
Types for Flexible Objects

Pottayil Harisanker Menon, Zachary Palmer, Alexander Rozenshteyn, and
Scott Smith

Department of Computer Science
The Johns Hopkins University

{pharisa2, zachary.palmer, arozens1, scott}@jhu.edu

Abstract. Scripting languages are popular in part due to their ex-
tremely flexible objects. Features such as dynamic extension, mixins,
and first-class messages improve programmability and lead to concise
code. But attempts to statically type these features have met with lim-
ited success. Here we present TinyBang, a small typed language in which
flexible object operations can be encoded. We illustrate this flexibility
by solving an open problem in OO literature: we give an encoding where
objects can be extended after being messaged without compromising the
expressiveness of subtyping. TinyBang’s subtype constraint system en-
sures that all types are completely inferred; there are no data declarations
or type annotations. We formalize TinyBang and prove the type system
is sound and decidable; all examples in the paper run in our most recent
implementation.

1 Introduction

Modern scripting languages such as Python and JavaScript have become popular
in part due to the flexibility of their object semantics. In addition to support-
ing traditional OO operations such as inheritance and polymorphic dispatch,
scripting programmers can add or remove members from existing objects, arbi-
trarily concatenate objects, represent messages as first-class data, and perform
transformations on objects at any point during their lifecycle.

While a significant body of work has focused on statically typing flexible
object operations [BF98,RS02,BBV11], the solutions proposed place significant
restrictions on how objects can be used. The fundamental tension lies in sup-
porting self-referentiality. For an object to be extensible, “self” must be exposed
in some manner equivalent to a function abstraction λself . . . so that differ-
ent “self” values may be used in the event of extension. But exposing “self” in
this way puts it in a contravariant position; as a result, subtyping on objects is
invalid. The above systems create compromises; [BF98], for instance, does not
permit objects to be extended after they are messaged.

Along with the problem of contravariant self, it is challenging to define a
fully first-class object concatenation operation with pleasing typeability proper-
ties. The aforementioned type systems do not support concatenation of arbitrary
objects. In the related space of typed record concatenation, previous work [Pot00]
has shown that general record concatenation may be typed but requires consid-
erable machinery including presence/absence types and conditional constraints.

In this paper, we present a new programming language calculus, TinyBang,
which aims for significant flexibility in statically typing flexible object operations.
In particular, we support object extension without restrictions, and we have
simple type rules for a first-class concatenation operation.

TinyBang achieves its expressiveness with very few primitives: the core ex-
pressions include only labeled data, concatenation, higher-order functions, and
pattern matching. Classes, objects, inheritance, object extension, overloading,
and switch/case can be fully and faithfully encoded with these primitives. Tiny-
Bang also has full type inference for ease and brevity of programming. It is not
intended to be a programming language for humans; instead, it aims to serve as
a conceptual core for such a language.

1.1 Key Features of TinyBang

TinyBang’s type system is grounded in subtype constraint type theory [AWL94],
with a series of improvements to both expression syntax and typing to achieve
the expressiveness needed for flexible object encodings.

Type-indexed records supporting asymmetric concatenation TinyBang uses
type-indexed records: records for which content can be projected based
on its type [SM01]. For example, consider the type-indexed record
{foo = 45; bar = 22; 13}: the untagged element 13 is implicitly tagged with
type int, and projecting int from this record would yield 13. Since records
are type-indexed, we do not need to distinguish records from non-records; 22,
for example, is a type-indexed record of one (integer) field. Variants are also
just a special case of 1-ary records of labeled data, so ‘Some 3 expresses the
ML Some(3). Type-indexed records are thus a universal data type and lend
themselves to flexible programming patterns in the same spirit as Lisp lists and
Smalltalk objects.

TinyBang records support asymmetric concatenation via the & opera-
tor; informally, {foo = 45; bar = 22; 13} & {baz = 45; bar = 10; 99} results
in {foo = 45; bar = 22; baz = 45; 13} since the left side is given priority for the
overlap. Asymmetric concatenation is key for supporting flexible object concate-
nation, as well as for standard notions of inheritance. We term the & operation
onioning.

Dependently typed first-class cases TinyBang’s first-class functions are written
“pattern -> expression”. In this way, first-class functions are also first-class case
clauses. We permit the concatenation of these clauses via & to give multiple
dispatch possibilities. TinyBang’s first-class functions generalize the first-class
cases of [BAC06].

Additionally, we define a novel notion of union elimination, a slice, which
allows the type of bindings in a case arm to be refined based on which pattern
was matched. Dependently typed first-class cases are critical for typing our object
encodings, a topic we discuss in the next section.

Outline In the next section, we give an overview of TinyBang and how it can
encode object features. In Section 3, we show the operational semantics and type

system for a core subset of TinyBang, trimmed to the key features for readability;
we prove soundness and decidability for this system in the appendices. Related
work is in Section 4 and we conclude in Section 5.

2 Overview

This section gives an overview of the TinyBang language and of how it supports
flexible object operations and other scripting features.

2.1 Language Features for Flexible Objects

The TinyBang expression syntax used in this section appears in Figure 2.1.

e ::= x | () | Z | l e | ref e | ! e | e & e | φ -> e | e� e | e e | letx = e in e | x := e in e
φ ::= x | () | int | l φ | φ &φ patterns

� ::= + | - | == | <= | >= operators

l ::= ‘(alphanumeric) labels

Fig. 2.1. TinyBang Syntax

Program types take the form of a set of subtype constraints [AWL94]. For the
purposes of this Overview we will be informal about type syntax. For example,
the informal int ∪ bool is in fact be expressed via constraints int <: α and bool

<: α. The details of the type system are presented in Section 3.3.

Simple functions as methods We begin by considering the oversimplified case of
an object with a single method and no fields or self-awareness. In the variant
encoding, such an object is represented by a function which pattern-matches
on the message identifying that single method. We see in Figure 2.1 that all
TinyBang functions are written φ -> e, with φ being a pattern to match against
the function’s argument. Each function has only one pattern; we call these one-
clause pattern-matching functions simple functions. For instance, consider the
following object and its invocation:

1 let obj = (‘twice x -> x + x) in obj (‘twice 4)

The syntax ‘twice 4 is a label constructor similar to an OCaml polymorphic
variant or Haskell newtype; like these languages, the expression ‘twice 4 has
type ‘twice int. The simple function ‘twice x -> x + x is a function which
matches on any argument containing a ‘twice label and binds its contents to
the variable x. Note that the expression ‘twice 4 is a first-class message.

