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Abstract

The Actor Specification Diagram Language is a rigorouslyraefigraphical specifica-
tion language, with features for modelling concurrency asgnchronous communication.
These features make the language appropriate for the famadysis of distributed security
protocols. The graphical nature of the language makes gubtlescriptions easy to read and
understand, vital properties for appeal to a wider user fadjpn. Proofs of protocol correct-
ness can be given via graphical transformation, with eas et transformation justified by
rigorous argument if desired. To illustrate the utility afi@phical specification language we
analyze the well-known Needham-Schroeder Pubic Key pobtoc

1 Introduction

The purpose of this paper is to demonstrate the suitabiléyformal diagrammatic specification
language for the verification of security protocols. Thetipatar language we use is the actor
specification diagram language (referred tespscdiaggor brevity), presented in [18, 19, 20].
In this paper we model and analyze the Needham-Schroedkc Rely (NSPK) protocol. Var-
ious authentication properties fofSPK have been proven in a number of different formalisms,
including [17, 6, 4, 7]. We analyzASPK to give a useful benchmark of comparison with other
specification techniques such as the above.

While specification diagrams have a number of appealingadaristics, their unique strength
in the domain of protocol verification is their graphicalura Since these graphical diagrams
are easily understood, and explicitly illustrate the fulbeution of a system, properties can
be “read off” the diagram, rather than requiring assertionsome symbolic language. While
the technical advantages of graphical reasoning methods theen explored previously [11],
graphical approaches have particular benefits in the cbofesecurity protocol analysis; they
allow a more intuitive reading of the specification, makihg tepresentation more accessible to
non-specialists. This is particularly important, sincesspecialists are usually the end-users of
protocol specifications. In this paper, we demonstratestfezstures by defining a diagram which
models the execution dVSPK, and then prove some of the usual authentication propdiyies
making simple transformations and observations of therdiag

Since specification diagrams have an actor-based semfht®s21] which includes a con-
current, asynchronous communication model, they allowafaithful modeling of distributed
computing environments such as the internet. Messageedglielay, exceptional behavior
handling, and inclusion of arbitrary mathematical dataypuch as integers, lists, and sets, are
some of the particular features of specdiags that allowsdarnplete and faithful specification.
The formal semantics and associated proof principles dfiipation diagrams also allow for a
rigorous analysis of security protocols, as will be demiatet.
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Figure 1: basic diagram operations

2 Specification Diagrams: background

Actor Specification Diagrams are diagrammatic represiamsiof actor systems. They share
surface similarities with UML sequence diagrams [5], butéha rigorous semantics and signif-
icantly greater expressivity. The semantics are basedeadtor model of distributed compu-
tation [2, 3]. Actors are named entities that communicaséeagynchronous message send and
receive, with each actor having its own message queue. ftt@pecdiags can be composed in
parallel, and can branch nondeterministically on a giverdjmate. Specification diagrams are
firmly rooted in the actor model of distributed computatibat share concepts with CCS/CSP
[13, 8] (choice/parallel, traces) and axiomatic prografoudal14] (embedded logical assertions
and assumptions). The primary reference for the Actor Sipation Diagram Language is [20],
which contains a full specification and operational sentardf the language.

A brief overview of specification diagram syntax is given igdire 1, which contains diagram
fragments illustrating the basic operations. Diagramsreael from top to bottom, with lower
events occuring after higher events. Fragment (a) in diagrahows the receipt of a message
m addressed ta, and then the subsequent send of the same messagértagment (b) shows
the fork and parallel composition of two diagram fragmeirtsgne component the assignment
a := 1 occurs, while in the othdr := 0 occurs. Fragment (c) shows a loop which is executed
an arbitrary number of times between 0 and 10, where the gatslh must hold during each
iteration (if ¢ were to fail, that computation path would not be admissiibleever happened).
Fragment (d) illustrates a nondeterministic choice betw® possible computation paths; in
one path the predicat¢ holds, whiley holds in the other. There are several other syntactic
constructs in specdiags, including diagram recursionckvhre not needed for the results of this
paper.

Complete specification diagrams are built up from the ab@achoperations. These di-
agrams can be considered visual representations of camtigtate transition systems, where
states and transitions are represented graphically. &@oontains a simple example of a com-
plete diagram, calle®outer This diagram specifies an idealized packet router, whichives
messages of the forpkt(p, m), wherep is the recipient’s address andis the message body;
these messages are passed on to the intended regigigrthe router. This behavior is infor-
mally observable via an examination of the diagram. The “ oco” notation denotes a loop of
arbitrary iteration, possibly infinite for the case of an anbded stream of inputs to the router.

Like other state transition systems, the semantics of araliags given in terms of its ob-
servable behavior— that is, not based on the internal streicif the diagram per se, but rather
on how it might interact with external actors. The specdiagantics is rigorously defined in
[20], via an operational actor theory [21] which models déag behavior. The result of this
semantics is a set d@fteraction pathgip’s) which fully characterizes the input/output behavior
of a diagrammed system. Each ip is an observed input/outme df the system, and the model
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Figure 2: Router and compromised router (enemy) specificati

of the system as a whole is a set of ip’s, which gives all péssiays that messages can go
into and out of a system. For example, the ip semantidefter denotedRoute(s)], is a set
including the following three interaction paths, amongheos:

[]
[in(s <t pkt(p1,m1)), out(pr <1 pkt(pr,m1))]

[in(s < pkt(p1,m1)), out(pr < pkt(p1,m1)),
in(s < pkt(pa, m2)), out(ps < pkt(p2,m2))]

Note that this set includes the empty interaction dathmodeling the case for which no
messages are ever received. SiRoaitercan loop indefinitely, there are an infinite number of
interaction paths in the complete ip set interpretatiomezponding to the fact that a router can
forward arbitrarily many messages (even infinitely manyijsrifetime (which in theory could
be forever). Thus, the semantics of any given specdiag Is@set of interaction paths.

