Specification Diagrams for Actor Systems

Scott F. Smith
The Johns Hopkins University
scott@cs. jhu.edu

May 15, 1998

1 Introduction

We propose here a new form of graphical notation for spewfyipen distributed
object systems. The primary design goal is to make a form tattiom for defining
message-passing behavior that is expressive, intuitivetierstandable, and that
has a formal underlying semantics.

Specification diagrams are graphical structures. Manyifspetiion languages
that have achieved widespread usage have a graphical tinmdangineers can
understand and communicate more effectively by graphieans. Popular graph-
ical specification languages include Universal Modellimmguage (UML) and its
predecessors [RJB98], and StateCharts [Har87]. UML is tve-standard set of
object-oriented design notations; it includes severdkediht forms of graphical
specification notation. Our aim here is a language with siniittuitive advan-
tage but significantly greater expressivity and formal upohmings. The language
is also designed to be useful throughout the developmestylife, from an ini-
tial sketch of the overall architecture to detailed speaifans of final compo-
nents that may serve as documentation of critical aspectseaf behavior. Its
design was inspired by concepts from actor event diagrari81]C process al-
gebra [Mil80, Hoa85], and UML Sequence Diagrams [RJB98]thia particular
presentation the underlying communication assumptionsiseeare those taken
from the actor model: object- and not channel-based nanaind,asynchronous
fair message passing.

1.1 Actor Concepts

We provide here a very brief overview of actor concepts; #eh86, AMSTI7,
Tal97] for more complete descriptions.

Actors are distributed, object-based message passintgeentsince actors are
object-based, they each have a unigane and actors may dynamically cre-
ate other actors. Individual actors independently computgarallel, and actors
only communicate by message passing. Messages are sedfi@syusly, so the
sender may continue computing immediately after a message dMessages are
of the forma< M, indicating messaghl is sent to actoa. Officially, we have

Definition 1.1 (A,M,MP): Definea € A to be a fixed countably infinite set of
actor namesdM € M to be a set of message expressions; and,

mpe MP =A<M U A<M K

to be the set of message packetskat Key a countable set of keys (e.fey =
Nat). We will write A «M{ : k} for a message packet that may or may not have a
key. The keys serve a technical purpose which is describeavbe

All messages must eventually arrive at their destinatiomwbth arbitrary de-
lay. At this point they may be queued if the destination aistdausy. Additionally,
individual actor computations must never starve. Thesegtwavantees of progress
are the fairness assumptions of actor computation. Thare gogramming lan-
guage for actors; one possible language is defined in [MT@7bthers are possi-
ble. A fixed semantic framework for actors has been develppstET97, Tal97].
We will use this framework as the basis for the developmeets.h

Actor systems are intended to model open distributed caatiput This means
that the whole system will not be present, and the framewarktrassume some
external actors are interacting with the local system. Aadiadally, of the local
actors, only some of their names may be known by externaiestthese are the
receptionists. The external actors are notated as thg, setd the receptionists
the setp. These sets may grow over time: the external actors will grvased on
names received in messages from the outside, and recsggionay grow if new
local names are sent out in messages.

Actor systems may be modeled by the set of possible sequehagsuts and
outputs they may perform over time. We call one such sequgasibly infinite,
aninteraction path and model actor system behavior by a set of such paths. The
technical details of this model are summarized in section 3.

2 Specification Diagram Notation

We begin with the graphical notation and an informal ideat®fieaning. Fig-
ure 1 presents the basic diagram components. Vertical iithsate progress in
time going down, expressing abstract causal ordering ontgveith events above

D - D p D D D D
Sequence Parallel Choice Fork Skip
[ﬁ- 0.00
@ a a
% % % D
L
\%
Send Receive Send-Receive Loop EOD
——
]
new x fresh x phj x := psi D X D
S
New Fresh Constrain ~ Assign Recursion Rec. var Scope

Figure 1: Specification Diagram Components

necessarily leading to events below. This causal orderilid@termed acausal
thread Note there is no necessary connection between these ddiraad actors
or processes, they exist only at the semantic level: a sthgpad of causality may
be multiple actors, and a single actor may have multiplesfseof causality. The
components listed in Figure 1 are composed to form spedificdiagrams. Each
form of diagram component has a single in-edge and out-edge-figure serves
as a grammar for the diagrams.

sequencing Vertical lines (causal threads) represent necessary t@ngeguenc-
ing of events.

parallel Events in the parallel diagrams have no causal orderingdstvthem,
but are after events above and before events below.

choice One of the possible choices is taken.

fork A diagram is forked off which hereafter will have no direcusal connec-
tion to the current thread (however, messages could irnttirespose some
causality between the two).

skip Nothing.
send A message is sent.

receive A message is received by aceyrpossibly binding pattern variables in the
messag®/, which can be used below in the diagram.

send-receive A message is sent from one component of the diagram to another
producing a causal cross-connection in what could have teesally unre-
lated segments.

loop The diagram is iterated some numbéimes, whera is nondeterministically
chosen from the interval.0. . The casa = o means it loops forever.

EOD Denotes the end of a causal thred in the diagram.

scope Brackets demarcate static scoping of diagram variables.
recursion A boxed diagram fragment, may refer to itself by naie,
new A fresh diagram variablg is allocated, with arbitrary contents.

fresh A fresh diagram variable is allocated, with contents an actor name not
currently in use.

constraint An arbitrary constraint is placed on the current thread afsadity,
which must be met. There is no direct analogue to this notfaropostraint
in programming languages: the constraint may be any matieahexpres-
sion. And, a constraint failing does not indicate an erromdicates that
such a computation path will not arise. So, it is significaulifferent from
Hoare-style program assertions.

assign A variable is dynamically assigned a new value. The assigihinedy, s,
can be any sensible mathematical expression.

Specification diagrams are truly specificationlanguage—for internal mes-
sages, both source and target are shown, meaning there idaaloconstraint
on both sender and receiver of message delivery. On thig treey differ from
existing forms of concurrent language.

