
Diagrammatic Verification of Security Protocols

Christian Skalka and Scott Smith

The Johns Hopkins University,
�
ces,scott�@cs.jhu.edu

Abstract

The Actor Specification Diagram Language is a rigorously defined graphical specifica-
tion language, with features for modelling concurrency andasynchronous communication.
These features make the language appropriate for the formalanalysis of distributed security
protocols. The graphical nature of the language makes protocol descriptions easy to read and
understand, vital properties for appeal to a wider user population. Proofs of protocol correct-
ness can be given via graphical transformation, with each step of transformation justified by
rigorous argument if desired. To illustrate the utility of agraphical specification language we
analyze the well-known Needham-Schroeder Pubic Key protocol.

1 Introduction

The purpose of this paper is to demonstrate the suitability of a formal diagrammatic specification
language for the verification of security protocols. The particular language we use is the actor
specification diagram language (referred to asspecdiagsfor brevity), presented in [18, 19, 20].
In this paper we model and analyze the Needham-Schroeder Public Key (����) protocol. Var-
ious authentication properties for���� have been proven in a number of different formalisms,
including [17, 6, 4, 7]. We analyze���� to give a useful benchmark of comparison with other
specification techniques such as the above.

While specification diagrams have a number of appealing characteristics, their unique strength
in the domain of protocol verification is their graphical nature. Since these graphical diagrams
are easily understood, and explicitly illustrate the full execution of a system, properties can
be “read off” the diagram, rather than requiring assertionsin some symbolic language. While
the technical advantages of graphical reasoning methods have been explored previously [11],
graphical approaches have particular benefits in the context of security protocol analysis; they
allow a more intuitive reading of the specification, making the representation more accessible to
non-specialists. This is particularly important, since non-specialists are usually the end-users of
protocol specifications. In this paper, we demonstrate these features by defining a diagram which
models the execution of���� , and then prove some of the usual authentication propertiesby
making simple transformations and observations of the diagram.

Since specification diagrams have an actor-based semantics[2, 3, 21] which includes a con-
current, asynchronous communication model, they allow fora faithful modeling of distributed
computing environments such as the internet. Message delivery delay, exceptional behavior
handling, and inclusion of arbitrary mathematical datatypes such as integers, lists, and sets, are
some of the particular features of specdiags that allows forcomplete and faithful specification.
The formal semantics and associated proof principles of specification diagrams also allow for a
rigorous analysis of security protocols, as will be demonstrated.

1

m a

m b

(a)

a:=1 b:=0
φ

φ ψ

(b) (c) (d)

 0..10

Figure 1: basic diagram operations

2 Specification Diagrams: background

Actor Specification Diagrams are diagrammatic representations of actor systems. They share
surface similarities with UML sequence diagrams [5], but have a rigorous semantics and signif-
icantly greater expressivity. The semantics are based on the actor model of distributed compu-
tation [2, 3]. Actors are named entities that communicate via asynchronous message send and
receive, with each actor having its own message queue. Actors in specdiags can be composed in
parallel, and can branch nondeterministically on a given predicate. Specification diagrams are
firmly rooted in the actor model of distributed computation,but share concepts with CCS/CSP
[13, 8] (choice/parallel, traces) and axiomatic program calculi [14] (embedded logical assertions
and assumptions). The primary reference for the Actor Specification Diagram Language is [20],
which contains a full specification and operational semantics of the language.

A brief overview of specification diagram syntax is given in Figure 1, which contains diagram
fragments illustrating the basic operations. Diagrams areread from top to bottom, with lower
events occuring after higher events. Fragment (a) in diagram 1 shows the receipt of a message� addressed to�, and then the subsequent send of the same message to�. Fragment (b) shows
the fork and parallel composition of two diagram fragments;in one component the assignment
� 	
 � occurs, while in the other� 	
 � occurs. Fragment (c) shows a loop which is executed
an arbitrary number of times between 0 and 10, where the predicate
 must hold during each
iteration (if
 were to fail, that computation path would not be admissible–it never happened).
Fragment (d) illustrates a nondeterministic choice between two possible computation paths; in
one path the predicate
 holds, while� holds in the other. There are several other syntactic
constructs in specdiags, including diagram recursion, which are not needed for the results of this
paper.

Complete specification diagrams are built up from the above basic operations. These di-
agrams can be considered visual representations of concurrent state transition systems, where
states and transitions are represented graphically. Figure 2 contains a simple example of a com-
plete diagram, calledRouter. This diagram specifies an idealized packet router, which receives
messages of the form��� �� � � �, where� is the recipient’s address and� is the message body;
these messages are passed on to the intended recipient� by the router. This behavior is infor-
mally observable via an examination of the diagram. The “� � � � � ” notation denotes a loop of
arbitrary iteration, possibly infinite for the case of an unbounded stream of inputs to the router.

Like other state transition systems, the semantics of a diagram is given in terms of its ob-
servable behavior– that is, not based on the internal structure of the diagram per se, but rather
on how it might interact with external actors. The specdiag semantics is rigorously defined in
[20], via an operational actor theory [21] which models diagram behavior. The result of this
semantics is a set ofinteraction paths(ip’s) which fully characterizes the input/output behavior
of a diagrammed system. Each ip is an observed input/output trace of the system, and the model

2

 p pkt(p,m)

 s pkt(p,m)

0..

Router(s) =

 s m

 p m

new(m ε Facts(K))

K:= K

0..

Enemy(s,K)

new(p {a, b})

 {m}

=

 ε

Figure 2: Router and compromised router (enemy) specifications

of the system as a whole is a set of ip’s, which gives all possible ways that messages can go
into and out of a system. For example, the ip semantics ofRouter, denoted��Router�����, is a set
including the following three interaction paths, amongst others:

� �
� in �� � ��� �� � �� ��� � out�� � � ��� �� � � � ��� �
� in �� � ��� �� � �� ��� � out�� � � ��� �� � � � ��� �

in �� � ��� �� � � � � �� � out�� � � ��� �� � �� � �� �
Note that this set includes the empty interaction path� �, modeling the case for which no

messages are ever received. SinceRoutercan loop indefinitely, there are an infinite number of
interaction paths in the complete ip set interpretation, corresponding to the fact that a router can
forward arbitrarily many messages (even infinitely many) inits lifetime (which in theory could
be forever). Thus, the semantics of any given specdiag is such a set of interaction paths.

For protocol analysis, it is advantageous to make a very minor extension to the specdiag
language, by adding a notion of (meta-)eventto the language and ip semantics:

Definition 2.1 The primitive statementevent�� � has the semantics of emitting actionevent�� �
on any interaction path.

The purpose ofevent is to allow certain information to be included in a diagram’sip semantics
as meta-information that can be used to verify protocol behavior.

A low-level analogue of anip is acomputation path(cp), which is a trace of all computation
steps in a system. In addition toin andout transitions, a cp will contain internal steps such as
assignment, variable declaration, etc. An interaction path can be obtained from any computation
path by extracting the input and output steps from it (via thefunction �� !� defined in [20]).
Thus, two systems can have an equivalent semantics, but havedifferent computation paths. In
other words, diagrams are amenable to simulation results. These and other specdiag concepts
will be clarified by examples and demonstrations in sections4 and 5.

3 Modelling "#$% : preliminaries

The���� protocol has been described extensively in the literature,and the reader is referred
to e.g. [9] for a complete description of the protocol. In this section, we make some prelimary

3

definitions that will be essential to our model of the protocol execution. First, we define the
following notions of message concatenation and message components:

Definition 3.1 Concatenation of messages� � �� � is denoted as� � �� �. A message� & is,
inductively, acomponentof a message� , denoted� & ' � , iff � &
 � or �
 � � �� � and� & ' � � or � & ' � �.

