80

CHAPTER4 CLASSES AND INTERFACES

So how do you decide what protected methods or fields to expose when
designing a class for inheritance? Unfortunately, there is no magic bullet. The best
you can do is to think hard, take your best guess, and then test it by writing some
subclasses. You should provide as few protected methods and fields as possible
because each one represents a commitment to an implementation detail. On the
other hand, you must not provide too few, as a missing protected method can ren-
der a class practically unusable for inheritance.

When you design for inheritance a class that is likely to achieve wide use,
realize that you are committing forever to the self-use patterns that you document
and to the implementation decisions implicit in its protected methods and fields.
These commitments can make it difficult or impossible to improve the perfor-
mance or functionality of the class in a subsequent release.

Also, note that the special documentation required for inheritance clutters up
the normal documentation, which is designed for programmers who create
instances of your class and invoke methods on them. As of this writing, there is
little in the way of tools or commenting conventions to separate ordinary API
documentation from information of interest only to programmers implementing
subclasses.

There are a few more restrictions that a class must obey to allow inheritance.
Constructors must not invoke overridable methods, directly or indirectly. If
this rule is violated, it is likely that program failure will result. The superclass con-
structor runs before the subclass constructor, so the overriding method in the sub-
class will get invoked before the subclass constructor has run. If the overriding
method depends on any initialization performed by the subclass constructor, then
the method will not behave as expected. To make this concrete, here’s a tiny class
that violates this rule:

public class Super {
// Broken - constructor invokes overridable method
public Super() {

mQ;
}
public void m(Q {
}

ITEM 15: DESIGN AND DOCUMENT FOR INHERITANCE OR ELSE PROHIBIT IT

Here’s a subclass that overrides m, which is erroneously invoked by Super’s
sole constructor:

final class Sub extends Super {
private final Date date; // Blank final, set by constructor

Sub(Q) {
date = new Date();
1

// Overrides Super.m, invoked by the constructor Super()
public void m() {

System.out.printin(date);
}

public static void main(String[] args) {
Sub s = new Sub();
s.m(;

}

You might expect this program to print out the date twice, but it prints out nu11 the
first time because the method m is invoked by the constructor Super () before the
constructor Sub() has a chance to initialize the date field. Note that this program
observes a final field in two different states.

The (loneable and Serializable interfaces present special difficulties
when designing for inheritance. It is generally not a good idea for a class designed
for inheritance to implement either of these interfaces, as they place a substantial
burden on programmers who extend the class. There are, however, special actions
that you can take to allow subclasses to implement these interfaces without man-
dating that they do so. These actions are described in Item 10 and Item 54.

If you do decide to implement Cloneable or Serializable in a class
designed for inheritance, you should be aware that because the clone and
readObject methods behave a lot like constructors, a similar restriction applies:
Neither clone nor readObject may invoke an overridable method, directly or
indirectly. In the case of the readObject method, the overriding method will run
before the subclass’s state has been deserialized. In the case of the clone method,
the overriding method will run before the subclass’s cTone methods has a chance
to fix the clone’s state. In either case, a program failure is likely to follow. In the
case of the clone method, the failure can do damage to the object being cloned as
well as to the clone itself.

81



