PARTIAL OBJECTS IN TYPE THEORY

A Thesis
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

by
Scott Fraser Smith
January 1989

(© Scott Fraser Smith 1989
ALL RIGHTS RESERVED

Partial Objects in Type Theory

Scott Fraser Smith, Ph.D.
Cornell University 1989

Intuitionistic type theories, originally developed by Martin-Lof, provide a foundation
for intuitionistic mathematics, much as set theory provides a foundation for math-
ematics. They are of interest to computer scientists because the objects typed are
computations, making type theory an appropriate setting for reasoning about com-
putation. Type theories such as Nuprl or the theories of Martin-Lof have types for
objects that always terminate, but objects which may diverge are not directly ty-
pable. If type theory is to be a full-fledged theory for reasoning about computations,
we need to be able to reason about potentially diverging objects.

In this thesis we show how potentially diverging computations, which we call
partial objects, may be typed by extending type theory to partial object type theory.
New partial types are added to type partial objects. These types are usable: partial
objects written in natural program notation can easily be shown to lie in the types.
In addition to being able to express partial objects, it is also important to be able
to reason about them; for this purpose general principles are given for proving facts
about partial objects via induction.

The resulting theory serves as a foundation for computational as well as mathe-
matical reasoning. It also gives insights into abstract recursion theory, leads to a new
method for constructive reasoning, and sheds light on inductive methods for reasoning
about recursive computation.

Biographical Sketch

Scott Fraser Smith was born in 1961. In 1983, he was awarded a BS in Chemistry
and Computer Science from Purdue University. Five years later, he completed his

doctorate at Cornell University.

111

Acknowledgements

This is not really my thesis; it collectively belongs to a group of people. My advisor,
Prof. Constable, did admirably what advisors are meant to do: he pointed the way,
and then listened carefully. Other members of the PRL group also can claim part
of this thesis: Stuart Allen’s work is the foundation on which this thesis lies, and
his critiques of my work have always been relavatory, helping to turn ill-stated and
ill-thought-out ideas into whole ones. Nax Mendler’s work has also been a model for
mine. The PRL group as a whole provided much intellectual stimulation, friendship
and comraderie.

My undergraduate years at Purdue were well spent, in large part because I had
the luck to meet up with Bill Jorgensen and others in the chemistry department.

Except the small part that belongs to me, the rest of this thesis was given to me
by family and friends.

v

Contents

1 Introduction

1.1

Overview of this thesis o v i v i v

2 Type theory: background

2.1
2.2

2.3

3.1
3.2

3.3
3.4
3.5
3.6

Type systems and type theories
Principles of type theory L.
2.2.1 Types . . . o o e e e e e e e e e e
222 Equality e
2.2.3 The propositions-as-types principle
2.2.4 Type theory as a foundation for mathematics
2.2.5 Computational and mathematical interpretations
Nuprl . . . e e e
2.3.1 The Nuprl theory
2.3.2 The Nuprl system

A partial object type theory

Partial objects in existing type theories
New principles for partial objects
3.2.1 The partial type constructor
3.2.2 Forming partial objects 0oL
3.2.3 Reasoning about partial objects
A partial object type theory
The language of expressions
Assertions and hypothetical assertions
Rules o e
3.6.1 Rule conventions
3.6.2 Universes i i it e e e

(SN

—_ ==
— O O W 00~ Ot Ol

—_
SV

3.63 Is. .. o e 22

3.64 Evaluation e 23
3.6.5 Equivalence oo, 25
3.6.6 Inducement, 26
3.6.7 Termination, 27
3.6.8 Membership oo 28
3.6 Expressiono e 28
3.6.10 Natural numbers 29
3.6.11 Dependent function space 29
3.6.12 Dependent product space. 30
3.6.13 Partial type 31
3.6.14 Fixed-points 32
3.6.15 Computational induction 33
3.6.16 Miscellaneous o i i i it e e 33
3.7 Reasoning in the theory 34
3.8 Logical reasoning e 34
3.9 Extract-style proofo 35
3.9.1 An extract-style proof, 36
3.10 Defining Unions oo o e 37
3.11 Using typesand rules 37
3.11.1 Using partial types 38
3.11.2 Untyped reasoning 39
3.12 Reasoning by induction oL Lo 39
3.12.1 An example of computational induction 40
3.12.2 Induction on natural numbers 42
3.13 Defining equalities o 42
Semantics of partial object type theory 44
4.1 The expressions v v v v v v i i e e e e e e e e e e 45
4.2 The type-free assertions 45
4.3 Defining the types and their inhabitants 49
4.4 Admissibilityo e 55
4.4.1 Non-admissible types 56
4.4.2 Computational lemmas 56
4.4.3 Proof of admissibility 64
4.5 Consistency of therules 67
4.5.1 Conventions v v v v i e e e e e 67

vi

4.5.2 Proof of consistency

5 Topics in partial object type theory

A

5.1

5.2

5.3
5.4
9.5

Type theory as a programming logic

5.1.1 What makes good programming logic?

5.1.2 LCF and type theory compared
Fixed-points and induction
5.2.1 A unified fixed-point principle

5.2.2 Computational induction reconsidered

5.2.3 Two principles compared
Partial propositions
Abstract computability theory
Building a partial object type theory
5.5.1 Expressing computational induction . .
5.5.2 Expressing the fixed-point principle . .

A partial object Nuprl

A.1 The rules

Bibliography

vii

74
74
75
76
(i
(i
79
80
81
82
83
83
84

85
86

93

Chapter 1

Introduction

Type theories such as Nuprl [CAB*86] or Martin-Lof’s CMCP [Mar82] are founda-
tional theories for constructive mathematics; Martin-Lof had philosophical motiva-
tions for developing his intuitionistic type theory. Nuprl incorporates many of the
ideas of CMCP, but it is also designed to be of practical use as the logic in a powerful
theorem-proving system and as a foundation for reasoning about computing.

Type theories have an extensive collection of types, far surpassing those found in
programming languages. Like programming languages, members of types are compu-
tations, but unlike programming language types, the computational objects typed in
type theory are total objects: they always have values. For instance, the type A — B
is the type of all total functions from A to B. Programming language types, on the
other hand, contain partial objects, and there functions in A— B are partial functions
from A to B.

As computer scientists, we would like type theory to be a foundational theory of
computation. Type theory is a powerful theory for reasoning about total objects, but
since there are no types for partial objects it is difficult to define and reason about
them. It is crucial for a theory of computation to have as a component a theory of
partial computation.

In Nuprl, it is possible to type partial functions by using the subtype constructor
{z:A | P(z)} (the type of all elements of A with property P) to restrict the domain
of the function to exactly the elements for which it converges [CM85, CAB*86]. So if
D(z) is true just when f(z) converges, f may be given the total type {z:4 | D(z)} —
B. Domains D(z) can in fact be defined for many functions. Some problems with
this approach are functions must be proven to converge before they can be applied,
and the domains D are large, making reasoning cumbersome. Another solution would

2 Introduction

be desired, where partial objects are interpreted as themselves, not as total objects
with elaborate conditions attached.

In this thesis, we give a new approach for constructing and reasoning about par-
tial objects which we call partial object type theory. We propose new partial types A
and principles for using these types which allow unbounded computations to be ex-
pressed, typed, and reasoned about; the resulting theory is comparable in strength to
Edinburgh LCF [GMWY79] in its ability to reason about computations. The semantic
treatment of types defined by Allen [All87b] is extended to give a natural semantics
for these new concepts, meaning type theories that incorporate them can be proven
consistent.

This new theory also sheds a different and interesting light on some old and vener-
able concepts. The theory is based on an abstract open-ended notion of computation
which does not presume Church’s thesis, but it comes as a surprise that there still are
problems which can be proven unsolvable in the theory. Standard results of recursion
theory may then be proven, and as more properties about computations are assumed
more theorems are provable [CS88].

A new method for reasoning constructively may be used in the theory. To reason
in type theory propositions are interpreted as types. Propositions P are translated to
types P* such that P is true just when P* is nonempty; if p € P*, p is a construction
that validates P. Using partial types, it is possible to construct partial propositions
like Vz. Jy. P(z,y): the constructions that validate partial propositions may not
always converge. Partial propositions are thus a logical notion of partiality.

In partial object type theory a general fixed-point principle allows fixed-points
of functions to be typed. Fixed-point induction, developed by deBakker and Scott,
is a general principle for reasoning about recursive programs; it is the induction
principle used in LCF. We show fixed-point induction to be a specific case of the
fixed-point principle. Computational induction is a new form of inductive reasoning in
partial object type theory. Although computational induction is founded on different
principles than the fixed-point principle, the two of them prove many of the same
facts. Computational induction is a more straightforward principle, but proofs are
longer than corresponding proofs done with the fixed-point principle.

Partial object type theory emerges as a viable theory for reasoning about computa-
tions, and makes type theory much more convincing as a foundation for computational
reasoning, and thus more viable as a practical tool for writing correct programs.

1.1 Overview of this thesis 3

1.1 Overview of this thesis

Chapter two provides background into some of the important principles of type theory.
These principles are relevant to the construction of partial object type theory, and
will be referenced frequently in later chapters.

In chapter three, a partial object type theory is presented. This theory is loosely
based on Nuprl and CMCP, but unlike these theories, types come without any notion
of equality on their members, and it is possible to freely reason about untyped com-
putations. This theory was designed to give as simple a presentation of partial objects
as possible. After the rules of the theory are given, sample theorems are proven which
show how the theory may be used to reason.

Chapter four consists of a semantic account of the theory of chapter three, based
on the non-type-theoretic semantics of Allen. This shows the rules of the theory to be
sound, meaning the concept of partial object is sound. The types are interpreted by
defining them inductively. Most of the rules then are quickly justifiable, but the fixed-
point rule requires extra work. Ounly certain admissible types have fixed-points, and
to prove that a collection of types is admissible requires the computational behavior
of fixed-points to be examined in detail.

Chapter five is a loose collection of consequences of partial objects. First we argue
that the theory is a powerful programming logic by way of comparison with LCF. LCF
has proven itself to be useful, so type theory should also be useful, hopefully more
so. The relationship between the fixed-point principle, fixed-point induction, and
computational induction is discussed; this sheds light on the nature of induction over
computations. Partial propositions and abstract computability, mentioned earlier, are
briefly discussed. To conclude, we examine what the difficulties are in constructing a
partial object type theory. The concepts of computational induction and the fixed-
point principle pose special problems to theory designers; the main problems and
possible solutions are explored.

In Appendix A, an extension to the Nuprl theory is given which implements partial
objects.

Chapter 2

Type theory: background

There is much to be said about type theory; here we offer a few words to put the
issues in focus. The chapter should be taken as an aid for understanding why type
theories are put together as they are: some important principles of type theories are
discussed, and the Nuprl type theory is looked at in more detail, helping to illustrate
how type theory may be used to actually do mathematics.

2.1 Type systems and type theories

A type system is a formal system for assigning types to computational expressions.
The typed A-calculus (TLC), Godel’s functionals of finite type, and the second-order
A-calculus (A?) [Gir71, Rey74] are all type systems. One fact that serves to dis-
tinguish type systems from typed programming languages is that only converging
computations are typed in a type system. Intuitionistic type theories (called type
theories for short) are particularly rich type systems that can serve as a logical basis
for doing mathematics, much as can set theory or category theory. Some examples
of type theories are Martin-Lof’s theories [Mar73, Mar82, Mar80|, the Nuprl theory
[CAB*86], Stenlund’s Theory of Species (TS) [Ste72], the Calculus of Constructions
(CC) [CH85, CH88], and Feferman’s theory T, [Fef75] and its successor PX [HN8T7].
Some other theories of historical interest are AUTOMATH [dB70, dB80] and Scott’s
theory of constructive validity [Sco70].

Martin-Lof has written extensively on how type theory is a foundation for doing
mathematics [Mar80, Mar82, Mar83], and the approach taken here owes much to
his views. Thus, hereafter the expression “type theory” generally refers to a theory

4

2.2 Principles of type theory 5

interpreted in the style advocated by Martin-Lof. Nuprl is a Martin-Lof-style type
theory. TS, CC, and PX are not Martin-Lof-style theories, but many of the concepts
of this thesis have analogues in them. Some of the concepts may also be applicable
to more basic type systems.

2.2 Principles of type theory

A type theory has as its language a collection of expressions. Some of these expressions
represent types, others computations; types are collections of expressions. Assertions
(called judgements by Martin-Lo6f) express the truths of type theory; the statement
a € A asserts that e inhabits (or, is a member of) the type A. Other forms of
assertion are possible. The rules characterize the meaning of the assertions; however,
the collection of rules is not to be viewed as a formal system, for more rules may be
added at some future date.

There are some general features of type theories that are worthy of study. Here
we consider the possibilities for types and notions of equality, review the principle
whereby propositions may be represented as types, and mention some of the different
ways type theory may be interpreted. Many of these principles also apply to type
systems.

2.2.1 Types

The expressiveness of type theory is largely due to the diversity of types that are
definable. Here we survey the types used in a range of theories.

Atomic data types

N is a type of natural numbers; there could instead be a type int of integers. Numbers
may be represented as 0,1,2,..., or as 0,5(0), S(S(0)),.... There can be finite types
0,1,2... of zero, one, two, ... elements. It may be sensible to have a type E of all
expressions.

Atomic propositional types

These types represent atomic propositions via the principle of propositions as types
(discussed in section 2.2.3). In Nuprl, ¢ = b in A is a type which represents the

6 Type theory: background

assertion @ = b € A. Some theories such as CC have no need for these types; others,
such as the theory defined in chapter 3, have many atomic propositional types.

Functions

The type A — B is the space of all functions from A to B. The function space may
be generalized to a dependent function space z:A — B (z may occur freely in B): the
range type B may depend on the value the function was applied on. These types are
also called II-types. An informal example is

n

fenN—Nx...xN.

f(m) is an m-ary tuple of natural numbers.

Products

The type A x B is the product of types A and Bj; its members are pairs (a,b), where
a € A and b € B. The product type may be generalized to a dependent product
z:A x B: the type B depends on the inhabitant of the type A. Such types are also
known as X-types. This introduces a left-to-right dependency in the product: first
we find an element a € A, and then we find b € Bla/z]' to give (a,b) € z:4 x B.

Unions

The type A + B is the disjoint union of types A and B. The members of the type are
injected into the right or left side: inl(a) € A+ B implies a € A, and inr(b) € A+ B
implies b € B.

Subtypes

{z:A | P,} denotes those elements of A which have property P. Since P can be an
arbitrary proposition, this gives a rich notion of subtype.

'this denotes substituting free occurrences of # in B with a

2.2 Principles of type theory 7

Recursive and infinite types

rec(t.A;) denotes the type of least membership which is a solution to the type equation
t = A;, provided a solution exists. Many more type structures are expressible in the
presence of this constructor. Lists of elements of some type B are expressed as
rec(t.1 + B x t); constructive ordinals may be expressed by the type rec(¢.1 + N — ¢).
The W-type of CMCP may be expressed by the recursive type rec(t.z:A x B — t).

inf(t.A;) denotes the greatest type which is a solution to the type equation ¢ =
A;. For instance, inf(t.N X t) represents a stream of natural numbers. Recursive
and infinite types for type theory have been developed by Mendler [Men87, CM85,
MPC86]; PX also has recursive types [HN8T].

Large types

Large types have types as inhabitants. In Nuprl and CMCP there is an infinite
hierarchy of large types Uy, Us,...; U; has as members all of those types closed under
the type constructors of the sort like those mentioned above. U, is then constructed
by closing over all of these types plus the large type U;. In this fashion a hierarchy is
constructed. This hierarchy is predicative because new objects are always defined in
terms of existing objects. In CC and TS, there are impredicative large types. In CC,
there are two large types Prop and Type, with Prop € Type. Prop is impredicative:
X:Prop — X € Prop, so types in Prop may quantify over Prop itself. Because of this,
it is impossible to inductively define those types that are in Prop.

2.2.2 Equality

Two notions of equality found in type theories are worth contrasting. The types may
come with a notion of equality on their inhabitants, and there may be some global
notion of equality of computations.

In Nuprl and CMCP, to understand what a type is means not only to know its
inhabitants, but also to know when two inhabitants are equal. The assertion a € A is
replaced with a partial equivalence relation’ a = o’ € A, meaning a and o' are equal
members of the type A. For example, function equality is defined to be extensional
equality: given two functions f, f' € A — B,

f=fe€A—-Bif(f(a) = f'(a) € B for all a € A).

2Partial equivalence relations are symmetric and transitive, but not necessarily reflexive.

8 Type theory: background

In other type theories types may not come with a notion of equality on their in-
habitants; instead there may be a notion of equality on computations. Such equalities
are here called computational equalities; we use the notation a = b to mean a and b
are computationally equal. In many theories, a-3-interconvertibility is the notion of
computational equality used. Other notions of equality are then defined by logical
means.

In Nuprl and CMCP there is also a notion of computational equality; however, it
is not a relation that is defined in the theory because it is incorporated into the type
equalities:

ifa>~a and a € A and d' € A, then a = d' € A.

All reasoning about computational equivalence is thus carried out using typed equal-
ities. In CMCP, computational equality is taken to be outermost interreducibility.
However, this equality is hard to work with because it is not a congruence: if b = ¢’
and a[b/z] € A, it doesn’t necessarily follow that a[b/z| = a[b'/z] € A. In Nuprtl,
computational equality is type-free: we need not type computational expressions to
show they are related. This is a distinguishing feature of Nuprl. Type-free reasoning
is further discussed in section 2.2.5. In the current Nuprl theory, the computation
rules define a rich class of computationally related expressions, the closed subterm
variants [All87b]. This is a much more general notion of computational equivalence
than that of CMCP. Howe has recently extended the computational equality to an
even more general notion [How88b], which is also a congruence.

2.2.3 The propositions-as-types principle

Logic may be carried out in type theories by translating propositions into types. If P
is a proposition, let P* represent the type it is translated to; then, P is true just when
the type P* has any inhabitant. This principle has been used by Curry, Howard, and
DeBruijn, but it was Scott [Sco70] who first formulated a theory where the connection
was semantic and not proof-theoretic; in his theory no extra axioms were needed to
carry out constructive logic.

For P to be constructively true is to have a construction which validates P. For
example, to constructively prove

Vn. prime(n) V —prime(n)

is to have a decision procedure for whether n is prime or not. Constructive logic
arises naturally from the principle of propositions as types: given a proposition P, if

2.2 Principles of type theory 9

P* is inhabited, the object is a construction to validate P. This is evident if we look
at how the individual propositions are customarily translated into type theory.
The translation is defined as follows:

(A= B)* ¥ 4~ B
(A& B)* < A* x B*
(Av B) & 44 B
(Va:A. B)* &f ¢:4* - B*
(Jz:A. B)* 4f 2:4* x B*
false* o

We can sketch how the inhabiting object of the type P* can act as the validation for
P.

CASE A & B true: This means (a,b) € A* x B*, so ¢ € A* and b € B*, meaning a
and b are validations for A and B. Thus, ¢ and b together validate 4 & B.

CASE AV B true: This means A* + B* is inhabited, so either inl(a) € A* + B* or
inr(b) € A* 4+ B*. In the first case, a validates A; in the second case, b validates B.
In both cases, AV B is validated.

CASE A = B true: This means f € A* — B*; so, given any validation a for A, f(a)
gives a validation for B. f thus validates A = B.
CASE Jz:A. P, true: This means (a,p) € #:A X P}; a is thus a member of A, and
p € P*[a/z], so p validates Pla/z]; Jz:A. P, is thus validated.