There is no requirement that the choice be fair, in the sdraddr a particular
actor computation the same branch could always be taken.etowthere is a
requirement that message delivery be fair, in the sensatiyanessage sent must
eventually arrive at its destination.

The parallel and fork operators are similar, but paralletdlds must eventually
merge, while forked threads are asymmetrical in that thiesfibthreads need never
merge.

A top-levelspecification diagram includes an interface, notanéd Top-level
diagrams are modules which may be directly given semantaning. We will not
always include the phrase “top level” but meaning shouldlbardrom context.

In this brief paper we will use a textual notation and not thegchmmatic
notation.

2.1 Textual Notation for Diagrams

We give an equivalent textual form for diagrams. This wi@abe considered the
“official” syntax, and full details will be given. Diagramsan be easily mapped
into the textual syntax.

The set of variabley is the set of diagram variables y, z, ... used in
diagrams. These variables may take on values in some maibemaiverse
U which we keep open-ended; it could be instantiated with ahssiry or type
theory. We assume the basic collections of the actor the@caentained inJ:
A,M,MP,true,falseC U. To avoid circular mathematical definitions, we assume
U is fixed before meaning of specification diagrams is assigAed, we assume
acq(s) for s€ U is defined and constrain it to be a finite subsefof

The notion of message packielP defined earlier included an optionkby
Keys are necessary to give a textual representation to titkregeive edges in di-

5

agrams, constraining a send to be connected to its corrésgpreceive by sharing
the same key. The interaction paths will not contain keysy @ire used for local
synchronization only.

Specification diagram message pachdfy are packets P parameterized
by diagram variableXg.

Definition 2.1 (MPg,Mg,Aq): Let MPgq be Ag<Mq U Ag<My : K whereAy =
(Xg— U) = AandMy = (Xg — U) = M.

The parameteg € X4 — U is an environment interpreting free diagram vari-
ables. We use the informal convention that message expragki= x+ 1 is an
abbreviation foMq(g) = €(x) + 1.

Specification diagrams may now be defined officially by théofeing gram-
mar.

Definition 2.2 (Specification Diagram Grammar): The specification diagrams,
D € D, are defined by the following grammar.

name textual notation
skip skip
sequence Dy; D,
parallel D; || D2
choice D1@D;
scope {D}

fork fork(D)
receive receive(mpy)
send send(mpy)
constraint constrain(()
new variable new(X)

fresh actor name | fresh(x)
assignment X:=U
recursion recX.D
recursion variable | X

whereD; € D are diagrams, an¥ € X, is a countable set of recursion variables. A
top leveldiagram is a diagram with an interfa@i’ .

Sequencing is right-associative, and binds most tighalipdwed by choice and
then parallel composition binding most loosely. We use aplioit static variable
binding conventionnew(X),fresh(x), andreceive(ag<Mgy{ : K}), with x infor-
mally occurring inMg, all denote implicitbindings (declarations) of variable.
{...} denotes a scope boundary, giving the static end of any imhgkclarations
contained immediately within. The extent of a variable Imgds, intuitively, all
points which causally must follow the binding, and that aréha same or deeper

6

scope boundary. Thus for instance(itew(X) || skip);X := 5, the assignment to

is within the scope of theaew since this assignment causally must follow the dec-
laration ofx. If || were replaced b in this example, the assignmentvould not

be bound (in fact it would be partially bound: if the left cbeiwere taken it would
be bound, but not if the right choice were taken).

The assignment expressignis informally a function orlJ which may refer
to variables inXy; formally, B € Py,[A] x Py[A] x (Xg — U) — U: it takes as
parameter a tuplép, X, €) where the environmertgives mathematical meaning to
the free variables, angl may refer to actors ip andy. Predicates ol are notated
¢, and are formally predicates &1,[A] x P[A] x (Xq — U). Informally, we will
write e.g. X € p” to mean a predicate where@(p, x,) iff €(x) € p. acqD) is
defined agacq(s) | s€ U occurs as ampy, @or Y in D}.

We use the convention thekampleMacro(X,Y,z) = D defines a macro. Macros
are just functions: we will be careful not to define self-refdgial macros. Certain
syntax is easily encodable via macros and so is not defindekiodre grammar.

Definition 2.3 (Diagram Macro Library): nondeterministic i teration: [D]%® =
rec X.((D; X) @ skip)

interval iteration: [D]"] =

new(X); constrain(i < x < j);
rec X.constrain(X= 0) @ constrain(x > 0);x:=x—1;D; X

for fresh variablex
if-then: if @then D; else Dy =

(constrain(@);D1) ® (constrain(—@);Dy)

while-do: while @do D =

rec X.(constrain(@);D;X) @ constrain(—@)

end of diagram: eod = rec X.(skip; X)

abort path: abort = constrain(false

initialized new: new(Xx=S) = new(X);constrain(x=15)
constrained new: new(X € S) = new(X); constrain(x € 9
constrained receipt: receive(ag<My € S) =

receive(ag<aMy); constrain(My €)

Translation from informal diagrams into textual notatianstraightforward
from the above in all cases except the internal message .eilgés these inter-
nal edges, a diagram can take on an arbitrary graph struy@ndethis cannot be
placed in purely textual notation. The purpose of keyed agspackets is pre-
cisely to capture the 1-1 relation implied by an internaleadthe sender and re-
ceiver must be paired with no other send/receive to this agessThus, for each
internal edge in a diagram, a fresh kejys assigned to it, and messaggc My on
the message edge translated int®ead(ag < Mg : K) action by the sender and a
receive(ag<Mq: K) action by the receiver.

2.2 Small Examples

We now give a series of small examples to illustrate use otahguage. None
of the examples attempts to seriously illustrate the usefd of the language for
specifications, as the examples are too small; the goal séustito give informal
clarification of the syntax and semantics.

