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Abstract
Atomic regions are an important concept in correct con-
current programming: since atomic regions can be viewed
as having executed in a single step, atomicity greatly re-
duces the number of possible interleavings the programmer
needs to consider. This paper describes a method for building
atomicity into a programming language in an organic fash-
ion. We take the view that atomicity holds for whole threads
by default, and a division into smaller atomic regions occurs
only at points where an explicit need for sharing is needed
and declared. A corollary of this view is every line of code
is part of some atomic region. We define a polymorphic type
system, Task Types, to enforce most of the desired atomicity
properties statically. We show the reasonableness of our type
system by proving that type soundness, isolation invariance,
and atomicity enforcement properties hold at run time. We
also present initial results of a Task Types implementation
built on Java.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Concurrent
Programming Structures

General Terms Design, Languages, Theory

Keywords Pervasive Atomicity, Type Systems, Sharing-
Aware Programming

1. Introduction
In an era when multi-core programming is becoming the
rule not the exception, the property of atomicity – that pro-
gram execution in the presence of interleavings has the
same effect as a sequential execution – is a crucial in-
variant. Some programming languages now support a no-
tion of atomic block, requiring the block to be viewable
as executing atomically; this means there will not be any
interleavings violating the sequential view of that block
and program meaning is greatly clarified. One weakness of
atomic blocks however is that guarantees of atomicity hold
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only in so-marked blocks, and code outside of the marked
blocks may well have anomalous behaviour upon interleav-
ing. When the atomicity-enforcing code interleaves with the
non-atomicity-enforcing code, a weaker guarantee known
as weak atomicity [CMC+06; SMAT+07; ABHI08] may
happen.

This paper – built on top of our previous Coqa language
[LLS08] – takes the opposite route to address atomicity. In-
stead of indicating which subparts of a thread should be
atomic, a programmer of our language divides the thread
into subzones of atomic execution, and every single line of
code must be part of some atomic zone. This design prin-
ciple, which we call pervasive atomicity, eliminates weak
atomicity by design. The programming approach is the op-
posite of atomic zones: by default threads are completely
atomic and uncommunicative, and specific atomicity break
points are then inserted where the thread needs to commu-
nicate with other threads. In addition, since the number of
zones is much smaller than the number of program instruc-
tions, the conceptual number of program interleavings is sig-
nificantly reduced, a boon for program analysis and testing,
and ultimately for the deployment of more reliable software.

Unfortunately, Coqa is not ideal: it requires dynamic
monitoring to limit object sharing between threads. Dynamic
monitoring mechanisms are known to incur heavy overhead,
which can be particularly bad here since every object may
need to be monitored. They can also suffer from problems
of deadlock or livelock. Our initial Coqa compiler relied
on ad hoc optimizations to achieve tolerable performance.
What is needed is a principled means to keep the benefits of
pervasive atomicity, but without the high cost.

This paper answers this need by developing a static,
declarative method for dividing objects between threads,
Task Types. It is common knowledge [CGS+99; WR99;
Bla99] that if an object is accessed only by one thread, then
dynamic atomicity enforcement on that object is unneces-
sary. Task Types lift this simple notion to the programming
level, effectively enforcing a non-shared memory model by
default at compile time.

Figure 1(a) illustrates how objects are statically localized
in threads via Task Types. Here the two rectangular boxes
represent two runtime threads, called tasks in our language.
The solid black objects are special task objects which launch
a new task every time they are invoked, while the white
objects are the non-shared ordinary objects, the vast ma-
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Figure 1. Isolation and Sharing at Run Time

jority of objects that are accessed by only one task. Our
type system statically guarantees this picture of isolation.
Making non-shared-memory the default case has parallels
with Actor-based languages [Agh90; Arm96; SM08], MPI
[GLS94] and DPJ [BAD+09] amongst others. Compared to
these approaches, Task Types aim to get the benefits of these
models while offering a more familiar setting for program-
mers: only minor changes need to be made to most Java pro-
grams to make them compilable by the Task Types compiler.
One reason why fewer program changes are required is that
we support limited inter-task sharing, unlike the above mod-
els. Fig. 1(b) and Fig. 1(c) are examples of forms of inter-
task object sharing that we support.

In Fig. 1(b), two tasks communicate through shared task
objects, special objects which may themselves hold a set
of non-shared ordinary objects and serve as the rendezvous
point for other tasks. An important benefit of limited sharing
is the degree to which atomicity properties are preserved:
the sending task has one zone of atomicity from the start
to the shared task object invocation, the shared task itself is
an atomic zone, and the task execution after the invocation
is finished is a third zone of atomicity. So, our approach is
a compromise between the extreme lack of sharing of Ac-
tor or Actor-like languages [Agh90; Arm96; SM08; GLS94;
BAD+09] and the uncontrolled sharing of current multi-
threaded languages; by aiming in the middle we can achieve
a reasonable compromise between ease of programmability
and the production of reliable code.