CASE Vz:A. P, true: This means f € z:A— PJ; thus, for all ¢ € A, f(a) € P*[a/z],
meaning f(a) validates Pla/z]; Vz:A. P, is thus validated.

An atomic proposition is translated into an atomic type which is inhabited just
when the proposition is true. For example, in Nuprl ¢ = b € A is translated to the
type a = b in A; this type is inhabited by the element aziom just when a = b € A.
Type universes can also be viewed as proposition universes. A — U; is a type of
predicates on A; higher universes allow higher-order predicates to be defined.

2.2.4 Type theory as a foundation for mathematics

Type theory may be viewed as a foundation for mathematical and computational
reasoning. The rules are truths of the theory, but the class of rules is not fixed, just
as we can never accept that we have completely described what the truths are. We
allow for the addition of new types and computations and new principles for reasoning
as they are discovered, so the theory is open-ended.

10 Type theory: background

2.2.5 Computational and mathematical interpretations

Type theories are commonly interpreted in two ways; we call them computational
and mathematical interpretations. In a computational interpretation, type-free com-
putation is taken as the starting point. There is a collection of expressions and a
method for computing on them; computations are collected into types based on their
computational behavior.

The types could also be taken as the starting point. A type is viewed as a col-
lection of mathematical objects; computations are just different notations for the
same object. If a theory has a mathematical interpretation, every expression has a
mathematical meaning, and the meaning of larger objects is defined in terms of the
meanings of smaller objects. This compositionality of meaning is a desirable property
for a theory to have. However, because all computationally related expressions are
interpreted as the same object, there can be no understanding of the actual com-
putation process. Thus, theories that have mathematical interpretations must also
have computational interpretations if the theory is to be viewed as saying anything
about computation. TLC, CC, and TS have both computational and mathemati-
cal interpretations: the Tait computability method for strong normalization gives a
computational interpretation [Ste72, CH88], and there are numerous mathematical
interpretations using domains and categories such as [Gir86, Ehr88]. However, it
is possible for a type theory to have no mathematical interpretation; Nuprl is one
such theory. The Nuprl computation rules define a type-free notion of equality on
computations, and type-free reasoning can only be carried out in a theory where the
meaning of computation is basic. Let us call such theories ezplicitly computational
theories. It is easier to reason about computations in such a setting because there is
no necessity to first type the computations. PX is an explicitly computational the-
ory, and the type theory which we present in chapter 3 is an explicitly computational
theory which takes full advantage of type-free reasoning methods.

2.3 Nuprl

Nuprlis a type theory developed at Cornell which has been implemented as a theorem-
proving environment. Here we give a brief overview of Nuprl; for a more complete
treatment, see [CAB*86]. Nuprl is an interactive theorem prover for type theory.
The Nuprl theory is the underlying type theory, and the Nuprl system is the computer
system which implements the theory.

2.3 Nuprl 11

2.3.1 The Nuprl theory

The Nuprl theory was designed to be a usable version of Martin-Lof’s CMCP. The
collection of types is richer than those of CMCP, the rules more powerful, and the
presentation more comprehensible. All of the types discussed in section 2.2.1 (except
the type of all expressions E and impredicative type universes) are types in Nuprl.
Subtypes, recursive types, and infinite types for type theory were originally developed
for Nuprl. As mentioned in section 2.2.2, Nuprl has a type-free notion of equality over
computations which cuts down on the proof burden of type-checking; this equality is
also much richer than the computational equality of CMCP. The rules are presented
in goal-directed or refinement-style fashion: a rule is applied to a goal, and this gives
subgoals which when proven validate the goal. Proofs are thus trees with nodes being
goals and children of a node being its subgoals. The leaves of the tree are goals with
no subgoals.

Using the propositions-as-types principle, to prove P we need to find an inhabitant
of the type P*. However, we often don’t care what the inhabitant is, just so it exists.
To this end, the rules are implemented with eztract forms: The inhabiting objects is
automatically synthesized. For example, for independent product, the rule

>> (a,b) € Ax B
>>a€ A
>>bec B

has extract form

>> A x B (extract (a,b))
>> A (extract a)
>> B (extract b).

Inductively, when the proofs of A and B are complete, a and b can be extracted from
those proofs; we may then form the pair (a,b) to extract from A x B. Recall that
A x B is the type which represents conjunction; this is confirmed by the fact that the
above extract rule is the same as the and-introduction rule.

Given a proposition P, an inhabitant p of the type P* is a program which validates
P, so using this form of rule extracts the constructive content from a proof. Proving
a proposition thus produces a program, so programs can be viewed as proofs [BC85].
In the predecessor of Nuprl, \-PRL, programs are directly extracted from proofs
of statements in constructive first-order logic [Bat79]. The refinement-style proof
paradigm was originally developed in A\-PRL.

12 Type theory: background

2.3.2 The Nuprl system

The Nuprl system is a computer environment implemented on Symbolics Lisp Ma-
chines in Zetalisp and on Sun workstations in Common Lisp. The system has features
which make it a powerful tool for doing formal proofs. Objects such as theorems and
definitions are kept in a library. A window system simplifies interaction; it is easy to
“walk” through a proof step-by-step and to work on different parts of the proof in
any order. A definition facility allows new notation to be defined. An evaluator for
Nuprl expressions allows the programs extracted from proofs to be executed.

Nuprl has an automated metalanguage, the programming language ML. ML pro-
cedures may be applied to goals to automatically prove them or to make progress
toward proving them; these procedures are called tactics. The use of automated
metalanguage is central to theorem proving on machines, and ML is a programming
language particularly well-suited to this task. The basic strategies of automated the-
orem proving such as backchaining and equality reasoning via congruence closure
can be programmed as tactics; Howe has developed an extensive library of general-
purpose tactics for use with Nuprl [How88a|. It is also often desirable to have tactics
tailored for a particular domain of reasoning, for each new mathematical theory has
new fairly trivial operations that general strategies will miss; numerous such libraries
now exist.

A fair chunk of mathematics has been developed in Nuprl, including libraries
of number theory [How86| and automata theory [Kre86]. Saddleback search and
quicksort have both been proven correct in Nuprl [How88a]. Howe used Nuprl to show
Girard’s paradox leads to a looping combinator, a result which was too cumbersome
to be done by hand [How87, How88a]. Cleaveland has implemented CCS in Nuprl
[Cle87], and Basin has given a constructive proof of Ramsey’s theorem in Nuprl

[Bas88al].

Chapter 3

A partial object type theory

In this chapter we present a type theory for reasoning about partial objects. To
show that a new treatment of partiality is necessary, we review how partial objects
may currently be represented in type theory, and point out the weaknesses of these
approaches. The key constituents of partial object type theory are outlined, and the
theory is then presented in complete detail. Since in some aspects the theory differs
from existing theories, examples of how concepts may be represented and proofs
performed are given.

3.1 Partial objects in existing type theories

The types of type theory are total types: N — N is the type of total functions on the
natural numbers; N x N is the type of pairs of natural numbers, with no provision
for undefined elements. It is necessary to have types for total objects, but it is
also important to have types for partial objects, which we call partial types. It is
unreasonable to expect all functions to be expressible as total functions, because
some total functions can be extremely difficult to prove total. Also, many procedures
such as unbounded searches or non-well-founded recursions are inherently partial; we
would like to think of these procedures as typable functions which we can reason
about, even though they are not total.

In CMCP and CC, unbounded computation cannot be expressed. In such a set-
ting, even total functions are more difficult to express than in a setting with un-
bounded operators [Blu67]. Nuprl is an explicitly computational type theory (see
section 2.2.5 for a discussion of this issue), so computation is type-free. It is then pos-

13

14 A partial object type theory

sible to express unbounded recursion with the Y-combinator by taking fixed-points.

We can consider typing partial functions from A to B in Nuprl by defining them
to be total functions with their domains restricted to those elements for which the
function converges. A function f is then typed as the total function f € {z:A4 |
D(z)} — B, where D(a) is true just when f(a) converges. The domain D can in
fact be expressed for numerous functions using recursive types [CM85, CAB*86]
because the inductive structure of the recursive calls can be defined as a recursive
type. However, many functions, in particular higher-order ones, cannot have their
domains expressed by any type D in the existing Nuprl theory. This formulation
is also difficult to use, because before any function is applied it must be shown to
terminate; this extra proof obligation is an unnecessary burden.

3.2 New principles for partial objects

Here we outline new principles for expressing and reasoning about partial objects
which are the core of the partial object type theory that follows.

3.2.1 The partial type constructor

First, we propose adding a new type constructor, the partial type or bar type con-
structor A. We wish to extend the (total) type A to admit diverging elements:

for all types A, a € A iff (if a terminates, then a € A).

The bar constructor can be thought of classically as adding an element 1 to the
underlying type. The type N — N is a type of partial functions on the natural
numbers: if f € N — N and n € N, then f(n) € N, provided f(n) terminates. One
important property of this definition is that we may show objects in partial types are
in total types if they terminate.

In standard programming languages all type constructors are partial. In a partial
object type theory, some type constructors are partial and others are total, so it
is possible to have types which have both partial and total aspects. The (lazy)
programming language type N x N has as elements L, (1,2), and also has elements
(L,2) and (L, L). With partial types, it is possible to specify varying degrees of
partiality. | and (1,2) € N x N, but (L,2) and (L, L) ¢ N x N. On the other hand,
1€ N x N, but (1,2) and (1, 1) € N x N. N x N corresponds to the product of
N and N in a lazy programming language. The partial type constructor is thus a

3.2 New principles for partial objects 15

simple, natural and general notion for extending the types of type theory to allow for
diverging inhabitants.

3.2.2 Forming partial objects

Having types for partial objects is a first step, but it doesn’t necessarily mean that
interesting partial functions will be typable. The most general notation for expressing
unbounded computation is recursion, which may be viewed as computing by taking
fixed-points of functionals. We introduce a general fized-point principle for partial
types to allow recursive procedures to be typed:

if f e A— A, then fiz(f) € A.

Letting A be N — N, this principle may be used to type partial functions over the
natural numbers. Unfortunately, because the type system is so expressive, this prin-
ciple is not valid for all types (an example where it is not valid is given in section
4.4.1). This is analogous to what happens with the fixed-point induction principle,
where not all predicates are admissible for induction. In section 5.2 this analogy is
made more direct by showing how fixed-point induction may be carried out using the
fixed-point principle.

3.2.3 Reasoning about partial objects

In type theory we are not satisfied with being able to just denote partial objects; we
also need to be able to reason about them.

To begin with, it should be possible to reason cogently about termination: ter-
mination links partial objects to total objects. The theory has a predicate ¢| which
expresses the fact that ¢ terminates. It is easier to reason about termination if it
is also possible to reason about the evaluation process: the assertion a — b, which
means ¢ evaluates to b, accomplishes this. The assertion a > b (read “a induces ")
means that in the process of computing a, b was in turn computed. If we wish to
prove a terminates and know that

4 if ¢ = 0 then 1 else f(d)

terminates, f induces the computation of a (that is how conditionals are evaluated),
so @ must also terminate. If a terminates, then the collection of computations induced
by it form a well-founded ordering, for an infinitely regressing path would mean o

16 A partial object type theory

diverged. It is thus possible to derive an induction principle, computational induction,
for reasoning inductively about computations. Computational induction is a general
principle for reasoning about programs, and is a viable alternative to the fixed-point
induction principle that is used in LCF and in other theories. Unlike fixed-point
induction, no admissibility restrictions need be placed on predicates proven with
computational induction.

3.3 A partial object type theory

We now define a type theory which incorporates these concepts. The theory is rel-
atively simple in comparison to Nuprl or CMCP, designed more to be studied than
to be used. However, it is not lacking in proof-theoretic strength, for we want to be
sure these new concepts are sensible in a full theory. In appendix A, we propose an
extension to the Nuprl theory which also incorporates these new concepts, but that
theory is too large to serve as a good illustration. The theory we give now still owes
more to Nuprl than any other: it is predicative and explicitly computational, and
most of its basic type constructors are also found in Nuprl.

The computation system is of the same style as Nuprl, although the actual ex-
pressions are not the same. One extra feature it has is the ability to sequence the
order in which expressions are evaluated, via seq(a;z.b). Evaluation is the same out-
ermost evaluation used in Nuprl. The theory has most of the basic types of Nuprl or
CMCP, including natural numbers N, dependent function space z:A — B, dependent
product z:A x B, and a universe hierarchy U;, U,,.... However, there is no notion
of equality built into the theory; all equalities are defined by the user as predicates.
There is not even an interesting computational equality; in this sense the theory is
unique amongst type theories, and it considerably simplifies the presentation. Since
the logic is rich, it is possible to define the desired equalities, but reasoning about
equality is more cumbersome than in Nuprl. To represent partial objects, the theory
includes bar types A and has a fixed-point principle to type them. New atomic types
express the propositions a| (a halts), a — b (a eval b), and a > b (a ind b). There is
also a type of all expressions E, and a type a in A which expresses the proposition
a € A

We now give the full presentation of the theory. The open-ended expression lan-
guage is defined first, the forms of assertion about expressions such as typehood,
membership, and evaluation are given, and the rules of the theory are presented.

3.4 The language of expressions 17

3.4 The language of expressions

The expressions are the objects of discourse for the theory. The collection of expres-
sions is open-ended, so we may add more expressions at some later date. Expres-
sions are formed inductively by building new expressions from existing ones using
constructors, of which there are three syntactic sorts: type constructors, computa-
tion constructors, and data constructors. These are defined simultaneously, so type
constructors may have computation constructors as components, computation con-
structors may have data constructors as components, et cetera. The intermeshing of
these three sorts enriches the notions of computation, type, and data.

DEFINITION 1 The expressions of the language include variables (given in roman
font), and are closed under the following constructors:

The type constructors
E, N,
aisb, aevalb, a ind b, a halts, a in A,
A, z:A— B, z:A x B,
V, Uy, Uy, ...

the data constructors
0,1,2,..., (a,b), Az.a
and the computation constructors

pred(n), succ(n), if zero(n;a;b),

p-1, p.2, f(a), fiz(f), seq(a;z.b)
where a, b, f, n, p, A, and B denote arbitrary expressions, and ¢ denotes a variable.

We know little about what is not an expression because the collection of expres-
sions is open-ended, but the objects entailed by the above collection of constructors
must certainly be expressions. Type, data, and computation expressions are those
expressions whose outermost form is a type, data, or computation constructor, re-
spectively. Values are those expressions which are either type expressions or data
expressions; they constitute the results of computation. For a constructor to be a
computation constructor, it must be known how to evaluate expressions built using
the constructor. Computation expressions are sometimes called computations, and

18 A partial object type theory

data expressions called data; however, type expressions and types are different no-
tions, for type expressions need to satisfy certain well-formedness conditions before
they may be considered to be types.

For our metavariables, A, B,...,T and a,b,...,v range over expressions and
X,Y,Z and w,z,y,z range over variables. Capital letters usually denote type ex-
pressions, n and m are expressions which usually denote natural numbers, p usually
denotes a pair, f usually denotes a function, and v usually denotes a value, but this
is an informal convention. U, represents an arbitrary universe (« is a metavariable
ranging over 1,2,...).

Notions of bound and free variables are the usual ones:

Az.b binds free occurrences of z in b
seq(a;z.b) binds free occurrences of = in b
z:A— B binds free occurrences of = in B
z:Ax B binds free occurrences of z in B

z is free in the expression z, and z remains free in any inductively constructed ex-
pression unless it is explicitly bound. An expression is closed if it contains no free
variables.

alby,...,b,/®1,...,z,] denotes the simultaneous substitution of distinct variables
Z1,...,%, with expressions by,...,b,, renaming bound variables in the instance of
capture.

3.5 Assertions and hypothetical assertions

There are six forms of assertion used in the theory, with the following meanings:

acA means A is a type with inhabitant (member) a

A type means A is a type

a=,b means a and b are identical modulo a-conversion
a—b means a evaluates to b

a>b means the evaluation of a induces the evaluation of b
al means a terminates.

The last four assertions are called type-free assertions because they are assertions
which involve no notion of type. These assertions are defined only for closed expres-
sions a, b, and A; meanings for open expressions are defined in terms of the meanings
of closed expressions.

3.5 Assertions and hypothetical assertions 19

There is an additional property which must hold of the assertion a € A: it must
respect computational equivalence. Two expressions are computationally equivalent,
notated a = b, if they have the same value, if any. Formally,

DEFINITION 2 a = b iff (a — v iff b— v).

a € A must respect computational equivalence, so a € A and a = b implies b € A,
and ¢ € A and A = B implies ¢ € B. The assertions a =, b, a — b, and a > b
don’t respect computational equivalence, because they assert intensional properties
of computations (intensional reasoning is discussed further in section 3.11.2).

The principle of propositions-as-types, discussed in 2.2.3, will be used to carry
out constructive reasoning in this theory, so P is shown to be true by showing the
corresponding type P* to be inhabited. To make atomic assertions in the theory, the
six forms of assertion are reflected into the theory as atomic propositional types:

a in A inhabited iffae A
A in U, inhabited (for some a) iff A type
a is b inhabited ffa=,0
a eval b inhabited iffa—>
a 1nd b inhabited iff a5
a halts inhabited iff a].

Atomic propositional types are inhabited just when the proposition they represent is
true. It doesn’t matter much what these types have as inhabitants, so we let them
be inhabited by every expression if they are inhabited by any expression. Types are
expressions which inhabit some universe, so this allows us to assert an expression is a
type without having a type of all types. Since all assertions may be phrased in terms
of some type being inhabited, we can use a € A as a universal form of assertion, and
treat all of the other assertions as types. This means that in the rules below, we need
only consider proving assertions of the form a € A.

A hypothetical assertion is an assertion made under the assumption that some
other assertions are true. We only need to express hypothetical assertions of the form
a € A. The sequent-style hypothetical assertion used in the rules is:

z1:Aq, ...,z A, |> bE B.

Informally, this means the consequent b € B is true under the assumptions z; € A;,
vy Ty € Aj.

DEFINITION 3 A sequent is of the form

20 A partial object type theory

z1: A1, ...,z A, |> bE B,

where x1,...,, are distinct, each A; has at most ©;...z;_1 free, and b and B have
at most ©1,...,x, free.

DEFINITION 4 The sequent
z1: A1, ..., A, |> bEB
is true just when

for arbitrary closed expressions ai,...,a,, if
a1 € A; and
ay € Azla;/z1] and

and a, € Aular,... 00 1/T1,. .., Tp_1],
then
bla1, ... /@1, . &s] € Blag,...,an/T1,...,2Ty)].

3.6 Rules

The rules show how true sequents may be inferred from other true sequents. Rules
are written in the form

[<rule name>] z1:Ay, ..., A, |> dED
z1: A1, .. T An, y1: By, . Yt By | > d € D'
21:A1, .. TntAn, 21001, ., 2000 | > d" € D"

Rules assert that the top sequent (the goal) is true if the sequents directly below it
(the subgoals) are true. This style is a top-down or refinement-style presentation. The
assumptions in the goal are also assumptions for the subgoals, and going from a goal
to its subgoals the assumption list is monotonically increasing.

A proof is a finite-depth tree with sequents for nodes; for all nodes in the tree,
there exists a rule which has as goal the node and as subgoals the children of the
node; leaves of the tree are thus instances of rules with no subgoals. The sequent at
the top of the proof tree is true, because inductively truth is inherited upward in the
tree. Incomplete proofs, as opposed to complete proofs, are proofs with some leaves
that are not proven.