Message Passing SemanticsMessage passing in diagrams differs from actor
programming. Diagram messages are specifications that sagesvas sent on
one end and actively processed on the other. For instanasider a sink:

Sink(a) = [receive(aqx)]®*

A sink behavior in an actor is a behavior that does nothingssages will auto-
matically queue up. At the specification level, we need taiépehe receipt of
those messages that are forever ignored. The diagrams digiitpm@ccount for
the asynchronous nature of actor communication: a messageosly constrains
the send to be before the receive, not for the two to happeuitsineously. The use
of “0...«" iteration models all possible environment behaviors. €héronment
may send 0, an arbitrary number, or infinitely many messages.

The interaction path semantics of the top-level diag%mik(a)éa} have paths
of the following form. Each path consists of a sequence diiimpessagea<M.
Since the system is reactive, the environment could seh®0.. ,n,... or even
infinitely many such messages. No messages are sent out.

So, a point about message passing in diagrams is that messéadzh will
neverbe processed must be specified as arriving. Consider

©0

[receive(a<x); constrain(x > 100) ...]%"

This specification may at first look analogous to a synchaiita constraint that
only processes messages with contents larger than 100. Vdgveesynchroniza-
tion constraint of this form will implicitly forever ignorenessages with contents

8

less than 100. The above specification instead constrainernironment: it re-
quires that such messages will in fact never be sent. Sye@ifis which constrain
the environment arpartial.

Ticker A ticker is a simple actor which increments a counter upoeript@f a
tick message, and replies tame messages with the current time. First, a partial
specification of a ticker is given which only specifies thatdireplies are numer-
ical, not that the number of tick inputs is counted. This shdww specifications
may underconstrain the program space.

PartialTicker(a) =
[receive(a<tick)
[receive(adtime@X); new(y € Nat); send(x<reply(y))]®-*

]O...oo ”

The possible interaction paths for the top-level diagmﬂﬁtialTicker{a}e
may be informally described as any path satisfying the fahg. For eacha«
time@c input in the path, there is latercaireply(n) output for arbitraryn € Nat,
and all outputs areeply messages so paired. There also may be any number,
including infinitely manya<tick input messages in any order.

Next we give a high-level specification of the full tickergitzes a sequence of
replies totime messages in a non-decreasing sequence.

Ticker(a) =
[receive(a<tick)
new(count € Nat);
[receive(a<time@X); new(y € Nat);
count :=count +Y; send(X<dreply(count))]%

]0.‘.00 ”

The actual implementation of a ticker we are specifying seridk messages
to itself to increment the counter: every time it receiveasi ek, it increments the
counter and sends itself anothetrck. A low-level specification which is more
close to an actual implementation is

IntensionalTicker(a) =
send(a<tick); new(count = 0);
[(receive(a<tick);
count :=count + 1; send(a<tick))

® (receive(adtime@Xx); send(x<reply(count)))]®-

Note thattick messages could in theory be sent by the environment. We then
desire to establish equivalences on top-level diagrants asic

Ticker(a)éa} = IntensionalTicker(a)éa}

to show a high-level specification is equivalent to a loweleone. Extensional
equivalence is defined in Section 5.

The above diagrams have a restricted acceptable message@ipmessages
must be in{tick,time}, and so the diagrams are partial. It is not difficult to
extend a diagram to a diagram without acceptable messdagetiess:

CompleteTicker(a) =
fork([receive(a<Xx); constrain(msgMetix) & {tick,time})]1%*);
Ticker(a)

Ticker Factory This example shows how a fresh actor may be dynamically gen-
erated.

TickerFactory(a) =
[receive(a<new@c);
fresh(x);
fork(Ticker(X));
send(Careply(x))]%*

Function Composer We assume as given two mathematical functibrendG

which are defined over all possible messages. First we gpatiibstract function-

computer behavior.

Function(a, f) =

[fork(receive(a<compute(X)@c); send(careply(f(x)))]%

If the fork above was not present, the specification would implicitlgienrthe
function calls. However, since the function call order iglevant, the forkless
specification would show causal ordering that was not nacgs$he forking and
forkless versions are in fact equivalent, however, in theseehat they specify the
same set of interaction paths.

An actor which compute& o F is then specified aBunction(a,Go F). A
hypothetical implementation may use two distinct acthuaction(ar,F) and
Function(ag,G) to computeF and G respectively, and &omposer actor used
to put together the composition. The system with these thotars should meet
the above specification. Tlemposer is specified as follows.

10

Composer(a, f,g,as,ay) =
[receive(a< compute(X)@Cc);
fresh(X;); send(as < compute(X)@X;); receive(X; <reply(X));
fresh(Xg); send(ag<compute(X)@Xy); receive(Xy<reply(X));
send(Careply(x))]%*

The complete low-level specification is then the parallehposition of these
three:

FunctionComposer(a,F,G,ar,ac) =
Composer(a,F,G,ar,ac) || Function(ag,F) || Function(ag,G)

In an open distrubuted system, components may be desigrepasate top-level
diagrams and then composed. In particular for large systemwhich the de-
sign is distributed across different political entitiegjaxt-based components are
composed. For this example, the top-level compositionfinele as follows.

FunctionComposerModule(a,F,G,ar, ag)q{)a} =

Composer(a,F, G,aF,aG)gi a} | Function(aF,F)éaF} I Function(aG,G)éaG}

where|| is not the composition operator on diagrams, but the cortipnsbpera-
tor on top-level specifications. Theorem 5.3 below may bel tseshow the two
methods for composition produce the same specification:

FunctionComposer(a,F,G,ar, a(;);[)a} & FunctionComposerModule(a,G o F)éa}

This specification is equivalent to the abstrBghction(a,Go F):

FunctionComposer(a,F, G,aF,aG)éa} & Function(a,Go F)é{)a}

We sketch how an argument to establish this equivalencedymokeed. The
first step is to perform a “zipping” transformation BanctionComposer to con-
nect send and receive to give send-receive cross-edgesisEpoint where the di-
agrammatic semantics becomes significantly more readadnfetihe textual form.