Fig. 1(c) shows an additional form of sharing that we
support, the shared ordinary objects. These objects allow
Coqa-style sharing to be used in limited cases within Task
Types: only one task may use a shared ordinary object at a
time, so no atomicity of tasks is ever violated due to access
of these objects. As in Coqa, run-time support is needed to
ensure two different tasks never access such an object at the
same time. The programming choice between using a shared
task object or a shared ordinary object reflects a clear choice
between more parallelism or more atomicity.

Ownership types [CPN98; Cla01; BLR02] and region
types [TT97; Gro03; CCQR04] are well-known type-based
techniques for static partitioning of memory. Task Types are
strongly related to such systems, but differ in two impor-
tant aspects: explicit sharing exceptions are allowed in Task
Types, and static type variables must invariably align with
runtime tasks.

2. Informal Discussion
In this section, we highlight a number of features of our lan-
guage, focusing on its type system. We use a simplified Map-
Reduce algorithm [DG04] to illustrate basic language fea-
tures; the code is in Fig. 2. Map-Reduce represents a com-
mon type of multi-core algorithm, of the “embarrassingly
parallel” style. Later in this section, we will discuss a pro-
gram of the opposite nature, a high-contention PuzzleSolver
[LLS08]. Together, we aim to provide readers a real feel of
programming in Task Types.

2.1 Sharing-Aware Programming
Task Types encourage programmers to make upfront shar-
ing decisions, by associating class modifiers µ with classes.
The default choice here (µ = ε) aligns precisely with the
principle of having non-shared memory as the default. The
objects instantiated from these classes are non-shared ordi-
nary objects, and messaging to these objects uses the stan-
dard Java dot (.) invocation symbol. For instance, the code
for MapReduce in Fig. 2 indicates WorkUnit is not shared.
The WorkUnit object encapsulates data and a unit of work
that needs to be done on the data, and each such instance is
indeed exclusively used by each Mapper.

Here Mapper is declared as a task, meaning each
Mapper object is a (non-shared) task object. Each such
object spawns a new task (thread) when sent a message, in
analogy to how an actor handles a message [Agh90]. Non-
shared tasks are simply threads with a distinguished object
representative, and the execution of the body of the invoked
method constitutes the lifetime of a task. Note that the com-
pletion of the task does not end the lifetime of the task object
or any state associated with it – the object may later receive
and handle another message following the Actor model.
Here the main method’s expression m -> map(ul, r)
creates a non-shared task by sending a map message to the
entry object m. Such invocations are asynchronous and have
no interesting return value. Here, twenty Mapper threads
are executing in parallel. Individually, each task object keeps
a queue of all received messages and processes them serially,
following Actors. This sequential processing constraint is to
preserve atomicity; if multiple tasks need to run in paral-
lel, the programmer multiply instantiates the same task class
multiple times, and this is illustrated by the twenty Mapper
task objects in the example.

Any shared classes must be explicitly declared, and
the exclamation mark (!) also must be used in the sym-



task class Mapper {
void map(Loader ul,Reducer r) {
WorkUnit wu = ul !->loadWorkUnit();
r !->reduce(wu.work());

}
}
shared task class Reducer {

int sum = 0;
Counter toReduce;
void Reducer(CtrFactory cf)
{ toReduce = cf !.newCtr(); }

void reduce(int rt) {
sum = sum + rt;
toReduce.dec();
if(toReduce.val() == 0)
{ ...output sum ...}

}
}
shared task class Loader {
Counter toLoad;
Loader(CtrFactory cf) {
toLoad = cf !.newCtr();

}
WorkUnit loadWorkUnit() {
toLoad.dec();
return new WorkUnit(this);

}
}
class WorkUnit {
Loader l;
WorkUnit(Loader l) { l = l; }
int work()
{ ...return result ... }

}
shared class CtrFactory {

int i;
CtrFactory(int i) { i = i; }
Counter newCtr()
{return new Counter(i); }

}
class Counter {

int v = 0;
Counter(int v) { v = v; }
void dec() { v--; }
int val() {return v; }

}

task class Main {
void main() {

int NUM = 20;
CtrFactory cf = new CtrFactory(NUM);
r = new Reducer(cf);
ul = new Loader(cf);
for(i=1; i <= NUM; i++) {
Mapper m = new Mapper();
m ->map(ul,r);

} } }

Pre-Twinned Access Graph
Main
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Mapper

    Counter (toLoad)

      Loader

      WorkUnit

      static access relation

                static type variables for
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Figure 2. A Simplified Map-Reduce Example
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(shared task object o3) (shared ordinary object o4)

isolated (shared /∈ µ) µ = task µ = ε
(non-shared task object o2) (non-shared ordinary object o1)

PPPPPPPPmessaging what it is why you should use it

o1 .m(v) intra-task messaging promotes mutual exclusion and atomicity
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o3 !->m(v) shared “service” allows for atomicity-breaking sharing; promotes parallelism with early free
o4 !.m(v) shared “data” allows for atomicity-preserving sharing

Figure 3. Four Kinds of Objects, Four Kinds of Messaging

bol for sending messages to these objects so that sharing
is highlighted in the source code. In the example, both
Reducer and Loader are shared task objects: in partic-
ular, all twenty Mapper objects share a single Reducer
object to sum up the numerical results, by the invoca-
tion r !-> reduce(wu.work()) one by one. Shared
task messaging does not run in parallel with the invoker –
o!->m(v) is synchronous and blocking and does not spawn
a thread. This point can be made clear by looking at the
ul !-> loadWorkUnit() expression – the Mapper
object has to wait for the return of the WorkUnit. What
makes a shared task a “task” is its ability to build its own
atomicity zone: the shared task maintains its own objects
and frees them all when the shared task ends, i.e. the method
returns. This nature of shared tasks helps improve system
performance, by not holding onto objects for too long, and
makes rendezvous between two “live” tasks possible.