For protocol analysis, it is advantageous to make a very nmemtension to the specdiag
language, by adding a notion of (me&gntto the language and ip semantics:

Definition 2.1 The primitive statemerdventm) has the semantics of emitting actievent{m)
on any interaction path.

The purpose oéventis to allow certain information to be included in a diagraip'semantics
as meta-information that can be used to verify protocol bieha

A low-level analogue of aip is acomputation patlicp), which is a trace of all computation
steps in a system. In addition to andout transitions, a cp will contain internal steps such as
assignment, variable declaration, etc. An interactioh pah be obtained from any computation
path by extracting the input and output steps from it (viaftmection cp2ip defined in [20]).
Thus, two systems can have an equivalent semantics, butdiffeeent computation paths. In
other words, diagrams are amenable to simulation resuliesd and other specdiag concepts
will be clarified by examples and demonstrations in sectibaad 5.

3 Modelling NSPK: preliminaries

The NSPK protocol has been described extensively in the literatumd,the reader is referred
to e.g. [9] for a complete description of the protocol. Irstection, we make some prelimary



definitions that will be essential to our model of the profloexecution. First, we define the
following notions of message concatenation and messagp@uants:

Definition 3.1 Concatenation of messages ,m- is denoted asn;.ms. A messagen’ is,
inductively, acomponenbf a messagen, denotedn’ € m, iff m' = m orm = my.m» and
m' € my orm’ € ms.

We formalize the notion of public/private key pairs in ouraebby defining a mathematical
universeR, over which the following axioms hold:

Definition 3.2 The function f, f 1) comprise &public key private key pair overR iff for all
non-empty messages, the following conditions hold:

1. f7'(f(m)) =m
2.3 eR.f1#fAf(m)=f(m)
3.-3feR.FAFTIAF(f(m) eEm

Throughout this paper, we work over an arbitrary, fixed denfai Clause 1 of the above
definition ensures that private keys decode public key eingsd Clause 2 ensures that mes-
sages cannot be counterfeited. Clause 3 ensures thategkasgd cannot be forged, so that even
some component of an encoded message cannot be retriehedtttie appropriate private key.
Therefore, this represents an idealized model of cryptdgrél].

We will also use the concept ofreoncethroughout this paper. For our purposes, a nonce is
an identifier that is freshly generated upon declaratiod,@mnot be guessed; that is, if a fresh
nonce is created, then for all other nonegsn the systemgg # n,.

4 Encoding NSPK as a Specification Diagram

In this section we model th&/SPK protocol as a specification diagram. First, we define the
Initiator and Responder specification diagrams. We then then specify an “enemy”,rditye
that can intercept transmissions, send spurious messagegeaerally attempt to disrupt the
protocol, as a diagrafBnemy In order to verifyNSPK , we consider the parallel composition of
diagramsinitiator, Responder andEnemy This is specified a#lostilnet! in figure 7, which
specifies all possible behaviors of the system, includihg@dsible enemy attacks, due to the
general manner by which the enemy is specified.

In order to rigorously analyzélostilnet!, we define an expansion dostilnet1, called
Hostilnet3, also specified in figure 7, which explicitly details the aséinteraction between
Initiator, Responder andEnemy Hostilnet3 can itself be viewed as a proof of correctness of
the protocol, for the correctness of the protocol can edsilyead off this diagram. Another
benefit of havingHostilnet3 at hand is that the geberal behavior§PK can be observed
simply by looking at the diagram. The difficult task is to rigasly establish the equivalence
of Hostilnetl and Hostilnet3, a process that requires a careful case analysis on thebfgossi
behaviors ofHostilnet1. This proof is the subject of Section 5.

Since NSPK executes in distributed environment such as the internetuse a model of
communication whereby principals communicate via ad@éssessages of the fonpit (p, m),
which are relayed via a router, specifiedRguterin figure 2 and described in section 2. In
the simplified model of routing used here, each packet tsabebugh a single router en route
to its destination. Communication is always asynchronauspnsequence of the actor-based
semantics of specification diagrams [20, 21]. Also in kegpiith the internet model, we assume
a FIFO ordering on message receipt; while the specdiag dam§20] does not assume a FIFO
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Figure 3: NSPK protocol initiator and responder

ordering, making the changes that would entail a FIFO ongegire relatively straightforward,
and will not be presented here.

We assume the existence of a PGP-like public/private ketesy$or encryption, where all
public keys are assumed to be freely available; we accomtilis by defining a global injective

function ¥ that maps actor names to distinct public keys. For brevigyimroduce a shorthand

to denote packets with encrypted message bodies;, def pkt(a, ¥(a)(m)). Given this basic

notation, our modeling of th&SPK protocol is essentially a translation of the&SPK protocol
into specification diagram form, with messages passed legtyweincipals via the router. To
simplify matters in the context of this paper, we model a ksimgn of the protocol between two
principals.

4.1 Network Component Specifications

The protocol initiator is specified daitiator in figure 3. This diagram has top-level variables
a, r ands; wherea is the namdnitiator receives ony is the name of the principal with whom
it will initiate a run of NSPK, ands is the name of the router to which packets are sent. The
diagram is robust, in that it contains paths for those casesich invalid messages are received.
In the initial diagram transition, the first message in thet@eol is sent te. If a valid response is
received, the last message in the protocol is sent, and a€sa@vent” is executed, advertising
the value ofr andr’s nonce. The reason for including this last action is tovalkuccessful
protocol execution to be observable externally in the feliwork composition (see subsection
4.3). If an invalid response to the first sent message isvedjer if no response is received at
all, the diagram stops without executing a success event.

