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1940s-1950s: Binary
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1950s-1960s: Assembly
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1950s-1960s: Assembly



The FORTRAN Automatic Coding System

J. W. BACKUSt, R. J. BEEBERY, S. BEST}, R. GOLDBERGt, L. M. HAIBTY,
H. L. HERRICK?, R. A. NELSON{t, D. SAYRE{, P. B. SHERIDANT,
H. STERNY, 1. ZILLERY, R. A. HUGHESS§, axp R. NUTT]|

INTRODUCTION

HE FORTRAN project was begun in the sum-
Tmer of 1954. Its purpose was to reduce by a large
factor the task of preparing scientific problems for
IBM'’s next large computer, the 704. If it were possible

far tha TNA +a ~rada nrahlame far itealf and nradnece ac

system is now complete. It has two components: the
FORTRAN language, in which programs are written,
and the translator or executive routine for the 704
which effects the translation of FORTRAN language
programs into 704 programs. Descriptions of the FOR-
TRAN language and the translator form the principal
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for (1 = 0; 1 < n; i++)
sum += al[il;
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for (i = 0; 1 < n; i++)
sum += alil; .
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1970s: High-level Language
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for (1 = 0; 1 < n; i++)
sum += al[il;
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1980s onwards: Modern High-Level Languages
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P ' for i in range(n):
pgthon” :\ sum += a[l]
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+ for (var e of a) { :

JS I sum += e; } E
\ 7

total :: Num a => [a] —> a
total a = foldl (+) O a
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Programming...

for 1 in range(n):
sum += al[i]

———————————————————————————————



Assembly

append:

push ebp

mov ebp, esp

push eax

push ebx

push len

call malloc

mov ebx, [ebp + 12]

mov [eax + infol, ebx

mov dword [eax + next], @
mov ebx, [ebp + 8]

cmp dword [ebx], @

je null_pointer

mov ebx, [ebx]

’ C

next_element:

cmp dword [ebx + next], @
je found_last

mov ebx, [ebx + next]

jmp next_element

found_last:

push eax

push addMes

call puts

add esp, 4

pop eax

mov [ebx + next], eax

go_out:

pop ebx

pop eax

mov esp, ebp
pop ebp

ret 8

null_pointer:
push eax

push nullMes
call puts

add esp, 4

pop eax

mov [ebx], eax
jmp go_out

void insert(node *xs, int x) {

node xnew;
node xtemp;
node xprev;
new = (node *)malloc(sizeof(node));
if(new == NULL) {
printf("Insufficient memory.");
return;
}
new—>val = Xx;
new—>next = NULL;
if (xs == NULL) {
XS = new;
} else if(x < xs—>val) {
new—>next = xs;
XS = new;
} else {
prev = Xs;
temp = xs->next;
while(temp != NULL && x > temp—>val) {
prev = temp;
temp = temp->next;
}
if(temp == NULL) {
prev->next = new;
} else {
new—>next = temp;
prev->next = new;

OCaml

b
b

let rec insert

X ys =

match ys with

| [1 — [x]
| y it rs —>

if x <=y then x 1y ::

else y ::

(insert x rs)

rs




Programming = Talking to Computers
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Natural language as programming languages?



Programming = Talking to Computers

[Compiler]
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Programming
Language Design

Synthesis
Syntax Semantics
Syntax Semantics
What does a program in this language look like? What does a program in this language compute?




Programming
Language Design

Synthesis
Syntax Semantics
Syntax Semantics
What does a program in this language look like? What does a program in this language compute?
Grammar of Language Meaning of Language
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if_stmt:

| "if' named_expression ':' block elif_stmt

| "if' named_expression ':' block [else_block]
elif_stmt:

| "elif' named_expression ':' block elif_stmt

| 'elif' named_expression ':' block [else_block]
else_block:

| 'else' ':' block

# While statement

#
while_stmt:
| 'while' named_expression ':' block [else_block]
# For statement
#
for_stmt:
| 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_block
| *async' ‘for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [el
# With statement
#
with_stmt:
| "with' '(' ','.with_item+ ','? ')' ':' [TYPE_COMMENT] block
| 'with' ','.with_item+ ':' [TYPE_COMMENT] block
| 'async' ‘with' ‘(' ','.with_item+ ','? ')' ':' block
| *async' 'with' ','.with_item+ ':' [TYPE_COMMENT] block
with_item:
| expression 'as' star_target &(',' | ‘)" | ':")
| expression