A simple function is only capable of matching one pattern; to express general
pattern matching, functions are concatenated via the onion operation & to give
compound functions. Given two function expressions e1 and e2, the expression
(e1 & e2) conjoins them to make a compound function. (e1 & e2) arg will apply
the function which has a pattern matching arg; if both patterns match arg, the
leftmost function (e.g. e1) is given priority. For example:

1 let obj = (‘twice x -> x + x) & (‘isZero x -> x == 0) in obj ‘twice 4

The above shows that traditional match expressions can be encoded using the
& operator to join a number of simple functions: one for each case. Because these

functions are values, TinyBang’s function conjunction generalizes the first-class
cases of [BAC06]; that work does not support “override” of existing clauses or
heterogeneously typed case branches.

Dependent pattern types The above shows the encoding of a simple object with
two methods, no fields, and no self-awareness, but this function conjunction ap-
proach presents some typing challenges. Consider the analogous OCaml match/-
case expression:

1 let obj m = (match m with | ‘twice x -> x + x

2 | ‘isZero x -> x == 0) in . . .

This will not typecheck, since the same type must be returned for all branches.1

We resolve this in TinyBang by giving the function a dependent pattern type
(‘twice int → int) & (‘isZero int → bool). If the function is applied in the
context where the type of message is known, the appropriate result type is in-
ferred; for instance, invoking this method with ‘isZero 0 always produces type
bool and not type int ∪ bool. When we present the formal type system be-
low, we show how these dependent pattern types extend the expressiveness of
conditional constraint types [AWL94,Pot00] in a dimension critical for typing
objects.

This need for dependent typing arises largely from our desire to accurately
type a variant-based object model; a record-based encoding of objects would not
have this problem. We choose a variant-based encoding because it greatly sim-
plifies encodings such as self-passing and overloading, which we describe below.

Onions are records There is no record syntax in TinyBang; instead, it suffices to
use concatenation (&) on labeled values. We informally call these records onions
to signify these properties. Here is an example of how multi-argument methods
can be defined:

1 let obj = (‘sum (‘x x & ‘y y) -> x + y)

2 & (‘equal (‘x x & ‘y y) -> x == y)

3 in obj (‘sum (‘x 3 & ‘y 2))

The ‘x 3 & ‘y 2 amounts to a two-label record. This ‘sum-labeled onion is
passed to the pattern ‘x x & ‘y y. (We highlight the pattern & differently than
the onioning & because the former is a pattern conjunction operator: the value
must match both subpatterns.) Also observe from this example how there is no
hard distinction in TinyBang between records and variants: there is only one
class of label. This means that the 1-ary record ‘sum 4 is the same as the 1-ary
variant ‘sum 4.

2.2 Self-Awareness and Resealable Objects

Up to this point, objects have no self-awareness: they cannot invoke their own
methods. Encoding a runtime model of self-awareness is simple; for instance,
dynamic dispatch can be accomplished simply by transforming each method

1 The recent OCaml 4 GADT extension mitigates this difficulty but requires an explicit
type declaration, type annotations, and only works under a closed world assumption.

invocation (e.g. obj.m(arg)) into a function call in which the object is passed to
itself (e.g. obj (‘self obj & ‘m arg)). But while this model exhibits appropriate
runtime behavior, it does not typecheck properly in the presence of subtyping.
Consider the code in Figure 2.2 and the Java statement A obj = new B();. The
encoding of obj.foo() here would fail to typecheck; the B implementation of foo
expects this to have a bar method, but the weakened obj cannot guarantee this.
Although this example uses Java type annotations to weaken the variable’s type,
similar weakening eventually occurs with any decidable type inference algorithm.
We also observe that the same problem arises if, rather than self-passing at the
call site, we encode the object to carry itself in a field.

class A {

int foo() { return 4; }

}

class B extends A {

int foo() { return this.bar(); }

int bar() { return 8; }

}
Fig. 2.2. Self-Encoding Example Code

The simple approach shown above fails because, informally, the object does
not know its own type. To successfully typecheck dynamic dispatch, we must
keep an internal type for the object separate from the external type it has in
any particular context; that is, in the above example, the object must remember
that it is a B-typed object even when it is generalized e.g. in an A-typed variable.
One simple approach to this is to capture an appropriate self-type in closure,
similar to how functions can recurse via self-passing:

1 let obj0 = self -> (‘foo _ & ‘self self -> self self (‘bar _ & ‘self self)) &

2 (‘bar _ & ‘self self -> 8) in

3 let obj = obj0 obj0 in . . .

The initial passing of obj0 to itself bootstraps the self-passing mechanism; obj
becomes a function with obj0 captured in closure as self; thus, any message
passed to obj uses the type of obj0 at the time obj was created rather than
relying on its type in context. While this approach is successful in creating a self-
aware object, it interferes with extensibility: the type of self is fixed, preventing
additional methods from being added or overridden.

To create an extensible encoding of dynamically dispatched objects, we build
on the work of [BF98]. In that work, an object exists in one of two states:
as a prototype, which can be extended but not messaged, or as a “proper”
object, which can be messaged but not extended. Prototypes cannot be messaged
because they do not yet have a notion of their own type. A prototype may be
“sealed” to transform it into a proper object, capturing the object’s type in
a fashion similar to the above. A sealed object may not be extended for the
same reason as the above: there exists no mechanism to modify or specialize the
captured self-type.

The work we present here extends [BF98] with two notable refinements. First,
that work presents a calculus in which objects are primitives; in TinyBang, how-
ever, objects and the sealing process itself are encoded using simple functions
and conjunction. Second, TinyBang admits a limited context in which sealed

objects may be extended and then resealed, thus relaxing the sharp phase dis-
tinction between prototypes and proper objects. All object extension below will
be performed on sealed objects. Object sealing is accomplished by a TinyBang
function seal:

1 let fixpoint = f -> (w -> w w) (t -> a -> f (t t) a) in

2 let seal = fixpoint (seal -> obj ->

3 (msg -> obj (msg & ‘self (seal obj))) & obj) in

4 let obj = (‘twice x -> x + x) &

5 (‘quad x & ‘self self -> self (‘twice x) + self (‘twice x))

6 let sObj = seal obj in

7 let twenty = sObj ‘quad 5 in // returns 20

Here, fixpoint is simply the Y-combinator. The seal function operates by adding
a message handler which captures every message sent to obj. (We still add & obj

to this message handler to preserve the non-function parts of the object.) This
message handler captures the type of obj in the closure of a function; thus, later
invocations of this message handler will continue to use the type at seal-time
even if the types of variables containing the object are weakened. The message
handler adds a ‘self component containing the sealed object to the right of the
message and then passes it to the original object. We require fixpoint to ensure
that this self-reference is also sealed. So, every message sent to sObj will be sent
on to obj with ‘self sObj added to the right. Note that the ‘twice method
does not require a ‘self pattern component: due to structural subtyping, any
message with a ‘twice label (whether it also includes a ‘self or not) will do.