The protocol responder is specified Besponder in figure 3. This diagram has top level
variablesb and s, whereb is the name which the diagram receives on arid defined as in
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Initiator. Note thatResponder also executes an event action upon successful completion of
the protocol, advertising the name and nonce of the auttaeti party. And, as in the case
of Initiator, the responder diagram contains explicit paths for those<#@ which protocol
execution fails.

Given the definitions oRouter Initiator and Responder, an execution of theVSPK
protocol between the initiator and responder, in a comjyletecure environment, is obtained
through the parallel composition of the principals and théer; this composition is specified as
Goodneta, b, s) on the left of Figure 4. The safe and successful executiomeoptotocol in this
environment can itself be specified diagrammaticallyGasdnet on the right of Figure 4. The
equivalence of these diagrams can be proved:

Proposition 4.1 [Goodneta, b, s)] = [Goodnéf(a, b, s)].

The above proposition may first appear vacuous, but thersighificant difference between
the two specificationsGoodnet(a, b, s) constrains the sends of the initiator to be received by
the router, and immediately forwarded to the respondeGdndneta, b, s) on the other hand,
there is no such constraint imposed on sending and recemimreasoning is required to show
thatGoodnef(a, b, s) represents the only message-passing behavior of the sySlamof the
key features of the specdiag language is how cross-edgesdmtparallel threads serves to
constrain message-passing behavior, a feature which rdisatbanalogue in other specification
languages.

4.2 The Enemy

While Goodnefllustrates a flawless execution of the protocol in a frigretivironment, we must
also consider possible failure of, or attacks on the systémthis end, we replace thHeouter
with anEnemy a potentially faulty or malicious router which can intguteeplay and fabricate
messages in an attempt to break the protocol. In this prasemt we define the enemy as a
router which receives messages sent to the addressd generatesny sort of message based
on its current state of knowledge. This model captures asiide enemy behaviors—scenarios
in which messages are replayed, or intercepted, or alteriadbocated can be simulated [16].

In order to formally describe what the enemy can do with itewedge, we define the set
Facts(K), which is the set of messages that the enemy is able to gerggvah knowledge base
K. The enemy is able to generate new messages by concatpottér messages, deconstructing
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other concatenated messages, and by applying functiongs$sages, including public keys,
and accessible private keys. The only restriction we neeudake on functions at the enemy’s
disposal, is that they cannot include the private keys optireeipals (otherwise the protocol can
always be broken):

Definition 4.1 LetR. be a set of functions such thR, C R, R. is closed under composition,
U(a) ' € R, and¥(b)~! ¢ Re.

Then, the set of messages that can be derived from a givernéagabasd(, calledFacts(K),
is defined as follows:

Definition 4.2 Let K be some set of messages (knowledge), andnldie a message; then
m € Facts(K) iff one of the following conditions holds:

l.mekK

2.9m', feR. . m e KAm= f(m')
A consequence of this definition, which will be relevant itefgproofs, is the following:
Corollary 4.1 If m € Facts(K) andK C K', thenm € Facts(K').
Proof By definition 4.2, and case analysisiof O

With this definition of the enemy’s abilities, the enemy litss abstractly specified by the
diagramEnemyin figure 2.

This entity receives all message packets sent by eithecipah removes the message body
for inclusion in its knowledge base, and at any time is abketod messages to either principal.

Itis important to note that the enemy cannot violate thesrafeencryption specified in definition
3.2. In particular, the enemy cannot forge messages camgaiimknown nonces:

Lemma 4.1 For all actor names, sets of knowledgés, possibly empty messages, , m» and
nonces, if v € Facts(K) then¥ (i)(m;.v.m2) ¢ Facts(K).

Proof By definitions 4.2 and 3.2.0
As an example of the sort of information which cannot be et&d from a particular knowl-

edge base, in a form which will be useful in later proofs, tbkofving lemma gives concrete
examples of “unknowns” for the enemy with knowledi§e
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Lemma 4.2 For all K and nonces®,, v, ¢ Facts(K) andvs € Facts(K), the following asser-
tions hold:

1. vq,vp & Facts(K U {|ve.a]p, [vs]s, [Va-vp-b]a})
2. v & Facts(K U {|vg.alp, |vs-vp.b]s})
3. vy & Facts(K U {|vq.als, |vs-05-b]a})

Proof By definitions 4.2 and 3.2.0

4.3 The Complete Model

The initiator, responder, and enemy have now been definedthenfull model consists of the
composition of the three entities. The standard compasitithe case where the initiator wishes
to authenticate with the responder— that is, witthe receiving name aResponder. However,
we also wish to analyze the case where initiator attemptsitoeaticate with the enemy, to
show this does not lead to a faulty conclusion that authatitic with the responder took place—
the consequence of a well-known attack on an older versiaNS#K, described in [9, 16].
Therefore, we will also model execution of the protocol vitik initiator starting a run with the
enemy itself- that is, witk, whose private key the enemy has access to (see definitipn 4.1
The network model for an execution of tR&SPK protocol is the parallel composition of
the initiator, responder and enemy, which is specifiedlastilnet! in figure 7. Note that in
this composition, all messages are internal—that is, altises and receivers of messages are
contained within the system. This means that there are reptienists (the set of actors for a
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system that receive external messages) nor external gtiierset of external names known to
the system) fotHostilnet! throughout computation— that is, the system remalosed Addi-
tionally, all NSPK networks that are constructed in this paper will have thesssehof top-level
actorslActs. Hence, we can at this point simplify notation by implicitgfining for anyNSPK
network:

Definition 4.3 The receptionistp and external actorg are both) for this system; the internal
actors sefActs is {a, b, s, K}. In the following, the actor theory notatid® : Th] is taken to
mean[(D, IActs)y : Th].