We formalize the notion of public/private key pairs in our model by defining a mathematical
universe(, over which the following axioms hold:

Definition 3.2 The functions�) �) *� � comprise a�public key�private key� pair over(iff for all
non-empty messages� , the following conditions hold:

1.) *� �) �� ��
 �
2. +,) & ' (�) & -
) .) & �� �
) �� �
3. +,) & ' (�) & -
) *� .) & �) �� �� ' �
Throughout this paper, we work over an arbitrary, fixed domain (. Clause 1 of the above

definition ensures that private keys decode public key encodings. Clause 2 ensures that mes-
sages cannot be counterfeited. Clause 3 ensures that private keys cannot be forged, so that even
some component of an encoded message cannot be retrieved without the appropriate private key.
Therefore, this represents an idealized model of cryptography [1].

We will also use the concept of anoncethroughout this paper. For our purposes, a nonce is
an identifier that is freshly generated upon declaration, and cannot be guessed; that is, if a fresh
nonce is created, then for all other nonces/ 0 in the system,/ 0 -
 /1.

4 Encoding"#$% as a Specification Diagram

In this section we model the���� protocol as a specification diagram. First, we define the23 !4!5467 and89:� 63;97 specification diagrams. We then then specify an “enemy”, an entity
that can intercept transmissions, send spurious messages and generally attempt to disrupt the
protocol, as a diagramEnemy. In order to verify���� , we consider the parallel composition of
diagrams

23!4!5467 , 89:� 63;97 andEnemy. This is specified as< 6:4!=394> in figure 7, which
specifies all possible behaviors of the system, including all possible enemy attacks, due to the
general manner by which the enemy is specified.

In order to rigorously analyze< 6:4!=394> , we define an expansion of< 6:4!=3 94> , called
< 6:4!=3 94? , also specified in figure 7, which explicitly details the cases of interaction between23 !4!5467 , 89:� 63;97 andEnemy. < 6:4!=3 94? can itself be viewed as a proof of correctness of
the protocol, for the correctness of the protocol can easilybe read off this diagram. Another
benefit of having< 6:4!=394? at hand is that the geberal behavior of���� can be observed
simply by looking at the diagram. The difficult task is to rigorously establish the equivalence
of < 6:4!=394> and< 6:4!=394? , a process that requires a careful case analysis on the possible
behaviors of< 6:4!=394> . This proof is the subject of Section 5.

Since���� executes in distributed environment such as the internet, we use a model of
communication whereby principals communicate via addressed messages of the form��� �� � � �,
which are relayed via a router, specified asRouterin figure 2 and described in section 2. In
the simplified model of routing used here, each packet travels through a single router en route
to its destination. Communication is always asynchronous,a consequence of the actor-based
semantics of specification diagrams [20, 21]. Also in keeping with the internet model, we assume
a FIFO ordering on message receipt; while the specdiag semantics [20] does not assume a FIFO

4

 b m1

 b

 s m2

φ1

φ2

m3

fresh(nb)

∼ φ2

 ∼ φ1

event(m4)

Responder(b,s) =

 s

 a

 s

m1

m2

m3

fresh(na)

 φ

event(m4)

∼ φ

Initiator(a,r,s) =

@ A B CDE FEGHI J @K B CDE FDH FHGE@ L B CDH GH@M B NO PPQE R H R DE R DH S
IA J @ A B CDT FTGT@ K B CDT FD U FUGTIK J @ L B CDU GU@M B NO PPQU R T R DU R DT S

Figure 3:���� protocol initiator and responder

ordering, making the changes that would entail a FIFO ordering are relatively straightforward,
and will not be presented here.

We assume the existence of a PGP-like public/private key system for encryption, where all
public keys are assumed to be freely available; we accomplish this by defining a global injective
functionV that maps actor names to distinct public keys. For brevity, we introduce a shorthand

to denote packets with encrypted message bodies:W� X1 YZ[
 ��� �� � V ��� �� ��. Given this basic
notation, our modeling of the���� protocol is essentially a translation of the���� protocol
into specification diagram form, with messages passed between principals via the router. To
simplify matters in the context of this paper, we model a single run of the protocol between two
principals.

4.1 Network Component Specifications

The protocol initiator is specified as
23!4!5467 in figure 3. This diagram has top-level variables

�, \ and�; where� is the name
23!4!5467 receives on,\ is the name of the principal with whom

it will initiate a run of ���� , and� is the name of the router to which packets are sent. The
diagram is robust, in that it contains paths for those cases in which invalid messages are received.
In the initial diagram transition, the first message in the protocol is sent to\. If a valid response is
received, the last message in the protocol is sent, and a “success event” is executed, advertising
the value of\ and \ ’s nonce. The reason for including this last action is to allow successful
protocol execution to be observable externally in the full network composition (see subsection
4.3). If an invalid response to the first sent message is recieved, or if no response is received at
all, the diagram stops without executing a success event.

The protocol responder is specified as89:� 63;97 in figure 3. This diagram has top level
variables� and �, where� is the name which the diagram receives on and� is defined as in

5

 s m1

 s m2

 s m3

 a m2

 b m1

 b m3

 (a,b,na,nb) (b,a,nb,na)

Goodnet’(a,b,s) =

Initiator(a,b,s) Router(s) Responder(b,s)

Goodnet1(a,b,s) =

] ^ _ `ab cbde]f _ `ab ca e cedb]g _ `ae dehi] j _ event
ikl mmi] jj

Figure 4:noopqrs and its expansion,Goodnett

uq vsvwsox . Note thatyrz{ oqprx also executes an event action upon successful completion of
the protocol, advertising the name and nonce of the authenticated party. And, as in the case
of

uqvsvwsox , the responder diagram contains explicit paths for those cases in which protocol
execution fails.

Given the definitions ofRouter,
uqvsvwsox and yrz{ oqprx , an execution of the|}~�

protocol between the initiator and responder, in a completely secure environment, is obtained
through the parallel composition of the principals and the router; this composition is specified as
Goodnet�� � � � �� on the left of Figure 4. The safe and successful execution of the protocol in this
environment can itself be specified diagrammatically, asGoodnett on the right of Figure 4. The
equivalence of these diagrams can be proved:

Proposition 4.1 ��Goodnet�� � � � ���� � ��Goodnett �� � � � ����.
The above proposition may first appear vacuous, but there is asignificant difference between

the two specifications:Goodnett �� � � � �� constrains the sends of the initiator to be received by
the router, and immediately forwarded to the responder. InGoodnet�� � � � �� on the other hand,
there is no such constraint imposed on sending and receiving, and reasoning is required to show
thatGoodnett �� � � � �� represents the only message-passing behavior of the system. One of the
key features of the specdiag language is how cross-edges between parallel threads serves to
constrain message-passing behavior, a feature which has nodirect analogue in other specification
languages.

4.2 The Enemy

WhileGoodnetillustrates a flawless execution of the protocol in a friendly environment, we must
also consider possible failure of, or attacks on the system.To this end, we replace theRouter
with anEnemy, a potentially faulty or malicious router which can intercept, replay and fabricate
messages in an attempt to break the protocol. In this presentation, we define the enemy as a
router which receives messages sent to the address�, and generatesanysort of message based
on its current state of knowledge. This model captures all possible enemy behaviors—scenarios
in which messages are replayed, or intercepted, or altered or fabricated can be simulated [16].

