Principles of
Programming Languages

Lecture 1 — Overview and Introduction to OCaml
Ziyang Li

Instructor

Ziyang Li

- Assistant professor @JHU CS, 2025-

- Before that: PhD at University of Pennsylvania
- Research areas: PL + ML + Sec

- Favorite PL: Rust & JavaScript

Programming...

Programming...

1940s-1950s: Binary

Programming...

o
) W |

’———————————————————_——

900000000000 00100 0100001000 00109000000000000000000 90000000000(1000

T 0001100811000 1 10011100 111019110 11111111111111111 1111111111111

22222222222222222(122 222220122222 2222222 22222222 2222222 222222222 122222 222222

33(173733331371313333333(133333(1333301333(1333(133333333(13333333(1333333333033333(133 33

asaeassTaasaeaaTaeannsanalesansalle

s

55555555(/5555555 555555555 555555555
6666660 166666666666666 1666666666 1666666666 66666666 6666666(1666666666(166666666

177777711777197779997779977799771997711977707(1197970303771977 27971717771777777
8995 883888 8318880 8N888REOES 88508 [1988RE0808808RETS RESEERA[1388RIIRNE |8
M

HIEH
~

o = —

3330383393 99019939399 999 999 99999939719999990

1940s-1950s

(8 8 ¢ 8 0 »)
(5§ 8 5 8 18 § 0 8
ST F 8.0 8 8 S0 8
LU0

Al wmrin
A Mt

AL MM
FAPSTSTS B8
A0 0

'
¢
'
LOLLLOLOLO

ooonOnNonon

L Dotannntontnn

EMM MMM YN
M2 2 8 S8 8 0 et
8 S 5 388 SR S
OF DuDoOuin

ntn
RS9 e §
TR W

L8 8 A
ibr-.' |

MASS:WERK DATA CENTER <masswerk.at>

HELLOs WORLD. THIS IS TUWO-BIT HISTORY. ABCIEFGHIJKLMNOPRRITUYHXYZ 123456 !3S5&%5%d

—_—,—— e - - A — —

[] 1 LI] IO IICICHEN] 1

———— - =~ pem B I T e N —— Py

11 1 1 11 CICIN NN I]| |]

—— e —— e — ——

00000 0 000000 00 00 0 [0000 000 (00 00000000000000000000 /| [/ /[/00000000000 (000
123456789101 1zuanmmnamzzzzamsuamonnnuuanum_quuuumumglonnnuunnuuummauungmonnnnumomamo
T T T T I T I I I T T T T I T T I T T T T I T I I T I T e T e Tt e 11111 11 1111111111111/ 1111111111111
22222222222222222/ 122/ /22222122222 /12222222 122222222 12222222/ 1222222222 122222 1222222
33 /3 /3333//3/3/3333333/ 33333/ 3333 /333 /333 /33333333 3333333/ 333333333/.33333 33 33
44444444444 444444444444444444444444444444/ /44444444 /4444444 444444444 444444 4
5 |555 55555555/ 5555555 555555555 555555555
6666 66 66666666666666 | 666666666 666666666 66666666 6666666 666666666 66666666
777777771771777177177177777177771777177717777772177771727/1777771777/.277717777/1717117171711111111117111

888 |888888 88 |838888888888888 88888 | 38888888 88888888 3888888 888888888/ || |8 |||

|8
999999999 /99999999 /9999999 /999|999 (99999999999 |99999999/9999999//999999999999999
1234567 891011121314151617 18192021 22232425 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 4243 44 45 46 47 48 49 50 51 52'53 54 55 56 57 58 50 60 61 62 63 64 65 66 6768697071 727374 7576 77 78 79.80

CDL 0815

Programming...

1940s-1950s: Binary

Programming...

1950s-1960s: Assembly

1922-2022

Kathleen Booth

Programming...

1950s-1960s: Assembly

Programming...

