
Principles of
Programming Languages

Lecture 1 – Overview and Introduction to OCaml
Ziyang Li

Instructor

Ziyang Li

- Assistant professor @JHU CS, 2025-
- Before that: PhD at University of Pennsylvania
- Research areas: PL + ML + Sec
- Favorite PL: Rust & JavaScript

Programming…

👩💻 à 🖥

Programming…

👩💻 à 🖥
0101010101
1940s–1950s: Binary

Programming…

👩💻 à 🖥

1940s–1950s

Programming…

👩💻 à 🖥
0101010101
1940s–1950s: Binary

Programming…

👩💻 à 🖥

1950s–1960s: Assembly

ADD R1, R2

Kathleen Booth
1922–2022

Programming…

1950s–1960s: Assembly

ADD R1, R2

🖥à👩💻

Programming…

1950s–1960s: Assembly

ADD R1, R2

🖥à👩💻 àAssembler

0101010101

Programming…

1970s: High-level Language

🖥à👩💻
for (i = 0; i < n; i++)
 sum += a[i];

Programming…

1970s: High-level Language

🖥à👩💻
for (i = 0; i < n; i++)
 sum += a[i];

Compiler à Assembler à
ADD R1, R2 0101010101

Dennis M. Ritchie
1941–2011

Programming…

1970s: High-level Language

🖥à👩💻
for (i = 0; i < n; i++)
 sum += a[i];

Programming…

1980s onwards: Modern High-Level Languages

🖥à👩💻
for i in range(n):
 sum += a[i]

Programming…

🖥à👩💻
for i in range(n):
 sum += a[i]

Programming…

🖥à👩💻
for i in range(n):
 sum += a[i]

for (var e of a) {
 sum += e; }

Programming…

🖥à👩💻
for i in range(n):
 sum += a[i]

for (var e of a) {
 sum += e; }

total :: Num a => [a] -> a
total a = foldl (+) 0 a

🖥à👩💻
for i in range(n):
 sum += a[i]

for (var e of a) {
 sum += e; }

total :: Num a => [a] -> a
total a = foldl (+) 0 a

Compiler

Assembler

Interpreter à
…

VM

🖥à👩💻
for i in range(n):
 sum += a[i]

for (var e of a) {
 sum += e; }

total :: Num a => [a] -> a
total a = foldl (+) 0 a

Compiler

Assembler

Interpreter à
…

ADD R1, R2

0101010101

…

VM

Programming…

🖥à👩💻
for i in range(n):
 sum += a[i]

append:
 push ebp
 mov ebp, esp
 push eax
 push ebx
 push len
 call malloc
 mov ebx, [ebp + 12]
 mov [eax + info], ebx
 mov dword [eax + next], 0
 mov ebx, [ebp + 8]
 cmp dword [ebx], 0
 je null_pointer
 mov ebx, [ebx]

next_element:
 cmp dword [ebx + next], 0
 je found_last
 mov ebx, [ebx + next]
 jmp next_element

found_last:
 push eax
 push addMes
 call puts
 add esp, 4
 pop eax
 mov [ebx + next], eax

go_out:
 pop ebx
 pop eax
 mov esp, ebp
 pop ebp
 ret 8

null_pointer:
 push eax
 push nullMes
 call puts
 add esp, 4
 pop eax
 mov [ebx], eax
 jmp go_out

void insert(node *xs, int x) {
 node *new;
 node *temp;
 node *prev;
 new = (node *)malloc(sizeof(node));
 if(new == NULL) {
 printf("Insufficient memory.");
 return;
 }
 new->val = x;
 new->next = NULL;
 if (xs == NULL) {
 xs = new;
 } else if(x < xs->val) {
 new->next = xs;
 xs = new;
 } else {
 prev = xs;
 temp = xs->next;
 while(temp != NULL && x > temp->val) {
 prev = temp;
 temp = temp->next;
 }
 if(temp == NULL) {
 prev->next = new;
 } else {
 new->next = temp;
 prev->next = new;
 }
 }
}

let rec insert x ys =
 match ys with
 | [] -> [x]
 | y :: rs ->
 if x <= y then x :: y :: rs
 else y :: (insert x rs)

Assembly

C

OCaml

Programming à Talking to Computers

🖥à👩💻
sum up all the numbers in a list!