In order to formally describe what the enemy can do with its knowledge, we define the set�w�sz �� �, which is the set of messages that the enemy is able to generate given knowledge base
K. The enemy is able to generate new messages by concatenating other messages, deconstructing

6

D1:

1. � � � ��� ����
2. �� � ��� �� � ����
3. �� � �����

D2:

1. � � � �� � � � � � � � �� � ����
2. �� � ��� �� � � � �
3. ¡ � � �� � �����

D3:

1. � � � ��� ���¢
2. � � £��¢ � � � � ��� ��¢ �¤ ��

D4:

1. � � � ��� ����
2. �� � ��� ��� � ��
3. �� � ���� �
4. � � � �¥ � ��� ��D1–D4: ¦§� ¨ � event§©ª«« §� ¨)

Figure 5: Symbol definitions for diagram components in Figure 6

other concatenated messages, and by applying functions to messages, including public keys,
and accessible private keys. The only restriction we need tomake on functions at the enemy’s
disposal, is that they cannot include the private keys of theprincipals (otherwise the protocol can
always be broken):

Definition 4.1 Let (¬ be a set of functions such that(¬ ­ (, (¬ is closed under composition,
V ���*� -' (¬ andV ���*� -' (¬ .
Then, the set of messages that can be derived from a given knowledge base® , called¯5�4: �® �,
is defined as follows:

Definition 4.2 Let ® be some set of messages (knowledge), and let� be a message; then� ' ¯5�4: �® � iff one of the following conditions holds:

1. � ' ®
2. ,� & �) ' (¬ � � & ' ® . �
) �� &�

A consequence of this definition, which will be relevant in later proofs, is the following:

Corollary 4.1 If � ' ¯5�4: �® � and® ° ® &, then� ' ¯5�4: �® &�.
Proof By definition 4.2, and case analysis of� . ±

With this definition of the enemy’s abilities, the enemy itself is abstractly specified by the
diagramEnemyin figure 2.

This entity receives all message packets sent by either principal, removes the message body
for inclusion in its knowledge base, and at any time is able tosend messages to either principal.
It is important to note that the enemy cannot violate the rules of encryption specified in definition
3.2. In particular, the enemy cannot forge messages containing unknown nonces:

Lemma 4.1 For all actor names², sets of knowledge® , possibly empty messages� � �� � and
nonces³ , if ³ -' ¯5�4: �® � thenV �²� �� � �³ �� ´� -' ¯5�4: �® �.
Proof By definitions 4.2 and 3.2.±

As an example of the sort of information which cannot be extracted from a particular knowl-
edge base, in a form which will be useful in later proofs, the following lemma gives concrete
examples of “unknowns” for the enemy with knowledge® :

7

ψ1

φ1

m1

m2

m3

m1

m1

m2

m1

φ1

φ

ζ

ψ

m2

m3

m4

m1

m2

m3

D3

D4

 s s b

 a s

 a s b

m2

 a

(a,s,na,ns)

 (b,s,nb,ns)
D2

 (a,b,na,nb) (b,a,nb,na)

D1

∼φ1

∼ψ1

∼φ1

Figure 6:< 6:4!=3 94? Diagram Components

Lemma 4.2 For all ® and nonces³1 � ³ 0 -' ¯5�4: �® � and³µ ' ¯5�4: �® �, the following asser-
tions hold:

1. ³1 � ³ 0 -' ¯5�4: �® ¶ · W³1 ��X 0 � W³ 0X 0 � W³1 �³ 0 ��X 1 ¸�
2. ³1 -' ¯5�4: �® ¶ · W³1 ��X 0 � W³µ �³ 0 ��X µ ¸�
3. ³0 -' ¯5�4: �® ¶ · W³1 ��X µ � W³µ �³ 0 ��X1 ¸�

Proof By definitions 4.2 and 3.2.±
4.3 The Complete Model

The initiator, responder, and enemy have now been defined, and the full model consists of the
composition of the three entities. The standard composition is the case where the initiator wishes
to authenticate with the responder– that is, with�, the receiving name of89:� 63;97 . However,
we also wish to analyze the case where initiator attempts to authenticate with the enemy, to
show this does not lead to a faulty conclusion that authentication with the responder took place–
the consequence of a well-known attack on an older version of���� , described in [9, 16].
Therefore, we will also model execution of the protocol withthe initiator starting a run with the
enemy itself– that is, with�, whose private key the enemy has access to (see definition 4.1).

The network model for an execution of the���� protocol is the parallel composition of
the initiator, responder and enemy, which is specified as< 6:4!=394> in figure 7. Note that in
this composition, all messages are internal—that is, all senders and receivers of messages are
contained within the system. This means that there are no receptionists (the set of actors for a

8

Enemy(s,K)
Initiator(a,b,s) Initiator(a,s,s)

Responder(b,s)

=Hostilnet1(a,b,s,K)

D1 D4 D3 D2 D1 D3 D2

Hostilnet3(a,b,s,K) =

Figure 7:< 6:4!=394> and its expansion,< 6:4!=394? .

system that receive external messages) nor external actors(the set of external names known to
the system) for< 6:4!=3 94> throughout computation– that is, the system remainsclosed. Addi-
tionally, all���� networks that are constructed in this paper will have the same set of top-level
actors

2¹�4:. Hence, we can at this point simplify notation by implicitlydefining for any����
network:

Definition 4.3 The receptionistsº and external actors» are both¼ for this system; the internal
actors set

2¹�4: is ·� � � � � � ® ¸. In the following, the actor theory notation��½ 	 ¾¿ �� is taken to
mean��À½ � 2¹�4: ÁÂÃ 	 ¾¿ ��.

Since all message sends are internal, onlyeventactions will show up in the interaction paths
of the system. Each of these actions occurs upon successful execution of the protocol by either
principal, and contains a tuple:Ä�� �Å � � Å� � / � � / � �, whereÅ � is the name of the principal,Å�
is the name of the principal whichÅ� believes itself to have authenticated, and/ � and/� are
the nonces used in the protocol run. Our method of analyzing the protocol is then to enumerate
all possible interaction paths in��< 6:4!=3 94> �� � � � � � ® ���. We can then use the information in
theseips to analyze properties of any given run. For example, we expect that after an execution
of < 6:4!=394> , if 89:� 63;97 believes itself to have authenticated

23!4!5467 , then
23!4!5467 be-

lieves itself to have authenticated89:� 63;97 . Since
23!4!5467 is identified by� and89:� 63; is

identified by� in this system, we verify this property by showing that for all interaction paths inÆ ��< 6:4!=394> �� � � � � � ® ���, if event�:Ä�� �� � � � / 0 � / 1 �� ' Æ thenevent�:Ä�� �� � � � / 1 � / 0 �� ' Æ .
The semantics of< 6:4!=394> are given by the specdiag operational semantics, and this se-

mantics must be analyzed to characterize the interaction paths of< 6:4!=3 94> to determine if the
above correctness property holds. We may diagrammaticallyanalyze< 6:4!=3 94> by asserting its
equivalence to another diagram,< 6:4!=3 94? , which explicitly enumerates the cases the protocol
may perform. This diagram is given in Figure 7, with components of this figure in turn found in
Figures 6 and 5. In these figures, all messages� � � are written as� for simplicity; message
recipients are obvious from the diagram, since all communication is internal. Also, note the
symbol±ÇÈÉ, which abbreviates the statementevent�:Ä�� �� ��.

We will demonstrate in the next Section that< 6:4!=394? is equivalent to< 6:4!=3 94> , so that
the above correctness condition can directly be “read off” of < 6:4!=394? : observe the compo-
nents of Figure 6 all have an event box labeled±Ç0 Ê1 ÊË U ÊËE É only for the case there is also a box
labeled±Ç1 Ê0 ÊËE ÊË U É .

9

5 Proof of correspondence ofÌ ÍÎÏÐÑÒ ÓÏÔ and Ì ÍÎÏÐÑÒ ÓÏÕ .

The principal result of this paper is the following theorem,which establishes the semantic equiv-
alence of< 6:4!=394> and< 6:4!=394? :

Theorem 5.1 ��< 6:4!=3 94> �� � � � � � ® ���
 ��< 6:4!=394? �� � � � � � ® ��� for all � � � � � � ® .

Our proof strategy is to enumerate the interaction paths of< 6:4!=3 94> , by collapsing its
computation paths into a smaller, respresentative set. To accomplish this, we will use the Actor
Theory (AT) framework, described in [20]. Intuitively, Actor Theories allow us to break down
any Specification Diagram computation into atomic steps, which can then be manipulated and
analyzed. In fact, once the atomic state transitions for thediagram are defined, we can enumerate
theips of the system using an inductive method. In this way, our approach is similar to that used
by Paulson in [15]. Any proofs not in the text appear in the appendix of this paper.

