The Command Pattern defined:
the class diagram

The Invoker holds
8 tommand and 3t
some point asks £he
Lommand Lo tarry
out 3 veauest by
ealling its executel)
method.

ient 1 ble for
The Client is vesponst
treating 8 Contretelommand and

setking its Receiver:

Client

Invoker

setCommand()

Receiver

action()

the command pattern

Command detlares an wkerface For all iommsiaﬁf. Ae
you already know, 3 tommand is ‘;woiﬁsd %:%zwagz; vks
;:*:tﬁézs‘i’,e{} method, whith asks 2 veceiver to pertorm {a}n
setion. You'll also notice this inkerface has an %s‘:dc
method, whith we'll cover a bit later in the chapter.

<<interface>>
Command
execute()

undo()

The enstute
method nvokes
fhe attionls)
on the reteer

" peeded ko Fulfil
the veouest.

ConcreteCommand

exegmeo

The Reteiver knows how 4o
verform the work needed to
;t&w}é out the request. ;ﬁmj tlass
ean act 23 3 Reteiver.

The ae?aé%‘sﬁttiemmépsé dek

undo()

7

[
jpublic void execute() |
i

receiver.action{)
}

nes & binding between an attion
£ by calling

and 3 Reteiver. The Invoker makes 3 vggwi»:s W
sf?'&é%sie{} and the Contretelommand tarvies ¥

ealling one o more attions on the Recever.

How does the design of the Command Pattern

support the decoupling of the invoker of a
request and the receiver of the request?