ZippedFunctionComposer(a, f,g,af,ag) =
[receive(a<compute(X)@c); fresh(Xs); fresh(Xy);
send(ar < compute(X)@Xxs : Kt); receive(Xs <reply(f(X)) : K});
send(ag < compute(X)@Xg : Kg); receive(Xg<areply(g(X)) : Kg);
send(Careply(x))]%* ||
[fork(receive(as < compute(X)@Xs : Kt); send(X; <reply(f(x): Kf))]O |
[fork(receive(ag<compute(X)@Xg : Kg); send(Xyg<reply(g(X) : K))]

11

TheZippedFunctionComposer is an intermediate stage in the incremental trans-
lation of FunctionComposer t0o Function. By proving

FunctionComposer(a,F, G, af, aG)éa} ~

ZippedFunctionComposer(a,F, G, ar, aG)é
Function(a,Go F)éa}

a}g

the desired equivalence is established.

Simple Memory Cell

Cell(a) =
new(X); (* cell value, initially arbitrary *)
[(receive(adset(V)@c); (* c/v are pattern variables *)
X:i=V,
send(C<ack))
&
(receive(a<get@c);
send(C<reply(x)) |**

A top-level specification for a memory cell is theall(a)éa}. Another pow-
erful idea is to write a partial specification which only reeds to message input
patterns that are semantically sensible. For instance, ¢etl, receipt of get be-
fore anyset messages have arrived is unreasonable; we thus make acsienifi
which constrains the environment to never do this.

EnvironmentConstrainingCell(a) =
new(X=undefined); (* cell initially undefined *)
[(receive(adset(V)@c);
X:i=V,
send(Cc<ack))
©
(receive(a<get@c); constrain(X # undefined)
send(Careply(x))]

Environment constraints are a powerful aspect of spedificadiagrams. Such
specifications are partial: they are not defined for all pastef input. Composition
with such specifications is also partial, as it may fail sitie specification is not
fully reactive. However, the concept of satisfaction of adi®nment-constrained
specification is a difficult one and so now we will generallydst complete speci-
fications only.

12

3 A Path-Based Framework for Actors

In this section we briefly review the semantic framework usednodel actor
systems; this framework will then be used to model specifinadiagrams. See
[Tal97] for details; here we provide a terse and simplifiedspntation. We use
a path-based (trace-based) semantics: an open, nondastiensystem is inter-
preted as a set ahteraction paths Each path is a possibly infinite list of input
and output actions. Interaction path semantics models tam sgstem in terms
of the possible interactions (patterns of message pasisingh have with its en-
vironment. Interaction semantics does not let us use ayrirdtion about inter-
nal computations or what actors may be initially presentramwn beyond those
specificed in the interface. A specification diagram is giveganing as a set of
interaction paths, so the meaning of a diagfammay be the same as the meaning
of some actor program implementation. If this is in fact thee; we can assert that
the implementation meets the specification

Interfaces An actor system interface is a pé(’lrof disjoint finite sets of actor
names.p specifies the receptionists agdspecifies the external actors known to
the system.

We define parallel composition of interfaces by

%N% iff pLNp.=0

” P1UP2
(X1UX2)—(p1Up2)’

providedy! o {2

Events In order to distinguish differrent occurrences of messagk@ts with the
same contents we use a $etof events. Each everg, contains a message packet,
pkt(e) € MP. We leterange oveE and E range overP[E]. We write in(e) to
distinguish the arrival of a message from outside the sydtem its deliverye.

We also writeout(e) to distinguish delivery of a message to the environment from
from the actual delivery to the target actor. WeHebe the set of events extended
by these input/output events

E = EUin(E)Uout(E)

and we letetange oveE andE range overP[E]. We will use a simple theory of
potentially infinite lists, notategki,xy, ... ,X,...]. List concatenation is written
[...]*][...], and for the case where the first list is infinite returns tisathe result.
Unit for concatenation is the empty ligt]. SList is the set of lists with elements
fromS

13

Interaction Paths An interaction path is a possibly infinite list of input/outp
events,

= [&,8,...,8&,...] € (in(E) Uout(E)) List.

It represents a potentially infinite sequence of interastiof a system with its en-
vironment as observed by some hypothetical obsenferepresents an interfaced
interaction path, a path with the indicated interface. Altlwe interaction paths
constructed in this paper are constrained to obeyfPleawof [Tal97]. EPLaw(T)
requires inputs oftto be to receptionists or names sent in a previous output, and
outputs to be to external actors or actors whose name waisadda a previous
input. EPLawcorresponds to the Baker-Hewitt locality laws governing lactors
become acquainted with one another.

3.1 Interaction Path Sets and their Algebra

An interaction path models one possible way a system migétdant with its en-
vironment. We model the behavior of a system by sets of ated interaction
paths,Ip.

Parallel Composition We define composability and composition on interaction
path sets. The basic operation for composing paths is dbrgttwo interaction
paths,mp Z Ty. This operation is defined in terms of precurs;[arz0 14, which is
the greatest symmetric function closed under the followinghe following we
abuse notation and wrife..] « Sto mean{[...]xs | s€ S}).

0) [1Z2°n={m
(1) [in(e)]*To Z° [out(e)]* Ty =TH Z° T4
(2) [R)*xmoZ°[&]+m=

{[&0) * (o Z° [&] ¥ T0) } U

{[&1] * ([%] * 10 Z2°)}

Then, 1o Z Ty is defined agp Z° Ty with the pathsite 1 Z° 4 that after some
point forever starve events from onemfor 1y removed.
Define composability and parallel composition for path $egsandip; with

interfaces? andy! as

Ipg <t Ipy iff §2 b §t

Ipo [l 1p1 = {18 | (30}, € Ipo, Tus; € 1p)

(me 1 Z Ty, Th andry share no events ‘andEPLaw(m))}
wheref =9 || &, provided§ s {2

14

Restriction The restriction ofp with interface)F(’ to p' is defined by
lp[p’ = {1€ | T € Ip andTtcontains nain(a<M) events fora€ (p—p')}

Renaming Renaming of interaction path&,(T), is pointwise on each event in
the path, and renaming on path sg#p) is pointwise on each element of the set.