The key to preserving extensibility with this approach is the fact that, while
the seal function has captured the type of obj in closure, the self value is
still sent to the original object as an argument. We now show how this permits
extension of sealed objects in certain contexts.

Extending previously sealed objects In the definition of seal above, the catch-all
message handler adds a ‘self label to the right of the message; thus, if any
‘self label already existed in the message, it would be given priority over the
one added by seal. We can take advantage of this behavior in order to extend
a sealed object and then reseal it, refining its self-type. Consider the following
continuation of the previous code:

1 let sixteen = sObj ‘quad 4 in // returns 16

2 let obj2 = (‘twice x -> x) & sObj in

3 let sObj2 = seal obj2 in

4 let eight = sObj2 ‘quad 4 in . . . // returns 8

We can extend sObj after messaging it, here overriding the ‘twice message;
sObj2 represents the (re-)sealed version of this new object. sObj2 properly knows
its “new” self due to the resealing, evidenced here by how ‘quad invokes the new
‘twice. To see why this works let us trace the execution. Expanding the sealing
of sObj2, sObj2 (‘quad 4) has the same effect as obj2 (‘quad 4 & ‘self sObj2),
which has the same effect as sObj (‘quad 4 & ‘self sObj2). Recall sObj is also a
sealed object which adds a ‘self component to the right ; thus this has the same

effect as obj (‘quad 4 & ‘self sObj2 & ‘self sObj). Because the leftmost ‘self
has priority, the ‘self is properly sObj2 here. We see from the original definition
of obj that it sends a ‘twice message to the contents of self, which then follows
the same pattern as above until obj (‘twice 4 & ‘self sObj2 & ‘self sObj) is
invoked (two times – once for each side of +).

Sealed and resealed objects obey the desired object subtyping laws because
we “tie the knot” on self using seal, meaning there is no contravariant self pa-
rameter on object method calls to invalidate object subtyping. Additionally, our
type system includes parametric polymorphism and so sObj and the re-sealed
sObj2 do not have to share the same self type, and the fact that & is a functional
extension operation means that there will be no pollution between the two dis-
tinct self types. Key to the success of this encoding is the asymmetric nature
of &: it allows us to override the default ‘self parameter. This self resealing is
possible in the record model of objects, but is much more convoluted; this is a
reason that we switched to a variant model.

It should be noted that this resealing approach is limited to contexts in
which no type information has yet been lost regarding the sealed object. Using
the example from Figure 2.2, typechecking would likely fail if one were to seal a
B, weaken its type to an A, extend it, and then reseal the result: the new self-
type would be derived from A, not B, and so would still lack knowledge of the
bar method. The runtime behavior is always correct, and typechecking would
also succeed if the extension provided its own override of the bar method for the
newly-sealed object to use.

Onioning it all together Onions also provide a natural mechanism for including
fields; we simply concatenate them to the functions that represent the methods.
Consider the following object which stores and increments a counter:

1 let obj = seal (‘x (ref 0) &

2 (‘inc _ & ‘self self -> (‘x x -> x := !x + 1 in !x) self))

3 in obj ‘inc ()

Observe how obj is a heterogeneous “mash” of a record field (the ‘x) and a
function (the handler for ‘inc). This is sound because onions are type-indexed
[SM01], meaning that they use the types of the values themselves to identify
data. For this particular example, invocation obj ‘inc () (note () is an empty
onion, a 0-ary conjunction) correctly increments in spite of the presence of the
‘x label in obj.

The above counter object code is quite concise: it defines a self-referential,
mutable counter object using no syntactic sugar whatsoever in a core language
with no explicit object syntax. But as we said before, we do not expect pro-
grammers to write directly in TinyBang under normal circumstances. Here are
a few syntactic sugarings used in subsequent examples. (A “real” language built
on these ideas would include sugarings for each of the features we are about to
mention as well.)

o.x ∼= (‘x x -> x) o

o.x = e1 in e2
∼= (‘x x -> x = e1 in e2) o

if e1 then e2 else e3
∼= ((‘True _ -> e2) & (‘False _ -> e3)) e1

e1 and e2
∼= ((‘True _ -> e2) & (‘False _ -> ‘False ())) e1

2.3 Flexible Object Operations

We now cover how TinyBang supports a wealth of flexible object operations,
expanding on the first-class messages and flexible extension operations covered
above. We show encodings in terms of objects rather than classes for simplicity;
applying these concepts to classes is straightforward.

Default arguments TinyBang can easily encode optional arguments that take on
a default value if missing. For instance, consider:

1 let obj = seal ((‘add (‘x x & ‘y y) -> x + y)

2 & (‘sub (‘x x & ‘y y) -> x - y)) in

3 let dflt = obj -> (‘add a -> obj (‘add (a & ‘x 1))) & obj in

4 let obj2 = dflt obj in

5 obj2 (‘add (‘y 3)) + obj2 (‘add (‘x 7 & ‘y 2)) // 4 + 9

Object dflt overrides obj’s ‘add to make 1 the default value for ‘x. Because
the ‘x 1 is onioned onto the right of a, it will have no effect if an ‘x is explicitly
provided in the message.

Overloading The pattern-matching semantics of functions also provide a simple
mechanism whereby multi-functions can be defined to overload their behavior.
We might originally define negation on the integers as

1 let neg = x & int -> 0 - x in . . .

Here, the conjunction pattern x & int will match the argument with int and
also bind it to the variable x. Later code could then extend the definition of
negation to include boolean values. Because multi-functions assign new meaning
to an existing symbol, we redefine neg to include all of the behavior of the old
neg as well as new cases for ‘True and ‘False:

1 let neg = (‘True _ -> ‘False ()) & (‘False _ -> ‘True ()) & neg in . . .

Negation is now overloaded: neg 4 evaluates to -4, and neg ‘True () evaluates
to ‘False () due to how application matches function patterns.

Mixins The following example shows how a simple two-dimensional point object
can be combined with a mixin providing extra methods:

1 let point = seal (‘x (ref 0) & ‘y (ref 0)

2 & (‘l1 _ & ‘self self -> self.x + self.y)

3 & (‘isZero _ & ‘self self -> self.x == 0 and self.y == 0)) in

4 let mixin = ‘near _ & ‘self self -> self ‘l1 ()) < 4) in

5 let mixPt = seal (point & mixin) in mixPt ‘near ()

Here mixin is a function which invokes the value passed as self. Because an
object’s methods are just functions onioned together, onioning mixin into point

is sufficient to produce a properly functioning mixPt.
The above example typechecks in TinyBang; parametric polymorphism is

used to allow point, mixin, and mixPt to have different self-types. The mixin

variable has the approximate type “(‘near unit & ‘self α) → bool where α is
an object capable of receiving the ‘l1 message and producing an int”. mixin can
be onioned with any object that satisfies these properties. If the object does not
have these properties, a type error will result when the ‘near message is passed;
for instance, (seal mixin) (‘near ()) is not typeable because mixin, the value
of self, does not have a function which can handle the ‘l1 message.