1950s-1960s: Assembly

The FORTRAN Automatic Coding System

J. W. BACKUSt, R. J. BEEBERY, S. BEST}, R. GOLDBERGt, L. M. HAIBTY,
H. L. HERRICK?, R. A. NELSON{t, D. SAYRE{, P. B. SHERIDANT,
H. STERNY, 1. ZILLERY, R. A. HUGHESS§, axp R. NUTT]|

INTRODUCTION

HE FORTRAN project was begun in the sum-
Tmer of 1954. Its purpose was to reduce by a large
factor the task of preparing scientific problems for
IBM'’s next large computer, the 704. If it were possible

far tha TNA +a ~rada nrahlame far itealf and nradnece ac

system is now complete. It has two components: the
FORTRAN language, in which programs are written,
and the translator or executive routine for the 704
which effects the translation of FORTRAN language
programs into 704 programs. Descriptions of the FOR-
TRAN language and the translator form the principal

Programming...

for (1 = 0; 1 < n; i++)
sum += al[il;

———————————————————————————————

1970s: High-level Language

o = —
————— -

o = —

Programming...

%[Compiler}% Assembler 9 -

- — -

——————
______ e __.\I i

=
O
O
X
=
J
N
o
—
o
—
o
—
o
—
o
—

for (i = 0; 1 < n; i++)
sum += alil; .

———————————————————————————————

1970s: High-level Language

————————————————————————————————————

Dennis M. Ritchie

1941-2011

SECOND EDITION

sl

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

Programming...

for (1 = 0; 1 < n; i++)
sum += al[il;

———————————————————————————————

1970s: High-level Language

o = —
————— -

Programming...

o
id

> -

-

T .——.— ———————————— ’-———\‘
'+ for i in range(n): :
! sum += alil |
\
1980s onwards: Modern High-Level Languages

Programming...

P ' for i in range(n):
pgthon” :\ sum += a[l]

———————————————————————————————

Programming...

python”

1

1

1

sum += alil I
]

———————————————————————————————

-—

—___
—————————————————————

JS

———————————————————————————————

Programming...

——— - — -

pgthon " sum += a [l]
RO ’—-——\\
+ for (var e of a) { :

JS I sum += e; } E
\ 7

total :: Num a => [a] —> a
total a = foldl (+) O a

IN

o o —

[Compﬂm}
rAssenﬂﬂer\
B , Interpreter |

———————————————————————— Immmms VM
= for 1 in range(n):

python” sum += alil
CTTTTTTTTTT T ’—-——\‘
' for (var e of a) { :
JS sum += e; } |
\

total :: Num a => [a] —> a
total a = foldl (+) O a

I\

o - —

—— - —— -

[Compiler]

Assembler -
; Interpreter } ||

-
~ -

CTTTTTTT T TN .VM (T |
& | for i in range(n) = 0101010101
pgthon” :\ sum += a[l] E T~~~ _____
: ADD R1, R2
STt /_-——\‘ e oo
' for (var e of a) { |
JS . sum += e; } |

total :: Num a => [a] —> a
total a = foldl (+) O a

o - —

—— - —— -

I\

Programming...

for 1 in range(n):
sum += al[i]

———————————————————————————————

Assembly

append:

push ebp

mov ebp, esp

push eax

push ebx

push len

call malloc

mov ebx, [ebp + 12]

mov [eax + infol, ebx

mov dword [eax + next], @
mov ebx, [ebp + 8]

cmp dword [ebx], @

je null_pointer

mov ebx, [ebx]

’ C

next_element:

cmp dword [ebx + next], @
je found_last

mov ebx, [ebx + next]

jmp next_element

found_last:

push eax

push addMes

call puts

add esp, 4

pop eax

mov [ebx + next], eax

go_out:

pop ebx

pop eax

mov esp, ebp
pop ebp

ret 8

null_pointer:
push eax

push nullMes
call puts

add esp, 4

pop eax

mov [ebx], eax
jmp go_out

void insert(node *xs, int x) {

node xnew;
node xtemp;
node xprev;
new = (node *)malloc(sizeof(node));
if(new == NULL) {
printf("Insufficient memory.");
return;
}
new—>val = Xx;
new—>next = NULL;
if (xs == NULL) {
XS = new;
} else if(x < xs—>val) {
new—>next = xs;
XS = new;
} else {
prev = Xs;
temp = xs->next;
while(temp != NULL && x > temp—>val) {
prev = temp;
temp = temp->next;
}
if(temp == NULL) {
prev->next = new;
} else {
new—>next = temp;
prev->next = new;

OCaml

b
b

let rec insert

X ys =

match ys with

| [1 — [x]
| y it rs —>

if x <=y then x 1y ::

else y ::

(insert x rs)

rs

Programming = Talking to Computers

-

—
———————————————————————————

———————————————————————————————

Natural language as programming languages?