Since all message sends are internal, @vigntactions will show up in the interaction paths
of the system. Each of these actions occurs upon succesgsfultion of the protocol by either
principal, and contains a tupkeicc(xy, z2,n1,n2), Wherez; is the name of the principak;
is the name of the principal whicky, believes itself to have authenticated, andandn. are
the nonces used in the protocol run. Our method of analyhiagtotocol is then to enumerate
all possible interaction paths [[Hostilnet1(a, b, s, K)]. We can then use the information in
theseips to analyze properties of any given run. For example, weabthat after an execution
of Hostilnet1, if Responder believes itself to have authenticatéditiator, then Initiator be-
lieves itself to have authenticatétsponder. Sincelnitiator is identified bya and Respond is
identified byb in this system, we verify this property by showing that fdrialeraction paths in
w [Hostilnet (a, b, s, K)], if eveni(succ(b, a,np,n,)) € m thenevent(suce(a, b, ng,np)) € 7.

The semantics offostilnetl are given by the specdiag operational semantics, and this se
mantics must be analyzed to characterize the interactitivs md Hostilnet1 to determine if the
above correctness property holds. We may diagrammat@a#lyzeHostilnet! by asserting its
equivalence to another diagrafdgstilnet3, which explicitly enumerates the cases the protocol
may perform. This diagram is given in Figure 7, with compdsef this figure in turn found in
Figures 6 and 5. In these figures, all messagesm are written asn for simplicity; message
recipients are obvious from the diagram, since all comnatioa is internal. Also, note the
symbolO,,), which abbreviates the statemewventsucc(m)).

We will demonstrate in the next Section ttféastilnet3 is equivalent taHostilnet!, so that
the above correctness condition can directly be “read dffHestilnet3: observe the compo-
nents of Figure 6 all have an event box labelgg , ., »,) only for the case there is also a box
labeledD, 5,7, 1) -



5 Proof of correspondence ofostilnet! and Hostilnet3.

The principal result of this paper is the following theorevhjch establishes the semantic equiv-
alence ofHostilnet1 and Hostilnet3:

Theorem 5.1 [Hostilnet1 (a, b, s, K)] = [Hostilnet3(a, b, s, K)] forall a,b, s, K.

Our proof strategy is to enumerate the interaction path&eftilnet!, by collapsing its
computation paths into a smaller, respresentative setcdonaplish this, we will use the Actor
Theory (AT) framework, described in [20]. Intuitively, Amt Theories allow us to break down
any Specification Diagram computation into atomic stepsciwban then be manipulated and
analyzed. In fact, once the atomic state transitions fodthgram are defined, we can enumerate
theips of the system using an inductive method. In this way, our@gugh is similar to that used
by Paulson in [15]. Any proofs not in the text appear in theaaqgix of this paper.

Our first step in the process of explicatiffostilnet1 (a, b, s, K)] is to generate theanon-
ical formactor theoryNcATh, which is semantically equivalent ostilnet1. Canonical form
refers to an actor theory in which several atomic steps haga bombined into a singbég-step
NcATh is then be transformed into an actor thedfycATh, which is in supercanonical form,
containing a further simplified set of reaction rules for tregwork. These reaction rules are
explicitly defined, allowing the interaction paths écATh to be enumerated,; this in turn will
characteriz Hostilnet! (a, b, s, K)], sinceNcATh and NscATh are semantically equivalent
by construction, as will be demonstrated in lemma 5.7.

5.1 Canonical Form AT Definitions

In this section, we define the component AT'sN6éA Th, thenNcATh itself. These definitions
are in canonical form, meaning that each AT transition cxiasif a number of computation
steps which, without loss of generality, can be collapséalarsingle big-step. This reduces the
number of semantically equivalent computation paths thattrbe considered, simplifying the
proof.

Definition 5.1 The canonical form AT'dcATh, RcATh and EcATh are defined as follows:
1. IcATh = A({Initiator(a,r, s),{a}))
2. RcATh = A((Responder(b, s),{b}))
3. EcATh = A({(Enemys, K), {s}))

As described in [20], thé\ operation generates a canonical form AdATh, RcATh and
EcATh are characterized with the following three lemmas:

Lemma 5.1 The reaction rules ofcATh are 11 through 14 as defined in figure 8, where the state
families associated with these rules are isomorphic todheviing:

Initiat(a,r, s) = Initiator(a,r, s)

Init1 (a,r,8,v,) = { Ng > Vg :
receive(a <m) @& stop;
constrain(m = [ng-n..r],) @ (constrain(m # |n,.n..r|,); stop);
sends < |1 |,);
event(succ(a,r,ng,nyr));

}

10



Proof By the specification ofnitiator, and by the definition ofA as givenin [20]. O

Lemma 5.2 The reaction rules ofkcATh are R1 through R6 as defined in figure 8, where the
state families associated with these rules are isomorphietfollowing:

Respond(b, s) = Responder(b, s)

Resp1 (b, s,vp, Viy,10) = { Np > Up, Nj > Vi, & > 40 :
receiveb <im) @ stop;
constrain(m = |np|p) @ (constrain(m # |np]s); Stop);
event(succ(b, i, np,n;));

}

Proof By the specification oResponder, and by the definition ofA as given in [20]. O

Lemma 5.3 There is only one state in the specialized actor théay} Th, which is isomorphic
to the specification diagram enennmy(s, K') = Enemys, K). The reaction rules aEcATh
are E1 through E3 as defined in diagram 8.

Proof By the specification oEnemy and by the definition oA as given in [20]. O

Now, we use localization and the product operationsafd,) defined in [20], to construct
NcATh from the component AT's. We introduce the metavarigblehich ranges ovefb, s} to
simplify notation:

Definition 5.2 Let:
Hostilnet2(a, b, s, K) = Initiat(a, 8, s), Respond(b, s), Enmy(s, K)

Then the actor theoryWcATh is obtained from the localized produbbc(IcATh x RcATh x
EcATh), with all states unreachable from the start sttatilnet2(a, b, s, K') removed.