TinyBang mixins are first-class values; the actual mixing need not occur until
runtime. For instance, the following code selects a weighting metric to mix into
a point based on some runtime condition cond.

1 let cond = (runtime boolean) in let point = (as above) in

2 let w1 =

3 (‘weight _ & ‘self self -> self.x + self.y) in

4 let w2 = (‘weight _ & ‘self self -> self.x - self.y) in

5 let mixPt = seal (point & (if cond then w1 else w2)) in

6 mixPt ‘weight ()

Inheritance, classes, and subclasses Typical object-oriented constructs can be
defined similarly to the above. Object inheritance is similar to mixins, but a
variable super is also bound to the original object and captured in the closure of
the inheriting objects methods, allowing it to be reached for static dispatch. The
flexibility of the seal function permits us to ensure that the inheriting object is
used for future dispatches even in calls to overridden methods. Classes are simply
objects that generate other objects, and subclasses are extensions of those object
generating objects. We forgo examples here for brevity.

3 Formalization

Here we give formal semantics to TinyBang. For clarity, features which are not
unique to our semantics – integers, state, etc. – are omitted. We first translate
TinyBang programs to A-normal form; Section 3.2 defines the operational se-
mantics of the A-normalized version of restricted TinyBang. Section 3.3 defines
the type system and soundness and decidability properties. The full technical
report [MPRS14b] shows how the omitted features are handled.

Notation For a given construct g, we let [g1, . . . , gn] denote an n-ary list of g,
often using the equivalent shorthand

n−⇀g . We elide the n when it is unnecessary.
Operator ‖ denotes list concatenation. For sets, we use similar notation:

n⨽−−⨼g
abbreviates {g1, . . . , gn} for some arbitrary ordering of the set.

3.1 A-Translation

In order to simplify our formal presentation, we convert TinyBang into A-normal
form; this brings expressions, patterns, and types into close syntactic alignment

which greatly simplifies the proofs. The grammar of our A-normalized language
appears in Figure 3.1. For the purposes of discussion, we will refer to the restric-
tion of the language presented in Section 2 as the nested language and to the
language appearing in Figure 3.1 as the ANF language.

e ::= −⇀s expressions φ ::=
−−−−⇀
x = v̊ patterns

s ::= x = v | x =x | x =x x clauses

E ::= −−−−⇀x = v environment B ::= −−−−⇀x =x bindings

v ::= Z | () | l x | x &x | φ -> e values v̊ ::= int | () | l x | x &x pattern vals

l ::= ‘(alphanumeric) labels x ::= (alphanumeric) variables

Fig. 3.1. TinyBang ANF Grammar

Observe how expression and pattern grammars are nearly identical. We re-
quire that both expressions and patterns declare each variable at most once;
expressions and patterns which do not have this property must be α-renamed
such that they do. The constructions E and B are not directly used in the
A-translation; they define the environment and bindings in the semantics.

We define the A-translation function HeIx in Figure 3.2. Here, e is a nested
TinyBang expression; the result is the A-normalized form −⇀s in which the final
declared variable is x. We overload this notation to patterns as well. We use y
and z to range over fresh variables unique to that invocation of H−I−; different
recursive invocations use different fresh variables y and z.

Expressions

H()Ix = [x = ()]
Hl eIx = HeIy ‖[x = l y]

He1 & e2Ix = He1Iy ‖ He2Iz ‖[x = y & z]
Hφ -> eIx = [x = HφIy -> HeIz]
He1 e2Ix = He1Iy ‖ He2Iz ‖[x = y z]

Hletx1 = e1 in e2Ix2 = He1Ix1 ‖ He2Ix2
Hx2Ix1 = [x1 =x2]

Patterns

H()Ix = [x = ()]
Hl φIx = HφIy ‖[x = l y]

Hφ1 &φ2Ix = Hφ1Iy ‖ Hφ2Iz ‖[x = y & z]
Hx2Ix1 = [x2 = ()]

Fig. 3.2. TinyBang A-Translation

Notice that A-translation of patterns is in perfect parallel with the ex-
pressions in the above; for example, the expression ‘A x -> x translates to
[y1 = ([x = (), y3 = ‘A x] -> [y2 = x])]. Using the same A-translation for pat-
terns and expressions greatly aids the formal development, but it takes some
practice to read these A-translated patterns. Variables matched against empty
onion (x = () here) are unconstrained and represent bindings that can be used
in the body. Variables matched against other pattern clauses (such as y3) are not
bindings; clause y3 = ‘A x constrains the argument to match a ‘A-labeled value.
The last binding in the pattern, here y3 = ‘A x, is taken to match the argument
when the function is applied; this is in analogy to how the variable in the last
clause of an expression is the final value. Variable binding takes place on ()

(wildcard) definitions: every pattern clause x = () binds x in the function body.
In clause lists, each clause binds the defining variable for all clauses appearing
after it; nested function clauses follow the usual lexical scoping rules. For the
remainder of the paper, we assume expressions are closed unless noted.

3.2 Operational Semantics

Next, we define an operational semantics for ANF TinyBang. The primary com-
plexity of these semantics is pattern matching, for which several auxiliary defi-
nitions are needed.

Compatibility The first basic relation we define is compatibility : is a value
accepted by a given pattern? We define compatibility using a constructive failure
model for reasons of well-foundedness which are discussed below. We use the
symbol � to range over the two symbols and #, which indicate compatibility
and incompatibility, respectively, and order them: # < .

We write x �
E�Bφ x′ to indicate that the value x is compatible (if � =)

or incompatible (if � = #) with the pattern x′. E represents the environment
in which to interpret the value x while φ represents the environment in which
to interpret the pattern x′. B dictates how, upon a successful match, the values
from E will be bound to the pattern variables in φ. Compatibility is the least
relation satisfying the rules in Figure 3.3.