Programming = Talking to Computers

[Compiler]
o 8 ; [Language Model] a ' Assembler | ; -
“ [Program Synthesizer] , Interpreter | ||
__________________ /__-‘, I,’______'_""—__—__:/"‘\ VM If ~~~_________'“:
sum up all the ; | for i 1in range(n): ! . ' 0101010101 J
numbers in a list! o sum += al[i] : TTIITTTTTTTTTT
/ \ /' (——! Tmmmmmmmmmms

——————————————————————

—————————————————

Principles of
Programming Languages

Programming
Language Design

Syntax

Programming
Language Theory

Computation Class
Type Theory Soundness
Complexity Theory

Expressiveness

Turing Completeness

Semantics

Programming Language
Implementation

Interpreter Qptimizer

Compiler
Intermediate Representation

Safety Guarantee

Synthesis

Analysis &
Reasoning

Probabilistic &
Differentiable
Programming

Programming
Language Design

Synthesis
Syntax Semantics
Syntax Semantics
What does a program in this language look like? What does a program in this language compute?

Programming
Language Design

Synthesis
Syntax Semantics
Syntax Semantics
What does a program in this language look like? What does a program in this language compute?
Grammar of Language Meaning of Language

\/ T~ —"

if_stmt:

| "if' named_expression ':' block elif_stmt

| "if' named_expression ':' block [else_block]
elif_stmt:

| "elif' named_expression ':' block elif_stmt

| 'elif' named_expression ':' block [else_block]
else_block:

| 'else' ':' block

While statement

#
while_stmt:
| 'while' named_expression ':' block [else_block]
For statement
#
for_stmt:
| 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_block
| *async' ‘for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [el
With statement
#
with_stmt:
| "with' '(' ','.with_item+ ','? ')' ':' [TYPE_COMMENT] block
| 'with' ','.with_item+ ':' [TYPE_COMMENT] block
| 'async' ‘with' ‘(' ','.with_item+ ','? ')' ':' block
| *async' 'with' ','.with_item+ ':' [TYPE_COMMENT] block
with_item:
| expression 'as' star_target &(',' | ‘)" | ':")
| expression

Try statement

#
try_stmt:
| "try" '":' block finally_block
| "try' ':' block except_block+ [else_block] [finally_block]

| "try" ":' block except_star_block+ [else_block] [finally_block]

What language is this?

Concrete and Abstract Syntax

Python Grammar (Concrete Syntax)

if_stmt:
| "if' named_expression ':' block elif_stmt
| *if' named_expression ':' block [else_block]
elif_stmt:
| *elif' named_expression ':' block elif_stmt
| *elif' named_expression ':' block [else_block]
else_block:
| 'else’' ':' block
While statement

while_stmt:
| 'while' named_expression ':' block [else_block]
For statement

for_stmt:
| *for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_block
| *async' 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [el
With statement

with_stmt:
| *with® (' ','.with_item+ ','? ')' ':' [TYPE_COMMENT] block
| *with® ','.with_item+ ':' [TYPE_COMMENT] block
| *async' 'with' '(' ','.with_item+ ','? ')' ':' block
| *async' 'with' ','.with_item+ ':' [TYPE_COMMENT] block
with_item:
| expression ‘'as' star_target &(',' | ')' | ':')
| expression

Try statement

.
try_stmt:
| "try' ':' block finally_block
| "try' ':' block except_block+ [else_block]l [finally_block]
| "try' ':' block except_star_block+ [else_block] [finally_block]

https://docs.python.org/3/reference/grammar.html

Python Abstract Syntax

T - v L

—— use 'orelse' because else is a keyword in target languages

| For(expr target, expr iter, stmtx body, stmtx orelse, string?
| AsyncFor(expr target, expr iter, stmtx body, stmtx orelse, st
| While(expr test, stmtx body, stmtx orelse)

| If(expr test, stmtx body, stmtx orelse)

| With(withitem* items, stmtx body, string? type_comment)

| AsyncWith(withitem* items, stmt* body, string? type_comment)

| Match(expr subject, match_casex cases)

| Raise(expr? exc, expr? cause)

| Try(stmtx body, excepthandlerx handlers, stmtx orelse, stmtx
| TryStar(stmtx body, excepthandlerx handlers, stmtx orelse, st
| Assert(expr test, expr? msg)

| Import(alias* names)
| ImportFrom(identifier? module, aliasx names, int? level)

| Global(identifierx names)

| Nonlocal(identifiers names)
| Expr(expr value)

| Pass | Break | Continue

—— col_offset is the byte offset in the utf8 string the parser
attributes (int lineno, int col_offset, int? end_lineno, int? e