Our first step in the process of explicating��< 6:4!=394> �� � � � � � ® ��� is to generate thecanon-
ical form actor theory� �¹ ¾¿ , which is semantically equivalent to< 6:4!=394> . Canonical form
refers to an actor theory in which several atomic steps have been combined into a singlebig-step.
� �¹¾¿ is then be transformed into an actor theory� :�¹ ¾¿ , which is in supercanonical form,
containing a further simplified set of reaction rules for thenetwork. These reaction rules are
explicitly defined, allowing the interaction paths of� :�¹ ¾¿ to be enumerated; this in turn will
characterize��< 6:4!=394> �� � � � � � ® ���, since� �¹¾¿ and� :�¹ ¾¿ are semantically equivalent
by construction, as will be demonstrated in lemma 5.7.

5.1 Canonical Form AT Definitions

In this section, we define the component AT’s of� �¹ ¾¿ , then� �¹¾¿ itself. These definitions
are in canonical form, meaning that each AT transition consists of a number of computation
steps which, without loss of generality, can be collapsed into a single big-step. This reduces the
number of semantically equivalent computation paths that must be considered, simplifying the
proof.

Definition 5.1 The canonical form AT’s
2 �¹ ¾¿ , 8�¹¾¿ andÖ �¹¾¿ are defined as follows:

1.
2 �¹ ¾¿
 × �À23 !4!5467 �� � \ � �� � ·� ¸Á�

2. 8�¹ ¾¿
 × �À89:� 63;97 �� � �� � ·�¸Á�
3. Ö �¹¾¿
 × �ÀEnemy�� � ® � � ·�¸Á�
As described in [20], the× operation generates a canonical form AT.

2 �¹ ¾¿ , 8�¹¾¿ and
Ö �¹¾¿ are characterized with the following three lemmas:

Lemma 5.1 The reaction rules of
2 �¹ ¾¿ are I1 through I4 as defined in figure 8, where the state

families associated with these rules are isomorphic to the following:
23 !4!54 �� � \ � ��
 23!4!5467 �� � \ � ��
23!4> �� � \ � � � ³1 �
 · /1 ØÙ ³1 	

receive�� � � � Ú stopÛ
constrain��
 W/1 �/ Ü �\X1 � Ú �constrain�� -
 W/1 �/ Ü �\X 1 � Û stop� Û
send�� � W/ÜXÜ � Û
event�:Ä�� �� � \ � / 1 � / Ü �� Û
¸

10

Proof By the specification of
23 !4!5467 , and by the definition of× as given in [20]. ±

Lemma 5.2 The reaction rules of8�¹ ¾¿ are R1 through R6 as defined in figure 8, where the
state families associated with these rules are isomorphic to the following:

89:� 63; �� � ��
 89:� 63;97 �� � ��

8 9:� > �� � � � ³ 0 � ³ ÝÞ � ²³ �
 · / 0 ØÙ ³0 � / Ý ØÙ ³ÝÞ � ² ØÙ ²³ 	
receive�� � � � Ú stopÛ
constrain��
 W/ 0X 0 � Ú �constrain�� -
 W/ 0X 0 � Û stop� Û
event�:Ä�� �� � ² � / 0 � / Ý �� Û
¸

Proof By the specification of89:� 63;97 , and by the definition of× as given in [20]. ±
Lemma 5.3 There is only one state in the specialized actor theoryÖ �¹¾¿ , which is isomorphic
to the specification diagram enemy:Enmy�� � ® �
 Enemy�� � ® �. The reaction rules ofÖ �¹¾¿
are E1 through E3 as defined in diagram 8.

Proof By the specification ofEnemy, and by the definition of× as given in [20]. ±
Now, we use localization and the product operations (ß and �) defined in [20], to construct

� �¹¾¿ from the component AT’s. We introduce the metavariableà which ranges over·� � �¸ to
simplify notation:

Definition 5.2 Let:

< 6:4!=3 94 �� � � � � � ® �
 23!4!54 �� � à � �� � 8 9:� 63; �� � �� �Enmy�� � ® �
Then the actor theory� �¹¾¿ is obtained from the localized productá6� �2 �¹ ¾¿ ß 8�¹¾¿ ß
Ö �¹¾¿ �, with all states unreachable from the start state< 6:4!=394 �� � � � � � ® � removed.

Given results described in [20], it is straightforward to prove equivalence of this canonical
network actor theory, and the network diagram:

Lemma 5.4 ��< 6:4!=394> �� � � � � � ® � 	 ��â ¾¿ ��
 ��< 6:4!=394 �� � � � � � ® � 	 � �¹ ¾¿ �� for all
� � � � � � ® .

5.2 Bubbling and Supercanonical Form

With lemma 5.4, we take one step towards bridging the gap between< 6:4!=394> and< 6:4!=3 94? .
Now we can take another, by showing that a number of big-step transitions in a given canonical
form cp can be rearranged without loss of generality; a transformed actor theory which then
collapses these transitions into a single step is calledsupercanonical. In this particular case, we
produce a supercanonical actor theory� :�¹ ¾¿ by bubblingthe computation paths of� �¹¾¿ .
Bubbling is the process of synchronizing message sends and receives in computation paths:

Definition 5.3 For all computation pathsÆ of < 6:4!=394 , :ãÄãã=9; �Æ � holds iff any transition
in Æ containing asendby Enmyis immediately followed by a transition containing the corre-
spondingreceiveby one of the principals. Conversely,7ãÄãã=9; �Æ � holds iff any transition inÆ
containing asendby either

23 !4!54 or 89:� 63; is immediately followed by a transition contain-
ing the correspondingreceiveby Enmy, andãÄãã=9; �Æ � holds iff :ãÄãã=9; �Æ � and7ãÄãã=9; �Æ �.

11

äåæçæèç §� � é � �¨ freshêëE ì ísendê�î ïëE ð� ìñHòòòòòòòòòòòòòòòòòó äåæçô §� � é � � � õ� ¨ (I1)äåæçô §� � é � � � õ� ¨ òó stop (I2)

äåæçô §� � é � � � õ� ¨ receiveê�îö ì íconstrainêö ÷ø ïëE ðëH ðù ìñEòòòòòòòòòòòòòòòòòòòòòòòòòó stop (I3)

äåæçô §� � é � � � õ� ¨
receiveê� îö ìíconstrainêöø ïëE ðëH ðùñE ì ísendê�î ïëH ñH ì íeventêúûüü ê� ýù ýëE ýëH ìì íòòòó stop

(I4)

þÿ©��å� § � �¨ òó stop (R1)

þÿ©��å� § � �¨ receiveê�îö ì íconstrainêö ÷ø ïëT� ð�ëñU ìòòòòòòòòòòòòòòòòòòòòòòòòó stop (R2)

þÿ©��å� § � �¨
receiveê�îö ì íconstrainêöø ïëT� ð�ëñU ì ífreshêëU ì ísendê�î ïëT� ðëU ð�ñT� ìòòóþÿ©� ô § � � � õ� � õ�ë � �õ ¨

(R3)

þÿ©� ô § � � � õ� � õ �ë � �õ ¨ òó stop (R4)

þÿ©� ô § � � � õ� � õ �ë � �õ ¨ receiveê�îö ì íconstrainêö ÷ø ïëU ñU ì íòòòòòòòòòòòòòòòòòòòòòòó stop (R5)

þÿ©� ô § � � � õ� � õ �ë � �õ ¨ receiveê�îö ì íconstrainêöø ïëU ñU ì íeventêúû üü ê� ý� ýëU ýëT ììòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòó stop (R6)

Enmy§� �� ¨ òó stop (E1)

Enmy§� �� ¨ receiveê�î ïöëñ� ìòòòòòòòòòòòó Enmy§� �� � � �� õ�� 	¨ (E2)

Enmy§� �� ¨ newê
ë ��� ý�
ì ínewêö ë ���ü�ú ê� ìì ísendê
ë î ïöëñ�� ìòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòó Enmy§� �� ¨ (E3)

Figure 8: Reaction rules for
2 �¹ ¾¿ , 8�¹¾¿ andÖ �¹¾¿

By showing that message sends and receives can be synchronized without losing semantic
information, we show that the simpler� :�¹ ¾¿ is equivalent to� �¹ ¾¿ . In our proof, we first
consider the internal structure of the system in terms of itscomputation paths. Since computation
pathsÆ contain the actions that constitute interaction paths, we can trivially extract an interaction
path from anyÆ . The function�� !� formalizes this operation; as defined in [20],�� !� �Æ � is
the interaction path obtained fromÆ . Thus, we can say that ifÆ � andÆ� are both computation
paths, and�� !� �Æ � �
 �� !� �Æ� �, thenÆ� is semantically equivalent toÆ� . This notion of
equivalence is central to proving the sound transformationof � �¹¾¿ into supercanonical form.