Empty Onion

x0 = v ∈ E x′0 = () ∈ φ B = [x′0 =x0]

x0

E�

B
φ x′0

Label

x0 = l x1 ∈ E x′0 = l x
′
1 ∈ φ x1

�
E�

B
φ x′1

x0
�
E�

B
φ x′0

Conjunction Pattern

x′0 =x
′
1 &x

′
2 ∈ φ x0

�1
E�

B1
φ x′1 x0

�2
E�

B2
φ x′2

x0
min(�1,�2)

E�
B1 ‖B2
φ x′0

Onion Value Left

x0 =x1 &x2 ∈ E x1

E�

B
φ x′0

x0

E�

B
φ x′0

Onion Value Right

x0 =x1 &x2 ∈ E x′0 =x
′
1 &x

′
2 /∈ φ x1

#
E�

B′
φ x′0 x2

�
E�

B
φ x′0

x0
�
E�

B
φ x′0

Label Mismatch

x0 = l x1 ∈ E x′0 = v̊ ∈ φ v̊ = l′ x2 only if l 6= l′ v̊ not of the form x′ &x′′ or ()

x0
#
E�

[]
φ x

′
0

Fig. 3.3. Pattern compatibility rules

The compatibility relation is key to TinyBang’s semantics and bears some
explanation. As mentioned above, every clause x = () appearing in the pattern
binds the variable x; the Empty Onion rule ensures this by adding a binding
clause to B. The Label rule simply recurses when the value is a label and the
pattern matches that label; the Label Mismatch rule (which is the base case
for failure) applies when the pattern does not match that label. Conjunction is
relatively self-evident; min is used here as a logical “and” over the two recursive
premises. The onion rules reflect TinyBang’s asymmetric concatenation seman-
tics. Given a value x1 &x2, it is possible that both x1 and x2 match the pattern.
If so, we must ensure that we take the bindings from the compatibility of x1.
The Onion Value Left rule applies when the left side matches. The Onion Value
Right rule only applies only if the left side doesn’t match; that is, a proof of
compatibility may recursively depend on a proof of incompatibility. This is the
reason that our relation is defined to be constructive for both success and failure:
it is necessary to show that the relation is inductively well-founded.

For an example, consider matching the pattern ‘A a & ‘B b against the value
‘A () & ‘B (). The A-translations of these expressions are, respectively, the first
and second columns below. Compatibility v5 E�Bφ p3 holds with the bindings B
shown in the third column.

E φ B
v1 = ()

v2 = ‘A v1

v3 = ()

v4 = ‘B v3

v5 = v2 & v4

a = ()

p1 = ‘A a

b = ()

p2 = ‘B b

p3 = p1 & p2

a = v1

b = v3

Matching Compatibility determines if a value matches a single pattern; we
next define a matching relation to check if a series of pattern clauses match.
In TinyBang, recall that individual pattern clauses pattern -> body are simple
functions φ -> e and a series simple functions onioned together expresses a multi-
clause pattern match. So, we define an application matching relation x0 x1

�;E

e to determine if an onion of pattern clauses x0 can be applied to argument x1.
This relation is constructive on failure in the same fashion as compatibility.We
define matching as the least relation satisfying the rules in Figure 3.4. The
helper function RV extracts the return variable from a value, defined as follows:
RV(e ‖[x = ...]) = x and RV(e ‖[x = v̊]) = x.

Function

x0 = (φ -> e) ∈ E x1
�
E�

B
φ RV(φ)

x0 x1
�;E B ‖ e

Non-Function

x0 = (φ -> e) /∈ E x0 =x2 &x3 /∈ E
x0 x1

#;E e
Onion Left

x0 =x2 &x3 ∈ E x2 x1
 ;E e

x0 x1
 ;E e

Onion Right

x0 =x2 &x3 ∈ E x2 x1
#;E e′ x3 x1

�;E e

x0 x1
�;E e

Fig. 3.4. Application matching rules

The Function rule is the base case of a simple function application: the argu-
ment value x1 must be compatible with the pattern φ, and if so insert the result-
ing bindings B at the top of the function body e. The Onion Left/Right rules are
the inductive cases; notice that the Onion Right rule can only match successfully
if the (higher priority) left side has failed to match. The Non-Function rule is
the base case for application of a non-function, which fails but in a way which
permits dispatch to continue through the onion.

Operational Semantics Using the compatibility and matching relations from
above, we now define the operational semantics of TinyBang as a small step rela-
tion e −→1 e′. Our definition uses an environment-based semantics; it proceeds
by acting on the first unevaluated clause of e. We use an environment-based
semantics (rather than a substitution-based semantics) due to its suitability to
ANF and because it aligns well with the type system presented in the next
section.

We must freshen variables as they are introduced to the expression to preserve
the invariant that the ANF TinyBang expression uniquely defines each variable;

to do so, we take α(e) to be an α-renaming function which freshens all variables
in e which are not free. We then define the small step relation as the least relation
satisfying the rules given by Figure 3.5.

Variable Lookup

x1 = v ∈ E
E ‖[x2 =x1] ‖ e −→1 E ‖[x2 = v] ‖ e

Application

x0 x1
 ;E e′ α(e′) = e′′

E ‖[x2 =x0 x1] ‖ e −→1 E ‖ e′′ ‖[x2 =RV(e′′)] ‖ e

Fig. 3.5. The operational semantics small step relation

The application rule simply inlines the freshened function body e′′ in the
event there was a match. We define e0 −→∗ en to hold when e0 −→1 . . . −→1 en
for some n ≥ 0. Note that e −→∗ E means that computation has resulted in a
final value. We write e X−→1 iff there is no e′ such that e −→1 e′; observe E X−→1

for any E. When e X−→1 for some e not of the form E, we say that e is stuck.

3.3 Type System

We base TinyBang’s type system on subtype constraint systems, which have
been shown to be expressive [AWL94] and suitable for complex pattern matching
[Pot00] and object-orientation [WS01]. We begin by aligning expressions and
types (an operation made easy by our choice of ANF expression syntax); we then
define type system relations which parallel those from the operational semantics,
including a deductive constraint closure which parallels the small step relation
itself. Our proof of soundness proceeds by showing a simulation property that
programs stay aligned with their types as they execute, and stuck programs
correspond to inconsistent constraint sets.

Initial Alignment Figure 3.6 presents the type system grammar. Note the
close alignment between expression and type grammar elements; E has type
V , and variable bindings B have the type analog F . Expressions e have types
α\C; expressions and type grammars are less different than they appear, since
the expression clauses are a list where the last variable contains the final value
implicitly whereas in the type the final type location α must be explicit. Both v
and v̊ have type τ .

C ::= ⨽−−⨼c constraint sets c ::= τ <: α | α <: α | α α <: α constraint

V ::=
⨽−−−−−−⨼
τ <: α constraint value sets τ ::= () | l α | α &α | α\V → α\C types

F ::=
⨽−−−−−−−⨼
α <: α constraint flow sets α type variables

Fig. 3.6. The TinyBang type grammar

We formalize this initial alignment step as a function JeKe which produces a
constrained type α\C; see Figure 3.7. Initial alignment over a given e picks a
single fresh type variable for each program variable in e; for the variable x0, we
denote this fresh type variable as

?
α0.