Given results described in [20], it is straightforward t@ye equivalence of this canonical
network actor theory, and the network diagram:

Lemma 5.4 [Hostilnet! (a,b,s, K) : ¢SDTh] = [Hostilnet2(a,b,s,K) : NcATh] for all
a,b,s, K.

5.2 Bubbling and Supercanonical Form

With lemma 5.4, we take one step towards bridging the gapdetWostilnet! andHostilnets.
Now we can take another, by showing that a number of big-stgsitions in a given canonical
form cp can be rearranged without loss of generality; a foansed actor theory which then
collapses these transitions into a single step is callgbrcanonicalln this particular case, we
produce a supercanonical actor thediseATh by bubblingthe computation paths d¥cATh.
Bubbling is the process of synchronizing message sendssaed/es in computation paths:

Definition 5.3 For all computation paths of Hostilnet2, sbubbled(w) holds iff any transition
in w containing asendby Enmyis immediately followed by a transition containing the @rr
spondingeceiveby one of the principals. Conversehubbled () holds iff any transition inr
containing asendby eitherInitiat or Respond is immediately followed by a transition contain-
ing the correspondingceiveby Enmy andbubbled (w) holds iff sbubbled (w) andrbubbled ().

11



fresh(vg );sends<|vq.a)|r

Initiat(a,r, S) Init1 (a’a Ty vaa) (Il)
Init!(a,r, s,vq) — Stop (12)
Init1 (a, 7, 5,va) receive(a <\'m);constrain(m##|va -vr.7) | a stop (13)
Init1(a,r,s,vq)

receive(a m );constrain(m=|vq.vr.7] ¢ );send s v, | » );eventsucc(a,r,vq,vr)); stop (14)
Respond (b, s) — stop (R1)
Respond(b, S) receive(b<lm);constrain(m#| v, -iv]p) stop (R2)

Respond (b, s)
receive(b<{m );constrain(m=|v;, .1v | p );fresh(vy );send s < | viy -vp-b] 52 ) (R3)

Respl1 (b, s,vp, Viy, )

Resp1(b, s, vp,viy,%v) — StOp (R4)
Resp1 (b, s, Ub,’uiv,iv) receive(b<im);constrain(m# vy |p); stop (R5)
Respt (b, S,’U(,,’Uw,iv) receive(b<im);constrain(m=|vy, |  );eventsucc(b,i,vp,v;)) stop (R6)
Enmy(s, K) — stop (E1)
Enmy(s, K~ @ Sbml), e KU {lmoly }) (E2)

Enm;(s, K) new(pv€{a,b});new(muv€ Facts(K));sendpv < | mv]pyv)

Enmy(s, K) (E3)

Figure 8: Reaction rules fdcATh, RcATh and EcATh

By showing that message sends and receives can be synatavithout losing semantic
information, we show that the simpl@fscATh is equivalent taNcATh. In our proof, we first
consider the internal structure of the system in terms afdtaputation paths. Since computation
pathsr contain the actions that constitute interaction paths,ametdvially extract an interaction
path from anyr. The functioncp2ip formalizes this operation; as defined in [28p2ip(7) is
the interaction path obtained from Thus, we can say that if; andw, are both computation
paths, andep2ip (1) = cpZip(m2), thenny is semantically equivalent te,. This notion of
equivalence is central to proving the sound transformaifaNc A Th into supercanonical form.

Lemma 5.5 For all computation paths of Hostilnet2, there exists a computation path of
Hostilnet2 such thatsbubbled (r'), andcp2ip (n') = cp2ip(w).

Lemma 5.6 For all computation paths of Hostilnet2, there exists a computation path of
Hostilnet2 such thatrbubbled (') and cp2ip(n') = cp2ip(w); and also ifsbubbled(r), then
sbubbled(r").

Lemma 5.7 For all computation paths of Hostilnet2, there exists a computation path of
Hostilnet2 such thatubbled ('), andep2ip (') = cpZip(w).

Proof The result follows immediately from lemmas 5.5 and 5.6.
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Now, we define the supercanonical actor theWgg A Th:

Definition 5.4 The actor theoryiVScATh contains the reaction rules &fcATh, except with
sendandreceives of a given message collapsed into a single step; the stafés:d Th are the
states ofNc A Th, with unreachable states removed.

By the previous bubbling lemmas, the semantic&eéATh are equivalent to those &fcATh:

Lemma 5.8 [Hostilnet2(a,b,s, K) : NcATh] = [Hostilnet2(a,b,s, K) : NscATh] for all
a,b,s andK.

Proof By definitions 5.3 and 5.8 and lemma 5.7:
[Hostilnet2(a,b, s, K) : NcATh] C [Hostilnet2(a,b, s, K) : NscATh]

And sinceNscATh is constructed by reducing the number of computation patiaécid Th, it
must be the case that:

[Hostilnet2(a,b, s, K) : NscATh] C [Hostilnet2(a,b, s, K) : NcATh]
hence the lemma holdsC

Thus, bubbling allows us to synchronize message sends antyes, which simplifies the
theory, allowing us to consider even fewer cases in the aisalyin the next section, we use
NscATh to make the final bridge between the initial protocol speaifan and figure 7, which
illustrates the semantics of protocol execution.

5.3 Interaction Paths of NscATh, Analysis of NSPK

In this section, we enumerafé&lostilnet2(a,b, s, K) : NscATh]. It is easy to show that this
set is equivalent t§Hostilnet3(a, b, s, K)], by a simple observation dfostilnet3. Using this
result and lemmas 5.4 and 5.8, it will be possible to proveofé 5.1 in a straightforward
manner.