Lemma 5.5 For all computation pathsÆ of < 6:4!=394 , there exists a computation pathÆ & of
< 6:4!=3 94 such that:ãÄãã=9; �Æ & �, and�� !� �Æ & �
 �� !� �Æ �.
Lemma 5.6 For all computation pathsÆ of < 6:4!=394 , there exists a computation pathÆ & of
< 6:4!=3 94 such that7ãÄãã=9; �Æ & � and �� !� �Æ & �
 �� !� �Æ �; and also if:ãÄãã=9; �Æ �, then
:ãÄãã=9; �Æ & �.
Lemma 5.7 For all computation pathsÆ of < 6:4!=394 , there exists a computation pathÆ & of
< 6:4!=3 94 such thatãÄãã=9; �Æ & �, and�� !� �Æ & �
 �� !� �Æ �.
Proof The result follows immediately from lemmas 5.5 and 5.6.±

12

Now, we define the supercanonical actor theory� :�¹ ¾¿ :

Definition 5.4 The actor theory���¹ ¾¿ contains the reaction rules of� �¹ ¾¿ , except with
sendandreceives of a given message collapsed into a single step; the states of � :�¹ ¾¿ are the
states of� �¹¾¿ , with unreachable states removed.

By the previous bubbling lemmas, the semantics of� :�¹ ¾¿ are equivalent to those of� �¹¾¿ :

Lemma 5.8 ��< 6:4!=3 94 �� � � � � � ® � 	 � �¹ ¾¿ ��
 ��< 6:4!=3 94 �� � � � � � ® � 	 � :�¹ ¾¿ �� for all
� � � � � and® .

Proof By definitions 5.3 and 5.8 and lemma 5.7:

��< 6:4!=3 94 �� � � � � � ® � 	 � �¹ ¾¿ �� ° ��< 6:4!=3 94 �� � � � � � ® � 	 � :�¹ ¾¿ ��
And since� :�¹ ¾¿ is constructed by reducing the number of computation paths in � �¹¾¿ , it
must be the case that:

��< 6:4!=3 94 �� � � � � � ® � 	 � :�¹ ¾¿ �� ° ��< 6:4!=3 94 �� � � � � � ® � 	 � �¹ ¾¿ ��
hence the lemma holds.±

Thus, bubbling allows us to synchronize message sends and receives, which simplifies the
theory, allowing us to consider even fewer cases in the analysis. In the next section, we use
� :�¹ ¾¿ to make the final bridge between the initial protocol specification and figure 7, which
illustrates the semantics of protocol execution.

5.3 Interaction Paths of� :�¹ ¾¿ , Analysis of����
In this section, we enumerate��< 6:4!=394 �� � � � � � ® � 	 � :�¹ ¾¿ ��. It is easy to show that this
set is equivalent to��< 6:4!=394? �� � � � � � ® ���, by a simple observation of< 6:4!=3 94? . Using this
result and lemmas 5.4 and 5.8, it will be possible to prove Theorem 5.1 in a straightforward
manner.

Our method of enumerating��< 6:4!=394 �� � � � � � ® � 	 � :�¹ ¾¿ �� is to first enumerate the
computation paths of the system. We accomplish this by definition 5.4 and induction on the
length of computation sub-paths; see lemma 6.2 in the appendix. With this computation path
enumeration, it is easy to enumerate the associated interaction paths in the following lemma:

Lemma 5.9 The interaction paths of��< 6:4!=394 �� � � � � � ® � 	 � :�¹ ¾¿ �� are as follows:

1. � �
2. � event�:Ä�� �� � � � ³1 � ³Ü �� �
3. � event�:Ä�� �� � � � ³ 0 � ³ Ý �� �
4. � event�:Ä�� �� � � � ³1 � ³Ü �� � event�:Ä�� �� � � � ³ 0 � ³ Ý �� �
5. � event�:Ä�� �� � � � ³ 0 � ³ Ý �� � event�:Ä�� �� � � � ³1 � ³Ü �� �
6. � event�:Ä�� �� � � � ³1 � ³ 0 �� �
7. � event�:Ä�� �� � � � ³1 � ³ 0 �� � event�:Ä�� �� � � � ³ 0 � ³1 �� �
8. � event�:Ä�� �� � � � ³ 0 � ³1 �� � event�:Ä�� �� � � � ³1 � ³ 0 �� �
Given this enumeration of��< 6:4!=394 �� � � � � � ® � 	 � :�¹ ¾¿ ��, it is possible to show cor-

respondence of the supercanonical theory and the full network specification in figure 7, by a
straightforward observation of the diagram:

13

Lemma 5.10 ��< 6:4!=394 �� � � � � � ® � 	 � :�¹ ¾¿ ��
 ��< 6:4!=394? �� � � � � � ® � 	 ��â 4¿ �� for all
� � � � � � ® .

Proof Lemma 5.9 lists all interaction paths of< 6:4!=394 ; by observing< 6:4!=394? in figure 7,
it is easy to see that these interaction paths are exactly theones that occur amongst the possible
computation paths of< 6:4!=394? . ±

Finally, the main Theorem of the paper can be demonstrated– that is, a proof of correspon-
dence between the textual and graphical versions of the diagram– by drawing a correspondence
between the interaction paths of� :�¹ ¾¿ and< 6:4!=394? , and by using Lemmas 5.4 and 5.8 to
make the bridge between< 6:4!=394> and� :�¹ ¾¿ :

Proof of Theorem 5.1 By lemma 5.4:

��< 6:4!=3 94> �� � � � � � ® � 	 ��â ¾¿ ��
 ��< 6:4!=394 �� � � � � � ® � 	 � �¹ ¾¿ ��
By lemma 5.8:

��< 6:4!=3 94 �� � � � � � ® � 	 � �¹ ¾¿ ��
 ��< 6:4!=3 94 �� � � � � � ® � 	 � :�¹ ¾¿ ��
And, by lemma 5.10:

��< 6:4!=394 �� � � � � � ® � 	 � :�¹ ¾¿ ��
 ��< 6:4!=394? �� � � � � � ® � 	 ��â 4¿ ��
Hence, the theorem holds.±
Given this result, relevant verification properties for���� fall out as a corollaries, so that
protocol analysis becomes a matter of simply observing the diagram and its interaction paths.
For example:

Corollary 5.1 If event�:Ä�� �� � � � / 0 � / 1 �� ' Æ , thenevent�:Ä�� �� � � � / 1 � / 0 �� ' Æ for all Æ '
��< 6:4!=394> �� � � � � � ® ���.
Proof By theorem 5.1 and lemma 5.9.±

Thus, we have established correctness of the���� protocol in our model. Of course,
corrolary 5.1 stresses only one particular property of the protocol; the strength of< 6:4!=3 94? is
that the full nature of the protocol execution is apparent, so that a complete understanding of its
workings can be gained simply by an observation of the diagram.