Slicing When defining type compatibility in TinyBang, a subtle problem arises
which did not appear in the evaluation system. In the evaluation system, each
variable is guaranteed to have a single assignment; thus, a premise of value

J
n−⇀s Ke = αn\

n⨽−−⨼c where ∀i ∈ {1..n}.JsiKs = αi\ci
J
n−−⇀
x = v̊Kp = αn\

n⨽−−⨼c where ∀i ∈ {1..n}.Jxi = v̊iK̊s = αi\ci
Jx0 =ZKs =

?
α0\ int <:

?
α0 Jx0 = intK̊s =

?
α0\ int <:

?
α0

Jx0 = ()Ks =
?
α0\ () <:

?
α0 Jx0 = ()K̊s =

?
α0\ () <:

?
α0

Jx0 = l x1Ks =
?
α0\ l ?

α1 <:
?
α0 Jx0 = l x1K̊s =

?
α0\ l ?

α1 <:
?
α0

Jx0 =x1 &x2Ks =
?
α0\ ?

α1 &
?
α2 <:

?
α0 Jx0 =x1 &x2K̊s =

?
α0\ ?

α1 &
?
α2 <:

?
α0

Jx0 =φ -> eKs =
?
α0\ JφKp → JeKe <:

?
α0

Jx0 =x1Ks =
?
α0\ ?

α1 <:
?
α0

Jx0 =x1 x2Ks =
?
α0\ ?

α1
?
α2 <:

?
α0

Fig. 3.7. Initial alignment

compatibility in Figure 3.3 such as “x1 = l x0 ∈ E” is unambiguous. This is not so
in the type system: a single type variable may have multiple lower bounds. Such
type variables represent union types and present subtle challenges. For instance,
consider a direct translation of Figure 3.3 to the type system (replacing all x
with α, all B with F , all φ with V , and so on). In the resulting relation, the
informal type ‘Aα∪ ‘Bα would appear to match the pattern ‘A _ &‘B _: we can
prove that the argument type variable has a ‘A lower bound and, independently,
we can prove that it has a ‘B lower bound. This is an instance of the well-
known union elimination problem: we must be consistent in our view of how
case analysis on unions is performed. Because TinyBang’s dispatch on functions
has weak dependent typing properties, this imprecision would be unsound if not
addressed: if the type system erroneously concludes that the argument matches
the ‘A _ &‘B _ pattern, this imprecision may cause it not to consider a lower
priority function which is actually invoked at runtime.

We solve this problem by defining a slicing relation to eliminate unions before
checking compatibility. This ensures that our union eliminations are consistent
(because they are performed before, not during, compatibility checking) and ad-
ditionally provides us with a refined form of the argument to use in typechecking
the function body. Slicing eliminates the above soundness concern because the
argument is first separated into the distinct ‘Aα and ‘Bα slices and compatibil-
ity is checked for each of them separately. Note that union elimination must be
complete up to the depth of the pattern; otherwise, union alignment problems
will begin where the elimination stopped.

We write α\V � α′\C to indicate that α\V is a slice of the constrained type
α′\C; this relation is defined as follows:

Definition 1. α\V � α′\C is the least relation defined by the rules in Fig-
ure 3.8. Slices α\V of α′\C additionally must always be

– well-formed: each α′′ in V has at most one lower bound in V ,
– disjoint: τ <: α′′ ∈ V implies that α′′ does not appear in C, and
– minimal: every upper-bounding α′′ in V is either α or appears in a lower

bound in V .
– acyclic: there exists a preorder on type variables in V s.t. α1 < α2 when
τ <: α2 ∈ V and α1 appears in τ

Leaf

α 6∈ V
α\V � α\C

Atomic

τ not of the form l α1 or α1 &α2 τ <: α ∈ V τ <: α′ ∈ C
α\V � α′\C

Label

l α1 <: α0 ∈ V l α′
1 <: α′

0 ∈ C α1\V � α′
1\C

α0\V � α′
0\C

Onion

α1 &α2 <: α0 ∈ V α′
1 &α

′
2 <: α′

0 ∈ C α1\V � α′
1\C α2\V � α′

2\C
α0\V � α′

0\C

Fig. 3.8. The slice relation for union elimination

One nuance of slicing is that the Leaf rule can allow slicing to stop at an
arbitrary point - in practice the data is sliced as deep as the pattern requires it,
but it is possible to slice too shallowly by this relation, in which case a partial
match is all that is obtained, a topic discussed below.

Compatibility Using the above slicing relation, we can now define the type
compatibility relation. Because a slice is a union-free representation of a type
up to some depth, we can define compatibility in much the same way as we did
in the evaluation system. As mentioned above, however, slicing may stop at an
arbitrary point.

To handle partial slices, we define the type compatibility relation to filter out
slices which are too shallow. In addition to being compatible () or incompat-
ible (#), type compatibility may show that a slice and a pattern are partially
compatible (G#), meaning that the slice lines up with the pattern correctly but
is insufficiently deep. We use the metavariable � to range over this extension to
the � grammar. As in value compatibility, we view these symbols as ordered:
< G# < . We define type system compatibility as the least relation satisfying
the rules appearing in Figure 3.9.

Figure 3.10 shows an example of slicing and compatibility on a recursive
type: Peano integers. Here, α is a union type between a successor and a zero. We
consider matching Peano integers against two patterns (written here in nested
form): ‘Z () and ‘S ‘S (). (Recall that () in patterns means “match anything.”)
The topmost slice matches the first pattern directly. The middle slice is partial
after a single ‘S: it fails to match the ‘Z () pattern (we elide that arrow for
visual clarity) and partially matches the second pattern. The middle slice is
insufficiently deep, indicating neither success nor failure. The bottommost slice
matches the second pattern completely; although it is also a partial slice, it is
deep enough that we can assert it would match that pattern regardless of how
it might be further expanded. In general, there is always a point at which we
can stop slicing: patterns are of fixed, finite depth, so every slice fixes as either
compatible or incompatible after a certain depth.

Other than the additional concern of partial slices, type compatibility is much
like value compatibility; so, see Section 3.2 for more explanation of compatibility.

Partial

@τ.τ <: α0 ∈ V
α0

G#
V�

∅
V ′ α

′
0

Empty Onion

τ <: α0 ∈ V () <: α′
0 ∈ V ′ F = {α0 <: α′

0}
α0

V�

F
V ′ α′

0

Label

l α1 <: α0 ∈ V l α′
1 <: α′

0 ∈ V ′ α1
�
V�

F
V ′ α′

1

α0
�
V�

F
V ′ α′

0

Conjunction Pattern

α′
1 &α

′
2 <: α′

0 ∈ V ′ α0
�1
V�

F1
V ′ α

′
1 α0

�2
V�

F2
V ′ α

′
2

α0
min(�1,�2)

V�
F1∪F2
V ′ α′

0

Onion Value Left

α1 &α2 <: α0 ∈ V α1
�
V�

F
V ′ α′

0 � 6= #

α0
�
V�

F
V ′ α′

0

Onion Value Right

α1 &α2 <: α0 ∈ V α′
1 &α

′
2 <: α′

0 6∈ V ′ α1
#
V�

F ′

V ′ α′
0 α2

�
V�

F
V ′ α′

0

α0
�
V�

F
V ′ α′

0

Label Mismatch

l α1 <: α0 ∈ V
τ <: α′

0 ∈ V ′ τ = l′ α2 only if l 6= l′ τ not of the form α′
&α′′ or ()

α0
#
V�

∅
V ′ α

′
0

Fig. 3.9. Type compatibility: does a type match a pattern?