—-— BoolOp() can use left & right?
expr = BoolOp(boolop op, exprx values)
| NamedExpr(expr target, expr value)
| BinOp(expr left, operator op, expr right)
| UnaryOp(unaryop op, expr operand)
| Lambda(arguments args, expr body)
| IfExp(expr test, expr body, expr orelse)
| Dict(expr* keys, exprx values)
| Set(exprx elts)
| ListComp(expr elt, comprehensionx generators)

https://docs.python.org/3/library/ast.html

https://docs.python.org/3/reference/grammar.html
https://docs.python.org/3/library/ast.html

Formal Semantics

WebAssembly (WASM)

Signature

alloc(ry,..., Th)(Tn, S)

dm — eval{anm)(5n)
dy «— gather(i,sy)

d « gather{an)(in.5n
store{p)(sp, st)

[_§, s¢] = load(p)()

dp « build(sy)
dy, «— count(bn, h,an)
dp, « scan(s)

(d1, dy) «— join(W)(bm,

dn «— copy(sn)
d, « sort(sy)

[Z, sl «— unique{a)}(sn)

dy — merge(an, by)

Lobster

Datafun Reduction siviet <= st sivtiet <3 st e s;v’;e' —; 83 v';e'
[A] € Poseto sjv*; Lk[e*] —; s';v'*; Lk[e’*] v local, {i;v*} e* end —; s';v};local, {i;v'" } ¢'* end
[2] = 2 L°[tra if L°
B p] — trap if LY # []
IN] = N.S (t.constc)t.unop <+ t.const unop,(c)
[str] = DiscS : : :
(t.constc,) (t.const ;) t.binop > f.constc if ¢ = binop,(c1, c2)
[AxB] = [A] x[B] (t.const cy) (t.const cz) t.binop <> trap otherwise
[[Ef:_ g% - %2% :}ﬂﬁé]]] (t.cons| Expression semantics a:U—U, B:U—>Bool, g:U—->U, [e]:Fr— Ur
— f—
[A—=B] = Disc|[A]l = [B] (trca : p(u) € Fr t :u € [e](Fr) B(u) = true t :u € [e](Fr) u' = a(u)
(£ ———— (PREDICATE) (SELECT) - (PrOJECT)
AN = Panl[A]l [Rlp.y. = R® t:u €[ng(e)](Fr)
[7:Blpme = [T1]Dmo X -+ X [Tk]Dmo for 7= (T1,...,Tk) -
[A],[T] € Poseto — =t € [ez] (Fr) (ProDpUCT)
[= 1 I["HERE o |, = Luof | Teklriflone WBlow =t W = Ur:p) le1 X 2] (Fr)
[A,x:A] = [A] x [A] corscr a1 ST nuuelalEn oo
rx:Al = [[A] ﬂ il ={ fedr.laly | o =nberi), re | oo 78] }Gﬂel‘”““ﬂ
Copies from register s,, truncating if the desti WEERE I by - ea— Dim= u € g({ui},)
Lexicographically sorts the table with column; SELECT *] SELECT /(7:[3):4(T) el (AGGREGATE)
Merges adjacent duplicate rows via o from the FROM ; B = FROM T B
unique elements s. WHERE D,n,0 D,n,0
Merges two sorted tables with columns @, anc SELECT * | SELECT cAS N) S ca llO p
FROM 7:[3 = FROM 'rﬁ for arbitrary c€ Cand N € N
WHERE ¢ D,n,1 Dn,1
SELECT DISTINCT v : 3’ | + | SELECT a: 3’ | »
SQL |[FROMT:ﬂWHERE€ D,mzE(ﬂrnmr:ﬂwnznze]lam)

Programming
Language Design

Syntax

Programming
Language Theory

Computation Class
Type Theory Soundness
Complexity Theory

Expressiveness

Turing Completeness

Semantics

Programming Language
Implementation
Interpreter Optimizer
Compiler Parser
Intermediate Representation

Garbage Collection

Synthesis

Analysis &
Reasoning

Probabilistic &
Differentiable
Programming

How to design a new
language with some
conceptual features?
(Language for Turing
Machine & Lambda
Calculus)