Shared ordinary objects, such as CtrFactory, can only
be accessed over the lifetime of one task at a time, and as
such will never break the atomicity of a task. However, they
may be accessed by one task first, and then accessed by
another when the first task has completed. As a result, shared
ordinary objects must be dynamically monitored. Shared
task objects and shared ordinary objects are related, but their
effects on atomicity and parallelism are clearly different.

Fig. 3 summarizes the four kinds of objects and their mes-
saging. To represent four possibilities, we use the presence
or absence of two modifiers, task and shared; the first differ-
entiates the execution policy (a task or not), and the second
distinguishes the access policy (shared or non-shared). For
convenience, we will equivalently view µ as consisting of
set of 0-2 keywords. Thus for instance, task /∈ µ matches
either case in the right column of the first table.

2.2 Static Enforcement of Atomicity
Our previous Coqa compiler [LLS08] implemented atomic-
ity solely with locks, and we proved that a running task is
atomic when it locks every (ordinary) object it accesses; if
a task attempts to access an object which is already locked

by another task, it blocks until the locking task execution is
completed.

The main property of Task Types is that non-shared ordi-
nary objects are provably isolated inside at most one runtime
task throughout their lifetime, and thus need no mechanism
to support mutually exclusive access at runtime. The main
goal of the type system is to prove such isolation indeed
holds at compile-time, and so the run-time lock monitoring
can be removed. We now give a high-level description of
how limited, safe sharing of ordinary objects is supported in
the type system. A key structure involved in typechecking
is the static access graph, a static directed graph with edges
for object access via field read/write or being sent a message.
Since some data sharing needs to be supported, the static ac-
cess graph is not a strict hierarchy; in particular, nodes repre-
senting shared task objects are sharing points. In the MapRe-
duce example, Loader and Reducer for example share a
CtrFactory.

The MapReduce static access graph is illustrated in a
box inside Fig. 2. The graph generated by the type system
is the bottom one labeled “Static Access Graph.” For the
purpose of presenting basic ideas however, let us first focus
on a simplified version of that graph, labeled “Pre-Twinned
Access Graph” in the Figure. Over this graph we define an
access path to be a path on this graph from a non-shared
task object to a non-shared ordinary object; then we say a
cut vertex exists in the graph for some non-shared ordinary
object o iff all distinct access paths to o in fact go through
a single “cut” node in the static access graph. The name
of this property comes from a graph-theoretic property of
this invariant, and is formalized as predicate cutExists in
Sec. 3.5. To see a potential violation of isolation, suppose we
removed the shared task modifier from class Loader (and
changed all !-> symbols to . for messaging to its instances).
The resulting program is obviously troublesome at runtime
– different Mapper instances would race to mutate field
toLoad in class Loader, violating its mutual exclusive
access and invalidating our atomicity model. Such a bug
would be caught by our type system because there is no cut



vertex for access paths of Loader, in this case from Main
and from Mapper.

Note that the typechecking described above subsumes
aggregate locking, i.e. if a large data structure needs to be
lock protected, there should not be a need to lock each and
every element. To see how this can be supported, observe
that when the cut vertex above is a shared ordinary object,
all non-shared ordinary objects can “hide” behind it, and the
type system still typechecks.

The example above also shows the need for a polymor-
phic type system. Two different Counter’s, toLoad and
toReduce, are created there by two invocations of the
factory method newCtr. Even though there is only one
new Counter statement in the program, two instances are
created at runtime. Task Types aim to be maximally expres-
sive in this case, and use context-sensitivity to give unique
typings to each counter, as is reflected in the diagram in
Fig. 2. The form of context-sensitivity employed in Task
Types follows [WS01; EGH94; MRR05; WL04].

We now summarize why the MapReduce example type-
checks. The Mapper mapmethod can freely access its work
unit wu; it was created by the UnitsLoader and thus the
object is passed across a task boundary, but the only task
with access to it is the particular mapper task itself; this
means the mapper is the cut vertex, i.e. the cutExists typ-
ing predicate holds for wu. The reducer, ul, and all the
mappers are tasks and so can be shared freely.