∪α =

‘S‘Z

()

argument type

‘Z ()

‘S ‘S α

‘S α

slice

slice
slice

some possible slices

‘Z ()

‘S ‘S

()

 4

G#4

 4

patterns

Fig. 3.10. Type compatibility example

Matching Type matching directly parallels expression matching. As in the
evaluation system, type matching propagates the result of compatibility and uses
the � place to enforce left precedence of dispatch. Matching α0 α1

�
V0
;V1

α2\C ′
is defined as the least relation satisfying the clauses in Figure 3.11.

Constraint Closure Constraint closure can now be defined; each step of clo-
sure represents one forward propagation of constraint information and abstractly
models a single step of the operational semantics. This closure is implicitly de-
fined in terms of an abstract polymorphism framework defined by two functions.
The first, Φ, is analogous to the α(−) freshening function of the operational
semantics. For decidability, however, we do not want Φ to freshen every vari-
able uniquely; it only performs some α-substitution on the constrained type.
We write Φ(C,α) to indicate the freshening of the variables in C. The additional
parameter α describes the call site at which the polyinstantiation took place;
this is useful for some polymorphism models.

Function

(α′\V ′ → α\C) <: α0 ∈ V0 α1
�
V1
�FV ′ α′

α0 α1
�
V0
;V1

α\C ∪ F
Non-Function

(α′\V ′ → α\C) <: α0 /∈ V0 α2 &α3 <: α0 /∈ V0

α0 α1
#
V0
;V1

α\C
Onion Left

α2 &α3 <: α0 ∈ V0 α2 α1
�
V0
;V1

α\C � 6= #

α0 α1
�
V0
;V1

α\C
Onion Right

α2 &α3 <: α0 ∈ V0 α2 α1
#
V0
;V1

α′\C′ α3 α1
�
V0
;V1

α\C
α0 α1

�
V0
;V1

α\C

Fig. 3.11. Type application matching

The second function, Υ , unifies type variables by producing type variable
equivalence relations. In particular, each of the above relations – slicing, com-
patibility, and matching – is actually defined to take an equivalence relation as
an implicit parameter. In their definitions, we consider type variables in sets
up to their equivalences by this relation; for instance, we read τ <: α /∈ V as
@α′. τ <: α′ ∈ V ∧α ∼= α′. For simplicity, readers may consider the monomorphic
system given by ΦMono(C,α) = C and where the equivalence relation given by
ΥMono(−) is always equality; in this case, the definitions above can be read as
they are presented. We discuss our concrete choice of polymorphism model for
TinyBang in a Technical Report [MPRS14b].

We write C =⇒1 C ′ to indicate a single step of constraint closure. This
relation is defined as the least such that the rules in Figure 3.12 are satisfied.
This relation defines the equivalence to be used by the relations in its premises:
at each constraint closure step C =⇒1 C ′, we take the type variable equivalence
relation to be Υ (C). We write C0 =⇒∗ Cn to indicate C0 =⇒1 . . . =⇒1 Cn.

Transitivity

{τ <: α1, α1 <: α2} ⊆ C
C =⇒1 C ∪ {τ <: α2}

Application

α0 α1 <: α2 ∈ C α′
0\V0 � α0\C

α′
1\V1 � α1\C α′

0 α
′
1

V0
;V1

α′\C′ α′′\C′′ = Φ(α′\C′, α2)

C =⇒1 C ∪ V1 ∪ C′′ ∪ {α′′ <: α2}

Fig. 3.12. Type constraint closure single-step relation

The operational semantics has a definition for a “stuck” expression; the type
system analogue is the inconsistent constraint set, which we define as follows:

Definition 2 (Inconsistency). A constraint set C is inconsistent iff, under
the equivalence Υ (C), there exists some α0 α1 <: α2 ∈ C and α′0\V0 � α1\C
and α′1\V1 � α1\C such that α′0 α

′
1
#
V0
;V1

α′\C ′. A constraint set which is not
inconsistent is consistent.

Informally, inconsistency captures the cases in which an expression can get stuck.

Given the above, we define what it means for a program to be type correct:

Definition 3 (Typechecking). A closed expression e typechecks iff JeKe =
α\C and C =⇒∗ C ′ implies that C ′ is consistent.

Formal Properties We now state formal assertions regarding our type system.
For reasons of space, we give proofs for each of these statements in [MPRS14b].
We begin with soundness which we prove by simulation: the A-translation of the
program and the careful alignment between each of the relations in the system
makes simulation a natural choice. We may state soundness as follows:

Theorem 1 (Soundness). If e −→∗ e′ for stuck e′ then e doesn’t typecheck.

This result is proven in Appendix A of [MPRS14b].
We must also show typechecking to be decidable. Our strategy is to demon-

strate that the constraint closure of a finite constraint set C forms a subset
inclusion lattice and that it is sufficient (and computable) to check the consis-
tency of the top of that lattice. Because constraint closure is parametric in the
polymorphism model, we must impose some requirements on the model. First,
it must be finitely freshening : Φ must introduce finitely many variables into any
produced constraint set given an initial constraint set. Second, to ensure conver-
gence, polymorphism must be equivalence monotone: a constraint superset must
induce monotonically more equivalences in Υ . See [MPRS14b] for the definition
of a flexible polymorphism model with these properties.

Although the above restricts the polymorphism model to introduce finitely
many variables to constraint closure, we have not bounded the number of vari-
ables introduced by slicing. The type system presented in this paper is oversim-
plified for legibility and does not bound the number of slice variables introduced;
it is therefore undecidable. The solution to this problem is to introduce an occur-
rence check in slicing to prevent a single slice from making the same decision for
the same variable at the same pattern multiple times. This approach is similar
to determining whether the intersection of two regular trees is empty. While the
type system is very slightly weakened by this modiciation, the examples in this
paper are unaffected and the resulting system is intuitive and decidable.

Theorem 2 (Decidability). Typechecking with the above modification and a
finitely freshening, equivalence monotone polymorphism model is decidable.

4 Related Work

TinyBang’s object resealing is inspired by the Bono-Fisher object calculus
[BF98], in which mixins and other higher-order object transformations are writ-
ten as functions. Objects in this calculus must be “sealed” before they are mes-
saged; unlike our resealing, sealed objects cannot be extended. Some related
works relax this restriction but add others [RS02,BBV11].