3.6 Rules 21

3.6.1 Rule conventions

Sequents are presented in an abbreviated form. The only assumptions listed in a
goal are those relevant to the rule at hand, and could in fact occur anywhere in
the list of assumptions. It is implicitly assumed that subgoals inherit all of the
assumptions of the goal, unless explicitly stated otherwise. Assumptions shown in
subgoals are new assumptions which are placed at the end of the assumption list.
The atomic propositional types are inhabited by all expressions when true, so there is
little interest in what actually inhabits the type; their rules will thus be abbreviated.
For example, the rule for evaluation of fixed-points,

[eval fix] |> ¢ € fie(f) eval v
|> ¢ € f(fiz(f)) eval v

is abbreviated

[eval fix] | > fiz(f) eval v
|> f(fiz(f)) eval v,

which means the inhabiting objects ¢ and ¢’ can implicitly be anything in the abbre-
viated version. When atomic propositional types appear as assumptions they will not
be labeled with a variable. Metavariables in rules range over arbitrary expressions, as
long as the sequents thus defined are well-formed. We now present the rules, grouped
together by type.

3.6.2 Universes

There is an infinite hierarchy of cumulative type universes Uy, U,, All basic types
are collected in the large type U;. With U; now defined, U, may be defined as the
large type which has as a member U; and types constructed from it, et cetera. To
assert that an expression is a type, one asserts that it inhabits one of these universes,
i.e. A € U,, where a is a positive integer.

There is a single admissible universe V which is a subcollection of U;. The types
in V are those U; types for which the fixed-point principle discussed above is true.
Some types are not admissible, so these types cannot be used to form fixed-points
and are not in V. This matter will be discussed in section 3.6.14, where the rules for
forming inhabitants of V are also given. The rules for showing what types inhabit
the U, will be given with the individual types, for that is also how types are shown
to be well-formed.

Each universe is a member of higher universes:

22 A partial object type theory

[U form)] |> U, € Ug
where a < (3.

The hierarchy is cumulative:

[U cumulativity] |> A e U,
| > AeUg
where a > £3.
3.6.3 Is

a =, b asserts that a and b are a-variants. The type a is b expresses this assertion:
[is form] |> aisbe U,
1s 1is reflexive, symmetric, and transitive:
[is reflex] |> aisd
where a and a' are a-variants.
[is sym] bisa |> aisb
[is trans] aisbbisc |> aisc
If @ and b are different yet we have a hypothesis a is b, any fact follows:

[is contradiction] aishb |> ceC

where @ is not an a-variant of b for any substitution of free variables in a

and b.

Identical expressions may be substituted for one another:

[is subst] aisb |> cla/z] € Cla/z]
| > c[b/z] € C[b/z]

For all a and b, a =, b is either true or false by inspection:

[is decision] |> ceC
aishb |> ceC
(aisb) > (0isl) |> ceC

3.6 Rules 23

3.6.4 Evaluation

All expressions may be evaluated; a — v asserts that a has value v. Results of evalu-
ation are always values (data or type expressions). Each expression constructor has
as part of its description a method for evaluating expressions built from it; evaluation
always proceeds by carrying out the evaluation method for the outermost constructor
of the expression. Values evaluate to themselves, so they may thus be thought of as
having an evaluation method which is the identity function.

The assertion a — b is expressed by the type a eval v.
[eval form] |> aeval v e U,
Values evaluate to themselves:
[eval value] |> v eval v
where v is a value.
If a evaluates to v, then v must be a value:
[eval idemp] aevalv |> vevalv
There is at most one value for a given computation:
[eval unique] a eval v,a eval v' |> visv'

We now give the rules which describe how each computation constructor is eval-
uated. The [eval <constructor>| rules show how the computation is done, and the
[eval <constructor> unique| rules confirm that this is the only way to carry it out.
For function application,

[eval app] |> f(a) eval v
|> f eval Az.b
| > bla/z] eval v

[eval app unique] f(a) evalv |> be B
v:E > E, f eval v',v'(a) evalv |> be B

For projection of components from pairs,

24 A partial object type theory

[eval proj left] |> p.1 eval v
| > p eval (a,b)
|> a eval v

There is a symmetrical rule [eval proj right] for the right projection p.2.

[eval proj left unique| p.1 evalv |> be B
z:E,y:E,p eval (z,y),z evalv |> be B

There is a symmetrical rule [eval proj right unique] for the right projection
p.2.

For the operations on natural numbers,

[eval succ] | > suce(n) eval m
| > n eval m'

where m and m' are natural numbers, and m is one more than m’. There
is a similar rule [eval pred] for pred(n).

[eval succ unique] succ(n) evalm |> be B
nevalm' |> be B

where m and m' are natural numbers, and m is one more than m’. There
is a similar rule [eval pred unique] for pred(n).

[eval if_zero true] | > if zero(n;a;b) eval v
|> neval 0
|> a eval v

[eval if_zero false] | > if zero(n;a;b) eval v
|>neN
neval 0 |> 0is1
| > beval v

[eval if zero true unique]
if zero(n;a;b) eval v,n eval 0 |> b€ B
aevalv |> be B

There is a symmetrical rule [eval if_zero false unique] for the case that n
is nonzero.

3.6 Rules 25

For fixed-points,

[eval fix] | > fiz(f) eval v
|> f(fiz(f)) eval v

[eval fix unique] fiz(f) evalv |> be B
f(fie(f)) evalv |> be B

For sequencing computations,

[eval seq] | > seq(a;z.b) eval v
|> a eval v’
| > b[v'/z| eval v

[eval seq unique] seq(a;z.c)evalv |> be B
v":E, a eval v',¢c[v'/z] evalv |> b€ B

3.6.5 Equivalence

Recall that ¢ € A means a inhabits type A, and in addition that for all b6 computa-
tionally equivalent to @ and B computationally equivalent to 4, b € B. The following
rules reflect this fact:

[equiv exp] |> a€ A
|> a' € A
v:E,a' eval v |> a eval v
viE,a eval v |> o' eval v

[equiv type] |> a€ A
|> a€ A’
ViE, A" eval V |> Aeval V
VE,Aeval V |> A'eval V

[equiv hyp] z1:Ay, ...,z A, |> bEB
z1:Ay, ..,z Ay e0A, | > bEB
V:E, Al eval V |> A; eval V
ViE,A; eval V |> Al eval V

26 A partial object type theory

3.6.6 Inducement

a > b asserts that the evaluation of @ in turn entails the evaluation of b. For example,
(Az.if zero(z;0;1))(pred(1)) > pred(1l), for pred(1) must be computed to arrive at
the result. (Az.1)(pred(1)) - pred(1) is false, because the argument to the function
is never evaluated. The assertion @ > b is sensible because, as can be seen from
the rules for evaluation, we know how to evaluate expressions and we know that
there is no other way it can be done. The most important use of inducement is if
a computation terminates, all induced computations form a well-founded ordering
which admits induction. The computational induction rule (see section 3.6.15) is
such an induction scheme.

a > b is expressed with the type a ind b:
[ind form] |> a ind b€ U,
ind is transitive:
[ind trans] a ind b,b ind ¢ |> a ind c
The value of a computation is induced by the computation:

[ind eval] aevalb |> a ind b
aishb |[> 0is1l

Rules are now given to show what is directly induced by each computation expression.

For function application,

[ind app] |> f(a) ind bla/z]
|> f eval Az.b
[ind app arg| |> f(a) ind f

For projection of components from pairs,

[ind proj left] |> p.1 ind a
| > p eval (a,b)

There is a symmetrical rule [ind proj right] for the right projection p.2.

[ind proj left arg| |> p.1lind p

3.6 Rules 27

There is a symmetrical rule [ind proj right arg] for the right projection
p.2.

For natural numbers,

[ind succ] | > suce(n) ind n

There is a symmetrical rule [ind pred] for pred.

[ind if zero true] | > if zero(n;a;b) ind a
|> neval 0

[ind if zero false] | > if zero(n;a;b) ind b
|> neN

neval 0 |> 0is1
[ind if zero arg] | > if zero(n;a;b) ind n
For fixed-points,
[ind fix] |> fiz(f) ind f(fiz(f))
For sequencing,

[ind seq] | > seq(a;z.b) ind b[v'/z]
|> a eval v'

[ind seq arg] | > seq(a;z.b) ind a

3.6.7 Termination

A computation terminates, written a|, if it evaluates to some value. The type a halts
expresses this proposition:

[terminate form] |> a halts € U,
[terminate intro] | > a halts

|> a eval v
[terminate elim] a halts |> be B

viE,aevalv |> be B

28 A partial object type theory

If a terminates, any computation induced by a also terminates:

[terminate ind] | > a halts
|> a' ind a
|> a' halts

For some types, all of their inhabitants must converge; such types are called total
types.

[terminate total] | > a halts
|>acA
Where A is, by inspection, of the form N or z:B — C or z:B x C or U,
or V.

3.6.8 Membership

The expression a in A is the type which expresses the assertion a € A. For a in A to
be a type, A must also be a type to guarantee the type has been sensibly formed.

[member form]| |> (a in A) € U,
|> AeU,
[member intro] |> ain A
|>acA
[member elim]| |> ac A
|> ain A

3.6.9 Expression

E is the type of all (closed) expressions. The theory has as a basis a collection of
expressions, and we may make the theory more usable by admitting it as a type,
because quantifying over E allows abstract reasoning about untyped computations to
be performed.

[E form] |> E € U,
All expressions a are in this type:

[E intro] |> a€E

3.6 Rules 29

3.6.10 Natural numbers

N is the type of natural numbers:

[N form)] |> N e U,

[N intro] |> neN

Where n is one of 0, 1, 2,....

The basic functions on natural numbers are successor, predecessor, and a conditional
check for zero.

[N succ] | > suce(n) € N
|> neN

There is a symmetric rule [N pred| for pred(n).

[N if_zero] | > if zero(n;a;b) € A
|>neN
neval0 |> ac A
z:(neval 0 - 0isl) |> be A

The computational induction principle (section 3.6.15) may be used to prove inductive
facts about natural numbers once we know a simple function is total:

[N ind func] | > fiz(Af.Az.if zero(z;0; f(pred(z)))) € N— N

To prove a property P(n) for some natural number n, perform computational in-
duction on the above function applied to n. This procedure is described in detail in
section 3.12.2.

3.6.11 Dependent function space

The function space of this theory is a dependent function space z:4A — B: the range
type may depend on the value the function was applied on. This type is also known
as a Il-type.

For z:A — B to be a type, all expressions which it is defined in terms of must be
types, so A must be a type, and B[a/z] must be a type for all expressions a € A:

30 A partial object type theory

[func form] |> z:A— B € U,
|> AeU,
z:A |> BeU,

The inhabitants of dependent function spaces are A-expressions:

[func intro] |> dz.b€z:A— B
z:A|> beB
|> AeU,

The second subgoal assures z:A — B is a type. We know Bla/z] is a type for all
a € A from the first subgoal, but the first subgoal does not insure that A will be a
type, necessitating the addition of the second subgoal.

If we don’t know a function is a A-expression, we can’t apply the above rule; but,
the fact that it inhabits any function space means it is a function:

[func lam] |> fexz:A— B
|> fey:C—D
z:A |> f(z)e B
|> AeU,

To apply functions,

[func elim] |> ceC
|>ac A
|> fexz:A— B
y:Bla/z], f(a)isy |> c€ C

Assuming z:A — B is a type, it follows from [func intro] and [func elim] that

Az.b € z:A— Biff for all a € A, bla/z] € Bla/z].

3.6.12 Dependent product space

The type of pairs is the dependent product space z: 4 x B; the right type may depend
on the inhabitant of the left type. Such types are also called X-types.
The formation rule is the same as for dependent functions:

[prod form] |> z:A x B e U,
|> AeU,
z:A |> BeU,

3.6 Rules 31

The inhabitants of product types compute to products (a, b):

[prod intro] |> (a,b) € z:Ax B
|>acA
|> b€ Bla/z]
z:A |> BeU,

The third subgoal assures that z:4 x B is a sensible type.
The following rule allows products to be used:

[prod elim] |> ceC
|> pex:AxB
z:A,y:B,peval (z,y) |> ceC

From the preceding two rules we have that if z:4 x B is a type,
(a,b) € z:Ax Biff a € A and b € Bla/z].

3.6.13 Partial type

The bar type A extends a type to have diverging inhabitants. Since this type is a
novel notion, its use is discussed in more detail in section 3.11.1. For A to be a type,
A must be a type under the assumption that A converges. So if A diverges, A is a

type.

[bar form] |> AeU,
A halts |> Ae U,

The following two rules define what it means to inhabit a bar type:

[bar intro] |> ac A
a halts |> a € A
|> Ae U,

[bar elim] |> a€ A
| > a halts
|> ac A

From these two rules, we can see that if A is a type,

a € Aiff (a] implies a € A).

32 A partial object type theory

3.6.14 Fixed-points

Recursion may be expressed by taking fixed-points, so by typing fixed-points we may
type recursive programs. The fixed-point principle types fixed-points:

[fix] |> fiz(f)e A
|> fed—A
|> AeV

This rule defines new inhabitants of A in terms of functions over A, which is circular;
this circularity can lead to paradoxes, so this rule is not valid for all U, types, but
is valid for the subcollection of admissible types which inhabit the universe V. V is
in fact defined to have as inhabitants those types for which the fixed-point rule is
valid. Higher V universes are also in principle possible, but they are not a part of
this theory. The collection of admissible types is undecidable, so we here present a
collection of rules which allows some of the admissible types to be proven to inhabit
V. In these rules we can only define independent product types, but none of the
other type constructors need be restricted. In section 4.4, questions of admissibility
are explored in more depth.

The rules for V are:
[V form)] |> Ve U,

V is a subcollection of Uj:

[V sub] |> AeU;
|> AeV

For forming admissible types there are the following rules, which parallel the U,
formation rules with the exception of dependent products.

[is form adm)| |> aisbeV
[eval form adm] |> aevalv eV
[ind form adm] |> a ind beV

[terminate form adm] |> a halts € V

[member form adm] |> (a in A) eV
|> AeV

3.6 Rules 33

[E form adm] |>EeV

[N form adm)] |> NeV

[func form adm] |> z:A— B€eV
|> AeV
A |> BeV

[prod form adm)] |> z:Ax BeV
|> AeV
|> BeV

Where z does not occur free in B.

[bar form adm)] |> AeV
A halts |> AeV

3.6.15 Computational induction

Computational induction is a principle for reasoning about arbitrary computations.
Given the fact that a computation a terminates, the collection of computations in-
duced by it form a well-founded ordering. The following rule defines an induction
principle over this ordering;:

[comp ind] a halts | > fiz(Ah.Aa" Mv.e[a/ad])(a)(0) € Pla/z]
a":E,a' halts,h:(a":A — o' ind a" — Pla"/z])
|> e € Pld'/z]

In section 3.12, we show how this principle may be used in proofs.

3.6.16 Miscellaneous
The cut rule allows arbitrary facts to be added to the hypothesis list:

[cut] |> a€c A
|> be B
B |>acA

The hyp rule allows a goal to be proven if it is a hypothesis:

34 A partial object type theory

[hyp] z1:Ay, . A, | > 2 € A

For the atomic propositional types, there is a more general rule: we can show anything
inhabits the type:

[hyp prop] z1:Ay,...,B,...,z,:A, |> B

where B is an atomic propositional type.

a-conversion is respected by the assertion ¢ € A, so to prove a sequent it is sufficient
to prove an a-converted form of it: this is the rule [alpha)].

3.7 Reasoning in the theory

Here we give some idea of how this theory may be used for reasoning about math-
ematical and computational objects. Constructive logical reasoning is carried out
using the principle of propositions as types. We give examples of how the rules are
used to prove propositions, concentrating on those types and rules not found in Nuprl
such as partial types and the fixed-point rule, the type-free atomic propositions, and
computational induction.

3.8 Logical reasoning

To carry out logical reasoning in the theory, propositions P are mapped to types P*
such that P is true if and only if P* is inhabited. The mapping is given in section
2.2.3, and in section 3.5 the types which represent the atomic forms of assertion are
given. For matters of readability, we let the traditional logical notation stand for

types:

DEFINITION 5 The logical expressions are defined as follows:
def

A=B = A—B
A&B ¥AxB
AvB ¥ 44B

A A5 (0is1)
Ve:A.B ¥ 24— B
J2:A.B & 2:4 < B

3.9 Extract-style proof 35

V. P and dz. P abbreviate Vz:E. P and Jdz:E. P, respectively. When treating propo-
sitions as types, the actual inhabitant of the type P* is not very important; what
matters most is that something inhabits the type. There is a method of proof which
we use that takes advantage of this fact, called eztract-style proof.

3.9 Extract-style proof

If we wish to prove a proposition P by finding an inhabitant of the type P*, at
the start of the proof we don’t know what the inhabiting object of P* will be. For
example, suppose the top of our proof was

|> ? € VxtN.Jy:N.x < y & prime(y).

The inhabiting object “?” is unknown and will be derived recursively. For this proof,
we wish to first apply the [func intro] rule, and by looking at that rule it can be seen
that ? must be of the form Ax.??:

|> Ax. ?? € Vx:N.Jy:N.x < y & prime(y)
x:N |> 7?7 € Jy:N.x < y & prime(y)
| > (Vx:N.3Jy:N.x < y & prime(y)) € U;

In Nuprl, rules are given in extract form: the inhabiting object of a type is auto-
matically derived (it is extracted from the proof). For each rule there is a procedure
associated with the rule which when given inhabitants of each consequent of the sub-
goals constructs an inhabitant of the goal’s consequent type; extraction is discussed
in section 2.3.1. In this presentation we don’t wish to double the number of rules
by adding extract forms and use instead an informal method which postpones what
exactly inhabits a type until later in the proof. The symbols d; will be used as
metavariables ranging over expressions for unknown inhabitants of types. For the
above rule application, we would write

|> 3; € Vx:N.Jy:N.x < y & prime(y)
x:N |> d; € Jy:N.x < y & prime(y)
|> Vx:N.Jy:N.x < y & prime(y) € Uy

plus we must know that J; is Ax.d,. This fact is evident from the rule, and it will
usually not be given. If for each rule in a proof we always (implicitly) know how to
find the inhabitant of the goal given inhabitants of the subgoals, and if the proof is
complete, we can find an inhabitant of the top.

36 A partial object type theory

3.9.1 An extract-style proof

A simple fact is proven extract style here: we prove for arbitrary predicates P €

N — U, that
—=(3n:N. P(n)) = Vn:N.—-P(n).

The proof will be complete except that formation subgoals (proving types are well
formed) will be left off. We wish to prove something inhabits this type:

|> 31 € =(3n:N. P(n)) = Vn:N. = P(n).

Applying [func intro| gives the subgoal
x:—(3n:N. P(n)) |> 3, € Vn:N.—~P(n)

(we implicitly know that 3; is Ax.33). Applying [func intro] again gives
m:N |> J3 € =P(n)

(the hypothesis x:—(3n:N. P(n)) is not shown but it is implicitly still there). Recalling
that —P(n) is defined to be P(n) — (0 is 1), we apply [func intro| one more time:

z:P(n) |> 0is1

Since the goal is an atomic propositional type, there is no need to keep track of the
inhabitant, for it may be anything. Applying [func elim] to x gives subgoals

|> x € =(3n:N. P(n))
|> J4 € 3n:N. P(n)
vi0is 1,x(d4)isv |> 0is 1

the first and third subgoals follow trivially by [hyp] and [hyp prop]. The second
subgoal is true because we may instantiate the existential quantifier with n via [prod
intro|, giving subgoals

|>neN
|> 35€P(Il)

Both of which follow by hypothesis.
QED.
Since the proof is now complete, we may extract what the J; are, starting at the

bottom: J5 is z, J4 is (n,z), I3 is Az.0, 32 is An.Az.0, and J; is Ax.An.Az.0.