Task Twinning We now explain why the “Pre-Twinned
Access Graph” is not good enough for preserving isola-
tion of non-shared ordinary objects. Observe in that graph
that only one node is created for Mapper, even though
their might be 20 Mapper’s at run time. The fundamen-
tal problem here is static approaches have to finitely ap-
proximate the in principle unbounded tasks that arise in the
presence of recursion. Since different runtime contexts must
share static representations for the analysis to remain finite,
we need to make sure this approximation will not intro-
duce errors, and it does in fact introduce some very subtle
complications. Suppose we added an additional field called
secretShare of type WorkUnit to class Loader, and
we changed the return statement at the end of that method
to return secretShare. It is not hard to see this is a prob-
lem program as all Mapper instances would be sharing the
same WorkUnit stored in secretShare; furthermore,
the cut vertex predicate above would be unable to detect this
problem if we chose to use the “Pre-Twinned Access Graph”
for analysis. The root of this problem is that the type sys-
tem as described up to now created only one instantiation
of Mapper to model the many created at runtime, and that
approximation does not soundly model sharing between the
different Mapper instances at runtime.

To address this case we invent a technique called task
twinning: we make two static instances instead of a sin-
gle task instance, which here means two Mapper’s, two

Loader’s and two Reducer’s. The type system in fact
produces the graph at the bottom of Fig. 2. This technique
intuitively captures the fact that every program point for
task instantiation potentially may lead to more than one
task instantiation at run time, so it directly uses two distinct
static type variables to split all possible runtime objects into
two subsets. Combining this with our polymorphic treat-
ment of method invocations, each object instantiated inside
the scope of twinned task objects is also multiplied in the
graph – there are two Counter instances for toReduce
(one for each twinned Reducer), two Counter instances
for toLoad (one for each twinned Loader), and four
WorkUnit instances (from each twinned Mapper invok-
ing loadWorkUnit of each twinned Loader).

Our formal system is constructed to handle the case
where every line of code may potentially be involved in
recursion, and hence every task object needs to be twinned.
In practice, mechanical application of twinning is not al-
ways necessary. For instance, the Reducer and Loader
objects are in fact instantiated in the bootstrapping main
method, so the system would still be sound even if our static
access graph had not twinned them. We treat simplifications
in this flavor as implementation-level optimizations, and do
not model them in the theory, except that the bootstrapping
task Main is trivially singular, so we do not twin it.

Now, looking at the actual “Static Access Graph” the
type system generates in Fig. 2 we see that the cut ver-
tex property still holds for every non-shared ordinary ob-
ject in the graph. If, however, the program incorporated
the secretShare modification above, there would be
two WorkUnit instances in the full static graph, and each
WorkUnit would be accessed by both Loader’s in ad-
dition to both Mapper’s. Such a graph would violate the
cut vertex condition since there is an access path to each
WorkUnit from each Mapper and there is no cut vertex
dominating both Mapper’s.

Properties For the simplicity of the presentation, the static
access graph drawn in Fig. 2 does not distinguish be-
tween read and write access. Our formal type system is
more refined, and is constructed using a non-exclusive-read-
exclusive-write principle. Additionally, we can prove there is
no atomicity violation when a field write in constructors are
treated as non-exclusive. Immutable objects consequently
can be freely shared.

In Section 4 we prove type soundness and decidability of
type inference for Task Types. We also will show how Task
Types preserve a non-shared memory model for all objects
declared as non-shared and ordinary. Since these objects do
not need lock protection to preserve atomicity, Task Types
will have the same pervasive atomicity properties as did
Coqa but with a lower run-time cost. Pervasive atomicity
also provably subsumes race condition freedom [LLS08],
so programmers also will be spared from race conditions –



for example, in the reduce method, sum = sum + rt
is guaranteed to compute predictable results.

2.3 Programmability
Effective Task Types programming requires the program-
mer to develop a careful plan for object sharing. Declaring
as many objects as possible to be non-shared ordinary ob-
jects, µ = ε, will increase run-time performance, and at the
same time increase the size of atomic zones, so the goal of
the programmer is simply to maximize the non-shared ordi-
nary classes but still allow the program to typecheck. Ob-
jects that cannot typecheck as unshared ordinary should be
typechecked as shared ordinary (µ = shared) or shared task
(µ = shared ->). Fortunately, problems with typing a non-
shared ordinary object are always solved by hoisting to a
shared one since the type system imposes no additional con-
straints on shared objects. So, this is always available as a
last resort; the key is to hoist up as few objects as possible,
to obtain the largest zones of atomicity and highest perfor-
mance.

Both shared ordinary and shared task objects are locked
for mutual exclusion, but shared ordinary objects do not add
new atomicity break points into tasks and are also more
appropriate when a task makes continual use of an object.
So, shared is the preference over shared task if the object
really “should be” local to the task, but the type system is too
weak to realize that. A good situation to use shared tasks is
when the class wraps up a relatively independent “service,”
so that when the service is completed, “partial victory” can
be declared. Examples include Reducer and Loader in
the MapReduce example.

We believe this additional programmer focus on object
sharing is time well-spent if the final goal is production of
reliable software. It is our belief that the vast majority of ob-
jects in a vast range of applications are ordinary objects not
shared across tasks, and they can be programmed normally,
so additional planning is required only on the shared object
portions of the code.

