,
number 1281 in Lecture Notes in Computer Science, pages 321–364.
Springer-Verlag, 1997.

26