# Try statement

#
try_stmt:
| "try" '":' block finally_block
| "try' ':' block except_block+ [else_block] [finally_block]

| "try" ":' block except_star_block+ [else_block] [finally_block]

What language is this?



Concrete and Abstract Syntax

Python Grammar (Concrete Syntax)

if_stmt:
| "if' named_expression ':' block elif_stmt
| *if' named_expression ':' block [else_block]
elif_stmt:
| *elif' named_expression ':' block elif_stmt
| *elif' named_expression ':' block [else_block]
else_block:
| 'else’' ':' block
# While statement
# _______________
while_stmt:
| 'while' named_expression ':' block [else_block]
# For statement
# _____________
for_stmt:
| *for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_block
| *async' 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [el
# With statement
# ______________
with_stmt:
| *with® (' ','.with_item+ ','? ')' ':' [TYPE_COMMENT] block
| *with® ','.with_item+ ':' [TYPE_COMMENT] block
| *async' 'with' '(' ','.with_item+ ','? ')' ':' block
| *async' 'with' ','.with_item+ ':' [TYPE_COMMENT] block
with_item:
| expression ‘'as' star_target &(',' | ')' | ':')
| expression

# Try statement

.
try_stmt:
| "try' ':' block finally_block
| "try' ':' block except_block+ [else_block]l [finally_block]
| "try' ':' block except_star_block+ [else_block] [finally_block]

https://docs.python.org/3/reference/grammar.html

Python Abstract Syntax

T - v L

—— use 'orelse' because else is a keyword in target languages

| For(expr target, expr iter, stmtx body, stmtx orelse, string?
| AsyncFor(expr target, expr iter, stmtx body, stmtx orelse, st
| While(expr test, stmtx body, stmtx orelse)

| If(expr test, stmtx body, stmtx orelse)

| With(withitem* items, stmtx body, string? type_comment)

| AsyncWith(withitem* items, stmt* body, string? type_comment)

| Match(expr subject, match_casex cases)

| Raise(expr? exc, expr? cause)

| Try(stmtx body, excepthandlerx handlers, stmtx orelse, stmtx
| TryStar(stmtx body, excepthandlerx handlers, stmtx orelse, st
| Assert(expr test, expr? msg)

| Import(alias* names)
| ImportFrom(identifier? module, aliasx names, int? level)

| Global(identifierx names)

| Nonlocal(identifiers names)
| Expr(expr value)

| Pass | Break | Continue

—— col_offset is the byte offset in the utf8 string the parser
attributes (int lineno, int col_offset, int? end_lineno, int? e

—-— BoolOp() can use left & right?
expr = BoolOp(boolop op, exprx values)
| NamedExpr(expr target, expr value)
| BinOp(expr left, operator op, expr right)
| UnaryOp(unaryop op, expr operand)
| Lambda(arguments args, expr body)
| IfExp(expr test, expr body, expr orelse)
| Dict(expr* keys, exprx values)
| Set(exprx elts)
| ListComp(expr elt, comprehensionx generators)

https://docs.python.org/3/library/ast.html



https://docs.python.org/3/reference/grammar.html
https://docs.python.org/3/library/ast.html

Formal Semantics

WebAssembly (WASM)

Signature

alloc(ry,..., Th)(Tn, S)

dm — eval{anm)(5n)
dy «— gather(i,sy)

d « gather{an)(in.5n
store{p)(sp, st)

[_§, s¢] = load(p)()

dp « build(sy)
dy, «— count(bn, h,an)
dp, « scan(s)