Typed multimethods [MC99] perform a dispatch similar to TinyBang’s
dispatch on compound functions, but multimethod dispatch is nominally
typed while compound function dispatch is structurally typed. First-class cases
[BAC06] allow composition of case branches much like TinyBang. In [BAC06],
however, general case concatenation requires case branches to be written in CPS

and requires a phase distinction between constructing a case and matching with
it. TinyBang has a form of dependent type which allows different case branches
to return different types; this generalizes the expressiveness of conditional con-
straints [AWL94,Pot00] and is related to support for typed first-class messages
a la [Nis98,Pot00] – first-class messages are just labeled data in our encoding.

TinyBang shares several features and goals with CDuce [CNX+14]: both
aim to be flexible languages built around constraint subtyping. CDuce supports
dependently-typed case results as we do, but it does not slice on the pattern side
and so does not bind refined types. CDuce lacks a typed record append operation
and so the object encodings of this paper are not possible there. CDuce takes a
local type inference approach; this has the advantage of being modular but the
disadvantage of not being complete, requiring type annotations in some cases,
and the decidability of their inference algorithm remains open.

TinyBang’s onions are unusual in that they are a form of record supporting
typed asymmetric concatenation. The bulk of work on typing record extension
addresses symmetric concatenation only [Rémy94]. Standard typed record-based
encodings of inheritance [BCP99] avoid the problem of typing first-class concate-
nation by reconstructing records rather than extending them, but this requires
the superclass to be fixed statically. A combination of conditional constraints
and row types can be used to type record extension [Pot00]; TinyBang uses a
different approach that does not need row types.

There have been many attempts to bring static typing to existing script-
ing languages; two of the more recent systems include [CRJ12,FAFH09]. The
majority of such systems require some explicit type annotations, and invariably
are incomplete since an uncomputable problem is being solved: the languages
contain too many fundamentally dynamic operations (e.g. mutable object ex-
tension). Once a type system loses information on a dynamic operation, it is
difficult to recover. One primary tenant of this project’s design philosophy is to
build a language from the beginning with flexible but fully static typing; this
way, there will never be a need to attempt such recovery.

5 Conclusions

We presented TinyBang, a core language with a static type inference system
that types such flexible operations without onerous false type errors or the need
for manual programmer annotation. We believe TinyBang solves a longstanding
open problem: it infers types for object-oriented programs without compromising
the expressiveness of object subtyping or of object extension. This is possible
due to a combination of novel features in TinyBang: asymmetric concatenation,
first-class dependently-typed cases, slicing for type refinement, and a flexible
non-let-based polymorphism model.

TinyBang is proved type sound; the proofs are found in the supplementary
appendices. We have implemented the type inference algorithm and interpreter
for TinyBang to provide a cross-check on the soundness of our ideas; the im-
plementation can be downloaded from [MPRS14a]. Type inference is decidable
but not provably polynomial for the same reason that let-polymorphism is not:

artificial programs exist which will exhibit exponential runtimes. However, all
of the examples in Section 2 typecheck in our implementation without expo-
nential blowup, and we have designed the polymorphism model with practical
performance in mind. We do not expect programmers to write in TinyBang. In-
stead, programmers would write in BigBang, a language we are developing which
includes syntax for objects, classes, and so on, and which desugars to TinyBang.

TinyBang infers extremely precise types, especially in conjunction with the
context-sensitive polymorphism model described in [MPRS14b]. While powerful,
these types are by nature difficult to read and defy modularization. Addressing
the problem of readability is part of our broader research agenda.

References
AWL94. A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with condi-

tional types. In POPL 21, pages 163–173, 1994.
BAC06. Matthias Blume, Umut A. Acar, and Wonseok Chae. Extensible program-

ming with first-class cases. In ICFP, pages 239–250, 2006.
BBV11. Lorenzo Bettini, Viviana Bono, and Betti Venneri. Delegation by object

composition. Science of Computer Programming, 76:992–1014, 2011.
BCP99. Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object

encodings. Information and Computation, 155(1-2):108–133, 1999.
BF98. Viviana Bono and Kathleen Fisher. An imperative, first-order calculus

with object extension. In ECOOP, pages 462–497. Springer Verlag, 1998.
CNX+14. Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im, Serguëı

Lenglet, and Luca Padovani. Polymorphic functions with set-theoretic
types. part 1: Syntax, semantics, and evaluation. In POPL, 2014.

CRJ12. Ravi Chugh, Patrick M. Rondon, and Ranjit Jhala. Nested refinements: A
logic for duck typing. In POPL, 2012.

FAFH09. Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael Hicks.
Static type inference for Ruby. In SAC, 2009.

MC99. Todd D. Millstein and Craig Chambers. Modular statically typed multi-
methods. In ECOOP, pages 279–303. Springer-Verlag, 1999.

MPRS14a. Pottayil Harisanker Menon, Zachary Palmer, Alexander Rozenshteyn, and
Scott Smith. Tinybang implementation, Mar 2014. http://pl.cs.jhu.

edu/big-bang/tiny-bang_2014-03-01.tgz.
MPRS14b. Pottayil Harisanker Menon, Zachary Palmer, Alexander Rozenshteyn,

and Scott Smith. Types for flexible objects. Technical report, The
Johns Hopkins University Programming Languages Laboratory, Mar
2014. http://pl.cs.jhu.edu/big-bang/types-for-flexible-objects_

2014-03-25.pdf.
Nis98. Susumu Nishimura. Static typing for dynamic messages. In POPL, 1998.
Pot00. François Pottier. A versatile constraint-based type inference system.

Nordic J. of Computing, 7(4):312–347, 2000.
Rémy94. Didier Rémy. Type inference for records in a natural extension of ML. In

Theoretical Aspects Of Object-Oriented Programming. MIT Press, 1994.
RS02. Jon G. Riecke and Christopher A. Stone. Privacy via subsumption. Inf.

Comput., 172(1):2–28, February 2002.
SM01. Mark Shields and Erik Meijer. Type-indexed rows. In POPL, pages 261–

275, 2001.
WS01. Tiejun Wang and Scott F. Smith. Precise constraint-based type inference

for Java. In ECOOP, pages 99–117, 2001.

http://pl.cs.jhu.edu/big-bang/tiny-bang_2014-03-01.tgz
http://pl.cs.jhu.edu/big-bang/tiny-bang_2014-03-01.tgz
http://pl.cs.jhu.edu/big-bang/types-for-flexible-objects_2014-03-25.pdf
http://pl.cs.jhu.edu/big-bang/types-for-flexible-objects_2014-03-25.pdf

	Types for Flexible Objects