4 Operational Semantics of Diagrams

Diagrams are given meaning in this section via an operdtgaraantics. The goal
is to give a set of interaction paths defining the behavioop#level diagramﬁ))‘z.
This is accomplished by defining a single-step relation rmapponfigurations to
configurations, the transitive closure of which yields asgetomputation paths. In
this sense itis a standard presentation of operationalrg@aaf actors [AMST97,
Tal97]. The main difference with these previous works is enpost-processing is
required to remove paths that are not admissible. A confiigurés of the form

DY u

Wherep, X are the current receptionists and external actor namesp ané is

a set of messages in transit, either to be sent out of thensysteo be received
locally. Since each message is a unique event, it is podsililave two messages
with identical target and contents jin

4.1 Preliminaries

Before presenting the operational semantics, we need toedsfio concepts. We
use a small-step semantics based on factoring a diafraxpression into a re-
dex Dygx and reduction (a.k.a. evaluation) contétD = R|D,4x|. Notation is
also needed for looking up, modifying, and extending vaeiddindings. The con-
cepts of reduction context and environment are in facttwiaed: environments
are local to particular points in reduction (so e.g. pardlesads may have dif-
fering environments) and so are spread around the reduntioiext. These local
environments are functiong € Xq — U which hold the current state of diagram
variablesXy, and map only finitely many variables to ndnvalues, | € U being

a special meta-value indicating undefined. A small additiothe language syntax
is used to bind variables inside the executing diagrdyt: D} indicates a lexical
scoping construc{D} under which execution is actively occurring, with current
local environment.

15

Reduction context® (a.k.a. evaluation contexts) are used to isolate the next

redex to be reduced. Their grammar is
R=eorR| DorD| RorR;Dor{y: R}

R[D] denotes the act of replacing the (uniqeeéh Rwith diagramD. We will need
notation for reduction contexts defined as above but wittiwey : R} case; they
will be notatedR ™.

Notation is next defined for manipulation of the environmenhe basic op-
erations needed includR@x to look up the value ok in the environments dR,
R@x := sto modify the value of already-declared variakl@ndR® x := sto add
a new definition ok in the innermost lexical levek(R) extracts the environment
from Rin the form of a function from diagram variables to values.

Definition 4.1 R@x,R@x :=s,R®x := s, &(R)): Letting
R=Ry[{va:.- - RyHvn : Ryabl- - B,
define

lookup R@x is yi(x) wherei is the largest number less than or equahtaith
Vi(X) # L, or Lifall yi(x) = L.

modify R@x :=sisRy[{y1:...RT[{y ... Ry [{¥n: Ry 1}---[}].-.}] wherei is
the largest number less than or equahtwith yi(x) # L, andy, = y; at all
points excepy, (x) = s. If no suchi exists,Ris unchanged.

extend R&x :=sisRy [{y1:...Ry[{¥n : Ry 1l --- }] for v, = v at all points ex-
cepty,(x) =s.

extract &(R) = f wheref(x) = R@x. Dom(e(R)) = {x | (¢(R))(x) # L}.

acquaintancesacq(D) is

J acaqMa)u | J acqg)u | J acqw)u | J acoag)u | | acay()
@eD

MgeD Yeb ageb yeDxeXq

where “ € D” here means occurrence as a subterr@iracq(R) is defined

identically toacq(D) except with the last clause beil <j<p Uxex, aCAYn(X)).
4.2 The Semantic Definition

In this section we define the semantic meaning func[lﬁ]] mapping top-level
diagrams to sets of interaction paths that describe tha-mgtiput behavior of the
diagram.

16

in(e)

DY =5 DY (Ufe))
wheree ¢ |, X' = x U (acqe) — p), pkt(e) is not keyedtarget(e) € p, and
(acq(D) Uacq(W) Nacy(e) € pUX

D (U {e}) e e

wheree ¢ |, p' = pU (acqe)) —X), pkt(e) is not keyed, antarget(e) € x
Rlskip; DJY % RDEW
Rskip || skip]§ 1 25 RiskiplPp

choose(l

RID ® DiJ§ 1 =2l RIDI§ 1

and similarly forchoose(r)
Rifork(D))§ 2% (Riskip] || RID)SH

where forR= Ry [{y1 : ... Ry [{yn: R;+1|}]...ﬂ], R={yi:---{yn:e}...}
Rreceive(agaMa{ : K})I¢ (uu{e})ww[skip];’u

whereR = R@ X:=5, andpkt(e) = a4(e(R)) «My(e(R)){ : k}
Rlsend(ag aMa{ : k})]2p =20, Riskiplf (WU {e})

wherepki(e) = ag(e(R)) <My(e(R)){ : k} andeis a fresh event
Rinew(x)]0 1 2 (R@x :=9)[skipl{ 1

whereacq(s) C puxUacqR)Uacq L)
Rifresh(x)]0 Tresn(a)

wherea ¢ pUxUacqR[skip]) Uacq)

(R®x:= S)[skip])‘z H

R[constrain((p)]g U MR[skip]Q H

where@(p, x,€(R)) holds
Rlx := 40 —5 (R[skiplfu

whereR' = R@(x := Y(p, X, €(R)))
RlrecX.DJy p —=——3R[D[(recX.D)/X]]{ 1
RI{D}I§ 1 5 R{(Ax.L) : D}fu
Rlfy: skip)on =S Riskipl

Figure 2: Single-Step Computation for Diagrams

17

Definition 4.2: The single-step computation relation on diagram configamatis
defined in Figure 2.