3.10 Defining Unions 37

3.10 Defining Unions

The disjoint union type A + B is used to represent logical disjunction. This type is
built in to Nuprl, but here it is a defined notion.

A derived rule is an incomplete proof schema; the goal is the top of the proof, and
the subgoals are the unproved leaves in the incomplete proof. It is a schema because
there could be metavariables occurring in the proof. Derived rules can be used like
regular rules because all they are doing is abbreviating part of a proof. Disjoint union
A + B is defined and derived rules for it are given.

DEFINITION 6 A+ B & n:N x if zero(n; A; B), where n is a variable which does not
occur in A or B.

The reader may verify that the following are derived rules for A + B:

[union formation] |> A+ BeU,
|> AeU,
|> BeU,

[union intro left] |> (0,a) € A+ B
|> ac A

[union intro right] |> (1,b) € A+ B
|> be B

[union elim] z:A+ B |> ceC

y:A,Vv. (2.2 eval v <= yevalv) |> ce€C
z:B,Yv.(z.2 eval v < zevalv) |> c€C

With the above derived rules, there are enough tools now to reason using disjunction.

3.11 Using types and rules

The natural number type N, dependent types z:A — B and z:A x B and universes
U, are well known types, and their use will not be discussed here; see [CAB*86] for
examples. The partial types A and the propositional types a is b, a eval b, a ind b,
and a halts are new, so some further explanation of their use is in order.

38 A partial object type theory

3.11.1 Using partial types

The operator A adds to any type A the possibility that its inhabitants might not
evaluate to anything. This operator may be applied to all types, and this leads to
types with both partial and total aspects. For example, consider the (total) function
space N — N; there are seven possible new types that may be formed by using the
partial type operator, and each has a slightly different meaning (multiple bars over

a single type are redundant). They are N— N, N - N, N - N, N— N, NN,
N—N, and N — N. N — N is the type of expressions which if they converge are total

functions on natural numbers. N — N is closer to what we would consider a partial
function: the argument of the function always converges, but the result might not
converge. This corresponds to the notion of partiality of Turing machines. The type
N — N is not very useful because the argument may diverge but the function cannot.
This means the function could not evaluate the argument. The type N — N is the
type of partial functions used in lazy functional programming languages: functions
themselves may diverge because they may be values of functions that might not
converge, the argument to the function can diverge, and the result may diverge.

The bar operator may also be applied to types which represent propositions, giving
types such as Vn:N. 3Im:N. P(m,n), which are called partial propositions. Partial
propositions are discussed in detail in section 5.3.

Potentially diverging computations are typed using the fixed-point rule [fix]. To

show how simple functions may be typed we will prove
| > fiz(M.Ax.if zero(x; 6; f(suce(x))) € N — N.
Let fiz(-) abbreviate the fix expression above. The [fix] rule allows us to show the

function is in the type N — N, so we [seq] in fiz(-) in N — N, giving two subgoals

(1) |> fiz(-) in N—= N
(2) fie(() in N—=N |> fiz(-)eN—=N

(2) follows because fiz(-) halts after one fix unrolling and one application, so we may
concentrate on (1). Applying [member intro| and then [fix]| gives subgoals

(3) | > M. x.if zero(x; 6;f(suce(x))) e N-= N—-N =N

(4) |> N—=NeV,

whose proofs are straightforward.
This method may be used to type complex functions over a wide range of types,
but it must be kept in mind that not all types are admissible.

3.12 Reasoning by induction 39

3.11.2 Untyped reasoning

The termination predicate a| is useful in conjunction with bar types, for it provides
the connection between partial types and total types: if « € A and a|, then by [bar
elim] @ inhabits the type A.

The assertions @ =, b, a — b, and a > b are intensional assertions because they
assert properties of computations besides their values. Most formal theories for rea-
soning about computation have no intensional assertions, and their presence here dis-
tinguishes this theory from others. Recall from section 3.5 that the assertion ¢ € A
respects computational equivalence =. The intensional assertions do not respect com-
putation equivalence, however. For example, (Ax.0)(0) — 0 and 0 = pred(succ(0)),
but (Ax.0)(0) — pred(succ(0)) is false. Since assertions may be expressed in the logic
via the atomic propositional types, there are then types (like (Ax.0)(0) eval 0) which
have subexpressions that do not respect computational equivalence. For this reason
there is no general principle of substitutivity in the theory.

The type a is b is useful because often two different expression abstractions refer
to the same thing; for example, if z and fiz(f)(a) refer to the same thing, we may
equate the two by asserting is fiz(f)(a).

The evaluation mechanism is a fundamental part of a computational type theory
because the notion of computation is basic. With the type a eval b, we may reason
about evaluation directly in the theory.

The type a ind b has two major uses in the theory: for one, with the [terminate
ind| rule we can prove computations terminate if they are induced by a terminat-
ing computation. But most importantly it may be used as a structure to perform
induction on, discussed in the next section.

The type of all expressions E gives us the ability to carry out type-free reasoning.
For example, Jz,y:E. a eval (z,y) asserts a evaluates to a pair. As another example,
z:E x (z eval 0 + = eval 1) is a two-element type.

3.12 Reasoning by induction

If an expression @ terminates we may perform induction on the well-founded part
of the induces relation via [comp ind]. This rule, found in section 3.6.15, may be
rephrased in English as:

To prove some property P(a) by induction given terminating a, let a’ be
an arbitrary terminating expression for which all ¢” induced by it have

40 A partial object type theory

property P(a") true. If P(a') can then be proven, P(a) is true.

Since a' is an arbitrary terminating expression, we cannot prove any a” will be induced
by it. If this rule is to be usable, the property P(a) must thus include as assumptions
restrictions on the structure of a. One example is

P(a) = (3b:N.ais fiz(f)(b)) = P'(a)

where f and P’ are arbitrary expressions. This will be an induction over those
expressions of the form fiz(f)(b) for some b.

We will now give an example of how to use this restriction in a proof about a
function using [comp ind].

3.12.1 An example of computational induction
Consider the function
g = MAx.if_zero(x; 6; f(suce(x))).
To show
(1) |> 3, € Ve:E. fiz(g)(c) halts = fiz(g)(e) eval 6,

apply [func intro] twice to give

(2) e:E, fiz(g)(e) halts |> fix(g)(e) eval 6.

Before applying [comp ind], the goal needs to be weakened by adding assumptions
about the structure of the computation fiz(g)(e) as described above. Thus, [seq] the
statement

3z € (Ib:N. fiz(g)(e) is fix(g)(b)) = fiz(g)(e) eval 6

which gives subgoals

3) > 3 € (BN, fie(g)(e) is fie(9)(b)) = fix(g)(e) eval
(4) z:((3b:N. fiz(g)(e) is fiz(g)(b)) = fiz(g)(e) eval 6) |> fiz(g)(e) eval 6.

(4) follows by letting b in hypothesis z be a (apply [prod elim] and [func elim]).
(3) is proven by [comp ind] on fiz(g)(e), which we know terminates by assumption.
Applying [comp ind] to (3) gives the subgoal

3.12 Reasoning by induction a1
(5) a":E,a’ halts,h:(Va"E. a' ind a" = (Ib":N.a" is fiz(g)(b')) = a" cval 6)
|> 3 € (Ib:N.a' is fir(g)(b)) = a' eval 6
By [func intro] we get
(6) y:(Ib:N.a' is fiz(g)(b)) |> a’ eval 6.
Eliminating y via [prod elim] gives
(7) b:E,a’ is fiz(g)(b) |> a' eval 6.

Applying [is subst] to the consequent gives

®) > fe(g)(b) cval 6
by [eval app]| and [eval fix], this amounts to showing
(9) | > if zero(b; 6; fiz(g)(succ(b))) eval 6,

which by case analysis on b using [N if_zero| gives subgoals

(10) b eval 0 | > if zero(b;6; fiz(g)(succ(b))) eval 6
(11) z:(b eval 0 — 04s 1) |> if zero(b;6; fix(g)(succ(b))) eval 6.

We can prove (10) directly by computing the if zero() expression; (11) reduces via
[eval if zero false| to showing

(12) | > fiz(g)(succ(b)) eval 6,

which may be proven with the induction hypothesis: apply [function elim| to hypoth-
esis h at the value fiz(g)(succ(b)) to give

(13) |> h € Va":E.a' ind a" = Jb":N. a" is fiz(g)(b') = a" eval 6
(14) | > fiz(g)(suce(b)) €
(15) h':(a’ znd fiz(g)(suce(b)) = Jb":N. fiz(g)(succ(b)) is fiz(g)(b') =

fiz(g)(suce(b)) eval 6) |> fiz(g)(sucec(b)) eval 6.

Subgoals (13) and (14) follow directly. To prove (15), doing two more [func elim]’s
on the induction hypothesis h' gives subgoals

(16) |> a' ind fiz(g)(succ(b))
(17) | > 4 € 3b":N. fiz(g)(succ(b)) is fiz(g)(b')
(18) fiz(g)(suce(b)) eval 6) |> fiz(g)(sucec(b)) eval 6.

42 A partial object type theory

(17) follows by letting 34 be (suce(b),0), and (18) is proved by |[hyp prop]; all that
remains to show is (16). Recalling from (7) that a'is fiz(g)(b), we may substitute
this fact into (16) to give the subgoal

(19) > fia(g)(b) ind fiz(g)(suce(b))

which follows by a chain of [ind] rules:

fiz(g)(b) ind if-zero(b;6; fix(g)(succ(b)) ind fiz(g)(succ(b)).

QED.

3.12.2 Induction on natural numbers

Using computational induction, a principle of induction on the natural numbers may
be derived. To prove property P(n), perform computational induction on the com-
putation of F(n), where

FY fiz(Af.dz.if zero(z; 0; f(pred(z)))).
F is a function whose computation is isomorphic to N, so induction over this com-
putation is equivalent to induction over N. The [N ind func| rule guarantees this
function is total, so F(n)|. The derived rule is

N | > fie(Ah.An' Ae.if zero(n'; p1;p2))(n)(0) € P(n)
n':N,n' eval 0 |> p; € P(n')
n":N, z:—(n' eval 0), h:T, y:P(pred(b)),y is h(F(pred(d)))(0)(pred(d))(0)
|> P2 € P(TI,I)

The type T of h in the second subgoal is irrelevant. The verification of this fact is left
to the reader (perform computational induction on Vn':N. (F(n) is F(n') = P(n'))).

3.13 Defining equalities

There is no notion of equivalence in the theory except the simple notion of com-
putational equivalence; all other notions of equality are defined. For example, two
inhabitants of the N type are defined to be equal when they have the same value. To
define equalities on arbitrary types, we use a convention.

DEFINITION 7 Let a type with equality be a dependent pair

3.13 Defining equalities 43

AUy X Eg:(A— A—Uy)x “E4 is a p.er.”

2

where “E,4 is a p.e.r.” is a type which expresses that fact that E, is a partial equiv-

alence relation, i.e. it is symmetric and transitive over A.

A partial equivalence is used because we may not wish to define the equality over all
elements of A. Types with equality are thus pairs of the form (A, (E4,(evidence that
E, is a p.e.r.))). The evidence inhabits the type that states that F is a p.e.r., and
its actual content is irrelevant.

Given such a pair, define

DEFINITION 8 a = d' in A% E,(a)(d).

Since equality is a p.e.r., a € A does not imply a = o' in A is inhabited. For natural
numbers, the equality would be

(N, An.An'.((I3m:N. m eval m & n' eval m),(evidence))).

Given two types with equalities (A4, E4, (evidencey)) (B, Ep, (evidencep)), the exten-
sional (independent) function equality would be

(A— B, (M, f'Va,a""A.a =d' in A= f(a) = f(a') in B,(evidence)))

The proof burden when reasoning about equalities is greater here than in theories
with built-in equality, but we may define whatever equalities we like, including ones
that are not definable in Nuprl.

Chapter 4

Semantics of partial object type
theory

In this chapter we give semantics for the theory of chapter 3. We define relations
which interpret the assertions in such a way that the rules are valid. The expressions
are interpreted as themselves, so it could be called a term model construction. One
result of this labor is the intuitionistic consistency of the theory: 0 is 1 cannot be
proved inhabited.

The method used here is the non-type-theoretic semantics that has been developed
by Allen [All87b, All87a]. This method can in turn be viewed as an elaboration of the
notion of computable term found in Tait’s strong normalization proof of the typed
A-calculus. Beeson [Bee82] has a semantics which also gives the consistency of CMCP,
but it is of little use as a tool for understanding type theory. Allen’s semantics, on the
other hand, gives insight into type theory; this semantics has in fact proved useful in
the development of partial object type theory. Mendler [Men87] has developed non-
type-theoretic semantics for recursive types based on Allen’s method, and presents
the results in a set-theoretic framework. Here we follow Allen and carry out the
construction in an extensional theory of relations.

This chapter parallels the previous one in the development of the notions of type
theory except that here we take a closed view of the theory: the class of expressions
and rules is fixed, and interpretations for the assertions are once and for all defined.
Justification of the rules is straightforward except for the fixed-point rule, which
involves quite a bit of extra work to show the types in V to be admissible. This proof
first entails showing several facts about the computational behavior of fixed-points
fiz(f); the types in V are then proved admissible by induction on their definition.

44

4.1 The expressions 45

4.1 The expressions

The expressions we are interpreting are those defined in the previous chapter and no
more:

DEFINITION 9 The exzpressions are defined as the least solution of the following def-
mnition:
The variables
a,b,c,...
the type constructors
E, N,
aisb, aevalb, a ind b, a halts, a in A,
A, ©:A— B, z:A x B,
Uy, Uy, ..., V
the data constructors
0,1,2,..., (a,b), Az.a

and the computation constructors

pred(n), succ(n), if zero(n;a;b),

p-1, p.2, f(a), fiz(f), seq(a;z.b)
where a, b, f, n, p, A, and B are expressions, and x is a variable.

Conventions on the use of variables, notions of bound and free variables, a-
convertibility, and the notion of substitution are the same as in the previous chapter.

4.2 The type-free assertions

The four forms of type-free assertion, a =, b, a — b, a > b, and a| are herein defined.
They are defined for closed expressions only, because open expressions are interpreted
in terms of closed ones.

46 Semantics of partial object type theory

a-equivalence

DEFINITION 10 @ =, b iff ¢ and b are a-variants.

The notion of a-variant is the usual one, and the details will not be given here. This
relation has a few obvious properties:

LEMMA 11 a =, b is reflexive, symmetric, and transitive.

Evaluation

The evaluation relation is defined inductively as the following least fixed-point:

DEFINITION 12

a— v iff
case a is a value: V=4 a
a is f(c): f— Az.b and bc/z] — v
a is p.l: p+— (a,b) anda — v
a is p.2: p+— (a,b) andb— v
a is succ(n): n—n,
where v is one more than n'
a is pred(n): n—n',
where v is one less than n'
a is if zero(n;c;d): n—n', n' is0,1,2,..., and

casen 15 0: c— v
otherwise: dr— v

a is fiz(f): f(fiw(f)) — v
a is seq(b;z.c): b— v and c[v'/z] — v.

We can make the following simple observations:

LEMMA 13 if v is a value then v — v.

LEMMA 14 Ifa v v then v — v.

PrOOF. By induction on the definition of evaluation.
QED.

LEMMA 15 Ifa+— v and a — v' then v =4 v'.

4.2 The type-free assertions 47

PrOOF. By induction on the definition of evaluation.
QED.

Computational equivalence, a = b, is defined as in the previous chapter. Given
some a, there is a partial recursive function which returns v just when a — v, so —
is a sensible notion of evaluation.

Termination

Terminating computations are those computations that have a value.

DEFINITION 16 a| iff there exists v such that a — v.

Inducement

Inducement is defined in terms of evaluation, because the notion of inducement is a
property of evaluation. First we define direct inducement, a =1 b. The expressions
that are directly induced by some computation a may be read off of the definition of
evaluation:

DEFINITION 17 a > b iff

case a is a value: false
a is f(c): b=y, f or f— dz.d and b =, d[c/z]
a is p.l: b=aporp— {(c,d) and b=, ¢
a is p.2: b=gporp— {(c,d) andb=4d
a is if zero(n;c;d): b=, mn orn— m and

m s 0 and b =, c or
m =, 1,2,...and b=, d
a is succ(n): b=4n
a is pred(n): b=qn
o is fe(f): b=n f(fie(f))

The inducement relation is the transitive closure of direct inducement.

DEFINITION 18 ¢ >, b iffa =1 a' and a' =, _1 b.
DEFINITION 19 a > b iff a >, b for some n.

From these definitions, it is easy to see

48 Semantics of partial object type theory

LEMMA 20 > is transitive.
There is a useful connection between evaluation and inducement:

LEMMA 21 If a+— b and a is a computation, then a - b.

ProOF. This follows by straightforward induction on the definition of evaluation.
QED.
Computations induced by terminating computations themselves must terminate:

LEMMA 22 Ifa] and a = b, then b|.

PROOF. Suppose a| and a > b; a > b means a , b for some n. By induction on n,
we show a| and a >, b implies b].

CASE n =1: Given a] and a > b, show b|. An inspection of the definition of a 1 b
shows that for each case, if a|, b also must terminate.

CASE n» > 1: Given the inductive assumption that for arbitrary e and b, ¢| and
a >, b implies b| and the assumptions ¢| and a >, 41 b, show b|. By the definition of
inducement, there is some a' such that a = a' =, b; by the base case argument above,
a’' must also terminate; by the induction hypothesis, this means 4] .
QED.

An induction principle can be derived for ~: if an expression terminates, the
collection of expressions induced by it must be well-founded over >, giving an ordering
over which to perform induction. First we define the well-founded part of >:

DEFINITION 23 all (read “a is founded”) is a relation on expressions which is the
least property of expression such that

all iff for all b, a - b itmplies bl}.

The well-founded expressions should at least include the terminating expressions,
because this would mean to show an expression is founded it would then suffice to
show it terminates.

LEMMA 24 For all a, a| itmplies all.

PROOF. Pick arbitrary a such that a — v; @ is shown to be founded by induction on
the definition of evaluation. Pick arbitrary @’ and v' such that o' — v'; inductively
assume that for all ¢” and v”, a” — v" implies "}, and show a'|).

CASE da' is a value: All values induce nothing, so they are founded.

4.3 Defining the types and their inhabitants 49

CASE ¢'is f(¢): Then f +— Az.d and d[¢/z] — v'. To show f(c)| is to show that
for all b induced by f(c), bl}. If f(¢) > b, either f(c) =1 f = b, or f(c) =1 d[c/z] > b.
By the inductive hypothesis, f and d[c/z| are both founded, so b must be founded by
the definition of foundedness. The rest of the cases are very similar.
QED.

It is now possible to prove a principle of induction on induced computations is
sound. This principle directly justifies [comp ind].

THEOREM 25 Given some arbitrary predicate on expressions P(a), if

a| and
Va'.d'| and (Va". a' - " implies P(a")) implies P(a'),

then P(a) holds.
PROOF. Arbitrary a such that a]; show P(a) given

(1) Va'.d'| and (Va".a' > a" implies P(a")) implies P(a’).

al} by lemma 24, so we may proceed by induction on the definition of al}. We wish
to show the more general result

(2) a| implies P(a).
Arbitrary a'; inductively assume
(3) Va".a' = a" implies a¢"| implies P(a"),

show a'| implies P(a'). Suppose a'|; P(a') follows directly from (1) and (3).
QED.