Programming
Language Design

.7

Syntax Semantics

Analysis &
Reasoning

Programming
Language Theory

Programming Language
Implementation

Computation Class

Probabilistic &
Differentiable
Programming

Interpreter Optimizer

Type Theory Soundness

Complexity Theory Compiler Parser

Intermediate Representation

Expressiveness

Garbage Collection

Turing Completeness

How to create a new
programming
language so that

Programming
Language Design

people can actually Synthesis
Syntax Semantics use it?
Analysis &
Reasoning

Programming .
Language Theory Programming Language
Implementation

Computation Class

Interpreter Optimizer Probabilistic &

Type Theory Soundness | Ditferantiable
Complexity Theory Compiler Parser Programming
Expressiveness Intermediate Representation

Turing Completeness Garbage Collection

Programming Regardless of what the
Language Design host language is, can
we make resource Synthesis

Syntax Semantics allocation faster?

Analysis &
Reasoning

Programming

Language Theory Programming Language

plementation

Computation Class
Probabilistic &

Type Theory = Soundness | Differentiable
Complexity Theory Compiler Parser Programming

Interpreter Optimizer

Expressiveness Intermediate Representation

Turing Completeness Garbage Collection

Regardless of what the
host language is, can
we design a type system
that can help track
ownership of data?

Programming
Language Design

Syntax Semantics

Programming
Language Theory

Programming Language
Implementation

Computation Class

Interpreter Optimizer

Type Theory Soundness

Compiler

Complexity Theory

Intermediate Representation

Expressiveness

Garbage Collection

Turing Completeness

Analysis &
Reasoning

Probabilistic &
Differentiable
Programming

Can we design a
language in which a
program will always
terminate?

Syntax

Programming
Language Theory

Computation Class
Type Theory Soundness
Complexity Theory

Expressiveness

Turing Completeness

Programming
Language Design

Semantics

Programming Language
Implementation
Interpreter Optimizer
Compiler
Intermediate Representation

Garbage Collection

Synthesis

Analysis &
Reasoning

Probabilistic &
Differentiable
Programming

How to create a new
programming language
with some advanced
features (e.g., Rust’s
borrow checker)?

Programming
Language Design

Syntax Semantics

Analysis &
Reasoning

Programming
Language Theory

Programming Language
Implementation

Computation Class

Probabilistic &
Differentiable
Programming

Interpreter Optimizer

Soundness

Type Theory
Compiler

Complexity Theory
Intermediate Representation

Expressiveness
Garbage Collection

Turing Completeness

How to generate a
program in a language
from natural language
description (e.g., sum all
the numbers in alist)?

Programming
Language Design

Syntax Semantics

Analysis &
Reasoning

Programming
Language Theory

Programming Language
Implementation

Computation Class

Probabilistic &
Differentiable
Programming

Interpreter Optimizer

Type Theory Soundness

Compiler

Complexity Theory

Intermediate Representation

Expressiveness

Garbage Collection

Turing Completeness

Programming

Language Design s there a bug in the

program? Does it always Synthesis
Syntax Semantics return the correct result?
Does it terminate?

Analysis &

. Reasoning
Programming

Language Theory Pro?ran‘llming !c_atr"guage
mplementation

Computation Class
Probabilistic &

‘ Differentiable
Complexity Theory Compiler Programming

Type Theory Soundness Interpreter ~ Optimizer

Expressiveness Intermediate Representation

Turing Completeness Garbage Collection

Can we create a language
that can describe
probability distributions &
inference probabilities &
compute gradients? (e.g.,
PyTorch, JAX, Wolfram,)

Programming
Language Design

Syntax Semantics

Analysis &
Reasoning

Programming
Language Theory

Programming Language
Implementation

Computation Class

Probabilistic &
Differentiable
Programming

Interpreter Optimizer

Type Theory Soundness

Complexity Theory Compiler

Expressiveness Intermediate Representation

Garbage Collection

Turing Completeness

Logistics

* Lecture
* When: Tue/Thu 3:00-4:15pm
* Where: Krieger Hall 170

* Course Website
* https://pl.cs.jhu.edu/pl/
* Discussions: courselore
* Grading: gradescope

https://pl.cs.jhu.edu/pl/
https://pl.cs.jhu.edu/pl/
https://courselore.org/courses/7102439729/
https://www.gradescope.com/courses/1205685