For each of the rules exceph/out, the redexis the Dgx for left-hand-side
R[Drdx]

Definition 4.3: Given a top-level diagrarBo}y, define

raw event paths [[DO)QE raw

{[1abo,1aby,...,labp,...] |
Po 0 lab p1 lab labp Pn lab
D()X0 =4 Dlxlu]_%... 4 DanMnA }
progress [Doig] ogress= {0 | TE [Doyolla, @nd for all configurationsdif
arising intt, if D; = R[D] for someR, D, then there is a later configuration

. labjj .

R[D])‘zm Mt —2, with redex the same subterm occurreige

fair [Dojliy = {10 | 1€ [Doig]ogress@Nd €ach everd placed inp during s
computation is eventually removed frqwat some later point in the compu-
tation }

interaction paths [Doy],» = {T§ | To € [Doy].;. Tis To with all events not of
the formin(e)/out(e) removed, and the evenisi(e)/out(e) in Tt are all
unique}.

The semantics of a top-level diagrafid{], is then[{D}{]] -

4.3 Commentary on the Definition

The single-step computation rules themselves are for thet paot familiar terri-
tory for operational semantics presentations, with a feffeidint aspects. They
represent a language with syntax something like CSP, anmtthsynous message
passing and name handling modelled on the actor approachprVele some
commentry on what are perhaps some of the nonstandard sgpéice rules.

The par rule could just as well mapkip || D to D. Thereceive rule con-
tains implicit pattern-matching. Diagram variableshly are considered pattern
variables, and are matched against the eeemote that the receiveay could it-
self be a diagram variable, but this is not considered patti®fpattern: it is not
possible to receive a message destined for an arbitrary actgs) C acg(e) holds
by the pattern match. In both send and receive, the key® not kq'—they are
simple constants and cannot be variables which are defindtkeienvironment.
Thenew rule allocates variableat the current lexical scoping level, and gives it an

18

arbitrary value based on the names of actors currently knéwwsh, on the other
hand, assigns a single actor name tehich is not currently known. In either rule,
if X were already declared within the current lexical level,dhievalue is replaced.
assign updates a variable based ¢nThe side condition only fails for the case a
variable is assigned to which was never declared; this ailise the computation
to get stuck and thus ruled out by lack of progressnstrain only continues to
compute when the constraint holds; if not the computatiatusk and is ruled out
by the progress requirement.

The most unusual aspect of the semantics lies in the detfaiteeqorogress
requirement. This requirement is significantly strongemtstandard fairness re-
qguirements, and makes the computation system unrealizéblact, even with-
out requiring progress the computation system is unrdaézbecause predicates
o(p,X,€) may be undecidable, and thus for instance a determinidtiodrgoroblem
solver may be defined. However, assuming predicates mustdigatble, the pro-
gressing paths still may not be realized by some actor caatipat An example of
such a non-realizable diagram is:

new(nomorezeros = false);

[(receive(a<0); constrain(—nomorezeros);
nomorezeros : = true; send(c<1))

D

(receive(a<Xx); constrain(—(Xx= 0 A nomorezeros));
send(c<0)) 1%

it replies 0 to all inputs, except thast 0 inputmayget a 1 reply. No realizable
system can forsee the future to know when the last input oftecpkar form has
arrived.

Progress rules out any computation path which containsal@aromputation
that is stuckj.e., does not reduce. The phrase “subterm occurrence”, in gyn&bo
the concept ofesidualin the lambda-calculus, denotes a particular occurrence of
a subterm, because the same syntax may in theory occur hatityes in a single
term. Each ocurrence must progress. A fully formal definitisay be obtained by
decorating each subterm with a unique label.

Particular computation paths that progress rules out declu

e paths with false constraints suchRgonstrain(x = O)])F(’ HwhereR@x =
1

e paths which attempt receipt of a message on an unused |dcal reaame,
such aR[receive(a<Mq{ : k})]§ 0 for actorag pU that is never sent out
of the configuration and which is sent no messages locally;

19

¢ paths which attempt receipt of a messdgjeeceive(aaMqy{ : K})])F(’Q)Where
in this particular computation path the environment willno such message
and it will not be sent locally either;

e paths which attempt receipt of a message on an externalratoe, or send
of a keyed packet to an external actor;

e assignments to variables that do not exist in the enviromnRex : = O])‘z pfor
R@x=1.

The above cases (excepting the first) are often a productitf@mnceived di-
agram design. However, There is no firm line that may be drastivéden the well-
conceived and ill-conceived diagrams: well-conceivedjdiens, when composed
with other diagrams, may appear ill-conceived. Nonetlseesimple conserva-
tive aproximation of ill-conceived diagrams is possiblatttletects many obvious
errors.

Definition 4.4: A diagramDY, isill-conceivedif [D§] = 0. Other diagrams besides
these may reasonably be classified as ill-conceived.

If a diagram has no paths, it cannot be sensible. There ageditigrams which
are intuitively not sensible, but there is no firmer line thah be drawn between
sensible and not. ConsidBrthat contain a subterm occurrenbed D, for which
all computation paths iﬂ{D})‘z]]fair either invariably reduce this occurrence redex
by choice(l), or invariably bychoice(r). These choice operators may thus be
simplified away to the always-chosen case only, and this neagiug to an ill-
conceived expression in the case never taken. Howeverpitl @so be due to
the fact that in the context the subterm occurs in, the pathaken is not used,
because the specification is more general than the currageus-or this reason,
such cases are not invariably classified as ill-conceived.

An example which shows a need for keys is

new(X); ((x := 1;send(a<Xx: K) ®x :=2;send(a<x:K')) ||
(receive(a<X:K)®
(receive(a<X:K');(skip @ (constrain(X # 2);send(a<BAD))))))

—if the keys were removed, krk’ communication could occur arBAD could be
sent toa.