Our method of enumeratinffostilnet2(a,b,s, K) : NscATh] is to first enumerate the
computation paths of the system. We accomplish this by diefinb.4 and induction on the
length of computation sub-paths; see lemma 6.2 in the appeNdth this computation path
enumeration, it is easy to enumerate the associated iti@rgaths in the following lemma:

Lemma 5.9 The interaction paths {Hostilnet2(a, b, s, K) : NscATh] are as follows:

]

event(succ(a, 8,vq,vr)) |
event(succ(b, s, vp,v;)) |
event(succ(a, s,vq,vr)), event(suce(b, s, vy, v;)) ]
event(succ(b, s, vp,v;)), evenisucc(a, s,v4,0;)) |
(
(
(

1

event(succ(a, b,v,,vp)) ]
event(succ(a, b,v,,vp)), eventsucc(b, a, vy, v,)) ]
event(succ(b, a,vp,v,)), eventsucc(a,b, vy, vp)) ]

3l
3l
3l
3l
3l
3l
3l
3l

00N O WN

Given this enumeration dfHostilnet2(a,b, s, K) : NscATh], it is possible to show cor-
respondence of the supercanonical theory and the full mkteecification in figure 7, by a
straightforward observation of the diagram:

13



Lemma 5.10 [Hostilnet2(a, b, s, K) : NscATh] = [Hostilnet3(a,b, s, K) : CSDth] for all
a,b,s, K.

Proof Lemma 5.9 lists all interaction paths Bbstilnet2; by observingHostilnet3 in figure 7,
it is easy to see that these interaction paths are exactlyrtbg that occur amongst the possible
computation paths dffostilnets. O

Finally, the main Theorem of the paper can be demonstrateat-ig, a proof of correspon-
dence between the textual and graphical versions of thealiagby drawing a correspondence
between the interaction paths 86cATh and Hostilnet3, and by using Lemmas 5.4 and 5.8 to
make the bridge betwedhostilnet! and NscATh:

Proof of Theorem 5.1 By lemma 5.4:

[Hostilnet! (a,b, s, K) : ¢SDTh] = [Hostilnet2(a,b, s, K) : NcATh]
By lemma 5.8:

[Hostilnet2(a,b, s, K) : NcATh] = [Hostilnet2(a,b, s, K) : NscATh]
And, by lemma 5.10:

[Hostilnet2(a,b, s, K) : NscATh] = [Hostilnet3(a,b, s, K) : CSDth]
Hence, the theorem holdsO

Given this result, relevant verification properties f86PK fall out as a corollaries, so that
protocol analysis becomes a matter of simply observing thgrdm and its interaction paths.
For example:

Corollary 5.1 If eveni(succ(b, a,np, ny)) € m, thenevent(succ(a, b,nq,np)) € 7 forall = €
[Hostilnet1 (a,b, s, K)].

Proof By theorem 5.1 and lemma 5.9

Thus, we have established correctness of MK protocol in our model. Of course,
corrolary 5.1 stresses only one particular property of tteégeol; the strength offostilnet3 is
that the full nature of the protocol execution is apparemthsit a complete understanding of its
workings can be gained simply by an observation of the dragra

6 Conclusion

The main contribution of this paper is a demonstration offdasibility of a formal, diagram-
matic language for the specification and analysis of sgcprdtocols. In particular, the diagram
Hostilnet3 of Figures 7 and 6 gives an elegant graphical charactesizafithe possible behav-
iors of the Needham-Schroeder protocol under enemy atsackying all the different cases that
may arise during attack attempts. Specification diagramie ha operational semantics in an
actor theory framework, which allows properties of diagsambe rigorously established. From
a purely formal standpoint, specification diagrams do nfgrahuch over existing security pro-
tocol specification languages such as CSP [17] and I/O au&ojhd]—it is toward the goals of
readible and expressive specifications that the languaggsaew ground.
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For simplicity, we modeled execution of a single run of theetlleam-Schroeder protocol in
a closed system, with principals running the protocol onteis result should be extended to
a more realistic model of a network, as an open system in winighiple runs of the protocol
may occur. For future work we aim to analyze other securibtquols to test the effectiveness
of specification diagrams in a broader context.
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Appendix
Proof of Lemma 5.4By definition 5.2 in this paper and lemma 5.14 in [20]:

[Hostilnet! (a,b,s,K) : ¢SDTh] =
[Hostilnet2(a,b,s, K) : ¢SDTh x ¢SDTh x ¢SDTh]

By definitions 5.1-5.3 in this paper and lemmas 5.13 and 4[80h

[Hostilnet2(a,b,s, K) : ¢SDTh x ¢SDTh x ¢SDTh] =
[Hostilnet2(a,b, s, K) : IcATh x EcATh x RcATh]

And, by definition 5.2 in this paper and lemma 4.9 in [20]:

[Hostilnet2(a,b, s, K) : IcATh x EcATh x RcATh] =
[Hostilnet2(a,b, s, K) : NcATh]

Therefore, the lemma holdsO

The following definition and lemma are used in the proof ofheas 5.5 and 5.6:

Definition 6.1 For all computation paths of Hostilnet2, pe(w) holds iff all receives in «
occur beforestopenmy0ccurs.

Lemma 6.1 For all computation paths of Hostilnet2 such that-pe(r), there exists a compu-
tation pathr’ of Hostilnet2 such thape(rn'), andep2ip(n') = cp2ip(r).