4.3 Defining the types and their inhabitants

Given the collection of expressions and type-free assertions that have now been de-
fined, we may proceed to define the types and their inhabitants. This entails making
one large inductive definition which constructs all of the types. It is not obvious that
the types maybe built inductively, so a monotonic operator is defined which has as a
fixed-point the desired type system; see [All87b, All87a] for a more thorough analysis
of the technique used.

DEFINITION 26 A type interpretation 7 is a 3-place relation, written

50 Semantics of partial object type theory

(T Type with €,7)-,
where T' is an expression, € is a one-place relation, and v is a truth condition.

The intended meaning of the above assertion is: 7' is a type with its members specified
by €, and v is true just when 7 is a candidate for admissibility (later, these candidates
are shown to in fact be admissible). The following definitions make this more clear:

DEFINITION 27
A Type_ iff de,v. (T Type with €,7),
A C-AType, iff de,v. (T Type with €,7), and v
a €. A iff de,v. (T Type with €,7), and e(a)

AType, means A is a type (in interpretation 7), AC-AType,_ means A is a candidate-
admissible type, and ¢ €, A means ¢ is a member of the type A.

Type interpretations may be ordered: a “larger” relation is defined to be true at more
values.

DEFINITION 28 Interpretation ' contains interpretation T, written 7 C 7', iff
VT, e,v.(T Type with €,v), = (T Type with €,7),.

The interpretation for all types of the theory will be carried out a universe level at a
time:

o1 will be the base theory with no universes,
oy will have U; and V as types,

o, will have Uq,...,U, and V as types.

To construct the interpretation o, each universe Ug for f < a will have as members
those T' such that T Typeaﬁ. Similarly, V will have as members those 7' such that
T C-AType,,.

DEFINITION 29 Inductively assume that interpretations o1,...,0,_1 have been con-
structed. Define o, as the least fized-point of the following monotonic operator ¥,
on interpretations:

U, (1) Lof 7', where (T Type with €,7). is true if and only if

4.3 Defining the types and their inhabitants 51

EITHER T evaluates to one of E, N, a is b, a eval b, a ind b, or a halts,
in which case
~ is true, and
CASE T — E: Vt.€(t) is true
CASE T — N: Vt.e(t) iff t — n, wheren is0,1,2,...
CASE T — aisb: Vt.e(t) iffa =4 b
CASE T — a eval b: Vt.e(t) iffa— b
CASE T — a ind b: Vt.e(t) iff a = b
CASE T — a halts: Vt.e(t) iff al
OR T — a in A, in which case
A Type,,
v iff A C-AType,, and
Vt.e(t) iffa e, A
OR T — z:A— B, in which case
A Type, & Va €, A. Bla/z]| Type,,
v tff AC-AType, & Va €, A. Bla/z| C-AType,, and
Vi.e(t) iff t — Az.b & Va €, A.bla/z] €, Bla/x]
OR T — z:A X B, in which case
A Type, & Va €, A. Bla/z]| Type,,
v iff AC-AType, & B C-AType,, and
Vt.e(t) iff t — (a,b) &a e, A& be, Bla/z]
OR T — A, in which case
Al = AType,,
v iff Al = AC-AType,, and
Vi e(t) iff t] =ter A
OR T — Ug where B < a, in which case
~ false, and
Vt.e(t) if t Type,,
OR T — V& a>1, in which case
~ false, and
Vt. e(t) iff t C-AType,,

LEMMA 30 ¥, s in fact monotonic over the ordering C.

PROOF. Suppose o C 7; show ¥,(c) C ¥,(7). Abbreviate ¥,(o) as ¢’ and ¥, (1)
as 7'. Arbitrary T',¢,v; suppose (T' Type with €,v),; show (T Type with €,v),. We
will just look at part of one of the more interesting cases of the proof:

CASE T — z:A — B: Since (T Type with €,7),, we know

52 Semantics of partial object type theory

(1) A Type, and for all @ €, A, Bla/z] Type,.
We wish to show (7' Type with €,7),, which means we first must show

(2) A Type,, and
(3) Va €, A. Bla/z] Type,.

(2) follows directly from (1) because A Type, implies A Type, by the definition of
C. To prove (3), take arbitrary ¢ €, A, and show Bla/z] Type,. a €, A means (A
Type with €',4'), for some € and 4'; by the definition of C, (A Type with €,7'),, so
a €, A. Thus by (1), Bla/z] Type,, which means B[a/z] Type, by the definition of
C. The other two subcases needed to show (7' Type with €,7), are similar.

QED.

The least fixed-point o, of ¥, is sensible because ¥, is a monotonic operator on
the relation (7' Type with €,): this may be justified by interpreting the relation (7
Type with €,7) as a set, and it may also be satisfactory to intuitionists if they accept
inductive definitions over higher-order relations; the reader is referred to [All87b,
All87a] for further discussion of this. It is possible to reason by induction directly on
the structure of this definition, and this is how many properties of the interpretation
are proven below.

DEFINITION 31 The full interpretation o, that includes all universe levels is defined
as the union of all the o,:

(T Type with €,7),, tff (T Type with €,7),, for some a.

If there is no subscript, it is implicitly the full interpretation o, that is being referred

to. This is also the case for the defined notation: T'Type for instance means T Type, .
With this definition in place, numerous lemmas about these relations can be

proven either directly or by straightforward induction on the definitions. First we

prove some lemmas which characterize typehood.

All types inhabit some universe level:

LEMMA 32 A Type iff A € U, for some a.
The candidate-admissible types are exactly those types in V:

LEmMMA 33 AC-AType iff A€ V.

If an expression has an inhabitant, it is a type:

4.3 Defining the types and their inhabitants 53

LEMMA 34 a € A implies A € U, for some a.

All types are convergent expressions:

LEMMA 35 A € U, implies A].

U; contains all types in V:

LEMMA 36 A € V implies A € U;.

Types in lower universes are also found in higher universes:
LEMMA 37 A € U, implies A € Ug for all B > a.

The membership relation respects computational equivalence:
LEMMA 38 a € A and a = b and A = B implies b € B.

Now some lemmas about typehood and membership which follow directly from
the definitions are proven. They can be taken as defining what it means for the
different forms of expression to be types, and for what it means to be an inhabitant
of the different types. Variables a, b, ¢, f, p, », A are arbitrary closed expressions,
d and B are arbitrary expressions with only z free in them, and a and [range over
universe levels.

For the formation of types,

LEMMA 39 The expressions a is b, a eval b, a ind b, a halts, E, and N are all mem-
bers of U,.

LEMMA 40 a in A € U, iff A € U,.

LEMMA 41 z:A— B € U, iff A€ U, and for alla € A, Bla/z] € U,.
LEMMA 42 z:Ax Be€ U, iff A€ U, and for all a € A, Bla/z] € U,,.
LEMMA 43 A € U, iff A| implies A € U,,.

LEMMA 44 Ug € U, iff B < a.

There is a parallel collection of lemmas for forming candidate-admissible types.

54 Semantics of partial object type theory

LEMMA 45 The expressions a is b, a eval b, a ind b, a halts, E, and N are all mem-
bers of V.

LEMMA 46 a in A€V iff AcV.

LEMMA 47 2z:A—> B eV iff Ac 'V and for alla € A, Bla/z] € V.
LEMMA 48 z:Ax B eV iff AcVand Be V.

LEMMA 49 A €V iff A| implies A€ V.

LEMMA 50 Ve U, if a > 1.

For inhabitants of types,

LEMMA 51

(i) c€aishiffa=4b.

(i) ¢ € a eval b iff a — b.
(iii) ¢ € @ ind b iff a - b.
(iv) ¢ € a halts iff a].

(v) c€E.

LEMMA 52 n € N ¢ff n — 0,1,2,....
LEMMA 53 c€ (a in A) iff (a in A) € U, for some a and a € A.

LEMMA 54 f € z:A— B iff ©:A— B € U, for some a and f — Az.d and
foralla € A, dla/z] € Bla/z].

LEMMA 55 p € z:A x B iff 2:A x B € U, for some o and p — (a,b) and
a € A and b € Bla/z].

LEMMA 56 a € A iff A € U, for some a and (a] implies a € A).

4.4 Admissibility 55

4.4 Admissibility

Types in the universe V are candidate-admissible types by lemma 33; for a given type
to be admissible, all partial functions over the type must have typable fixed-points:

DEFINITION 57 A AType iff for all f € A — A, fiz(f) € A.

We wish to show AC-AType implies AAType, meaning all candidate-admissible types
are admissible. The proof exploits equivalences between fixed-points and their finite
approximations.

DEFINITION 58

1 &ef fize(Az.z)

k

FREFFC (D))

f** is sometimes called the k-ary unrolling of f. All approximations f** to the
fixed-point fiz(f) are properly typed, providing f is typed:

LEMMA 59 f € A— A implies f** € A.

PROOF. By induction on k, f*°is | and T € A4; suppose f** € A; then, f(f**) € 4,
so fXk1 ¢ A,
QED.

Given this fact, we show fiz(f) € A by showing the computational behavior of
fiz(f) to be similar to the computational behavior of its approximations f**. Intu-
itively, this similarly seems obvious: if fiz(f) halts, then there will be an approxi-
mation f** for some k which also halts. However, complications arise, as shown by

the following example. Consider the case of f € N — N — N — N; we wish to show
fiz(f) € N— N. To prove this, suppose fiz(f)]; show fiz(f) € N — N. This means
(by the intuitive argument above) f**| for some k. However, we also need to know
fiz(f) has a value that is a A-expression, because all inhabitants of function spaces
must be A-expressions. We know f** € N — N by lemma 59 above, so f** — Az.b.
We would like to say fiz(f) — Az.b which would prove our result, but this is not
true, because the result may have fiz(f) occurring freely in it. For instance, letting f
be Ag.2x.(0,g(z)).1, fiz(f) — Ix.(0, fir(f)(x)).1, whereas f** — Ax.(0, f*F~1(x)).1.
This requires us to keep track of occurrences of fiz(f) and f** in the results of
computations. This and other factors complicate the proof.

56 Semantics of partial object type theory

There are two parts to the proof of admissibility: some lemmas are proven which
fully reflect the computational similarity between fixed-points and their approxima-
tions. Then, the candidate-admissible types are shown to be admissible by structural
induction. Before we proceed with the proof, we show all of this work is necessary
because there exist non-admissible types.

4.4.1 Non-admissible types

Since we cannot prove all U; types are admissible, it is reasonable to expect that
some types cannot be admissible. This means that there would be a type D and a
function d € D — D such that fiz(d) € D is false. Such types do in fact exist.

THEOREM 60 Some types are not admissible.
PROOF. Define

def

D = g:(N — N) x =(Vn:N.g(n) halts) and
4% Ag.(An.if zero(n; 0; seq(pred(n); x.(g.1)(x))), Ax.0).

It is possible to prove d € D — D: assume g € D, and show the pair to be in D. For
the left half of the pair, [&ef An.if zero(n; 0; seq(pred(n); x.(g.1)(x))) must be shown
to be in N — N, which is straightforward. For the right half of the pair, we show
=(Vn:N.l(n) halts): suppose the antecedent were true; then, g| because g.1|. Thus,
g € D,so g.2 € =(Vn:N.g.1(n) halts). But, if g.1 is not total, I will also not be total,
contradicting our assumption. Thus, d € D — D.

If it were true that fiz(d) € D, fiz(d) € D would also follow because fiz(d)|. This
would mean the function fiz(d).1 € N — N is not total, but this is a contradiction
because it can be proved total by induction on natural numbers. Therefore, fiz(d) ¢
D, so D is not admissible.

QED.

4.4.2 Computational lemmas

Lemmas characterizing the computational behavior of fixed-points are now proven. To
simplify the proofs to be given, we define notation and some conventions for reasoning
about some particular forms of substitution. All of the definitions presuppose some
arbitrary closed expression f.

4.4 Admissibility 57

DEFINITION 61 Lett be an expression with free variables amongst z1,...,z,. Given
2 def
a vector of natural numbers k = ky,...,k,, define

tR A [k fy L R).
¢ is thus a closed expression. The notation ¢ is ambiguous because the variable
names Z,...,Z, are nowhere apparent. However, we can get by with ignoring them
and will do so. a-variants are also identified. Often we wish to add a fixed amount
m to each k; of k, so there is a special notation for this:

DEFINITION 62 Let t and k be as above, and let m be a natural number; define
lRtm] A g prhatm g, kg
A similar notation also holds for fiz(f) substitutions:

DEFINITION 63 Lett be as above; define

9 € [fia(f)/ e, .., fiz(f)/2n].

Substitutions are always factored in; for example, ((a,b>)[£] is the same expression as

<a[E],b[E]>. For a concrete example of this notation, let k be 3,2,5, and ,,z,, 23 be

a,b,c. ((a,b), (c,a)) is

((a,b), (c,a))[f**/a, F** /b, f*° [c].

These substitutions may be factored in, giving the equivalent expression

-

((a, bYFL, (c, a)).

Superscripts are used to label substitutions, so ke is just another name for a substi-
tution; the superscript ¢ means that the substitution is intended for an expression
a.

It is often desirable to merge substitutions when two expressions are put together
to form a new expression.

DEFINITION 64 Given expressions al* and b[’;b], define a single merged substitution

k such that o/ =, al® and p*] =, bl

58 Semantics of partial object type theory

The two substitutions are appended, a-converting the free variables in one expression
that both have in common.

The first computational fact we need is that if an expression halts, we may replace
all occurrences of fiz(f) in the expression with large enough approximations, and
the expression will still halt. This fact cannot be proven without a considerable
strengthening of the statement, so even though the result is not deep, the proof is
long.

LEMMA 65 Vf,t.t9] = Fu. ¢ — o@ & 35, VEk > j. I, Vn. th+nl s ylienl,

PROOF Suppose 11 |; we prove the consequent by induction on the computation of

. Assume without loss of generality that the free variables in ¢ are distinct from any
bound variables in ¢ (this means we need not worry about capture of superscripted
substitutions).

CASE t[&] is a value: t[%l — ¢/l and the result follows trivially.

CASE t1l is fl® ([%*T): By the induction hypothesis, we have

(1) £ s Az.bl9) & 35‘ Wk > j. 3. Vn. FlE+n] s A plrtnl
(2) b1#N [0l /2] s 019 & T7. Vk > 7. 3. Vn. plF+7) [al [ke-4n] 1] — ol

Therefore, f[‘;"f](a[‘;"a]) — v“l; we wish to show
(3) 35.Vk > 7. 3. Vn. fE+nl(gkotnly oy plitn],

To arrive at this, we must show that we can unify b in (1) and (2) so that they will
be the same approximation. It requires special care taken to how the quantifiers are
instantiated to accomplish this. 5" must have been unrolled enough times to be
a more defined approximation than b[;b], meaning m +n > ;b. n is thus picked to be
large enough so that this will be the case. kb in (2) can then be picked to make the
two b’s identical, meaning kb = 7 + n. It is the need to ezactly unify b in (1) and (2)
that makes the proof difficult.

There is much tedious manipulation of quantifiers to be done since there are so
many of them; some conventions will thus be used to simplify matters. Numerical
subscripts will be used to indicate which formula a particular variable is from. For
example, if k is taken to be an arbitrary in formula (1), it will be given the name];1,
(1k) refers to formula (1) with quantiﬁers up to the k quantifier removed.

Let]1 name j in (1), and let j; name j in (2). Instantiate kin (1) with 71, let 1,
name m in (1), and pick n to be the least n; such that ni,...,n1 > j3 + m;. Now,

4.4 Admissibility 59

we may plck jin (3) to be J1+ ny_for 7 and]2 for j°. Pick arbitrary ks in (3J) such
that k3 > 73. Now, re-instantiate kin (1j) with k — ny; this is bigger than]1 because
kf > 71 +n1. Name m in (1k) m; we now have

(1m) Vn. f[’g{_"l"'"] — Az.bltnl

which means

(1m') Vn. f[13§+n] — Az.plitnitnl

Instantiate & in (2j) with Eg for k° (lgg > 7% = j2) and my + ny for kb (ny > 73, so
my +ng > ;g) Name m in (2k) m2, so we now have

(2m) n. pl1tnitn] [a[ég+"]/w] — plm2tn],

Instantiate 72 in (3k) with m,, and take n to be arbitrary ns; show

(3n) f[1€{+n3](a[1€;+n3]) s platns]

This follows by computation from (1m') and (2m) instantiated with ns for n.

cASE t1¥9 is pl“l.1: By the induction hypothesis, we have

(1) P11 (a1, 08) & 35, Wk > . Friv. V. ploHnl i (Rl platnly
(2) a? — o9 & 37, Vk > . 3. Vn. alFtrl o ol

Therefore, pl“l.1 — v[%l; we wish to show
(3) 3. vk > 7. 3. Vn. pkf+"].1 — vl

Let j; name j in (1), and let j» name j in (2). Instantiate k in (1) with ;1, let m,
name m in (1), and pick n to be the least n; such that ny,...,n; > 52 + ml. Now,
we may pick j in (3) to be]1 + ny. Pick arbitrary ks i in (3) such that k3 > 73. Now,
re-instantiate & in (1j) with k3 —ny; this is bigger than]1 because k3 >]1 +n,. Name
m in (1k) m1; we now have

(]_IIl) Vn. pk3 nitn] | <a,[7ﬁ‘1"—|—n] b[m‘l"+n]>’
which means

(1m') ‘v’n.p[’;”"] s (@Uitmtnl plaitnitnly

60 Semantics of partial object type theory

Instantiate % in (2j) with m$ + ny (g > ;2, so m$ + ny > ;g) Name m in (2k) m.,
so we now have

(2111) Vn. g?itrmtnl o plR2+n]
Instantiate m in (3k) with m,, and take n to be arbitrary ns; show
(311) p[53+n3]-1 — fu[’ﬁz‘}'ns]-

This follows by computation from (1m') and (2m) instantiated with ns for n.
CASE t1¥ is pl“l.2: This is similar to the above case.

cASE tl¥ is if zero(al®l; bl9l; ¢l¥l): By the induction hypothesis, we have

(1) a¥ ' ng & EI;. vk > ; . Vn. alF+m — no
(2a) if ng is 0, b 1 o[® & 35 Vi > 7. 3. Y. plFn] o gl
(Zb) if ngis 1,2,3,..., cel s plel & EI;_ ‘v/]; > ; . V. clketnl s plitn]

e

Therefore, if zero(al®); bl¥l; ¥} s vl%l; we wish to show

- —

(3) EI;. vk > ; I, Vn. if zero(al®; pl4l; (@) s plR+n]

Without loss of generahty, assume ng is 0 Let ;1 name ; in (1) and let ;2 name ; in
(2). Instantiate 7 in (3) by letting 7% be]1,]b be]2, and] be 0. Pick arbitrary k3
in (3j) such that ks > ja3. Now, instantiate k in (1j) with kg, this is bigger than j;.
Name m in (1k) m1; we now have

(1m) Vn. alfstnl ng.

Instantiate & in (2j) with Eg; this is bigger than j,. Name 7 in (2k) 12, so we now
have

(2m) V. bR+ oy yliia+n],
Instantiate m in (3k) with ms,, and take n to be arbitrary ns; show
(3n) if_zero(a[’;§+"3]; b[kb"'”i‘] L5 stnsl) sy plitztnal,

This follows by computation from (1m) and (2m) instantiated with ns for n.

cASE t¥ is succ(al®): By the induction hypothesis, we have

4.4 Admissibility 61
(1) ¥ ng & EI;. vk > ; . Vn. alF+m — i

Therefore, succ(a[‘r’]) — Mg, where mg is one more than ng. We wish to show
(2) 3. vk > 7. 3. Vn. succ(a[ié"'"]) — M.