Programming Languages

THEOREM PROVER

HTML

@ Assembly E
ﬂ Q‘ °> Prolog
(,) Coq

("k N A
g SQL SystemVerilog

-

@ Shell

) \= Haskell JS JavaScript mocaml

jUIi..a @ Common Lisp ﬂ Ruby

Scallop

General Purpose Programming Languages

)k Haskell JS JavaScript mocaml

jUIi..a @ Common Lisp ﬂ Ruby

Domain Specific Programming Languages

THEOREM PROVER

HTML

@ Assembly E
| o~
” @) Prolog
(,) Coq

= SQL‘“ | SystemMeriloge

@ Shell

Scallop

Programming Languages that we will learn

“YJocCaml

JS JavaScript P Python @ Rust

Programming Languages that we will learn

Primary language we are going to learn and use

“YJocaml

JS JavaScript P Python @ Rust

Supplementary languages to illustrate generalizability

~

/

Key Learning Objectives

* Imperative, Functional, Declarative, ...

* Lambda Functions, Recursion, Types, Records, Algebraic Data
Structures, State, Monad, Effect, Concurrency, Exceptions

e Syntax, Semantics, Proof Tree, Deductive Reasoning, Equivalence

* OCaml (main), Rust, Python, JavaScript/TypeScript

What (| hope) you can do AFTER the course:

* Spend less time on learning individual programming language!
* Just jump rightin and be proficient!
* Why? Because you already know all the principles

* Create your own programming language!
* Design and implement a new language
* Instead of making features as boilerplate APls, turn features into a language!

* Be better at commanding LLMs to help you write programs!
* Understand which language best suit your need
* Be more precise at describing your desired program!

Grading

* Quiz & Attendance (10%)

* Homework Assignments (8 in total, 30%)
* Midterm Exam (25%)

* Final Exam (35%)

Quiz & Attendance (10%)

* Graded by completion, NOT by correctness

* The quiz will be on paper; please

* Quiz will be notified 1 week in advance, usually on Thursday
* Maximum 1 quiz per week

* You can miss 2 quizzes, meaning that you’ll get

* (no quiz in the first week; starting from the second week)

Quiz & Attendance (10%)

Example Quiz:

Name:

Complete the Proof Tree Below:

True Or (True And False) => False

Homework Assignments (30%)

* Throughout the semester, we will be implementing an interpreter
for a called
* Pronunciation: (if you know music theory... thisis just E)
 Written in ASC-Il characters, we use

* Each homework assignment corresponds to one language feature
within
e Starting from operators to state, objects, and types

* You will be able to see all the assignments from the beginning
* Roughly speaking, you’ll have 1-1.5 weeks per assignment

Homework Assignments (30%)

* Autograders are available for most assignments; manual grading for a few

* For autograded ones, you’ll be able to see your score immediately after
you submit. The score is based on the number of test cases passed

* You will have 12 late days in total throughout the semester
* For each assignment, you can use up to 3 late days

* Please count the late days on your own; if the usage is exceeded, we will
put O on some of your assignments

Homework Assignments (30%)

e Strongly encouraged

* In the submission, please add “acknowledgement.md” when you have
collaborated with other students; note their name down

* Okay to use but not entirely encouraged

* In the submission, please add “acknowledgement.md” when you have
used Al (LLMs, VLMs, etc.) Carefully note down the LLM and its version,
copy-paste the entire conversation history (when available)

Homework Assignments (30%)

* For programming assignment 4/5/6/7/8, +1% overall grade if:

* You have implemented the entirety of the assignment with another programming
language, including runnable test cases

* Include a simple README.md telling us how to build & run
« Recommended language: Rust, JavaScript/TypeScript, Haskell, Python, Julia
* Otherlanguages that you can try working with: C/C++, Java, Scala, Go, Ruby

* [f you have done all, they are +5% overall grade

* Submission using .zip by email to the instructor (please CC TA & CA)

* Submit anytime within 1 week after the corresponding assignment’s due date
* E.g., assignment4 due Feb 18, the extra credit can be submitted before Feb 25.

* Use of LLM welcomed, please acknowledge in the submission

Midterm (25%) & Final (35%)

* Midterm: Mar 10 (Tues) in-class, 1-hour

* Final: TBD, 2.5-hour

* Study materials & practice exams will be made available online

* Answers will not be available, but we welcome you to come to the office
hour or send private posts to check with the instructors & TA & CA

* You can bring one piece of cheat sheet (size TBD)