(d1, dy) «— join(W)(bm,

dn «— copy(sn)
d, « sort(sy)

[Z, sl «— unique{a)}(sn)

dy — merge(an, by)

Lobster

Datafun Reduction siviet <= st sivtiet <3 st e s;v’;e' —; 83 v';e'
[A] € Poseto sjv*; Lk[e*] —; s';v'*; Lk[e’*] v local, {i;v*} e* end —; s';v};local, {i;v'" } ¢'* end
[2] = 2 L°[tra if L°
B p] — trap if LY # []
IN] = N.S (t.constc)t.unop <+ t.const unop,(c)
[str] = DiscS : : :
(t.constc,) (t.const ;) t.binop > f.constc if ¢ = binop,(c1, c2)
[AxB] = [A] x[B] (t.const cy) (t.const cz) t.binop <>  trap otherwise
[[Ef:_ g% - %2% :}ﬂﬁé]]] (t.cons| Expression semantics a:U—U, B:U—>Bool, g:U—->U, [e]:Fr— Ur
— f—
[A—=B] = Disc|[A]l = [B] (trca : p(u) € Fr t :u € [e](Fr) B(u) = true t :u € [e](Fr) u' = a(u)
(£ ———— (PREDICATE) (SELECT) - (PrOJECT)
AN = Panl[A]l [Rlp.y. = R® t:u €[ng(e)](Fr)
[7:Blpme = [T1]Dmo X -+ X [Tk]Dmo for 7= (T1,...,Tk) -
[A],[T] € Poseto — =t € [ez] (Fr) (ProDpUCT)
[ = 1 I["HERE o |, = Luof | Teklriflone WBlow =t W = Ur:p) le1 X 2] (Fr)
[A,x:A] = [A] x [A] corscr a1 ST nuuelalEn oo
rx:Al = [ [A] ﬂ il ={ fedr.laly | o =nberi), re | oo 78] }Gﬂel‘”““ﬂ
Copies from register s,, truncating if the desti WEERE I by - ea— Dim= u € g({ui},)
Lexicographically sorts the table with column; SELECT * ] SELECT /(7:[3):4(T) el (AGGREGATE)
Merges adjacent duplicate rows via o from the FROM ; B = FROM T B
unique elements s. WHERE D,n,0 D,n,0
Merges two sorted tables with columns @, anc SELECT * | SELECT cAS N ) S ca llO p
FROM 7:[3 = FROM 'rﬁ for arbitrary c€ Cand N € N
WHERE ¢ D,n,1 Dn,1
SELECT DISTINCT v : 3’ | + | SELECT a: 3’ | »
SQL |[FROMT:ﬂWHERE€ D,mzE(ﬂrnmr:ﬂwnznze]lam)
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How to design a new
language with some
conceptual features?
(Language for Turing
Machine & Lambda
Calculus)
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How to create a new
programming
language so that

Programming
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Syntax Semantics allocation faster?
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Regardless of what the
host language is, can
we design a type system
that can help track
ownership of data?
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Can we design a
language in which a
program will always
terminate?
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How to create a new
programming language
with some advanced
features (e.g., Rust’s
borrow checker)?
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How to generate a
program in a language
from natural language
description (e.g., sum all
the numbers in alist)?
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Programming

Language Design s there a bug in the

program? Does it always Synthesis
Syntax Semantics return the correct result?
Does it terminate?
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mplementation

Computation Class
Probabilistic &

‘ Differentiable
Complexity Theory Compiler Programming
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Can we create a language
that can describe
probability distributions &
inference probabilities &
compute gradients? (e.g.,
PyTorch, JAX, Wolfram, )
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Logistics

* Lecture
* When: Tue/Thu 3:00-4:15pm
* Where: Krieger Hall 170

* Course Website
* https://pl.cs.jhu.edu/pl/
* Discussions: courselore
* Grading: gradescope



https://pl.cs.jhu.edu/pl/
https://pl.cs.jhu.edu/pl/
https://courselore.org/courses/7102439729/
https://www.gradescope.com/courses/1205685

Programming Languages
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General Purpose Programming Languages

)k Haskell JS JavaScript mocaml

jUIi..a @ Common Lisp ﬂ Ruby



Domain Specific Programming Languages
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Programming Languages that we will learn

“YJocCaml

JS JavaScript P Python @ Rust



Programming Languages that we will learn

Primary language we are going to learn and use

“YJocaml

JS JavaScript P Python @ Rust

Supplementary languages to illustrate generalizability

~

/




Key Learning Objectives

* Imperative, Functional, Declarative, ...