This fact follows directly from (1).

CASE t[‘E] is pred(al®!): This is similar to the previous case.

cAsE t¥ is (fiz(¢!°!)): By the induction hypothesis, we have

(1) g[g](ﬁm g[a])) — vl% & 3. vk > j. Im. Vn.g[£+n](ﬁm(g[ﬁ+n])) — plAtnl,

. We wish to show

— -

M) =

J
Let]1 name j in (1); instantiate 7 in (2) to be j;. Pick arbltrary ks, in (2J) such
that ky > J»; instantiate k in (1j) with ko; this is bigger than j;. Name m in (1k)
m1, and instantiate m in (2) with m,. Arbitrary n, in (2m); instantiate n in (1m)
with n,. It then follows by computation that gl t7a2l(fig(glkatn2l)) s plf2tn2] implies
ﬁ:l)(k2 +72]) — pliztn2]

CASE Il is fiz(f): This case arises when ¢l is of the form z[fiz(f)/z] for some
variable z. Since in this case 7 and k are unit-length vectors, they will be treated as
natural numbers j and k. By the induction hypothesis,

(1) F(fiz () — v & F5. Yk > j. 3. Vn. f(FF) o oltn],
Therefore, fiz(f) — v°l; show
(2) 35. Yk > j. I Vn. FXetn o glitnl

Let 7; name j in (1); instantiate j in (2) to be j; + 1. Arbitrary ks > j»; instantiate
kin (1) with k2 — 1 (kx — 1 > 52 — 1). Let m; name m in (1k), and instantiate m in
(2k) with m,. Take n in (2m) to be arbitrary n,, and instantiate n in (1m) with n,;
we thus have

(111) f(f[k1+1+n2]) — ,v[ﬂ-’tl-i-nz]

and we wish to show

62 Semantics of partial object type theory

(211) f[k1+n2] — v[ﬁ1+1+nz],

which follows directly
CASE t¥ is seq(al®*l; z.bl%): By the induction hypothesis, we have

(1) al? — ul¥l & 37 ‘v’]; >; dm. ‘v’n alFtn] oy g ltn]

(2) b[ﬁb][u[&u]/m] — ol% & 35. Vk > 7. I, Vn. bkb"'"[[k*n) 1 /] s plmtnl,
Therefore, seq(al®l; .5l) — v1%l; we wish to show

(3) 3. vk > 7. 3. Vn. seq(a[iéa"'"]; cc.b[’;b‘“‘]) — ol

Let j; name j in (1), and let j» name j in (2). Instantiate k in (1) with ;1, let m,
name 1 in (), and pick n to be the least ny such that MiyeenyBy > ;g + m;. Now,
we may p1ck 7 in (3) to be]1 + ny for 7% and J, for 7°. Pick arbltrary ks in (3j) such
that k3 > 7. Now re-instantiate & in (1J) with k — n for k this is bigger than]1
because k“ >]1 + n;. Name m in (1k) m;; we now have

(1m) V. glFe—mtnl bt
which means

(lm') Vn. a[E§+n] — ylmitnitn]

Instantiate];; in (2-]) with];;g for]gb (723 > .;g = .;g) and m; + n; for];u (TL1 > JZZ SO
my + ng > 33). Name m in (2k) mi2, so we now have

(2m) V. pFER [yt mtn] o] o Phatn],

Instantiate 7 in (3k) with 72, and take n to be arbitrary ns; show

(3n) seq(alFi+nsl, g pR+msly o pliiatna]

This follows by computation from (1m') and (2m) instantiated with ns for n.
QED.
From this lemma, the fact we need follows directly.

LEMMA 66 t1°l| implies EI] Vk > ; t[ié]l.
PrOOF. This is an immediate consequence of the previous theorem.
QED.

The next lemma we need is to go in the opposite direction: if an approximation
halts, the fixed-point also halts.

4.4 Admissibility 63

LEMMA 67 Vt,f,Et 1] = Ju,m. thF s ol & ¢8) s yld)
PROOF. Suppose t* l; proceed by induction on the structure of computation.
CASE t# is a value: Trivial.

CASE ¥ is g[g](a[g]): By the induction hypothesis,

-

gl —)\:L' bl & glel 1 Ag.ple!
(gl /] s vlT2] & b [al¥] /2] s ol

Thus,

- -

cask tH is p[E] 1: By the induction hypothesis,
Pl = (a5 el (a9,)
al™ r—>vm2 &a“’ +—>v[]

Thus,
[]1+—>vm2 & pl9l1 - vl

CASE t[if] is p[*] 2: Similar to the above case.
cASE t¥ is if zero(al¥); b*; c¥): By the induction hypothesis,

-

a*l — ny & al9 — ny.
Assume without loss of generality that ng is zero. Then,

Thus,

if_zero(a[’;]; b[E]; c[é]) s vl™2] & if zero(al®l; bl [91) s o,
cask t is succ(a[’;]): By the induction hypothesis,

-

a*l — ny & al — ny.

Thus,

-
e

succ(a[k]) — mo & succ(a[“’]) — Mg

64 Semantics of partial object type theory

where mg is one more than ng.
cASE tW is pred(al): Similar to previous case.

cask tl is fiz(gl): By the induction hypothesis,

g¥(fiz(g)) — o™ & gl¥l(fiz(gl¥l)) - v19.
Therefore,

-

cask t is f**: This means t¥ is fiz(f). f**is f(f**'), and to compute fiz(f)
is to compute f(fiz(f)); thus, using the result from the case for application above,

FF*1) = o™ & f(fiz(f)) o)
for some m.
cask t is seq(a[’;];m.b[g]): By the induction hypothesis,

% —

dF) g gl s 4l
b[’;][[t /:L'] s vl2] & bl [yl%] /2] s w9,
Thus,
seq(a k], ;T bié) vl & seq(al®l; 2.019) 1 vl
QED.

4.4.3 Proof of admissibility

It is now possible to prove if the approximations f** are typed, the fixed-point may
be typed; we prove a stronger result from which this statement follows as a corollary.

LEMMA 68 VT, f,t.T C-AType = (3;.Vk > j.tHF € T) = @ e T.
PROOF. Arbitrary T and ¢, and suppose T C-AType. We prove
(1) (35.Vk>jtHeT)=> e

by induction on the definition of the candidate-admissible type 7'. Assume (1) is true
for all candidate-admissible types already defined. Assume the antecedent

4.4 Admissibility 65

- -

(2) Vk>j i eT

for some ;; we show tl¥ € T. Since T C- AType, we may analyze by cases the
possibilities for 7'. But first, note that we may let kin (2) be j, so tl e,

CASE T evaluates to an atomic propositional assertion or to E: til € T as just
mentioned, so by lemma 51, ¢ € T for any ¢; thus, ¢! € T.

cASE T — N: We wish to show ti® ¢ T. ¢l ¢ T, so ¢l s n'; by lemma 67,
tll — n', so tl¥l € T.

CASE T — z:A— B: We wish to show ¢! € T, which by lemma 54 means we must
show

(3) tl s \z.b & Va € A.bla/z] € Bla/z].

thl e T, so il Az b'; therefore, by lemma 67, tl°! — Xz.b for some b, showing
the first part of (3). To show the second part, assume arbitrary ¢ € A, and show
bla/z] € Bla/z]. ‘3]() & bla/z], so it suffices to show t¥l(a) € Bla/z]. Bla/x] must

be a candidate-admissible type, so we may inductively assume (1) is true for Bla/z]:
(4) (35.VE > j.t¥(a) € Bla/z]) = t®)(a) € Bla/z].

The consequent of (4) is the result we want, so we only need to show the antecedent.
Instantiate j with 7, let k be arbitrary; we thus need t/*l(a) € B[a/z]. From (2), we
know that t/*| € T, which means

(5) tlE — Az.b" & Va € A. b'[la/z] € Bla/z].
Thus, b"[a/z] € Bla/z]; t[ié](a) =~ b"la/z], so t[E](a) € Bla/z|, what we needed to
show.

CASE T — z:A x B: Since T C-AType, does not occur freely in B. We wish to
show t¥] € T', which by lemma 55 means we must show

(6) ¥l — (a,b) & a € A& b < B.

thl € T, so ¢l s (a',b'); therefore, by lemma 67, /] i (a,b) for some a and b,
showing the first part of (6). In showing the second part, without loss of generality
we just show a € A. tl¥l1 = g, so it suffices to show tl.1 € A. A must be a
candidate-admissible type, so we may inductively assume (1) is true for A:

66 Semantics of partial object type theory

(7) (37.Vk > j. 8.1 € A) = 9.1 ¢ A.

The consequent of (7) is the result we want, so we just need to show the antecedent.
Instantiate j with 7, let k& be arbitrary; we thus need t*.1 € A. From (2), we know
that t/*! € T, which means

(8) £ (o b") & a" € A& b" € B.
Thus, a" € A; $lH1 = g , SO tlF1 € A, what we needed to show.

CASE T — A: We wish to show ¢! € T, which by lemma 56 means we must show

(9) €] = ¢l¥] ¢ A.
Suppose tl|; show /¥l € A. By lemma 66,
(10) vk > .M

for some arbitrary ;’. A must be a candidate-admissible type, so we may inductively
assume (1) is true for A:

(11) (EI]‘v’k>]t € A)=tl¥ ¢ A

The consequent of (11) is the result we want, so we Just need to show the antecedent.
Instantiate j in (11) with 3" such that]" >] +]', let k be arbitrary, and show
tl ¢ A. From (2), we know that ¢l R e T, which means

(12) K| = 8 € A,

The consequent of (12) is what we wish to show. Instantiate k in (10) with k, giving
l Thus, ti* € A.

QED.

The consequence of this lemma is that all candidate-admissible types are admissible.

THEOREM 69 For all types A, A C-AType implies A AType.
PROOF. Suppose A C-AType. To show A AType, let f be an arbitrary function such

that f € A — A; show fiz(f) € A. From lemma 68, this means
(37.VE > j. f** € A) = fie(f) € 4;

the antecedent follows from lemma 59, so fiz(f) € A.
QED.
We now have all of the results needed to prove the rules valid.

4.5 Consistency of the rules 67

4.5 Consistency of the rules

All of the interpretation is now in place, and it only remains to show that the rules

are true under this interpretation. Sequents are defined and interpreted exactly as in
section 3.5.

4.5.1 Conventions

Recall that each sequent has an implicit list of hypotheses z1:4;4,...,2z,:4,; only the

relevant hypotheses in the list are shown. We define some abbreviations for hypothesis
lists and substitutions over lists.

DEFINITION 70

— def
a4 = Q1,025...,0p.

A AL A, A,
@ c A abbreviates a; € A, and ay € Aslai/zy] and ...
and a,, € Ayla1,...,a,1].
alay /@1, ... an/Ty)].
&ef if © 1s x; for some 1, then
a[a1/$1, .. -,ai—1/$i—1,ai+1/ai+1, cee ,an/wn]
else alay /@1, ... 0,/ Ty].
where a1,as,...,a, are closed expressions, A; is closed, only 1 occurs free in A,,
..,only xy,...,x,_1 occurs free in A,.

def

To prove
z1: Ay, ..., A, |> bEB

thus amounts to showing for arbitrary a € A that b € B. Substitutions are automat-

ically factored into expressions; we use the notation @™ to indicate z is free in a and
should not be substituted for. Thus, (Az.b)[a1/z1,...,an/z,] is Az.b".

4.5.2 Proof of consistency

We may now prove each of the rules is correct.

THEOREM 71 The rules of the theory of chapter 3 are valid under the interpretation
Cy-

PROOF. The rules will be proved in the order they are given in chapter 3.

68 Semantics of partial object type theory

Universes

[U form] Arbitrary @ € ff; show U, € Ug for a < 3. This follows directly from lemma
44.

[U cumulat1v1ty] Arbitrary a € A show A € U,. By instantiating the subgoal with
a, we get A e Ug with a > S. A € U, follows directly from lemma 37.

Is

[is form] Use lemma 39.

[is reflex] Use lemmas 11 and 51.

[is sym] Arbitrary @ € A A; is bisa; show ¢ € @is b for arbitrary c. Since a is closed,
a is a; a similar argument applies to b. a; € bis @, so b =, @ by lemma 51. By the
symmetry of =,, @ =4 b, s0 ¢ € @ is b.

[is trans] Similar to [is sym| proof.

[is contradiction| Arbitrary a@ € A; a; is @ is b; show ¢ € C. By the condition imposed
on the rule, @ and b are not a- convertible, so the type a is b cannot be inhabited. The
assumption list is thus contradlctory, $0 anythmg follows.

[is subst] Arbitrary @ € A; A; is @is b; show ¢°[d/z] € C°[a/z]. By the sub-
goal, ¢~ [b/:c] E C~=[b/z]; since a and b are a-variants, ¢ °[a/z] =, ¢ *[b/z] and
C~*[a/z] =o C~°[b/z]. Membershlp respects a-conversion, so ¢ *[a/z] € C~%[a/z].
[is decision] Arbitrary @ € A; show é € €. @ =, b is either true or false; if is is true,
¢ € C follows by the first subgoal, and if @ = b is false, by the second subgoal.

Evaluation

[eval form| Use lemma 39.

[eval value] Use lemma 13.

[eval idemp] Use lemma 14.

[eval unique| Use lemma 15.

[eval app] [eval proj left], [eval proj right], [eval succ|, [eval pred], [eval if_zero true],
[eval if zero false|, [eval fix|, and [eval seq| follow directly from the definition of eval-
uation, definition 12.

[eval app unique| Arbitrary d € A; A; is f() eval 9, and we need to show b e B.
b € B follows from the third subgoal if we can show f’() eval ¥. Since f(a) — D,
f — Az.b for some b and b[a/z] — ©. From the first two subgoals, f and f' both
evaluate to the same v'; v’ is thus \z.b, so f' — \z.b and f’() — .

4.5 Consistency of the rules 69

[eval proj left unique] Arbitrary a € /i); A; is p.1 eval %, show b € B. Since p.1 — o,
p+— {(a,b) and a — 9. Instantiating = with a and y with b in subgoal one, p eval (a,b)
and a — ¥ follow by assumption, so b € B. The other uniqueness rules, [eval proj
right unique], [eval succ unique], [eval pred unique], [eval if zero true unique]|, [eval
if_zero false unique], [eval fix unique|, and [eval seq unique| have similar proofs.

Equivalence

[equiv exp| Arbitrary d € /i); show a € A. From subgoals 3 and 4, we have @ — ©
iff a' — v, so @ = a'. By subgoal one, ¢’ € A; therefore, by lemma 38, @ € A. The
proofs for [equiv type] and [equiv hyp] are similar.

Inducement

[ind form| Use lemma 39.

[ind trans| Use lemma 20.

[ind eval] Arbitrary a@ € /i’; A; is @ eval b, need to show @ - b. By the subgoal, @ #, b.

Since @ — b, @ must be a computation, so we may apply lemma 21 to give a > b.
[ind app], [ind app arg], [ind proj left], [ind proj right], [ind proj left arg|, [ind

proj right arg|, [ind succ|, [ind pred], [ind if_zero true|, [ind if zero false|, [ind if_zero

arg|, [ind fix], [ind seq], and [ind seq arg] can be read directly off of the definition of

=1, definition 17.

Termination

[terminate form| Use lemma 39.

[terminate intro|, [terminate elim] These rules follow directly from the definition of
termination, definition 16.

[terminate ind] Use lemma 22.

[terminate total] Use lemmas 52, 54, 55, and 35.

Membership

[member form| Use lemma 40.

[member intro] and [member elim] follow directly from lemma 53.

70 Semantics of partial object type theory

Expression

[E form] Use lemma 39.
[E intro| Use lemma 51.

Natural numbers

[N form] Use lemma 39.

[N intro] Use lemma 52.

[N succ] Arbitrary @ € A show succ(”) € N. By the subgoal, 7 € N, so by lemma 52,
n — m for m one 0of 0,1,2,.... Therefore by the definition of evaluatlon, suce(it) — m'
where m' is one more than m. Thus succ(7t) € N. [N pred] has a similar proof.

[N if zero| Arbitrary d € A show if zero(7;a; b) € A. By subgoal one, 7 € N, so
n — m for m one of 0,1,2,..

CASE m is 0: n — 0, so we may instantiate subgoal two to get a € a; since
membership respects computational equivalence, if zero(#; a; i)) € A.

CASE m is not 0: This case is similar.

[N ind func] We need to show fiz(f)(n) € N for all » € N; this follows by straightfor-

ward induction on n.

Dependent function space

[func form| Arbitrary a € /i); show z:A — B~® € U,. By lemma 41, this means
showing

(1) A €U, and for all « € A, B~*[a/z] € U,.

Subgoal one proves A € Uq, and subgoal two proves for all a € A, B~*[a/z] € U,.
[func intro| Arbitrary @ € A show Az.b~® € A— B~". By lemma 54, this is equivalent
to showing

(2) z:A — B~ Type and
(3) for all a € A, b~*[a/z] € B~*[a/z].

To prove (2), we need to show the equivalent of (1) above: by subgoal two, A € Uy,
and by subgoal one,

(4) for all a € A, b%[a/z] € B %[a/x].

4.5 Consistency of the rules 71

Thus, for all « € A, B—*[a/z] € Ug for some f by lemma 34. Letting v be max{a, 3},
©:A— B¢ U, by lemma 37. Therefore, z: A— B~* Type. (3) is exactly (4), which
we already mentloned follows directly from subgoal one.

[func lam] Arbitrary @ € A show f € A— B~®. By subgoal one, f € y:C — DY, so
by lemma 54, f — Az.d for some z and d. Thus by lemma 38, we need only to show
Azdec A— B_m. The rest of the proof is similar to the proof for [func intro].

[func elim] Arbitrary @ € /i); show ¢ € C. By subgoal three, we have

for all b € B~*[a/z], F(A) =, b implies & € C.

Instantiating b with F(A),be B *[A/z] because f € z:A— B~* by subgoal one and
ic Aby subgoal two, and with these two facts, lemma 54 implies f(a) € B~%[a/z].
f() =a f(a follows tr1v1ally, soceC.

Dependent product space

[prod form| This parallels the [func form] rule.
[prod intro| Arbitrary @ € A; show (a, b> € z:Ax B~*. By lemma 55, this is equivalent
to showing

2:Ax B €U,and @ € A and b € B~[d/z].

By subgoal one, a € A s0 A€ Ug for some 8 by lemma 34. By subgoal three, for
all ' € A, B~®[a'/x] € U,. Therefore, by lemma 42, z:A x B~ ¢ U,, where 7 is
max{a, 3}.

All that remains to show is @ € A and b € B~*[@/z]: these two facts follow directly
from subgoals one and two, respectlvely
[prod elim| Arbitrary a € A show & € C. From subgoal two we have

(5) for all a € A and b € B~*[a/z], p — (a,b) implies & € C.

Since by subgoal one p € z:4 x B~®,]3~+—> <a,~b> for some @ and b. Instantiating
subgoal two with a for z and b for y,a € A, b € B~"[a/z] and p ~ (a,b) are all true,
soce (.

Partial types

[bar form| Use lemma 43.

72 Semantics of partial object type theory

[bar intro] Arbitrary @ € /i); show a € A, By lemma 56, this is equivalent to showing
A € U, and a| implies @ € A. These two facts follow directly from subgoals two and
one, respectively.

[bar elim| Arbitrary @ € A; show @ € A. By subgoals one and two, @| and @ € Z, 0
by lemma 56, a € A.
Fixed-point

[fix] In section 4.4, we showed that all of the candidate-admissible types (which are
exactly the V types) are admissible; thus, if A € V, A AType by theorem 69. This
means for all f € A — A, fiz(f) € A. The correctness of the rule is an immediate
consequence of this.