Proof Supposer is a computation path dfostilnet2 such that-pe(r), and let:

= [« BEREN Cj SEN 8 BAEEN Ch)
wherea andg are sub-paths, and whefg is the first configuration in whicBtopenmy occurs
in 7. Let 8" andC], be equivalent tg3 and C,,, except that all occurrences sfopznmy are
replaced wittEnmy(s, K'), whereK is the knowledge oEnmyin configurationC;_1, and letr’
be defined as follows:

' =la 2 g 22 0f E2 O

Since(}; is the first configuration i containing an occurrence efopenmy by assumption,
therefore transition; _; must occur due to a firing of reaction rule E1. Removal of ttgiasition
means thaEnmystays “live”, so that wher€'s: is the first configuration i, the sequence

a Cy is a valid computation sub-path. And sinEamyis “dead” by assumption i¥ and
Ch, therefore none of the transitions in the sequeﬁhé"‘—% C,, alter the state odEnmyin any

way, so that3’ ——% C!, and hencex SN, LN C! , is a valid computation sub-path. The
configurationC,, must contain the fulstop state for the network, when thenmyfinally dies;

and sinceC;, contains only thé&enmyin a live state, and;_; labels a firing of reaction rule E3,

therefore the ste@’], 5=l ¢, is valid. Thusz' is a valid computation path fdostilnet2.

Finally, no transitions inr were eliminated in the construction®f; and since all transitions
which containevent steps are caused by reaction rules involving eitRespond or Initiat,
which were left unchanged in the constructiomtfthereforecp2ip (7) = cp2ip(n'). O
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Proof of Lemma 5.5Let = be a computation path dfostilnet2, and letr,. be a computation
path of Hostilnet2 such thape(m,.) andcp2ip () = cpZip(7), which must exist by lemma
6.1. Suppose thaisbubbled (7, ), and let:

7Tp6:[a —)”_1 Ciﬂ)ﬂ—)rj_l Cji)’)’]

wherer; contains the actiosendp <1 m) occurring due to an enemy send, andontains the
corresponding receive by a principal, with- ¢ > 1 by assumption. Let:

Ti—1

w=[a B 0 I ¢y By

whereC} and3' are equivalent t&’; and3 respectively, except with < m removed from all

message queugsin C; andg3. Now, it is straightforward to observe that—— 8 SERLN CJ’.

is a valid computation sub-path, since it is equivalentoup to transitiorr;, except with the
sendp < m) event removed, along with all occurrencespofi m from the message queues.
Also, C; % 4 must be a valid sub-path, since it occursrinThus, in order to show that is a
computation path, it remains to be shown tﬁ’é\tﬁ C; is a computation step.

Now, sincepe(m,e) by assumption, therefore the enemy must be “livelln and hence
in C} by construction. And since the enemy is Iived}j, it is capable of sending messages.
Further, the labet; must contain the steps defined in reaction rule E3 by defimafaVcA Th.
Thus, since&’; is identical toC; except for an occurrence pkim in the message queue, the step

C; = C;is valid if m € Facts(K'), whereK' is the enemy’s knowledge basedH. Noting
that it must be the case that € Facts(K), whereK is the enemy’s state of knowledged,
we also observe that the enemy’s knowledge base grows munoally in any computation path
by the definition ofEnmy thus, K’ C K, so that by corollary 4.1;n € Facts(K'). Hence,
C; % C; is valid, sor’ is a computation path.

Additionally, no transitions inr,. were eliminated in the construction af; and since alll
transitions which contaieventsteps are caused by reaction rules involving eithespond or
Initiat, which were left unchanged in the constructiombfthereforecp2ip (n') = cp2ip(mp.) =

cp2ip(m). O

Proof of Lemma 5.6Letw be a computation path @fostilnet2, and suppose thatrbubbled ().
Let:

r=la—5 0 582 0 Dy

wherer;_; contains the actiosends < pkt(r,m)), occurring due to a send by one of the
principals, and; contains the corresponding receive by the enemy, yvth> 1 by assumption.
Let:

m=la"5 00l g B )
WhereC’;- andg’ are equivalent t@'; andg respectively, except with<ipkt(r, m) removed from
all message queugsin C; andg, and all enemy knowledge bas&sreplaced withK' U {m}.
Then, the result in this case follows similarly as in lemmig; Bhe important point to note here
is that if the enemy can send a messagewith knowledge basds, then it can also send the
messagen’ with knowledge basé& U {m}, by corollary 4.1. Thus, all steps @i} = 3’ are
valid, sinceC; —» A is valid.

Additionally, we note that the ordering of enemy sends aricfal receives was left un-
changed in the construction of, so that ifsbubbled (), thensbubbled (z'). O
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Lemma 6.2 Let R denote the sequence of atomic computation steps in anyiaeacie R
appearing in figure 8, and let:

leﬁ?;gé NQ=§;ﬁ Ng:@;ﬁ;E_é N4:E}3;R_§
N5=E>3;R_é;@ N6=§3;R_?3 N7:E>3;R_é

Then, the states and reaction rulesHdstilnet2(a,b,s, K) : NscATh are contained in the
states and transitions obtained by making the substitsigpecified in Figure 11, whefds the

empty transition K, is an arbitrary initial knowledge base containing some neindf nonces,
and for brevityp, = ¥(z); in any given rule®, (S,) EIETLIN 0O (Sp), the substitutior®y, is

taken to apply to each optional transition laBé&l

Proof The result follows by definition 5.4, and induction on thed#nof an arbitrary compu-
tation sub-pathr of Hostilnet2(a,b, s, K) : NscATh. The most important point to note in the
induction is thaw,, v, ¢ Facts(K,) by definition 4.2, since, anduv; are freshly created during
the course of computation; and, at each subsequent poinéimdluction, the enemy can never
forge a message containing one principal’s nonce encrypitedhe other principal’s public key,
by lemma 4.2. Thus, the protocol proceeds “safely”, regaslbf any attempts to the contrary
on the part of the enemyO

Proof of Lemma 5.9Let IP be the set containing the seven interaction paths definedcalho
order to show thafP C [Hostilnet2(a,b, s, K) : NscATh], by lemma 6.2 it is straightforward
to construct computation patfifrom the reaction rules aVscATh, such that for alp € IP,
there existsr € II such thatp2ip () = p.