We don’t expect this paradigm will extend to every line
of every single application – just as there is a rare need
to escape to C in Java there will be rare cases where for
efficiency the Task Type framework needs to be bypassed.
One such example is data structure implementations that use
hand-over-hand locking.

We next describe a benchmark program with significant
contention. Intuitively, this is precisely the category of pro-
grams one would expect Task Types to be uncomfortable
with, so it will be more of a stress test of our language.

2.3.1 The PuzzleSolver Benchmark
In Section 5 we discuss the implementation and a few bench-
marks of its performance. One benchmark, PuzzleSolver,
solves a generalized version of the 15-puzzle, the famous
4x4 sliding puzzle where numbers 1-15 must be slid to ar-
rive at numerical order. The primary worker tasks of the pro-

gram are n SolverTasks, each of which in parallel takes
existing legal gameplay move sequences (PuzzleMove’s)
from a central work queue (PuzzleTaskQueue) and puts
back on the queue all gameplay moves extending the play
sequence grabbed by one game step, if any exist. All worker
tasks loop on this activity until there are no more move se-
quences to extend on the shared queue. In order to avoid re-
peating play, all visited board states (PuzzlePositions)
are centrally logged in a PositionSeen object so no
worker SolverTask will add an already investigated po-
sition to the PuzzleTaskQueue. Lastly there are classes
Block and Puzzle, the former containing the ID and size
of a block (the generalization supports n × m blocks), and
the latter which checks for legal puzzle moves.

The primary interest for Task Types is what sharing
declarations are placed on the classes. SolverTask is
obviously a task and therefore declared a task. Classes
PuzzleTaskQueue and PositionSeen are data struc-
tures that must be shared by all tasks and so logically are de-
clared as shared task which also implicitly guarantees their
mutually exclusive access. Classes Block and Puzzle are
not changed after they are constructed, and even though they
are shared across worker tasks it is still possible to declare
them as ordinary unshared classes since they are known to
be immutable – this is an example of the practical usefulness
of the non-exclusive read we support in the type system, as
was discussed in the previous subsection.

The only class which the typechecker is less than op-
timal on is PuzzlePosition which must be declared
shared task in order to typecheck. The PuzzlePosition
objects are used by SolverTask’s to replay PuzzleMove
sequences on the grid, and each worker task has its own pri-
vate PuzzlePosition which logically is unshared. So, it
sounds like PuzzlePosition could be declared unshared
ordinary, but there is a subtle problem: there is also a distin-
guished PuzzlePosition called initial position
which holds the initial board configuration and is set up
by the main task that launches the worker tasks. This
initial position is passed to each worker task so
they can set up their own PuzzlePosition (by copying
initial position), but even though they are only read-
ing it, the main task had written to initial position
when the data was read from a file and so it is consid-
ered owned by the main task and so cannot be read by the
worker tasks. If Task Types were to support a per-instance
declaration of sharing policy, the private per-worker-task
PuzzlePosition objects could be declared unshared or-
dinary, and only the initial position would need to
be a shared task. A flow-sensitive typing would also sup-
port this since initial position is not mutated after it
is read from the file. And, a call-by-copy syntax as discussed
in Sec. 7 would solve this problem as well. For simplicity
we elected not to include any of these three extensions in the



current design, but conceptually one will likely be needed in
a future extension to increase expressiveness.

3. The Formal System
3.1 Abstract Syntax
The core syntax of our language is formalized in Fig. 4,
where notation X is used to represent a sequence of X’s.
As a convention, metavariable c is used for class names,
m for method names, f for field names, and x for vari-
able names. Special class names include Objectµ, the root
classes for the inheritance hierarchy, one for each class mod-
ifier µ. The bootstrapping code is located inside the body of
class Main’s no-argument method main. The class directly
inherits from class Objecttask with no additional fields. We
encode unit/void type via class name Unit def= Objectε.
Default constructors are supported: a constructor for class c
is syntactically a method in c with method name also c. To
make the formalism more uniform, we assume all construc-
tors always return this as the return value. In this formalism-
friendly syntax, field read/write expressions are annotated
with a scope modifier ζ, denoting whether the expression is
lexically scoped in a constructor (ζ = cons) or not (ζ = reg).

Parametric Polymorphism Support The formal syntax
differs from the programmer syntax in that several pro-
gram annotations are included to help streamline the formal
presentation. Programmer syntax new c(e) is formally ex-
pressed as newA c(e) when class c has modifier µ /∈ task
(i.e. “resource” object instantiation), and as newA1,A2 c(e)
otherwise (i.e. “concurrency unit” object instantiation). The
associated subscript A serves to distinguish different instan-
tiation sites. Structurally, each A represents a list of type
variables α (of set STV). The first type variable in A rep-
resents the object instantiated at the specific program point
where the expression occurs, and each of the rest represents
an object that can be stored in a field of the instantiated
object. For any two distinct new expressions in the source
code, we require their respective A’s have distinct elements.
The newA1,A2 c(e) form for concurrency unit object instan-
tiation is present to realize our need for task twinning to
model self-sharing, as was outlined in Sec. 2.2. To support
context sensitivity, each call site is differentiated by asso-
ciating a singleton list [α] with each messaging expression,
e∗[α]m(e′). For any two distinct messaging expressions in
the source code, we require their respective [α]’s to be dis-
tinct. As examples, the several expressions in the Loader
class of Fig. 2 is automatically annotated as follows:

cf!.newCtr() as cf!.[α100]newCtr(null)
toLoad.dec() as toLoad.[α101]dec(null)

new WorkUnit(this) as new[α102,α103] WorkUnit(this)