[V form| Use lemma 50.
[V sub] this follows by lemma 36.

The proofs of correctness of the rules for forming V types, [<type> form adm], are
very similar to the proofs of the rules for forming U, types, except they use lemmas
about candidate-admissible types, lemmas 45 through 49.

Computational induction
[comp ind] Arbitrary @ € A; A;is @ halts. Letting
F(t) ¥ fis(ARda" Mv.é[t/a'])(£)(0),
show
(1) F(a) € Pla/x].
By the computational induction theorem (theorem 25), it suffices to show

(2) a] and for all @', a'| and
(for all a”, a' = a" implies F(a") € P[a"/z])
implies F(a') € Pld'/z].

a| by assumption; let ¢’ be an arbitrary expression such that a'| and
(3) for all a", o' > o” implies F(a") € Pla"/z];

show F(a') € Pld'/x]. Subgoal one states

4.5 Consistency of the rules 73

(4) a'| and h € (a":E — o' ind o" — Pla'/x]) implies & € P[a/z]

for arbitrary a' and h. Letting o' in (4) be @', a'| follows by assumption; let A be
F(d'); by computation and the definition of —, to show k is in the proper type is to
show

(5) for all ", a' - a" implies é € Pla"/z].

€ = F(a"), so (5) follows by (3). Thus, from (4) we obtain € € Pla/z]; by computa-
tional equivalence, this means F'(a') € P[a'/z], what we needed to show.

Miscellaneous

[cut] Arbitrary @ € fi); show @ € A. By the first subgoal, b € B; instantiating the
second subgoal with b for z gives a € A.
[hyp| Trivial.
[hyp prop| Arbitrary @ € /i); this means a; € B, where B is an atomic propositional
type. ¢ € B for arbitrary c follows directly from lemma 51.
[alpha] This rule follows from the the respect of € and sequent truth for a-conversion.
QED.

All of the rules are true under this interpretation, so since 0 is 1 is uninhabited
semantically, it is not provable using the rules.

Chapter 5

Topics in partial object type
theory

This chapter is a loose collection of consequences of partial object type theory. Type
theory can now be viewed as a full-fledged programming logic since we may reason in
a facile manner about partial objects as well as total ones. LCF has proven itself to
be a viable programming logic, and we show that partial object type theory is also
viable by showing that it compares favorably with LCF.

The fixed-point principle and computational induction are the two principles which
give reasoning power to partial object type theory. The two are more closely related
than it would first appear: the fixed-point principle is also an induction principle,
and computational induction is also a principle for typing fixed-points.

Some other consequences discussed are a new notion of proposition which gives
a novel form of logical reasoning, and some results that show there are unsolvable
problems in the theory.

We conclude with remarks about alternate ways of developing partial types. Since
the theory presented in chapter 3 is not the final word, these remarks should give
future designers something to work from.

5.1 Type theory as a programming logic
Programming logics are, as might be guessed, logics for reasoning about programs.
Hoare pioneered this field in his development of an axiomatic assertion-based logic

for reasoning about programs [Hoa69]. The assertion {P} A {@} means if P is true

74

5.1 Type theory as a programming logic 75

and program A is executed to completion, facts ¢) then hold. The program may alter
variables used in P and @, so these assertions are for reasoning about state-based
systems of programming. Much has been written about how this style of reasoning
can be used to develop correct programs; for instance, see [Gri81]. In the PL/CV
system [CO78], state-based programs are labeled with assertions and proofs that the
programs meet the assertions; a verifier then can check that the programs are correct.
This is an example of a system which uses the computer to aid in reasoning about
programes.

Other efforts have concentrated on reasoning about functional programs: func-
tional programs are more mathematically concise and thus easier to reason about.
DeBakker and Scott and Park amongst others interpreted computable functions
as continuous mathematical functions; this approach inspired the development of
new and more powerful induction principles for reasoning about functional programs
(Manna gives a review of these early results [Man74]). This work was soon followed
by Scott and Stracheys’ revolutionary treatment of programs as continuous functions
over lattices [SS71]. This approach has since become a standard mathematical inter-
pretation of programming languages [Sco76, Sto77|. Milner conceived of Edinburgh
LCF [GMWT9] as a formal system for reasoning about continuous functions over a
complete partial order.

Type theory may be used to reason about programs [Nor81, How88a, Moh86], but
it cannot be compared directly with programming logics like LCF because it deals
poorly with partial objects. Partial object type theory, on the other hand, is on a
more equal footing, and it is informative to compare it with LCF. Before we do this,
however, it is worthwhile to consider what in general makes good programming logic.

5.1.1 What makes good programming logic?

A simple but powerful notion of programming is easiest to understand, and extra
features must be critically important to the language if the increased complexity in
reasoning is to be justified; the functional style of programming is thus a good choice.
Typing greatly aids writing and reasoning about programs. In fact, typing a program
makes an assertion about its meaning, and so is a form of reasoning about programs.
The more expressive types are, the more possible it is to encode information about
the program behavior in the type.

The logic should be expressive, because it is also easier to reason (in the sense that
proofs will be shorter) in a more powerful logic. The logic must allow for assertions
about the behavior of programs to be made. Most importantly, there must be tech-

76 Topics in partial object type theory

niques for proving functions meet some specification, i.e. proving partial and total
correctness. To this end it must be possible to perform induction on the structure of
the domain of the function (for total correctness), and to perform induction on the
structure of the function execution (for partial correctness). There should also be
facilities for reasoning about equivalences between programs.

With these points in mind, we may proceed to the comparison of LCF and partial
object type theory.

5.1.2 LCF and type theory compared

The computation language of the two is similar: there are A-expressions for functions,
a fixed-point constructor to represent recursive programs, and some simple atomic
elements (booleans tt and ff in LCF, and numbers in type theory).

LCF has a simple polymorphic type system, of the sort that its metalanguage ML
has. One advantage of this simple type system is that the typing of computations
is decidable. In type theory, the typing of computations is not decidable, but to
compensate there is a much richer type system, illustrated by the list of types found
in section 2.2.1. This means it is possible to place more information about program
behavior in the type information. Using the subtype constructor, it is possible for
the complete program specification to be given in the type, so a program becomes
typable if and only if it meets its specification; for instance,

o:N—{y:N|y=zxz € N}

is the type of all functions that compute squares. The property of being a partial
or total function is easily expressed by the type alone: N — N is the type of total
functions, and N — N is one type of partial functions. In LCF, all functions are typed
as partial functions, and totality is a property which may be proved about them. The
ability to place this information in the type is a big advantage of partial object type
theory.

Partial functions are proved total by the same technique in both theories: in-
duction is performed on some well-founded ordering; if recursive calls are smaller by
this ordering than the value the function was called on, the function terminates. In
other approaches to proving totality [BM79, Gri81|, the function is labeled with a
well-ordering that shows the function to be total; here the well-founded ordering is
part of the proof of totality.

Type theory has a substantially more powerful logic than LCF, one reason being
that it is possible to quantify over predicates. For some domains of reasoning, this

5.2 Fixed-points and induction 7

extra expressive power is important. However, LCF is classical and type theory is
constructive, so it is difficult to compare reasoning procedures in the two theories
directly. A case in point is that in constructive logic it is more difficult to prove
termination, because —t] does not necessarily imply t|. However, the inducement
property in type theory may be used to compensate for this: if ¢ induces b and a|,
then b] also. To prove this fact in LCF, we would assume b diverged, and show that
a then diverged, which would be a contradiction, meaning (by excluded middle), that
b converged.

It is difficult to draw any quantitative conclusions from the above informal dis-
cussion, but it can be said that partial object type theory compares favorably with
LCF. A comparison of how one may reason by induction in the two theories is part
of a larger story which is told in the next section.

5.2 Fixed-points and induction

A different light is shed on fixed-point induction from the perspective of partial object
type theory. We show that fixed-point induction is a special case of the fixed-point
principle. Surprisingly, we also find that computational induction may be used to
type fixed-points. What emerges from these two facts is that the fixed-point principle
and computational induction are both general principles for typing and reasoning
about computations. Computational induction is a real induction principle, because
it is an induction on a well-founded ordering. Fixed-point induction is not really
an induction principle; it can be viewed as a metaprinciple about what facts are
provable via computational induction. What emerges from these comparisons is a
clearer picture of what it means to reason about computations.

5.2.1 A unified fixed-point principle

Fixed-point induction can be viewed as a special case of the fixed-point principle.
Fixed-point induction is used to prove properties P about functions f by induction
on the finite unrollings of the function:

P(L),vf. P(f) = P(F(f))
P(fiz(F))

If the predicate P is true for all finite approximations to the fixed-point, this rule
implies P is true of the fixed-point. This is not a real induction principle, because it

78 Topics in partial object type theory

is not valid for all predicates P, but only for admissible P’s. It is possible for P to
be true at all approximations, but to fail to hold at the limit; for example,

FY Afdz.if ¢ = 0 then 0 else f(z — 1)
P(fix(F)) Y 3. f(z) =L.

/—/k%
P(F(...F(L)...)) is true for all k, but P(fiz(F)) is false. Syntactic restrictions are

then placed on formulas P with which fixed-point induction may be used. In practice,
many formulas of interest are admissible. Sometimes, however, the proposition needs
to be re-phrased to make it admissible. Other times, no admissible version can be
found.

Fixed-point induction can be derived in type theory using the fixed-point principle.
Versions that are similar to fixed-point induction are derivable in many formulations
of type theory, but to get the exact principle, we need to assume that the theory
has subtypes, and to accept the classical fact that computations either converge or
diverge.

Suppose F € (A — B) — (A — B), and fiz(F) € A— B. Define

S {f:A- B | P(f)).
If fir(F) € S can be shown, we have as a consequence that P(fiz(F)) is true.
THEOREM 72 We may derive the following rule:

|> fiz(F)e S
| > FE(A—)F)—)(A—)F)
|> P(F(T))
f:A— B,P(f) |> P(F(f))

provided S is admissible.

PROOF. Given the subgoals hold, show fiz(F) € S. Applying the fixed-point principle
and a few more proof steps gives the subgoal

f:8 |> P(F(f)).

Proceed by cases on f| V fT. If fT, we need to show P(F(T)); this is a hypothesis.
If f|, we may remove the bar from the hypothesis, giving the sequent

f:A— B, P(f) |> P(F(f)).

5.2 Fixed-points and induction 79

This is also a hypothesis.
QED.
The only difference between the derived rule and the fixed-point induction rule is that
the base case is P(F(1)) instead of P(T). The admissibility restriction for fixed-point
induction on P is transferred to an admissibility restriction on S in the fixed-point
principle. Subtypes cause problems similar to the problems caused by dependent
products, so a bigger collection of admissible types is needed than the ones found in
chapter 3 if this derived rule is to be useful.

The result of this construction is that the fixed-point principle emerges as a single
method for proving properties about fixed-points, be it just typing them, or perform-
ing more complex inductive reasoning.

5.2.2 Computational induction reconsidered

We now show how the computational induction principle can be used to type fixed-
points. Consider the following example:

FY Afz.if zero(z;1; f(z — 1)) € (N — N) — (N — N).

LEMMA 73 Without use of the fized-point principle, we may prove fix(F) € N — N.

PROOF. Pick arbitrary n € N, suppose fiz(F)(n)]; we need to show fiz(F)(n) € N.
Applying computational induction gives the subgoal

n:N, fiz(F)(n)|,Vn"N. fiz(F)(n) ind fie(F)(n') = fie(F)(n') € N
|> fiz(F)(n) € N

which by computing amounts to showing
| > ifzero(n;1; fix(F)(n — 1)) € N.

CASE n = 0: Trivial.
CASE n # 0: We wish to show

|> fiz(F)(n—1) €N,

which follows from the induction hypothesis upon instantiating n’ by n — 1.
QED.

This technique allows a wide range of functions to be typed, but there is no simple
way to describe them. Fixed-points are typed by making sure all computation paths

80 Topics in partial object type theory

are typed; if it is impossible to describe all computation paths, the function will not
be typable. For example, if in the above function we changed the base case from 1
to g(f)(z) for some function g, we would have to examine how g computed to make
sure g(f)(z) € N. If the range type of the function has nested bars, nested uses of
computational induction may be required to type the function.

5.2.3 Two principles compared

We have seen that the fixed-point principle and the computational induction principle
are both general principles for typing and reasoning about computations. It would
thus be possible to build a usable partial object type theory that incorporated only
one of the two.

This then raises the question of how these two principles compare to one another.
The two techniques are used quite differently; notice for example that the previous
proof is much longer than the trivial proof of the same fact using the fixed-point
principle.

Computational induction is a real induction principle, for there is an underlying
well-founded structure of induced computations that induction is being performed on.
The fixed-point principle, on the other hand, is more properly viewed as a metaprin-
ciple: for certain types, a metatheorem shows that fixed-points always exist. With-
out such a metatheorem, it would be difficult to explain why some types had fixed-
points and other didn’t. One advantage is that because the fixed-point principle is a
metaprinciple, it reflects some metafacts into the theory that would otherwise not be
there. This means it is sometimes more powerful than computational induction. For
example, the statement Vf:N — N. fiz(f) € N is provable with fixed-point induction,
but not with computational induction, because it is impossible to analyze the struc-
ture of an arbitrary function in the theory; to type a fixed-point using computational
induction requires analyzing how the function computes.

Fixed-point induction also has weaknesses: if any partial function f € A — A has
no typable fixed-point, then the type A is not admissible for fixed-point induction,
even though some other function ¢ € A — A may have a typable fixed-point. fiz(g)
could perhaps still be typed using computational induction. Another problem with
admissibility restrictions is that the collection of admissible types is never complete,
so there is always the chance that a sensible result cannot be proven because of
arbitrary admissibility restrictions.

The fixed-point principle is difficult to justify foundationally. Metaprinciples
about open-ended computation systems are in general difficult, because it is hard

5.3 Partial propositions 81

to formulate metaprinciples about something we do not completely know. Compu-
tational induction is foundationally sound, however, because inducement is a basic
property of computation.

5.3 Partial propositions

The types ©:A— B, ©:Ax B, A— B, A x B, and A + B have been shown to be
useful in representing propositions. What is the meaning of A as a proposition?
Such propositions have enough interesting properties that we will give them a name,
partial propositions. A is trivially true, because T € A. However, if a € A and a],
then a € A, so A is true. If we can potentially show termination of the validation,
proving a partial proposition would then be a useful exercise.

Consider the type P f vz:N. Jy:N.y=zxz. If p € P and we know for some
particular n € N that p(n)|, then p(n) validates the unbarred proposition Jy:N.y =

n * n. This makes p potentially useful. Validations for propositions are always total
objects, whereas validations for partial propositions are partial objects. Propositions
are thus to total correctness as partial propositions are to partial correctness; since
we know partial correctness to be a useful notion, partial propositions should also be
useful. The reasons why it would be desirable to prove a partial proposition are the
same as the reasons for proving partial correctness: the total proposition is either
intractable or unprovable. It is unknown whether there are an infinite number of
pairwise primes, that is, pairs of primes of the form p,p + 2. We thus could not prove

Vn.dm.m,m + 2 are the n-th set of pairwise primes.

However, we may prove

p € Vn.dm.m,m + 2 are the n-th set of pairwise primes

by defining p(n) to search through primes for the n-th pair. If the computation of
p(100) terminated, it would give a validation for the existence of 100 pairwise primes.

Proofs of partial propositions could also involve induction over a structure not
known to be well-founded. Using the fixed-point principle, we may derive the following
non-well-founded induction principle, written in extract form:

| > Vz:A. B(z) (extract fiz(Ah.Az.b))
h:(Vz:A. B(z)),z:A | > B (extract b)

82 Topics in partial object type theory

for admissible B. We may use the fact Vz:A. B(z) in the proof of itself, a proof-
theoretic analogue of recursion.

An important feature of Nuprl is that it is possible to program by proving a
statement and extracting its constructive content; this is discussed in section 2.3.1.
In Nuprl, it is only possible to develop total programs in this manner, because the
constructions must always terminate. Proving partial propositions will give an ex-
traction which is a partial program, so in partial object type theory we may also
develop partial functions using the extraction paradigm. The non-well-founded in-
duction principle above is one principle for proving a partial proposition which will
extract an unbounded computation.

Partial propositions extend the collection of statements that can be made when
reasoning constructively, giving a more expressive logic. Since there is no construction
to validate statements in classical logic, the notion of partial proposition makes no
sense in a classical theory.

5.4 Abstract computability theory

One of the surprising results that emerges from partial object type theory is that it is
possible to prove the existence of unsolvable problems [CS88]. Since the computation
system is taken to be open-ended, the computations cannot be indexed, so these
unsolvable problems must be shown to exist by means other than the standard ones
found in [HR67] or [Soa87]. Other researchers have studied abstract treatments of
recursion theory [Wag69, Str68, Fri69]; the approach here is a different abstract view.

It is not possible to solve the “halting problem”, i.e. it is impossible to tell, for
arbitrary ¢t € N, whether ¢ halts. That is,

THEOREM 74 There can be no function h € N— N such that h(t) = 1 iff t halts.
PROOF. Assume that h exists; then we can define the function

d = fix(Az.if zero(h(z); 1;71)) € N.

d € N follows by the fixed-point rule because the body is in the type N — N. By
computing the fiz term, we have d = if zero(h(d);1;1) € N. If h(d) # 1, then d
should diverge, but in fact d = 1; so it converges. We reach a similar contradiction
if h(d) = 1. So the assumption that h exists is in error. The argument depends
essentially on the self-referential nature of fiz(f). This argument cannot be valid in a
classical type theory which takes A — B to denote the type of all classical functions

5.5 Building a partial object type theory 83

from A into B, because in that case there surely is a function N — N solving the
halting problem. This argument thus shows that the type-theoretic notion of partial
function is different from the classical notion.

Other results, including Rice’s theorem, notions of reducibility and the existence of
complete sets can be developed in this context. By adding new notions of computation
such as the ability to dovetail computations or the ability to count computation steps,
it is possible to prove more theorems; each new notion of computation gives rise to a
new cluster of theorems. In the standard development of recursion theory there is no
such clustering because once a universal machine is defined, all forms of computation
may be simulated. A close study of this clustering phenomenon could give more
insights into the nature of computation.

5.5 Building a partial object type theory

There are features of partial object type theory that impose special problems in the
design of a theory that includes them. It is not necessary to have both a fixed-point
principle and computational induction but both have advantages, so it is not clear
whether it would be acceptable to remove one of the principles. We consider what
difficulties each of them poses in the construction of a theory.

5.5.1 Expressing computational induction

First, let us consider computational induction. The key to expressing computational
induction is expressing inducement. If we want a mathematical interpretation of the
theory, we cannot interpret inducement, so computational induction must be left out.

In a mathematical interpretation (defined in section 2.2.5), computations are in-
terpreted as mathematical objects and the actual computation process is lost. We
don’t wish to go into the details of how partial objects can be given a mathematical
interpretation; what we wish to show instead is how certain problems arise in any
mathematical interpretation.

The theory of chapter 3 can have no mathematical interpretation because it is an
explicitly computational theory. The assertions a is b, a eval b, and a ind b express
intensional properties of computations which are not present in mathematical inter-
pretations. The question is, what sort of theory can be formulated if we wish to have
a mathematical interpretation?

84 Topics in partial object type theory

The direct way which it is possible to reason about computation in chapter 3
would not be possible, but the greatest loss is that computational induction cannot
be expressed because inducement cannot be expressed. However, the fixed-point
principle could be used to prove facts by induction. We can thus tentatively conclude
that a theory could be formulated that has a mathematical interpretation, but that
sacrifices would be made.