5 Toward an Algebra of Diagrams

We now outline the algebra of diagrams; work remains to bedomhis area. See
[Tal97] for full definition of the algebra of interaction fpasets; basic definitions

20

were given previously in section 3. The algebra on diagrand&réctly lifted from
the algebra oip sets vie the semantic meaning function for diagrafdg§]. When
performing algebraic reasoning on diagrams, we use theecoion thatD)‘z in
fact stands for its interaction path semantigB{]. The algebraic operations on
diagrams are inherited from the algebraic operations @mantion path sets:

Definition 5.1 (Composition, Restriction, Renaming):

D1j; || D2y; means[Dayi] || [D23:]
D{[p’ means[D§][o’
(DY) meansd([DY])

The notion of equivalence desired for top-level diagrananiextensionabne:
we are not interested in internal structure of the diagramby, that an actor con-
figuration satisfies one specification if and only if it saéisfanother. Thus two
diagrams are defined to be equivalent when their interagi@hs are the same.
Definition 5.2 (Extensional Equivalence of Diagrams):D1§: = D32 iff [D15i] =
[D25:]-

Note that we use for extensional equivalence, reserviagor syntactic iden-
tity of diagrams.

The composition of top-level diagrams is achieved just bynfag a new di-
agram which places the composed diagrams in parallel. Tbissafor modular
construction of diagrams and modular reasoning about aagrroperties.

Theorem 5.3;

D1 | D2 = ({D1} || {D21) (il 52),

provided)‘zi D> ;’g and for eachreceive(ag,mp) occurring inD4, by inspection,
a4 & p2, and similarly forD.

The “by inspection” condition perhaps needs elaboratinge Enservative in-
terpretation would be that eitheg = afor a€ p;, orag = x ande(x) € py for all €
arising in[D1%]. This condition is needed to guarantee messages are dekime
one component or the other, and not both. In section FtlwetionComposer
uses this theorem to show its components may be defined asitsefmp-level di-
agrams and composed. After components are compesad,andreceive mes-
sages between the two components may be matched tegfide receive edges.
The function composer example also illustrates this tanshtion. A future goal
is a fully rigorous justification of this operation.

Restriction is elementary if newly restricted receptitgiwere in fact sent no
messages in the specification:

21

Lemma 5.4:
o = O

provided for eaclreceive(ag, mpy) occurring inD, by inspectiongg & p'.

What is defined here is equivalence on top-level diagramgehreral it will
be desirable to define equivalance on diagram fragmentsiatueal idea is to use
some sort of contextual equivalenada Plotkin. We leave that topic for future
work.

6 Related Work

There are a wide variety of notations for concurrent/distied system specifica-
tion. Different forms of specification have different stgéms and weaknesses, and
for large systems a number of different techniques will plip be needed in par-
allel. We briefly review some of the current schools by wayatkground.

Process Algebras Process algebra notation may be used to formally specify the
communication actions of concurrent systems, and this méect one of the orig-
inal goals of CCS [Mil80]. Process algebra and specificad@grams in fact
share some significant similarities. Parallel compositsoof a similar sort in both;
choice in specification diagrams could be viewed as a gépatiah of CCS’ exter-
nal choice operator. message send and receive is analagthesrelated concepts
in thetecalculus [MPW92, HT91], although thecalculus restricts data passed to
be a channel name, and is in the classical presentationhrsyraus as opposed
to asynchronous. Name-passing and dynamic name creagédmportant to dis-
tributed systems and are treated in specification diagramseh as thatcalculus.
The trace-based semantic framework is a concept shared>8h[Hoa85)].

There are differences as well, and the most important oreefoand beneath
the surface in the semantics of operators and not their syrthe object-based
behavior of specification diagrams is enforced by the iate$; for this there is no
analogue in process algebra since it is not object-basesteia subtle difference
in the meaning given to specification diagrams in comparieqorocess algebra.
Simply put, process algebra is given a purely operatioraljzable, interpretation.
Even though specification diagrams have an operationalrg&sathis semantics
is not realizable. If a constraint fails during computafitihe computatiomever
happenedit disappears from the set of possible paths. Constrdietaselves may
not be decidable properties. Specifications written in @gsalgebra notation ad-
mit the possibility of deadlock since the environment may send a particular

22

desired message. Specification diagrams, on the other bandtrain the envi-
ronment so that deadlock implicitly cannot occur; insteaither a specification
is ill-formed, or composition of specifications will fail. @adlock can in fact be
specifiedin specification diagrams, by actively ignoring all inputhélSink ex-
ample earlier is such an example. Specification diagraross@bmmunication to
be constrained both at send and receive by cross-edgesesaiopally speaking,
if a message is not received by its intended receiver, thapatation path never
happened. There are advantages and disadvantages of wrablaspecification
languages. The main advantage of uncomputable languagiesiriexpressivity.
The main advantage of computable languages is they ggneadbess more de-
cidable properties.

Choice in specification diagrams could be called “extrenetiernal” if the
nomenclature of internal/external choice of CCS is useter@l choice is a ran-
dom coin flip which irrevocably picks one of two paths. Exsdrohoice in its
general form is a guarded choice; the path chosen must hawgutird condition
holding. In specification diagrams, the constraints all@hi@ice to be “un-chosen”
even after it had been started, not just at the beginnings iEhot an operational
notion, but is useful in certain cases to allow for succimpetcification of concur-
rent object behavior.

in(ag<x); (out(ay<x); in(ag<y); constrain(y > 0)) @ skip

—This specification has odd behavior of only forwarding asage when theext
message is a positive number.

A number of full specification languages based on procesbedghave been
developed; examples include LOTOS [BB87], which is base@8R; it is now an
an ISO standard. Esterel [BG92] is a process algebra basedisgtion language
with a synchronous execution semantics.