6 Conclusion

The main contribution of this paper is a demonstration of thefeasibility of a formal, diagram-
matic language for the specification and analysis of security protocols. In particular, the diagram
< 6:4!=3 94? of Figures 7 and 6 gives an elegant graphical characterization of the possible behav-
iors of the Needham-Schroeder protocol under enemy attack,showing all the different cases that
may arise during attack attempts. Specification diagrams have an operational semantics in an
actor theory framework, which allows properties of diagrams to be rigorously established. From
a purely formal standpoint, specification diagrams do not offer much over existing security pro-
tocol specification languages such as CSP [17] and I/O automata [10]—it is toward the goals of
readible and expressive specifications that the language covers new ground.

14

For simplicity, we modeled execution of a single run of the Needham-Schroeder protocol in
a closed system, with principals running the protocol once.This result should be extended to
a more realistic model of a network, as an open system in whichmultiple runs of the protocol
may occur. For future work we aim to analyze other security protocols to test the effectiveness
of specification diagrams in a broader context.

References
[1] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: the spi calculus. InProceedings of the Fourth

ACM Conference on Computer and Communications Security, pages 36–47. ACM Press, April 1997.

[2] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge, Mass.,
1986.

[3] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor computation.Journal of Functional
Programming, 7:1–72, 1997.

[4] I. Cervesato, N.A. Durgin, P.D. Lincoln, J.C. Mitchell,and A. Scedrov. A meta-notation for protocol analysis. In
Proceedings of the 12th IEEE Computer Security FoundationsWorkshop, Mordana, Italy, June 28–30 1999.

[5] Rational Software Corporation. UML Notation Guide, version 1.1. September 1997. Obtained From
http://www.rational.com.

[6] G. Denker, J. Meseguer, and C. Talcott. Protocol specification and analysis in Maude. In N. Heintze and J. Wing,
editors,Proc. of Workshop on Formal Methods and Security Protocols, June 1998.

[7] F. Javier Thayer Fabrega and Jonathan C. Hertzog. Strandspaces: Why is a security protocol correct? InProceed-
ings of the IEEE Symposium on Security and Privacy, pages 160–171, Oakland, California, May 8-10 1998.

[8] C. A. R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.

[9] G. Lowe. An attack on the needham-schroeder public-key authentication protocol.Information Processing Letters,
56, 1995.

[10] Nancy Lynch. I/O automaton models and proofs for shared-key communication systems. InProceedings of the
12th IEEE Computer Security Foundations Workshop (CSFW’99), Mordana, Italy, June 28–30 1999.

[11] Zohar Manna and Henry Sipma. Verification of paramaterized systems by dynamic induction on diagrams. In
Proceedings of the 11th Conference on Computer Aided Verification (CAV99), volume 1633, pages 25–43. LNCS,
1999.

[12] Catherine Meadows. Formal verification of cryptographic protocols: A survey. InAdvances in Cryptology- Asi-
acrypt 94, volume 917 ofLNCS, pages 133–150. Springer-Verlag, 1995.

[13] Robin Milner. A Calculus of Communicating Systems, volume 92 ofLNCS. Springer Verlag, 1980.

[14] Greg Nelson. A generalization of dijkstra’s calculus.TOPLAS, 11:517–561, 1987.

[15] L.C. Paulson. The inductive approach to verifying cryptographic protocols.J. Computer Security, 6:85–128, 1998.

[16] Steve Schneider. Using csp for protocol analysis: The needham schroeder public-key protocol. Technical Report
CSD-TR-96-14, Royal Holloway, University of London, Nevember 21 1996.

[17] Steve Schneider. Verifying authentication protocolsin CSP. IEEE Transactions on Software Engineering,
24(9):741–758, September 1998.

[18] S. Smith. On specification diagrams for actor systems. In C. Talcott A. Gordon, A. Pitts, editor,Proceedings of the
Second Workshop on Higher-Order Techniques in Semantics, Electronic Notes in Theoretical Computer Science.
Elsevier, 1998.http://www.elsevier.nl/locate/entcs/volume10.html.

[19] S. Smith and C. Talcott. Specification diagrams for actor systems. InFormal Methods in Object-Oriented Dis-
tributed Systems (FMOODS). Kluwer Academic Publishers, 1999.

[20] S. Smith and C. Talcott. Specification diagrams for actor systems. HOSC, to appear, 2002.
http://www.cs.jhu.edu/ scott/specdiag/Papers/specdiag-11-98.ps.

[21] C. L. Talcott. Composable semantic models for actor theories. Higher-Order and Symbolic Computation, 11(3),
1998.

15

Appendix

Proof of Lemma 5.4By definition 5.2 in this paper and lemma 5.14 in [20]:

��< 6:4!=394> �� � � � � � ® � 	 ��â ¾¿ ��

��< 6:4!=394 �� � � � � � ® � 	 ��â ¾¿ ß ��â ¾¿ ß ��â ¾¿ ��

By definitions 5.1-5.3 in this paper and lemmas 5.13 and 4.8 in[20]:

��< 6:4!=394 �� � � � � � ® � 	 ��â ¾¿ ß ��â ¾¿ ß ��â ¾¿ ��

��< 6:4!=394 �� � � � � � ® � 	 2 �¹ ¾¿ ß Ö �¹¾¿ ß 8�¹¾¿ ��

And, by definition 5.2 in this paper and lemma 4.9 in [20]:

��< 6:4!=394 �� � � � � � ® � 	 2 �¹ ¾¿ ß Ö �¹¾¿ ß 8�¹¾¿ ��

��< 6:4!=3 94 �� � � � � � ® � 	 � �¹ ¾¿ ��

Therefore, the lemma holds.±
The following definition and lemma are used in the proof of lemmas 5.5 and 5.6:

Definition 6.1 For all computation pathsÆ of < 6:4!=3 94 , � � �Æ � holds iff all receive’s in Æ
occur beforestopEnmyoccurs.

Lemma 6.1 For all computation pathsÆ of < 6:4!=394 such that+� � �Æ �, there exists a compu-
tation pathÆ & of < 6:4!=394 such that� � �Æ &�, and�� !� �Æ & �
 �� !� �Æ �.
Proof SupposeÆ is a computation path of< 6:4!=3 94 such that+� � �Æ �, and let:

Æ
 �� Ü� �A���Ù �� Ü��Ù à ÜD�A���Ù �Ë �
where� andà are sub-paths, and where�� is the first configuration in whichstopEnmy occurs
in Æ . Let à & and � &Ë be equivalent toà and�Ë , except that all occurrences ofstopEnmy are
replaced withEnmy�� � ® �, where® is the knowledge ofEnmyin configuration�� *�, and letÆ &
be defined as follows:

Æ &
 �� Ü��Ù à & ÜD�A���Ù � &Ë Ü� �A���Ù �Ë �
Since�� is the first configuration inÆ containing an occurrence ofstopEnmyby assumption,

therefore transition\� *� must occur due to a firing of reaction rule E1. Removal of this transition
means thatEnmystays “live”, so that where�� � is the first configuration inà &, the sequence� Ü��Ù �� � is a valid computation sub-path. And sinceEnmyis “dead” by assumption inà and

�Ë , therefore none of the transitions in the sequenceà ÜD�A���Ù �Ë alter the state ofEnmyin any
way, so thatà & ÜD�A���Ù � &Ë , and hence� Ü��Ù à & ÜD�A���Ù � &Ë , is a valid computation sub-path. The
configuration�Ë must contain the fullstop state for the network, when theEnmyfinally dies;
and since� &Ë contains only theEnmyin a live state, and\� *� labels a firing of reaction rule E3,

therefore the step� &Ë Ü� �A���Ù �Ë is valid. Thus,Æ & is a valid computation path for< 6:4!=3 94 .
Finally, no transitions inÆ were eliminated in the construction ofÆ &; and since all transitions

which containevent steps are caused by reaction rules involving either89:� 63; or
23 !4!54,

which were left unchanged in the construction ofÆ &, therefore�� !� �Æ �
 �� !� �Æ & �. ±