?

Natural language as programming languages?

Programming à Talking to Computers

🖥à👩💻
sum up all the
numbers in a list!

Language Model

Program Synthesizer à
Compiler

Assembler

Interpreter

…
VM

à
for i in range(n):
 sum += a[i]

ADD R1, R2

0101010101

…

🖥à👩💻

Principles of
Programming Languages

Programming
Language Design

Programming
Language Theory Programming Language

Implementation

Synthesis

Analysis &
Reasoning

Type Theory

Complexity Theory

Syntax Semantics

Expressiveness

Turing Completeness

Compiler

Interpreter Optimizer

Computation Class

Intermediate Representation

Soundness
Probabilistic &
DiVerentiable
Programming

Safety Guarantee

Programming
Language Design

Programming
Language Theory Programming Language

Implementation

Synthesis

Analysis &
Reasoning

Type Theory

Complexity Theory

Syntax Semantics

Expressiveness

Turing Completeness

Compiler

Interpreter Optimizer

Computation Class

Intermediate Representation

Soundness
Probabilistic &
DiVerentiable
Programming

Safety Guarantee

Syntax Semantics

What does a program in this language look like? What does a program in this language compute?

Programming
Language Design

Programming
Language Theory Programming Language

Implementation

Synthesis

Analysis &
Reasoning

Type Theory

Complexity Theory

Syntax Semantics

Expressiveness

Turing Completeness

Compiler

Interpreter Optimizer

Computation Class

Intermediate Representation

Soundness
Probabilistic &
DiVerentiable
Programming

Safety Guarantee

Syntax Semantics

What does a program in this language look like? What does a program in this language compute?

Grammar of Language Meaning of Language

What language is this?

Python Grammar (Concrete Syntax) Python Abstract Syntax

Concrete and Abstract Syntax

https://docs.python.org/3/reference/grammar.html https://docs.python.org/3/library/ast.html

https://docs.python.org/3/reference/grammar.html
https://docs.python.org/3/library/ast.html

Lobster
Scallop

WebAssembly (WASM)
Datafun

SQL

Formal Semantics

Programming
Language Design

Programming
Language Theory Programming Language

Implementation

Synthesis

Analysis &
Reasoning

Type Theory

Complexity Theory

Syntax Semantics

Expressiveness

Turing Completeness

Compiler

Interpreter Optimizer
Computation Class

Soundness
Probabilistic &
DiVerentiable
Programming

Garbage Collection

Intermediate Representation

Parser

Programming
Language Design

Programming
Language Theory Programming Language

Implementation

Synthesis

Analysis &
Reasoning

Type Theory

Complexity Theory

Syntax Semantics

Expressiveness

Turing Completeness

Compiler

Interpreter Optimizer
Computation Class

Soundness
Probabilistic &
DiVerentiable
Programming

Garbage Collection

Intermediate Representation

How to design a new
language with some
conceptual features?
(Language for Turing
Machine & Lambda
Calculus)

Parser

Programming
Language Design

Programming
Language Theory Programming Language

Implementation

Synthesis

Analysis &
Reasoning

Type Theory

Complexity Theory

Syntax Semantics

Expressiveness

Turing Completeness

Compiler

Interpreter Optimizer
Computation Class

Soundness
Probabilistic &
DiVerentiable
Programming

Garbage Collection

Intermediate Representation

How to create a new
programming
language so that
people can actually
use it?

Parser

Programming
Language Design

Programming
Language Theory Programming Language

Implementation

Synthesis

Analysis &
Reasoning

Type Theory

Complexity Theory

Syntax Semantics

Expressiveness

Turing Completeness

Compiler

Interpreter Optimizer
Computation Class

Soundness
Probabilistic &
DiVerentiable
Programming

Garbage Collection

Intermediate Representation

Regardless of what the
host language is, can
we make resource
allocation faster?