Temporal Logic Temporal logic formulae have been extensively used as asnean
for logical specification of concurrent and distributedteyss [JM86, MP92, Lam94].
While logics may express an extremely broad collection opprties, a significant
disadvantage is the need for large, complex formulae tafgpeantrivial systems:
readability of specifications becomes a serious issue @resnfall specifications,
and users thus require more advanced training. Specificdtagrams are not a
logic; as such, they cannot logically assert global pragef programs, only lo-

cal properties via constraints. The equational theory et#jgation diagrams will
provide the basis for more abstract reasoning about acttersycomponents.

Automata-Based Formalisms Finite automata are useful for specifying systems
which have a strong state-based behavior. They lack exyitgsdut make up

23

for this lack by their amenability to automatic verificatiby state-space search
techniques.

The StateCharts formalism [Har87] has become particufasfyular in indus-
try. States of the automaton represent states of the systlerd certain invari-
ant properties hold), and state transitions represerractiThe StateCharts for-
malism has features beyond simple finite automata, inofuthie ability to nest
and compose automata. This syntactic sugar makes it fedasibirite specifica-
tions. Automata are also graphical and so serve as good ggecifications. Their
primary weakness is that a complex software system may et &aneaningful
global state, and properties of such systems are more tatexaressed in terms
of events and relations on events. UML notation includesateStharts-based style
of diagram. A formal semantics of StateCharts has been diefitiePSS87], but
the tools are not sound with respect to a formal semanticsaritde effort is not
completely satisfactory.

Message-Passing Diagrams Message-passing diagrams are a common form of
informal graphical specification. A message-passing diadras a time-line show-
ing the message-passing behavior between different coempgnUnlike the other
approaches described above, message passing specificat®msually object-
based and can be asynchronous. The UML Sequence Diagrar@§R@rived in
turn from the event trace diagram eft[al91]) is a simple form of message passing
diagram for rpc-style communication. Specfication diagraan be viewed as a
major extension of UML sequence diagram notation. In theranbdel, event di-
agrams [Gre75, Hew77] model actor computation in terms cfsage-passing be-
tween actors. Clinger[Cli81] formalizes event diagrammashematical structures
and defines a formal semantics mapping actor system désosEpbD sets event
diagrams. More generally sets of event diagrams can be tihafgas abstract
specifications. These have rich mathematical structurednatin general highly
undecidable. Specification diagrams were partly inspineévent diagrams, and
can be viewed as a condensation of a possibly infinite setssilply infinite-sized
event diagrams to one, finite, representation.

Acknowledgements

Thanks to Carolyn Talcott for many discussions and for contmen several ver-
sions of this document. Also thanks to Gul Agha and lan Masomnélpful com-
ments.

24

References

[Agh86] G. Agha.Actors: A Model of Concurrent Computation in Distributed
SystemsMIT Press, Cambridge, Mass., 1986.

[AMST97] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. féundation
for actor computationJournal of Functional Programming/:1-72,
1997.

[BB87] T. Bolognesi and E. Brinksma. Introduction to the IS@ecification
language LOTOSComputer Networks and ISDN Systefi#:25-59,
1987.

[BG92] G. Berry and G. Gonthier. ThesEEREL synchronous programming
language: design, semantics, implementati@tience of Computer
Programming 19(2):87—-152, November 1992.

[Cli81] W. D. Clinger. Foundations of Actor Semantic?hD thesis, MIT,
1981. MIT Atrtificial Intelligence Laboratory Al-TR-633.

[etaPl] J. Rumbauglet al. Object-Oriented Modeling and DesigPrentice-
Hall, 1991.

[Gre75] I. Greif. Semantics of communicating parallel meses. Technical
Report 154, MIT, Project MAC, 1975.

[Har87] D. Harel. Statecharts: A visual formalism for coepbystems Sci-
ence of Computer Programming(3):231-274, June 1987.

[Hew77] C.Hewitt. Viewing control structures as patterhpassing messages.
Journal of Artificial Intelligence8(3):323-364, 1977.

[Hoa85] C. A. R. HoareCommunicating Sequential ProcessBsentice-Hall,
1985.

[HPPSS87] D. Harel, A. Pnueli, J. Pruzan-Schmidt, and Rri8ae. On the for-
mal semantics of statecharts. Pnoceeding2"® Annual Symposium
on Logic in Computer Scienckhaca, New York, pages 54—64, 1987.

[HT91] Kohei Honda and Mario Tokoro. An object calculus feyachronous
communication. In Pierre America, editétyoceedings of the Euro-
pean Conference on Object-Oriented Programming (ECQQ@#B{}
ume 512 ofLecture Notes in Computer Sciengeages 133-147.
Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 199

25

[IM86]

[Lam94]

[Mil80]

[MP92]

[MPW92]

IMT97]

[RIBOS]

[Talo7]

Farnam Jahanian and Aloysius Mok. Safety analysigrhg proper-
ties in real-time system$EEE Transaction on Software Engineerjng
12(9):890-904, 1986.

L. Lamport. The temporal logic of actior’SCM TOPLAS16(3):872—
923, May 1994.

Robin Milner. A Calculus of Communicating Systemslume 92 of
Lecture Notes in Computer Sciencpringer Verlag, 1980.

Z. Manna and A. PnueliThe Temporal Logic of Reactive and Con-
current Systems: SpecificatioBpringer Verlag, 1992.

R. Milner, J. Parrow, and D. Walker. A calculus of niletprocesses
(Parts | and Il).Information and Computatiqri00:1-77, 1992.

I. A. Mason and C. L. Talcott. A semantically soundadranslation,
1997. submitted.

Jim Rumbaugh, Ivar Jacobson, and Grady Bodadhified Modeling
Language Reference Manuaiddison-Wesley, 1998.

C. L. Talcott. Composable semantic models for ateories. In
T. Ito M. Abadi, editor, Theoretical Aspects of Computer Scignce
number 1281 in Lecture Notes in Computer Science, pages3821—
Springer-Verlag, 1997.

26