For each class definition µ class c extends c′ {F M } in-
side codebase C and each method definition c′ m(c′′ x ){e}
inside M , we define function mbody(π) = x .e to return
the method body and deterministic function mtype(π) =

∀A.(c′′ → c′) to return the signature for method index π =
〈c; m〉. Both functions are implicitly parameterized by the
fixed codebase C . The type variable list above A = [α′′, α′]
includes two distinct type variables representing the argu-
ment and the return value respectively. To illustrate, selected
methods of Fig. 2 have the following signatures:

mtype(〈Loader;Loader〉)=∀[α200, α201].
(CtrFactory→ Loader)

mtype(〈Loader;loadWorkUnit〉)=∀[α202, α203].
(Unit→ WorkUnit)

mtype(〈CtrFactor;newCtr〉)=∀[α204, α205].
(Unit→ Counter)

mtype(〈Counter;dec〉)=∀[α206, α207].
(Unit→ Unit)

To model inheritance, we further define mtype(〈c0; m〉) =
mtype(〈c; m〉) for any c0 a subclass of c. This is the
only case where mtype may compute overlapping A’s for
different π’s, i.e. for all other cases, if mtype(π1) and
mtype(π2) compute A1 and A2 respectively and π1 6= π2,
A1 and A2 have disjoint elements. mtype(〈Main; main〉) =
∀A.(Unit→ Unit) for some (uninteresting) A.

Auxiliary Definitions For class µ class c extends c′ {F M }
in C , we further define modifier(c) = µ and supers(c) =
{c} ∪ supers(c′). Here we assume Objectµ 6= c and
there is no cycle on the inheritance chain induced by C .
In addition, we define modifier(Objectµ) = µ and
supers(Objectµ) = Objectµ. These functions are also
implicitly parameterized by C .

We now define standard mathematical notation used in
this paper. [ ] is used to represent an empty sequence, and x :
[x1, . . . , xn] def= [x, x1, . . . , xn], and |[x1, . . . , xn]| = n.
When ordering of a sequence does not matter, we liberally
consider them convertible to their unordered counterpart (a
set) and standard set operators such as ∈ and ⊆ will be used
on it. A special kind of sequence, a mapping sequence, is
denoted as x 7→ y and defined as [x1 7→ y1, . . . , xn 7→ yn]
for some unspecified length n. Given ι being the mapping
sequence above, dom(ι) def= {x1, . . . xn} and range(ι) def=
{y1, . . . yn}. We write ι[x 7→ y] for mapping update: ι
and ι[x 7→ y] are identical except that ι[x 7→ y] maps
x to y. Updateable mapping concatenation � is defined as
ι1 � ι

def= ι1[x1 7→ y1] . . . [xn 7→ yn]. We also write
ι1 � ι as ι1 ] ι, except the latter function requires the pre-
condition of dom(ι1) ∩ dom(ι) = ∅. Given two sequences,
a “zip” like operator 7−→ produces a mapping sequence:
[x1, . . . , xn] 7−→ [y1, . . . , yn] def= [x1 7→ y1, . . . , xn 7→
yn].

3.2 A Bird’s Eye View of the Type System
Task Types are a constraint-based type system with (T-
Program) as the top-level typing rule:



C ::= c 7→ µ class c extends c′ {F M } classes
µ ::= ε | shared | task | shared task class modifier
F ::= c f fields
M ::= m 7→ c m(c′ x ){e} methods
e ::= x | null | this | fζ | fζ:=e | (c)e | e ∗[α] m(e) | newA c(e) | newA,A′ c(e) expression
∗ ::= !-> | !. | -> | . method invocation symbol
α ∈ STV annotated type variable
A ::= α α sequence
ζ ::= reg | cons scope modifier
π ::= 〈c; m〉 method index

Figure 4. Abstract Syntax

(T-Program)

`cls C (ci)\C(ci) for all ci ∈ dom(C )
WF (	 C)
`p C : C

This rule defines typechecking in two phases:

• First, constraints are collected for each method of each
class modularly, and inconsistencies are detected as early
as possible. The per-class typing rule `cls and the related
expression typing rules are defined in Fig. 5. At the end
of this phase, constraints are stored in a per-class, per-
method fashion, in constraint store C.

• Second, a closure phase propagates inter-procedural in-
formation. The resulting constraint closure is computed
by the 	 function, as defined in Sec. 3.4. Afterwards the
static access graph represented in the closure is checked
by a simple WF () function in Sec. 3.5, determining
whether static isolation for non-shared ordinary objects
holds.

