dependency

140

Applying the Principle

Now, the main problem with the Very Dependent PizzaStore is that it depends
on every type of pizza because it actually instantiates concrete types in its
orderPizza() method.

While we've created an abstraction, Pizza, we're nevertheless creating concrete
Pizzas in this code, so we don’t get a lot of leverage out of this abstraction.
How can we get those instantiations out of the orderPizza() method? Well, as
we know, the Factory Method allows us to do just that.

So, after we’ve applied the Factory Method, our diagram looks like this:

P |
Pizzsd dove now ée?ﬁmés only
PPFAX ; % o

on Pizzd, the 3%&1%’@5%: 23438

Piaza is an absteaed

£ i G on
tlass..an abstragdion. lasses depend

[te pizzd b
The fonfvett T degerd on
g/M\ Lhe Pizza %%S‘%Yéff%%@ﬁ Loo, Detawst J?&é.:?!
)) £ 3
e ihe Pizza inkerfate (remembet
in the %ﬁ‘ﬂﬁ?”&%
255

i
gm?gégmf;ni »
¥ . et rate
we ve usind mUETTELE

cense) in the Piz2a abstract ¢l

After applying the Factory Method, you’ll notice that our high-level component,
the PizzaStore, and our low-level components, the pizzas, both depend on Pizza,
the abstraction. Factory Method is not the only technique for adhering to the
Dependency Inversion Principle, but it is one of the more powerful ones.