Parser

Programming
Language Design

Programming
Language Theory Programming Language

Implementation

Synthesis

Analysis &
Reasoning

Type Theory

Complexity Theory

Syntax Semantics

Expressiveness

Turing Completeness

Compiler

Interpreter Optimizer
Computation Class

Soundness
Probabilistic &
DiVerentiable
Programming

Garbage Collection

Intermediate Representation

Regardless of what the
host language is, can
we design a type system
that can help track
ownership of data?

Programming
Language Design

Programming
Language Theory Programming Language

Implementation

Synthesis

Analysis &
Reasoning

Type Theory

Complexity Theory

Syntax Semantics

Expressiveness

Turing Completeness

Compiler

Interpreter Optimizer
Computation Class

Soundness
Probabilistic &
DiVerentiable
Programming

Garbage Collection

Intermediate Representation

Can we design a
language in which a
program will always
terminate?

Programming
Language Design

Programming
Language Theory Programming Language

Implementation

Synthesis

Analysis &
Reasoning

Type Theory

Complexity Theory

Syntax Semantics

Expressiveness

Turing Completeness

Compiler

Interpreter Optimizer
Computation Class

Soundness
Probabilistic &
DiVerentiable
Programming

Garbage Collection

Intermediate Representation

How to create a new
programming language
with some advanced
features (e.g., Rust’s
borrow checker)?

Programming
Language Design

Programming
Language Theory Programming Language

Implementation

Synthesis

Analysis &
Reasoning

Type Theory

Complexity Theory

Syntax Semantics

Expressiveness

Turing Completeness

Compiler

Interpreter Optimizer
Computation Class

Soundness
Probabilistic &
DiVerentiable
Programming

Garbage Collection

Intermediate Representation

How to generate a
program in a language
from natural language
description (e.g., sum all
the numbers in a list)?

Programming
Language Design

Programming
Language Theory Programming Language

Implementation

Synthesis

Analysis &
Reasoning

Type Theory

Complexity Theory

Syntax Semantics

Expressiveness

Turing Completeness

Compiler

Interpreter Optimizer
Computation Class

Soundness
Probabilistic &
DiVerentiable
Programming

Garbage Collection

Intermediate Representation

Is there a bug in the
program? Does it always
return the correct result?
Does it terminate?

Programming
Language Design

Programming
Language Theory Programming Language

Implementation

Synthesis

Analysis &
Reasoning

Type Theory

Complexity Theory

Syntax Semantics

Expressiveness

Turing Completeness

Compiler

Interpreter Optimizer
Computation Class

Soundness
Probabilistic &
DiVerentiable
Programming

Garbage Collection

Intermediate Representation

Can we create a language
that can describe
probability distributions &
inference probabilities &
compute gradients? (e.g.,
PyTorch, JAX, Wolfram,)

Logistics

• Lecture
• When: Tue/Thu 3:00 – 4:15pm
• Where: Krieger Hall 170

• Course Website
• https://pl.cs.jhu.edu/pl/
• Discussions: courselore
• Grading: gradescope

https://pl.cs.jhu.edu/pl/
https://pl.cs.jhu.edu/pl/
https://courselore.org/courses/7102439729/
https://www.gradescope.com/courses/1205685

Programming Languages

Python

C C++

C# Rust

JavaScriptHaskell

Common Lisp

LLVM

Assembly

Coq
Prolog

Shell
Scallop

General Purpose Programming Languages

Python

C C++

C# Rust

JavaScriptHaskell

Common Lisp

LLVM

Assembly

Coq
Prolog

Shell
Scallop

Domain Specific Programming Languages

Python

C C++

C# Rust

JavaScriptHaskell

Common Lisp

LLVM

Assembly

Coq
Prolog

Shell
Scallop

Programming Languages that we will learn

C C++

C#

Haskell

Common Lisp

LLVM

Assembly

Coq
Prolog

Shell
Scallop

Python RustJavaScript

C C++

C#

Haskell

Common Lisp

LLVM

Assembly

Coq
Prolog

Shell
Scallop

Python RustJavaScript

Primary language we are going to learn and use

Supplementary languages to illustrate generalizability

Programming Languages that we will learn

Key Learning Objectives

• Programming Paradigms:
• Imperative, Functional, Declarative, …

• Programming Principles:
• Lambda Functions, Recursion, Types, Records, Algebraic Data

