the adapter pattern

idapting an Enumeration to an lterator

st we'll Jook at the two interfaces to figure out how the methods map from
e to the other. In other words, we’ll figure out what to call on the adaptee
sen the client invokes a method on the target.

These twe methods look easy,
they map straight to hasNext()

Target interface \}/ and next() in [tevator.
<<interface>> <<interface>>
lterator Enumeration
hasNext() ; hasMoreElements()
next() —— nextElement()
move()

9
But what about this method

vemovel) in [evator? Theres
mﬁhivag like that in Enumevation.

t Adaptee interface

igning the Adapter

s what the classes should look like: we need an adapter that implements
wrget interface and that is composed with an adaptee. The hasNext() and
methods are going to be straightforward to map from target to adaptee:
 pass them right through. But what do you do about remove()? Think
it for a moment (and we’ll deal with it on the next page). For now, here’s
1ss diagram:

3 j <<interface>>
o new tode still gets o nlerface
2 ?ﬁemﬁw&} even e
theve's veally an ashext()

next
swevation wnderneath. remci)v o

We've making the Envmerations
in Your old code look like
[evators for your new tode.

A elass
amy\zmcv\{f‘“‘ﬁ

= the Enumeration
interfate is the

, adaptee.
. <<interface>>
gm‘t&mw&%mmfﬁ@va{:@v — Enumerationiterator Enumeration
is the adapter. hasNext() hasMoreElements()
next() nextElement()
remove()

you are here » 249