16

Proof of Lemma 5.5Let Æ be a computation path of< 6:4!=3 94 , and letÆ� ¬ be a computation
path of< 6:4!=394 such that� � �Æ� ¬ � and �� !� �Æ� ¬ �
 �� !� �Æ �, which must exist by lemma
6.1. Suppose that+ :ãÄãã=9; �Æ� ¬ �, and let:

Æ� ¬
 � � ÜT�A���Ù � Ý ÜT�Ù à Ü� �A���Ù �� Ü��Ù � �
where\Ý contains the actionsend�� � � � occurring due to an enemy send, and\� contains the
corresponding receive by a principal, with� � ² � by assumption. Let:

Æ &
 � � ÜT�A���Ù à & Ü� �A���Ù � &� ÜT�Ù �� Ü��Ù � �
where� &� andà & are equivalent to�� andà respectively, except with� � � removed from all

message queues! in �� andà . Now, it is straightforward to observe that� ÜT�A���Ù à & Ü� �A���Ù � &�
is a valid computation sub-path, since it is equivalent toÆ� ¬ up to transition\� , except with the
send�� � � � event removed, along with all occurrences of� � � from the message queues.

Also, �� Ü��Ù � must be a valid sub-path, since it occurs inÆ . Thus, in order to show thatÆ & is a
computation path, it remains to be shown that� &� ÜT�Ù �� is a computation step.

Now, since� � �Æ� ¬ � by assumption, therefore the enemy must be “live” in�� , and hence
in � &� by construction. And since the enemy is live in� &� , it is capable of sending messages.
Further, the label\Ý must contain the steps defined in reaction rule E3 by definition of � �¹¾¿ .
Thus, since�� is identical to� &� except for an occurrence of� �� in the message queue, the step

� &� ÜT�Ù �� is valid if � ' ¯5�4: �® &�, where® & is the enemy’s knowledge base in� &� . Noting
that it must be the case that� ' ¯5�4: �® �, where® is the enemy’s state of knowledge in� Ý,
we also observe that the enemy’s knowledge base grows monotonically in any computation path
by the definition ofEnmy; thus,® & ° ® , so that by corollary 4.1,� ' ¯5�4: �® &�. Hence,
� &� ÜT�Ù �� is valid, soÆ & is a computation path.

Additionally, no transitions inÆ� ¬ were eliminated in the construction ofÆ &; and since all
transitions which containeventsteps are caused by reaction rules involving either89:� 63; or23 !4!54, which were left unchanged in the construction ofÆ &, therefore�� !� �Æ & �
 �� !� �Æ� ¬ �

�� !� �Æ �. ±
Proof of Lemma 5.6LetÆ be a computation path of< 6:4!=394 , and suppose that+ 7ãÄãã=9; �Æ �.
Let:

Æ
 � � ÜT�A���Ù � Ý ÜT�Ù à Ü� �A���Ù �� Ü��Ù � �
where\Ý*� contains the actionsend�� � ��� �\ � � ��, occurring due to a send by one of the
principals, and\� contains the corresponding receive by the enemy, with� �² " � by assumption.
Let:

Æ &
 � � ÜT�A���Ù � Ý Ü��Ù � &Ý ÜT�Ù à & Ü� �A���Ù � �
where� &� andà & are equivalent to�� andà respectively, except with� ���� �\ �� � removed from
all message queues! in �� andà , and all enemy knowledge bases® replaced with® ¶ ·� ¸.
Then, the result in this case follows similarly as in lemma 5.5; the important point to note here
is that if the enemy can send a message� & with knowledge base® , then it can also send the
message� & with knowledge base® ¶ ·� ¸, by corollary 4.1. Thus, all steps in� &Ý ÜT�Ù à & are
valid, since� Ý ÜT�Ù à is valid.

Additionally, we note that the ordering of enemy sends and principal receives was left un-
changed in the construction ofÆ &, so that if:ãÄãã=9; �Æ �, then:ãÄãã=9; �Æ & �. ±

17

Lemma 6.2 Let
�Ù#

denote the sequence of atomic computation steps in any reaction rule
#

appearing in figure 8, and let:

$ �
 �Ù
I1 Û �ÙE2

$ �
 �Ù
E3Û �ÙI3 $%
 �Ù

E3Û �ÙI4 Û �ÙE2
$&
 �Ù

E3Û �ÙR2$'
 �Ù
E3Û �ÙR3Û �ÙE2

$(
 �Ù
E3Û �ÙR5

$)
 �Ù
E3Û �ÙR6

Then, the states and reaction rules of< 6:4!=394 �� � � � � � ® � 	 � :�¹ ¾¿ are contained in the
states and transitions obtained by making the substitutions specified in Figure 11, where¼ is the
empty transition,® * is an arbitrary initial knowledge base containing some number of nonces,

and for brevity� +
 V �Å�; in any given rule,- �� . � / 0 Ê111 Ê/2������Ù ,3 �� 4 �, the substitution,5 is
taken to apply to each optional transition label

$ Ý.
Proof The result follows by definition 5.4, and induction on the length of an arbitrary compu-
tation sub-pathÆ of < 6:4!=394 �� � � � � � ® � 	 � :�¹ ¾¿ . The most important point to note in the
induction is that³1 � ³ 0 -' ¯5�4: �® * � by definition 4.2, since³1 and³0 are freshly created during
the course of computation; and, at each subsequent point in the induction, the enemy can never
forge a message containing one principal’s nonce encryptedwith the other principal’s public key,
by lemma 4.2. Thus, the protocol proceeds “safely”, regardless of any attempts to the contrary
on the part of the enemy.±
Proof of Lemma 5.9Let

2� be the set containing the seven interaction paths defined above. In
order to show that

2� ° ��< 6:4!=3 94 �� � � � � � ® � 	 � :�¹ ¾¿ ��, by lemma 6.2 it is straightforward
to construct computation paths6 from the reaction rules of� :�¹ ¾¿ , such that for all� ' 2� ,
there existsÆ ' 6 such that�� !� �Æ �
 � .

In order to show that��< 6:4!=394 �� � � � � � ® � 	 � :�¹ ¾¿ �� ° 2� , we observe from the re-
action rules of� :�¹ ¾¿ that the only individual event actions that can occur are thefour that
are contained in the paths of

2� , and each principal can execute at most one event action in any
given computation path. Thus, the only permutations of possible event actions which are not in2� are as follows:

1. � event�:Ä�� �� � � � ³ 0 � ³1 �� �
2. � event�:Ä�� �� � � � ³1 � ³Ü �� � event�:Ä�� �� � � � ³ 0 � ³1 �� �
3. � event�:Ä�� �� � � � ³ 0 � ³1 �� � event�:Ä�� �� � � � ³1 � ³Ü �� �
4. � event�:Ä�� �� � � � ³1 � ³ 0 �� � event�:Ä�� �� � � � ³ 0 � ³ µ �� �
5. � event�:Ä�� �� � � � ³ 0 � ³ µ �� � event�:Ä�� �� � � � ³1 � ³ 0 �� �
Let

2� be the set containing these permutations. Note that by lemma6.2, the only reaction
rule which causes the actionevent�:Ä�� �� � � � ³ 0 � ³1 �� is number 52 in figure 11. However, in this
reaction rule� 0 �³ 0 � is in the enemy’s knowledge base® ; but also by observation of figure 11,� 0 �³ 0 � ' ® iff the actionevent�:Ä�� �� � � � ³1 � ³ 0 �� occurs. Hence, permutations 1-3 in

2� are
not in ��< 6:4!=394 �� � � � � � ® � 	 � :�¹ ¾¿ ��. By the same token, permutations 4-5 in

