
FPSE Fall 2023

Please read all of the following items before beginning the exam.

• You may assume that Core is opened above every block of code in this quiz.
• We hope and expect that the provided type signatures and examples completely describe the expected
functionality.

• For discussion questions, your answers should be only one or two sentences. Provide brief answers
only. We are not looking for lengthy justification.

• If your answer signficantly overflows the provided space, you might be on the wrong track. Use the
extra sheets only if necessary.

• You are not to use mutation anywhere in any coding question. Coding answers using mutation will
receive zero points.

I affirm that I have completed this quiz without unauthorized assistance from any
person, materials, or device.

Signed:

Print name:

(Please print your name clearly so that Gradescope can recognize it.)

Date: 15 Nov 2023

Distribution of Marks

Question Points Score

1 4

2 4

3 4

4 3

5 4

6 3

Total: 22



1. (a) (2 points) Write an OCaml function that removes duplicates from a list and meets the following
signature.

val remove_duplicates : ’a list -> compare:(’a -> ’a -> int) -> ’a list

You can assume that the provided compare function returns 0 if and only if the elements are
equal, i.e. they count as a duplicate. Keep the first occurance of each item in the list. Do not
change the order of the elements in the list, except for removing duplicates. You may use let

rec if you want.

(* EXAMPLE *)

remove_duplicates [1; 3; 1; 2; 1; 2] ~compare:Int.compare
- : int list = [1; 3; 2]

Your implementation goes below.

(b) (1 point) Now, write one invariant test for remove duplicates that always works on any given
list. Use assert equal from OUnit2, and assume OUnit2 has been opened already.

let test_remove_duplicates_invariant (ls : ’a list) : unit =

(* Your test logic goes below this comment *)

(c) (1 point) What is Quickcheck? Briefly describe how Quickcheck might be used in your invariant
test above.



2. (a) (2 points) Make an empty Core.Map where the keys are records of type
{ first : int ; second : float }. You might like to use preprocessor extensions from
ppx jane to help.

(b) (2 points) Now, add both of the following mappings into the empty map, and call the new map
m:

• {first = 5 ; second = 10.} maps to Some "hello world", and
• {first = 6 ; second = 11.} maps to None.

Pay careful attention to the return type, and think about whether an option (or something similar)
is returned.



3. In this question, we’ll discuss the complexity of various data structures in OCaml.

(a) (2 points) Name the (amortized) time complexity in big-O notation to look up a key or index
in each of the following OCaml data structures. Assume comparisons between elements (e.g.
between keys) are O(1). If you’re not sure, then take a guess and provide a very brief justification
for that guess.

• Look up the n’th element in a List :

• Add a key-value pair into a Map :

• Look up a key in a Hashtbl :

• Check if an element exists in a Set :

(b) (1 point) When might the time complexity of a functional data structure be better than a mutable
data structure?

(c) (1 point) Besides the one case of improved time complexity in part (b), give one other reason we
might choose to use Map over Hashtbl.



4. (3 points) In this question, you’ll write code to curry and uncurry a function.

val curry : (’a * ’b -> ’c) -> ’a -> ’b -> ’c

val uncurry : (’a -> ’b -> ’c) -> ’a * ’b -> ’c

(* EXAMPLES *)

let f (x, y) = x + y

in

curry f 1 2

- : int = 3

let f x y = x + y

in

uncurry f (3, 4)

- : int = 7

Now implement curry and uncurry in the space below.



5. (4 points) Write implementations for the bind (>>=) and map (>>|) infix operators for an option-like
monad according to the signatures and example usages below.

(* EXAMPLES *)

Nothing >>= fun x -> Something (x + 1)

- : int MyOption.t = MyOption.Nothing

Something 5 >>= fun x -> Something (x + 1)

- : int MyOption.t = MyOption.Something 6

Nothing >>| fun x -> x + 1

- : int MyOption.t = MyOption.Nothing

Something 5 >>| fun x -> x + 1

- : int MyOption.t = MyOption.Something 6

Your implementation goes below.

module MyOption :

sig

type ’a t =

| Nothing

| Something of ’a

val (>>=) : ’a t -> (’a -> ’b t) -> ’b t

val (>>|) : ’a t -> (’a -> ’b) -> ’b t

end

=

struct

type ’a t =

| Nothing

| Something of ’a

(* Complete the rest of the module under this comment *)

let (>>=) (x : ’a t) (f : ’a -> ’b t) : ’b t =

let (>>|) (x : ’a t) (f : ’a -> ’b) : ’b t =

end



6. (3 points) In this question, you will write an .ml file to accompany an .mli file. You can provide any
functionality you want, as long as it satisfies the .mli file. This question is only to demonstrate that
you understand signatures.

(* begin my_module.mli *)

module type S =

sig

type t

val x : t

end

module type S2 =

sig

include S

val y : t -> t

end

module M (_ : S) : S2

(* end my_module.mli *)

Fill in the space below as if it is my module.ml.

(* begin my_module.ml *)

(* end my_module.ml *)



Use this page for scratch work or for your continued answers if you ran out of space. Clearly indicate
if your work is an answer to a question in the quiz.



Use this page for scratch work or for your continued answers if you ran out of space. Clearly indicate
if your work is an answer to a question in the quiz.