* Lambda Functions, Recursion, Types, Records, Algebraic Data
Structures, State, Monad, Effect, Concurrency, Exceptions

e Syntax, Semantics, Proof Tree, Deductive Reasoning, Equivalence

* OCaml (main), Rust, Python, JavaScript/TypeScript



What (| hope) you can do AFTER the course:

* Spend less time on learning individual programming language!
* Just jump rightin and be proficient!
* Why? Because you already know all the principles

* Create your own programming language!
* Design and implement a new language
* Instead of making features as boilerplate APls, turn features into a language!

* Be better at commanding LLMs to help you write programs!
* Understand which language best suit your need
* Be more precise at describing your desired program!



Grading

* Quiz & Attendance (10%)

* Homework Assignments (8 in total, 30%)
* Midterm Exam (25%)

* Final Exam (35%)



Quiz & Attendance (10%)

* Graded by completion, NOT by correctness

* The quiz will be on paper; please

* Quiz will be notified 1 week in advance, usually on Thursday
* Maximum 1 quiz per week

* You can miss 2 quizzes, meaning that you’ll get

* (no quiz in the first week; starting from the second week)



Quiz & Attendance (10%)

Example Quiz:

Name:

Complete the Proof Tree Below:

True Or (True And False) => False




Homework Assignments (30%)

* Throughout the semester, we will be implementing an interpreter
for a called
* Pronunciation: (if you know music theory... thisis just E)
 Written in ASC-Il characters, we use

* Each homework assignment corresponds to one language feature
within
e Starting from operators to state, objects, and types

* You will be able to see all the assignments from the beginning
* Roughly speaking, you’ll have 1-1.5 weeks per assignment



Homework Assignments (30%)

* Autograders are available for most assignments; manual grading for a few

* For autograded ones, you’ll be able to see your score immediately after
you submit. The score is based on the number of test cases passed

* You will have 12 late days in total throughout the semester
* For each assignment, you can use up to 3 late days

* Please count the late days on your own; if the usage is exceeded, we will
put O on some of your assignments



Homework Assignments (30%)

e Strongly encouraged

* In the submission, please add “acknowledgement.md” when you have
collaborated with other students; note their name down

* Okay to use but not entirely encouraged

* In the submission, please add “acknowledgement.md” when you have
used Al (LLMs, VLMs, etc.) Carefully note down the LLM and its version,
copy-paste the entire conversation history (when available)



Homework Assignments (30%)

* For programming assignment 4/5/6/7/8, +1% overall grade if:

* You have implemented the entirety of the assignment with another programming
language, including runnable test cases

* Include a simple README.md telling us how to build & run
« Recommended language: Rust, JavaScript/TypeScript, Haskell, Python, Julia
* Otherlanguages that you can try working with: C/C++, Java, Scala, Go, Ruby

* [f you have done all, they are +5% overall grade

* Submission using .zip by email to the instructor (please CC TA & CA)

* Submit anytime within 1 week after the corresponding assignment’s due date
* E.g., assignment4 due Feb 18, the extra credit can be submitted before Feb 25.

* Use of LLM welcomed, please acknowledge in the submission



Midterm (25%) & Final (35%)

* Midterm: Mar 10 (Tues) in-class, 1-hour

* Final: TBD, 2.5-hour

* Study materials & practice exams will be made available online

* Answers will not be available, but we welcome you to come to the office
hour or send private posts to check with the instructors & TA & CA

* You can bring one piece of cheat sheet (size TBD)