If we abandon the possibility of having a mathematical interpretation, the problem
of how intensional assertions are to be expressed remains. If they are to be expressed
using types as in chapter 3, the theory can have no built-in notion of equality that
is nontrivial and a congruence, because such an equality would have to hold across
inducement and evaluation:

a = b and ¢ +— bimplies c — a
a = b and b > ¢ implies a > c;

any equality satisfying these requirements must be trivial. There are at least three so-
lutions: the first is presented in chapter 3, accepting the fact that there is no built-in
equality. Another solution is found in appendix A: Nuprl already has equality reason-
ing, so intensional reasoning is carried out by new forms of assertion. However, this
solution leaves something to be desired, because we cannot form arbitrary propositions
using ind and eval like “a ind b = aevalb.” A third solution is to define intensional
properties of computation at the metalevel by somehow Godelizing computations; it
is not problematic to perform intensional reasoning over the Godelizations.

5.5.2 Expressing the fixed-point principle

The fixed-point principle is easier to use than computational induction, but it has
at least three disadvantages. First, admissibility conditions are hard to implement.
In chapter 3, a separate universe V was used for admissible types. However, if we
wished to have a more refined collection of admissible types, the collection of rules for
V would become large. Second, admissibility conditions are arbitrary, so some proofs
will fail because the type is not admissible; this is an undesirable feature for any logic
to have. Third, the fixed-point principle is difficult to justify foundationally.

It is possible to significantly extend to collection of admissible types, making the
fixed-point principle a powerful technique for reasoning about functions by induction.
Only experience with actual proofs will tell how useful computational induction and
the fixed-point principle will ultimately be.

Appendix A

A partial object Nuprl

In this appendix we define new rules for Nuprl which make it a theory for reasoning
about partial objects. We add bar types T, a convergence predicate ¢ in! T, a
universe of admissible types V, and new computations fix(f) and seq(a;b). Equality
on bar types is defined as

t=t' €T iff T Typeand (t|] < t'|)andt| =>t=¢t'cT.

Several features of the Nuprl theory make it difficult to add rules for reasoning
about partial objects; most problematic is the requirement that all types come with
a notion of equality which is always respected when the type is used. This makes it
more difficult to perform type-free reasoning, because there is no notion of equality
that can be placed on type-free assertions like a ind b and a eval b. t halts is also
cannot be made a sensible type in Nuprl because we cannot say when two such types
are equal; however, we can have a typed convergence predicate: ¢ in! T meanst € T
and t].

It is thus necessary to extend the sequent-style assertions of Nuprl to give the
ability to reason about computations. In Nuprl, one form of sequent is used, H >>
A ext a; for partial objects we need three extensions to this form. Since inducement
and evaluation cannot be expressed as types, there are two new sequent forms for
reasoning about them:

H > a ind b

and

85

86 A partial object Nuprl

H >> a eval b.

a ind b means that in computing a, b is in turn computed. a eval b means a
evaluates to b.
We also allow for a new kind of hypothesis to be used in sequents:

H, h:[fix(f)(a) at A over q,».P] >> T

This hypothesis expresses the induction hypothesis of computational induction. In
the theory of chapter 3 the induction hypothesis can be expressed directly in the logic,
so there is no need for a new form of hypothesis to be added.

The rules below extend the current Nuprl theory to be a partial object type theory;
only rules for atom, list, and quotient types are missing, but they are straightforward.
In comparison to the theory of chapter 3, more rules are needed here to reason effec-
tively about bar types. This is again due to the limits placed on type-free reasoning
in Nuprl: facts that are provable in the theory of chapter 3 from other principles may
need to be added here as axioms.

A.1 The rules

formation

1. H > T in Ui by intro
>> T in Uz

canonical

1. H > fix(f) in A by fix intro
>> f in A->A
> A in V

2. H >t in T by canonical
>t in T
Where ¢ is a canonical expression.

3. H >t in T by totality
>t in T

A.1 The rules 87

partial int

1.

H

H

>> -t in int
>> ¢ in int
>> m op n in int by intro
>> m in int
>> n in int
>> ind(e;z,y.ta;tp;x,y.t,) in Tle/z]
by intro [over z.T] [new u,v]
>> e in int
w:int,u<0,v:T[u+1/z] >> tgfu,v/z,y] in T|u/z]
>> t, in T[0/Z]
w:int,0<u,v:Tu—1/z] > ty|u,v/z,y] in T[u/z]

>> int_eq(a;b;t;t") in T by intro
>> a¢ in int

>> b in int

a=b in int >> t in T

(a=b in int)->void >> ¢t in T

>> less(a;b;t;t") in T by intro
>> a¢ in int

>> b in int

a> t in T

(a<b)->void >> t' in T

partial union

1.

H >> decide(e;z.t;;y.t,) in Tle/z]

by intro [over z.T] using A|B [new u,v]

>> e in A|B

u:A, e=inl(w) in A|B >> #;[u/z] in T[inl(u)/z]
v:B, e=inr(v) in A|B >> t,[v/y] in Tlinr(v)/z]

partial function

1.

H >> f(a) in Bla/z] by intro using z:A->B

>> f in z:A->B

88 A partial object Nuprl
> a in A

partial product

1. H >> spread(e;z,y.t) in Tle/z]
by intro [over z.T] using w:A#B [new u,v]
>> e in w:A#B
w:A,v:Blu/w] ,e=<u,v> in w:A#B >> tlu,v/z,y] in T [<u,v>/z]

partial set

1. H >> a in {z:A|B} by intro at Ui [new y]
>> a in A
a in! A >> Bla/z]

y:A > Bly/z] in Uz

2. H,u:{z:A|B},H' >> T ext (\y.t)(u) by elim u at Ui [new y]
y:A > Bly/z] in Uz
y:A,[y in!' A ->Bly/z]1]l,u=y in A >> T[y/u] ext t

Note that the second new hypotheses of the second subgoal is hidden.

partial universe

V is the universe of types that have fixed-points. All of the formation rules
except for dependent product formation have V counterparts, just as in
the theory of chapter 3; these rules will thus not be listed individually.

1. H >> V in U2

2. H > A in Ul
>> A in V

partial equality

1. H >> a=d' in A by equality
>> (a in! A)->(a' in! A)
>> (&' in! A)->(a in!' A)
(a in' A), (a' in' A) >> a=ad' in A

A.1 The rules

2. H >> a=d' in A by convergence 1
>> a=d' in A
>> ¢ in A

termination

1. H > (¢t in! T) in U: by intro
>>t in T

2. H >> axiom in (¢ in! T) by intro
>> t in! T

3. H >t in! T by intro
>t in T

where T is a type of the form z: A#B, x: A->B, A| B, a<b, a=b in A, a
in! A, Uz, or V.

4. H >>t in! T by induce
> t' in! T
>> t' ind ¢
>> ¢t in T
T in Uz >> T in Us

5. H,h:(t in! T) >> t in T by elim h

sequencing

1. H > seq(a;_b) in T by intro
>> @ in T
>>bin T

2. seq(a;b) in T>bin T by elim

89

90 A partial object Nuprl

computational induction

1. H > Plfix(f),a/q,7]
ext fix(\h,a'.t) (a) by fix induction
>> fix(f) in A->B
>> fix(f) (a) in'! B
> a in A
a':A, fix(f)(a') in! B, [fix(f)(a') at A over ¢,r.P]
>> Pl£fix(f),a'/q,r] ext t

The hypothesis [fix(f) (a') at A over ¢,r.P] asserts that
Plfix(f),d'/q,7]

is valid for all fix(f) (a") induced by £fix(f) (a¢'). The following rule
reflects this.

2. H, h:[fix(f)(a) at A over g¢,r.P]
>> P[fix(f),d'/q,r] ext h(a') by comp hyp h
>> £ix(f) (a) ind fix(f) (a")
> a' in A

evaluation

1. H >> a op b eval ¢ by comp
>> a op b = ¢ in int

where c is a canonical integer.

2. H >> int eq(a;b;c;d) eval e by comp true
>> a=b in int
>> c eval e

3. H >> less(a;b;c;d) eval e by comp true

>> a> ¢ eval e

4. H >> ind(n;z,y.a;b;z,y.c) eval d plus
>> 0<n
>> ¢ln,(ind(n-1;z,y.a;b;z,y.c))/z,y] eval d

>>
>>

>>
>>

>>
>>

>>
>>

>

\%

A.1 The rules

spread(a;z,y.b) eval ¢ by comp
a eval <e, f>
ble,f/z,y]l eval c

a(b) eval ¢ by comp
a eval \z.d

d[b/z] eval ¢

decide(a;z.b;y.c) eval d by comp
a eval inl(!)

bll/z] eval d

seq(a;b) eval ¢ by comp
a in! A

b eval c

fix(a) eval b by comp
a(fix(a)) eval b

inducement

1. H >»
>>

a ind b by eval
a eval b

where a is not canonical.

2. H >
>>
>>

H >

4. H >
>>

5. H >

6. H >
>>

7. H >

8. H >
>>

a ind c¢ by trans
a ind b
b ind ¢

a op b ind a¢ by arg left

int _eq(a;b;c;d) ind ¢ by comp true
a = b in int

int_eq(a;b;c;d) ind a by arg left

less(a;b;c;d) ind ¢ by comp true
a<b

less(a;b;c;d) ind e by arg left

ind(n;z,y.a;b;z,y.c) ind cln,(ind(n-1;z,y.a;b;z,y.c))/z,y]

by comp plus
0<n

91

92

10.

11.
12.

13.
14.

15.
16.

17.
18.

>>

>>
>>

>>

>>
>>

>>

>>
>>

>>

>>
>>

>>
>>

A partial object Nuprl

ind(n;z,y.a;b;z,y.c) ind n by arg

spread(a;z,y.b) ind b[l,r/z,y] by comp
a eval <I,r>

spread(ae;z,y.b) ind a by arg

a(b) ind d[b/z] by comp
a eval \z.d

a(b) ind e by arg

decide(a;z.b;y.c) ind b[l/z] by comp left
a eval inl(l)

decide(a;z.b;y.c) ind a by arg

seq(a;b) ind b by comp
a in! T

seq(a;b) ind e by arg
fix(e¢) ind a(fix(a)) by comp

Bibliography

[All87a)

[ALI87D)

[Bas88a]

[Bas88b]

[Bat79]

[BCS5]

[Bee82]

[Blu67]

[BM79]

S. F. Allen. A non-type theoretic definition of Martin-Lof’s types. In Pro-
ceedings of the Second Annual Symposium on Logic in Computer Science,

pages 215-221. IEEE, 1987.

S. F. Allen. A non-type-theoretic semantics for type-theoretic language.
Technical Report 87-866, Department of Computer Science, Cornell Uni-
versity, September 1987. Ph.D. Thesis.

D. A. Basin. Building theories in Nuprl. Technical Report 88-932, De-

partment of Computer Science, Cornell University, 1988.

D. A. Basin. An environment for automated reasoning about partial func-
tions. In 9th International Conference On Automated Deduction, volume
310 of Lecture notes in Computer Science, pages 101-110, 1988.

J. L. Bates. A Logic For Correct Program Development. PhD thesis,
Cornell University, 1979.

J. L. Bates and R. L. Constable. Proofs as programs. ACM Trans. Prog.
Lang. Sys., 7(1):113-136, 1985.

M. J. Beeson. Recursive models for constructive set theories. Annals of

Mathematical Logic, 23:127-178, 1982.

M. Blum. On the size of machines. Information and Control, 11:257-265,
1967.

R. S. Boyer and J S. Moore. A Computational Logic. ACM Monograph
series. Academic Press, New York, 1979.

93

94

Bibliography

[CAB*86] R. L. Constable, S. F. Allen, H. Bromley, W. R. Cleveland, J. Cre-

[CHS5]

[CHSS]

[Cle87]

[CM85]

[COT8|

[CS87)

[CS88]

[CZ84]

[dB70]

mer, R. Harper, D. Howe, T. Knoblock, N. P. Mendler, P. Panangaden,
J. Sasaki, and S. F. Smith. Implementing Mathematics with the Nuprl

Proof Development System. Prentice-Hall, Englewood Cliffs, New Jersey,
1986.

T. Coquand and G. Huet. Constructions: A higher order proof system for
mechanizing mathematics. In B. Buchberger, editor, EUROCAL °85: Fu-
ropean Conference on Computer Algebra, pages 151-184. Springer-Verlag,
1985.

T. Coquand and G. Huet. The calculus of constructions. Information and

Computation, 76:95-120, 1988.

R. C. Cleaveland. Type-theoretic models of concurrency. Technical Report
87-837, Department of Computer Science, Cornell University, May 1987.
Ph.D. Thesis.

R. L. Constable and N. P. Mendler. Recursive definitions in type theory.
In Rohit Parikh, editor, Logics of Programs, volume 193 of Lecture notes
in Computer Science, pages 61-78, Berlin, 1985. Springer-Verlag.

R. L. Constable and M. J. O’Donnell. A Programming Logic. Winthrop,
1978.

R. L. Constable and S. F. Smith. Partial objects in constructive type the-
ory. In Proceedings of the Second Annual Symposium on Logic in Computer

Science. IEEE, 1987.

R. L. Constable and S. F. Smith. Computational foundations of basic
recursive function theory. In Proceedings of the Third Annual Symposium
on Logic in Computer Science. IEEE, 1988.

R. L. Constable and D. R. Zlatin. The type theory PL/CV3. ACM Trans-
actions on Programming Languages and Systems, 6(1):94-117, 1984.

N. G. de Bruijn. The mathematical language AUTOMATH, its usage
and some of its extensions. In Symposium on Automatic Demonstration,
Lecture notes in Mathematics vol. 125, pages 29-61, New York, 1970.
Springer-Verlag.

[dB80]

[Dum77]
[Ehr8s]

[FefT5]

[Fri69]

[GirT1]

[Gir86]

[GMW79)

[Gri81]

[HN87]

[Hoa69]

[How86]

Bibliography 95

N. G. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin
and J. R. Hindley, editors, Essays in Combinatory Logic, Lambda Calculus,
and Formalism, pages 589—606. Academic Press, 1980.

M. Dummett. Elements of Intuitionism. Oxford University Press, 1977.

T. Ehrhard. A categorical semantics of constructions. In Proceedings of
the Third Annual Symposium on Logic in Computer Science, pages 264—
273. IEEE, 1988.

S. Feferman. A language and axioms for explicit mathematics. In J. N.
Crossley, editor, Algebra and Logic, volume 450 of Lecture notes in Math-
ematics, pages 87-139. Springer-Verlag, 1975.

H. Friedman. Axiomatic recursive function theory. In Logic Colloguium

’69, pages 385—404. North-Holland, 1969.

J.-Y. Girard. Une extension de l'interprétation de Godel a ’Analyse, et
son application a ’Elimination des coupures dans 1’Analyse et la Théorie
des types. In J. E. Fenstad, editor, Second Scandinavian Logic Symposium,
pages 63-92, Amsterdam, 1971. North-Holland.

J.-Y. Girard. The system F of variable types, fifteen years later. Theoret-
ical Computer Science, 45:159-192, 1986.

M. J. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mech-
anized Logic of Computation, volume 78 of Lecture notes in Computer
Science. Springer-Verlag, 1979.

D. Gries. The Science of Programming. Springer-Verlag, New York, 1981.

S. Hayashi and Hiroshi Nakano. PX: a computational logic. Technical
Report RIMS-573, RIMS, Kyoto University, 1987.

C.A.R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the Association for Computing Machinery, October 1969.

D. J. Howe. Implementing number theory, an experiment with Nuprl. In
Proceedings of the Eighth International Conference on Automated Deduc-
tion, volume 230 of Lecture notes in Computer Science, pages 404-415.

Springer-Verlag, 1986.

96

[How87]

[How88al

[How88b]
[HR67]

[Kre86|

[Man74]

[MarT71]

[Mar73]

[Mar80]

[Mar82]

[Mar83]

[Men87]

Bibliography

D. J. Howe. The computational behaviour of Girard’s paradox. In Pro-
ceedings of the Second Annual Symposium on Logic in Computer Science,

pages 205-214. IEEE, 1987.

D. J. Howe. Automating reasoning in an implementation of constructive
type theory. Technical Report 88-925, Department of Computer Science,
Cornell University, June 1988. Ph.D. Thesis.

D. J. Howe. Equality in lazy computation systems. Manuscript, 1988.

Jr. H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967.

C. Kreitz. Implementing automata theory. Technical Report 86-779, De-
partment of Computer Science, Cornell University, 1986.

Z. Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

P. Martin-Lof. A theory of types. Report 71-3, Department of Mathe-
matics, University of Stockholm, February 1971.

P. Martin-Lof. An intuitionistic theory of types: Predicative part. In H. F.
Rose and J. C. Shepherdson, editors, Logic Colloguium ’73, pages 73118,
Amsterdam, 1973. North-Holland.

P. Martin-Lof. Intuitionsitic type theory. Notes by Giovanni Sambin of a
series of lectures given in Padova, June, 1980.

P. Martin-Lof. Constructive mathematics and computer programming. In
Sizth International Congress for Logic, Methodology, and Philosophy of
Science, pages 153-175, Amsterdam, 1982. North Holland.

P. Martin-Lof. On the meanings of the logical constants and the justi-
fications of the logical laws. Notes from lectures given at Siena, April,

1983.

P. F. Mendler. Inductive definition in type theory. Technical Report
87-870, Department of Computer Science, Cornell University, September
1987. Ph.D. Thesis.

[Moh86]

[MPC86]

[Nor81]

[Plo81]

[Rey74]

[ScoT70]

[ScoT76]
[S0a87]
[SST71]

[SteT2]

[Sto77]

[Str68]

Bibliography 97

C. Mohring. Algorithm development in the calculus of constructions. In
Proceedings of the First Annual Symposium on Logic in Computer Science,

pages 84-91. IEEE, 1986.

N. P. Mendler, P. Panangaden, and R. L. Constable. Infinite objects in
type theory. In Proceedings of the First Annual Symposium on Logic in
Computer Science, pages 249-255, 1986.

B. Nordstrom. Programming in constructive set theory: Some examples.
In Proceedings 1981 Conference on Functional Programming Languages
and Computer Architecture, pages 290-341, Portsmouth, England, 1981.

G. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus University,
1981.

J. C. Reynolds. Towards a theory of type structure. In Proceedings Col-
logue sur la Programmation, volume 19 of Lecture Notes in Computer
Science, pages 408-423. Springer-Verlag, 1974.

D. Scott. Constructive validity. In Symposium on Automatic Demonstra-
tion, volume 125 of Lecture notes in Mathematics, pages 237-275, Berlin,

1970. Spinger-Verlag.
D. Scott. Data types as lattices. STAM J. Computing, 5:522-587, 1976.

R. I. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag,
1987.

D. Scott and C. Strachey. Towards a mathematical semantics for computer
languages. Technical Report PRC-6, Oxford University, 1971.

S. Stenlund. Combinators, Lambda-Terms and Proof Theory. D. Reidel,
Dordrecht, Holland, 1972.

J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. The MIT Press, Cambridge, Massachusetts,
1977.

H. R. Strong. Algebraically generalized recursive function theory. IBM
J. Res. Devel., 12:465-475, 1968.

98 Bibliography

[Wagb9] E. G. Wagner. Uniformly reflexive structures: On the nature of
Godelizations and relative computability. In Studies In Logic and The

Foundations Of Mathematics — Logic Colloguim ’69, volume 61. North-
Holland, 1969.