In order to show thafHostilnet2(a,b,s, K) : NscATh] C IP, we observe from the re-
action rules ofNscATh that the only individual event actions that can occur areftle that
are contained in the paths P, and each principal can execute at most one event actioryin an
given computation path. Thus, the only permutations of ipesgvent actions which are not in
IP are as follows:

L ( )]
2. [ event(succ(a, s, vq,vr)), eveni(succ(b, a,vy,v,)) ]
3. [event(succ(b, a,vp,v,)), event(suce(a, s,v4,0;)) ]
4. [eveni(succ(a, b, vy, vp)), event(succ(b, s, vy, vs)) |
5. [event(succ(b, s, vp,vs)), event(succ(a,b,v,,vp)) ]

event(succ(b, a, vy, vy

)
)

Let IP be the set containing these permutations. Note that by leffahe only reaction
rule which causes the actievent(succ(b, a, vy, v,)) is number 52 in figure 11. However, in this
reaction rulep, (vp) is in the enemy’s knowledge bagé; but also by observation of figure 11,
py(vp) € K iff the actioneventsucc(a, b,v,,v5)) OCcuUrs. Hence, permutations 1-31R are
notin [Hostilnet2(a, b, s, K) : NscATh]. By the same token, permutations 4-Jare not in
[Hostilnet2(a,b, s, K) : NscATh], since if the actiomvent succ(b, s, vp, vs)) OCCUrSpy(vp) IS
never in the enemy’s knowledge base, therefore the aetient succ(a, b, v,,vp)) cannot occur
before or aftelevent(succ(b, s, vy, vs)). Therefore]Hostilnet2(a,b,s, K) : NscATh] C IP.

O
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Initiat(a, B, s) , Respond(b,s), Enmys, K,) (S1)

Init1(a, 3, s,va) , Respond(b,s), Enmys, K) (S2)
Initiat(a, B, s) , stop, Enmy(s, K) (S3)
Initiat(a, B,s) , Respl(b,s,vp,v;,1) , Enmys, K) (S4)
stop, Respond(b,s) , Enmys, K) (S5)
Init1(a, B, s,va) , Stop, Enmys, K) (S6)
Init1(a, 3, s,va) , Respl(b,s,vp,v;,1), Enmys, K) (S7)
Init1(a, 3, s,va) , Respond(b,s), stop (S8)
stop, Respond(b,s) , stop (S9)
stop, Respl1(b,s,vp,v;i, %), Enmys, K) (S10)
Init1(a, 3, s,va) , Respl(b,s,vp,v;,1), Stop (S11)
Init1(a,8,5s,vq) , Stop, stop (S12)
stop, Respl(b,s,vp,vi,t), Stop (S13)
stop, stop, Enmy(s, K) (S14)
stop, stop, stop (S15)

Figure 9: State definitions for Figure 11

@
|

= [K.U{lva-alg} /K]

02 = [ K, U {|vk-vp.b|1} /K ] ke {s,a}
K, U{|va.a]s} /K, s/8]

K, U{|va-a]s, vs]s} /K, s/8]

K, U{|va-alg, |vk-vp-b]k} ] ke {s,a}

=1

@4:[

=
O = [ K., U{|va.alp} /K, b/8 ]

[

[

[

o]
3
|

= | K, U{|va-a]p, |va-vp.b]a} /K, b/B, a/i]

08 = [ K, U {|vs.vp-b]s} /K,s/i]

O9 = [ K, U{|va-als,|vgls, [vk-ve-blr } /K, s/B] k€ {s,a}
010 = [ K, U{|va-als, [vi-vp-blk} /K, s/8] ke {s,a}
O11 = [ K, U {|va-a]g, |vk-vp-b]s} /K, s/i] ke {s,a}
O12 = [ K, U {{va-alb, V)b, [Va-vp-n]a} /K, a/i]

O13 = [ K, U {|va-a]s, |vg]s, v-ve-b]s} /K, s/B, s/i] k€ {s,a}

Figure 10: Substitution definitions for Figure 11
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12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

. 0,(52) L s
11.

ss 2y 0,(S6)
©2(84) 5 ©5(87)
0s(54) 2% ©5(53)
05(54) 2L 04(53)
02(53) 4 05(56)
0.(55) M2 0, (514)
0,(85) 225 05(810)
06(55) 22 0,4(514)
0:(85) % 59

0,(55) 2 o, (514)
0,(85) 22 04(5183)
0,(85) % 59

0,(56) 22 0, (514)
03(56) 2% 0,(514)
0.(56) L s12
05(57) M2 05(510)
010(87) 225 ©14(510)
05(57) X2 0;(s6)
01:(57) % ©,44(56)

. 05(57) L s11
. 04(57) 222 0,(510)
. ©7(57) 255 ©45(810)

N6,0

. 04(87) 220 0,(56)
. 0.(57) L 04(511)
.58 % s9

.58 Y s12

. 05(56) 20 0,(514)
. ©10(86) 25 ©,0(S14)
. 05(56) L s12

N2,0

. 07(56) 224 0,(514)
. 04(86) 225 ©,5(S14)

. 0,(56) L 0,(512)
.59 Y 515

. 05(510) X2 o,(514)
. 011(810) 5 ©44(514)
. 05(510) % 513

N6,0

. 09(810) 220 04(514)
. 013(810) 275 ©45(514)
. 09(510) % 513

. ©7(510) 2% 04(514)

. 0,(510) % 513

N6,N7,0

. ©15(510) MO0, o 0 (S14)
. ©15(510) 2 ©,5(513)

. s11 % 513

. s11 % s12

. s12 % s15

. 513 Y 515

. Ss14 % s15

Figure 11: States and Reaction ruled\atATh
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