We favor a phased definition to be more realistic with
object-oriented languages. Today’s OO languages often rely
on a modular phase to find as many bugs as possible (either
via source code compilation or bytecode verification), and
delays as few as possible non-modular constraint solving to
dynamic class loading time (such as those related to Java
subtyping [LB98]). Presenting Task Types in phases de facto
describes how it can be constructed in a language with dy-
namic class loading. Notably, extracting a modular phase out
of an inter-procedural algorithm is no trivial task for object-
oriented programs, as the latter are fundamentally mutu-
ally recursive: class c1 might contain expression new c2(e1)
whereas class c2 might contain expression new c1(e2); or
class c1’s method m1 might invoke c2’s m2 which in turn in-
vokes c1’s m1. By constructing an explicit formal definition
of the modular phase here, we gain confidence in the ability
to construct a practical and decidable typechecking process.

3.3 Modular Class Typing
Expressions are typed via the ` rules of Fig. 5. Classes
are typed via judgment `cls, and method bodies via `m.
All typing rules are implicitly parameterized by the fixed
codebase C . Types are always of the form c@α, with c the
class name analogous to Java’s object type, and α the type
variable associated with a specific object instance, needed
for the polymorphic type system. Typing environment Γ
maps variables x , field names f, and this to their types.
We delay the discussion of class-indexed constraint store
C and method-indexed constraint store M until judgments
`cls and `m are explained. Per-method constraint store K
is a set of constraints collected for each method body. Each
constraint is represented by metavariable κ. The meanings
of specific constraints will be clarified later, but in general a

≤ constraint is intuitively a constraint recording flow, a
θ
99K

constraint is intuitively a constraint recording access. Special
variables α̂ are used only in ≤ constraints.

Access Constraints A main goal of our type system is
to generate the static access graph that was informally de-
scribed in Section 2. The nodes of such a graph are type
variables representing individual objects. The edges, as col-
lected in the modular type checking phase, are called access

constraints. They are of the form thost
θ
99K α, meaning

an object represented by type variable α is accessed. Con-
straint label θ, also called access mode, ranges over three
values: when θ = R, the constraint asserts that object α is
non-exclusively “read”; when θ = W, α is exclusively “writ-
ten”; when θ = T, α is the entry/facade object for a “pro-

tected zone” of sharing. In our type system,
T
99K constraints

are generated when α is a shared task object or a shared
ordinary object. Observe that both kinds of objects are dy-
namically protected upon entry, and the objects completely
hiding behind them need not be dynamically protected. The

T
99K constraints make the static access graph aware of the
dynamic protection points and reason accordingly.

Placeholder type variable thost denotes the “accessor.”
Intuitively, the accessor should have been a type variable



(T-Read)
Γ(f) = c@α

Γ ` fζ : c@α\aC (R,Γ(this), ζ)
(T-Write)

Γ(f) = c@α1 Γ ` e : c@α2\K
Γ ` fζ:=e : c@α1\K ∪ {α2 ≤ α1} ∪ aC (W,Γ(this), ζ)

(T-Msg)

Γ ` e : τ\K τ = c@α0 mtype(〈c; m〉) = ∀A.(c1 → c2)
Γ ` e′ : c1@α′\K′ ∗ matches modifier(c) returns c2 κ = [α]α0,m,α

′
any ζ

Γ ` e ∗[α]m(e′) : c2@α\K ∪ K′ ∪ {κ} ∪ aC (T, τ, ζ)

(T-New)

Γ ` e : c0@α0\K0

A = [α, . . . ] mtype(〈c; c〉) = ∀A′.(c0 → c) κ = [α]α,c,α0 τ = c@α any ζ
Γ ` newA c(e) : τ\K0 ∪ {Ac ≤ α, κ} ∪ aC (T, τ, ζ)

(T-NewTask)
Γ ` newA1 c(e) : c@α1\K1 Γ ` newA2 c(e) : c@α2\K2 task ∈ modifier(c)

Γ ` newA1,A2 c(e) : c@α1\K1 ∪ K2 ∪ {α1 ≤ α2, α2 ≤ α1}

(T-Sub)
Γ ` e : c0@α\K c ∈ supers(c0)

Γ ` e : c@α\K
(T-Cast)

Γ ` e : c0@α\K
Γ ` (c) e : c@α\K (T-Var) Γ ` x : Γ(x )\∅

(T-This) Γ ` this : Γ(this)\∅ (T-Null) Γ ` null : τ\∅

(T-Cls)

`cls µ class c0 . . . \M
fields(c) = ∀A.Γ Γ `m mbody(πj) : mtype(πj)\∀Aj .∀Sj .Kj for all mj ∈ dom(M ), πj = 〈c; mj〉

`cls µ class c extends c0 {F M }\∀A.(M�mj 7→ ∀Aj .∀Sj .Kj)

(T-ClsTop)
fields(Objectµ) = ∀A.Γ
`cls µ class Objectµ\∀A.[ ]

(T-Md)
Γ ] [x 7→ c1@α1] ` e : c2@α3\K A = [α1, α2] S = labels(e)