2� are not in
��< 6:4!=394 �� � � � � � ® � 	 � :�¹ ¾¿ ��, since if the actionevent�:Ä�� �� � � � ³ 0 � ³ µ �� occurs,� 0 �³ 0 � is
never in the enemy’s knowledge base, therefore the actionevent�:Ä�� �� � � � ³1 � ³ 0 �� cannot occur
before or afterevent�:Ä�� �� � � � ³ 0 � ³ µ ��. Therefore,��< 6:4!=394 �� � � � � � ® � 	 � :�¹ ¾¿ �� ° 2� .
±

18

äåæçæèç §� � ¤ � �¨ � þÿ©��å� § � �¨ � Enmy§� ��7 ¨ (S1)äåæçô §� � ¤ � � � õ� ¨ � þÿ©��å� § � �¨ � Enmy§� �� ¨ (S2)äåæçæèç §� � ¤ � �¨ � stop � Enmy§� �� ¨ (S3)äåæçæèç §� � ¤ � �¨ � þÿ©� ô § � � � õ� � õ � � �¨ � Enmy§� �� ¨ (S4)

stop � þÿ©��å� § � �¨ � Enmy§� �� ¨ (S5)äåæçô §� � ¤ � � � õ� ¨ � stop � Enmy§� �� ¨ (S6)äåæçô §� � ¤ � � � õ� ¨ � þÿ©� ô § � � � õ� � õ � � �¨ � Enmy§� �� ¨ (S7)äåæçô §� � ¤ � � � õ� ¨ � þÿ©��å� § � �¨ � stop (S8)

stop � þÿ©��å� § � �¨ � stop (S9)

stop � þÿ©� ô § � � � õ� � õ � � �¨ � Enmy§� �� ¨ (S10)äåæçô §� � ¤ � � � õ� ¨ � þÿ©� ô § � � � õ� � õ � � �¨ � stop (S11)äåæçô §� � ¤ � � � õ� ¨ � stop � stop (S12)

stop � þÿ©� ô § � � � õ� � õ � � �¨ � stop (S13)

stop � stop � Enmy§� �� ¨ (S14)

stop � stop � stop (S15)

Figure 9: State definitions for Figure 11

8 9 � : � 7 � ; �õ� ���¢ < =� >8? � : � 7 � � �õ@ �õ� � �@ 	 =� > A B �� � �	8C � : � 7 � � �õ� ���� 	 =� � �=¤ >8D � : � 7 � � �õ� ���� � �õ�� � 	 =� � �=¤ >8 E � : � 7 � ; �õ� ���¢ � �õ@ �õ� � �@ < > A B �� � �	8F � : � 7 � � �õ� ��� � 	 =� � =¤ >8 G � : � 7 � � �õ� ��� � � �õ� �õ� � �� 	 =� � =¤ � �=� >8H � : � 7 � � �õ� �õ� � �� 	 =� � �=� >8I � : � 7 � ; �õ� ���� � �õ¢ �� � �õ@ �õ� � �@ < =� � �=¤ > A B �� � �	8 9J � : � 7 � � �õ� ���� � �õ@ �õ� � �@ 	 =� � �=¤ > A B �� � �	8 99 � : � 7 � ; �õ� ���¢ � �õ@ �õ� � � � < =� � �=� > A B �� � �	8 9? � : � 7 � � �õ� ��� � � �õ� �� � �õ� �õ� ���� 	 =� � �=� >8 9C � : � 7 � ; �õ� ���� � �õ¢ �� � �õ@ �õ� � � � < =� � �=¤ � �=� > A B �� � �	

Figure 10: Substitution definitions for Figure 11

19

�� K ô L Mòòó 8 M §KN ¨
� � K ô LOòòó KP
� � K ô L Qòòó 8R §KS ¨
¥ � K ô Tòó KP
U � 8 M §KN ¨ L

R ýTòòòó 8 M §KV ¨W � 8 X §KN ¨ L
Xòòó 8O §KV ¨

Y � 8 M §KN ¨ LO ýTòòòó 8 M §K Z ¨[� 8 M §KN ¨ L Qòòó 8 Q §K \ ¨] � 8 ^ §KN ¨ L Qòòó 8 _ §K \ ¨
�` � 8 M §KN ¨ Tòó Ka
��� KP L Mòòó 8 M §K Z ¨
�� � 8R §KS ¨ L Mòòó 8 Q §K \ ¨
�� � 8R §KS ¨ L

^ ýTòòòó 8R §KP ¨
�¥ � 8 b §KS ¨ L

_òòó 8 b §KP ¨
�U � 8R §KP ¨ L Mòòó 8 Q §K Z ¨
�W � 8 M §KV ¨ LO ýTòòòó 8 M §K ôS ¨
�Y � 8 M §KV ¨ L Qòòó 8 Q §K ôc ¨
�[� 8 ^ §KV ¨ L Qòòó 8 _ §K ôS ¨
�] � 8 M §KV ¨ Tòó Kd
�` � 8O §KV ¨ LO ýTòòòó 8O §K ôS ¨
� �� 8O §KV ¨ L Qòòó 8 e §K ôP ¨
�� � 8O §KV ¨ Tòó Kd
�� � 8 M §K Z ¨ L

R ýTòòòó 8 M §K ôS ¨
�¥ � 8 X §K Z ¨ L

Xòòó 8O §K ôS ¨
�U � 8 M §K Z ¨ Tòó K ôN
�W � 8 Q §K \ ¨ L

R ýTòòòó 8 Q §K ôc ¨
�Y � 8 Mf §K \ ¨ L

Xòòó 8 Mf §K ôc ¨
�[� 8 Q §K \ ¨ L

^ ýTòòòó 8 Q §K Z ¨
�] � 8 MM §K \ ¨ L

_òòó 8 MM §K Z ¨

�` � 8 Q §K \ ¨ Tòó K ôô
� �� 8 _ §K \ ¨ L

R ýTòòòó 8 _ §K ôc ¨
�� � 8 _ §K \ ¨ L

Xòòó 8 MR §K ôc ¨
�� � 8 _ §K \ ¨ L

^ ýTòòòó 8 _ §K Z ¨
�¥ � 8 _ §K \ ¨ Tòó 8 _ §K ôô ¨
�U � Ka Tòó Kd
�W � Ka Tòó K ôN
�Y � 8 Q §K Z ¨ L

R ýTòòòó 8 Q §K ôS ¨
�[� 8 Mf §K Z ¨ L

Xòòó 8 Mf §K ôS ¨
�] � 8 Q §K Z ¨ Tòó K ôN
¥` � 8 _ §K Z ¨ L

R ýTòòòó 8 _ §K ôS ¨
¥ �� 8 _ §K Z ¨ L

Xòòó 8 MR §K ôS ¨
¥� � 8 _ §K Z ¨ Tòó 8 _ §K ôN ¨
¥� � Kd Tòó K ôV
¥¥ � 8 Q §K ôc ¨ L

^ ýTòòòó 8 Q §K ôS ¨
¥U � 8 MM §K ôc ¨ L

_òòó 8 MM §K ôS ¨
¥W � 8 Q §K ôc ¨ Tòó K ôP
¥Y � 8 e §K ôc ¨ L

^ ýTòòòó 8 e §K ôS ¨
¥[� 8 MX §K ôc ¨ L

_òòó 8 MX §K ôS ¨
¥] � 8 e §K ôc ¨ Tòó K ôP
U` � 8 _ §K ôc ¨ L

^òòó 8 _ §K ôS ¨
U �� 8 _ §K ôc ¨ Tòó K ôP
U� � 8 MR §K ôc ¨ L

^ ýL _ ýTòòòòòòó 8 MR §K ôS ¨U� � 8 MR §K ôc ¨ Tòó 8 MR §K ôP ¨U¥ � K ôô Tòó K ôP
UU � K ôô Tòó K ôN
UW � K ôN Tòó K ôV
UY � K ôP Tòó K ôV
U[� K ôS Tòó K ôV

Figure 11: States and Reaction rules of� :�¹ ¾¿

20