Structures, State, Monad, ETect, Concurrency, Exceptions

• Mathematical Foundation:
• Syntax, Semantics, Proof Tree, Deductive Reasoning, Equivalence

• Programming Languages:
• OCaml (main), Rust, Python, JavaScript/TypeScript

What (I hope) you can do AFTER the course:

• Spend less time on learning individual programming language!
• Just jump right in and be proficient!
• Why? Because you already know all the principles

• Create your own programming language!
• Design and implement a new language
• Instead of making features as boilerplate APIs, turn features into a language!

• Be better at commanding LLMs to help you write programs!
• Understand which language best suit your need
• Be more precise at describing your desired program!

Grading

• Quiz & Attendance (10%)
• Homework Assignments (8 in total, 30%)
• Midterm Exam (25%)
• Final Exam (35%)

Quiz & Attendance (10%)

• 10 quizzes in total, 1% each
• Graded by completion, NOT by correctness
• The quiz will be on paper; please bring your own pen
• Quiz will be notified 1 week in advance, usually on Thursday
• Maximum 1 quiz per week
• You can miss 2 quizzes, meaning that you’ll get 2% overall grade for free
• (no quiz in the first week; starting from the second week)

Quiz & Attendance (10%)

Complete the Proof Tree Below:

Name:

Example Quiz:

Homework Assignments (30%)

• Throughout the semester, we will be implementing an interpreter
for a functional language called F♭
• Pronunciation: F-Flat (if you know music theory… this is just E)
• Written in ASC-II characters, we use Fb

• Each homework assignment corresponds to one language feature
within F♭
• Starting from operators to state, objects, and types

• You will be able to see all the assignments from the beginning
• Roughly speaking, you’ll have 1-1.5 weeks per assignment

Homework Assignments (30%)

• The assignments are graded on GradeScope:
• Autograders are available for most assignments; manual grading for a few
• For autograded ones, you’ll be able to see your score immediately after

you submit. The score is based on the number of test cases passed

• Late Policy:
• You will have 12 late days in total throughout the semester
• For each assignment, you can use up to 3 late days
• Please count the late days on your own; if the usage is exceeded, we will

put 0 on some of your assignments

Homework Assignments (30%)

• Collaboration Policy:
• Strongly encouraged
• In the submission, please add “acknowledgement.md” when you have

collaborated with other students; note their name down

• Use-of-AI Policy:
• Okay to use but not entirely encouraged
• In the submission, please add “acknowledgement.md” when you have

used AI (LLMs, VLMs, etc.) Carefully note down the LLM and its version,
copy-paste the entire conversation history (when available)

Homework Assignments (30%)

• Extra Credit
• For programming assignment 4/5/6/7/8, +1% overall grade if:

• You have implemented the entirety of the assignment with another programming
language, including runnable test cases

• Include a simple README.md telling us how to build & run
• Recommended language: Rust, JavaScript/TypeScript, Haskell, Python, Julia
• Other languages that you can try working with: C/C++, Java, Scala, Go, Ruby

• If you have done all, they are +5% overall grade
• Submission using .zip by email to the instructor (please CC TA & CA)
• Submit anytime within 1 week after the corresponding assignment’s due date

• E.g., assignment 4 due Feb 18, the extra credit can be submitted before Feb 25.
• Use of LLM welcomed, please acknowledge in the submission

Midterm (25%) & Final (35%)

• Midterm: Mar 10 (Tues) in-class, 1-hour
• Final: TBD, 2.5-hour
• Study materials & practice exams will be made available online
• Answers will not be available, but we welcome you to come to the oTice

hour or send private posts to check with the instructors & TA & CA

• You can bring one piece of cheat sheet (size TBD)