Γ `m x .e : ∀A.(c1 → c2)\∀A.∀S.(K ∪ {α3 ≤ α2})

. matches ε returns c
!. matches shared returns c

!-> matches shared task returns c
-> matches task returns Unit

τ ::= c@α types
Γ ::= t 7→ τ typing environment
t ::= x | this | f environment variable
S ::= A A sequence

K ::= κ per-method constraint store

κ ::= α̂ ≤ α | Aα,m,α′ | thost θ
99K α constraint

α̂ ::= α | Ac flow element
θ ::= T | R |W access mode
C ::= c 7→ ∀A.M class-indexed constraint store
M ::= m 7→ ∀A.∀S.K method-indexed constraint store

aC (θ, c@α, ζ) def=


{thost θ

99K α} if modifier(c) = ε, θ = R or W, ζ = reg
or modifier(c) ∈ shared, θ = T

∅ otherwise

Figure 5. Typing Rules



representing the entry facade object for a protected zone. A
placeholder is used because no concrete type variable nam-
ing this object is known during the modular type checking
phase. Consider for example the case when the toLoad
Counter object is written by object Loader because
toLoad’s field v is written in method dec. When class
Counter is typed, we cannot directly determine in what
“protected zone” method dec is invoked from – one needs
to backtrack on all possible call paths to find the first non-
ordinary object. We therefore put thost here and rely on the
closure phase (Sec. 3.4) to instantiate it; such a scheme is
common in inter-procedural analyses with a modular phase.

Access constraints are collected by typing rules depen-
dent on aC (θ, τ, ζ). This convenience function collects θ
constraints when the type of the accessed entity is τ and the
scope of access is ζ. The function is defined in Fig. 5. (T-
Msg) puts aC (T, τ, ζ) into the constraint set, i.e. it collects

T
99K constraints when the message receiver is a shared task
object or a shared ordinary object (regardless of the scope).
This is consistent with our previous discussion of “protected
zones.” The same constraint is collected in (T-New) for con-
structor calls. For accessing non-shared ordinary objects, an
access occurs when the field of that object is read or written.
Related constraints are collected in (T-Read) and (T-Write)
respectively. Observe that when the field read/write happens
in a constructor, the access is not recorded as a constraint.
This is sound because, when an object is constructed, its ref-
erence is not yet created, let alone leaked to another task and
accessed by it – such read/write access fundamentally does
not lead to atomicity violations.

Expressions with Polymorphic Typing In principle, poly-
morphic typing behaves rather like let-polymorphism: the
type constraints of the polymorphic code – the invokee’s
method body here – should be “refreshed” and added to
the invoker’s constraint set. What complicates matters here
is the fundamentally recursive nature of OO programs:
naively merging the invokee’s constraints may lead to non-
termination due to an infinite regress of refreshing along a
recursive call. It is for this reason our type system in the
modular phase only places a delayed contour marker in the
constraint set, and delays the task of refreshing and merging
to the phase of closure. Marker [α]α0,m,α

′
added in (T-Msg)

indicates the need to merge (at closure time) the constraints
of method m of object α0, with argument being α′ and return
value being α. For instance, typing the annotated expression
cf!.[α100]newCtr(null) in class Loader generates the fol-
lowing marker constraint:

Kloader1 = {[α100]α200,newCtr,α100}

where α200 is the type variable associated with variable cf
– the latter is the argument of the constructor; its associated
type variable is computed by mtype(〈Loader;Loader〉)
earlier. The choice of type variables to type null is irrele-
vant; we use α100 here. (T-Msg) also contains a predicate

“∗ matches µ returns c”, which matches different method in-
vocation symbols (∗) with class modifiers µ. In addition, it
requires that asynchronous top-level task creation has no in-
teresting return values.

In (T-New), the type variable representing the object in-
stantiated by newAc(e) is the first element of A, consis-
tent with how A is constructed in the formal syntax. Since
all such annotations include disjoint type variables, new ex-
pressions at different program points are given different type
variables. Rule (T-New) also contains a flow constraint of
the form Ac ≤ α. This constraint says that instantiation
site Ac flows into type variable α. This constraint, together
with the transitivity of ≤ as defined in the closure phase, is
used to trace back any type variable to its concrete instan-
tiation point(s) – a concrete type analysis scheme essential
for languages with aliases. Lastly, a similar delayed contour
marker is added to a constructor call. For instance, typing the
annotated expression new[α102,α103] WorkUnit(this) in class
Loader leads to the following constraints:

Kloader2 = {[α102, α103]WorkUnit ≤
α102, [α102]α102,WorkUnit,α300}

assuming this was given type α300.
(T-NewTask) types expression newA1,A2 c(e), which is

used when modifier(c) ∈ task. This is how task twinning is
reflected in the type system: for each statically known task
object, the type system instantiates them twice, with A1 and
A2 respectively.

Other Rules Standard nominal subtyping is supported by
(T-Sub). Casting is typed by (T-Cast); we do not single
out stupid cast as warnings [IPW99] as this does not affect
soundness. (T-Read), (T-Write), (T-This), (T-Var) rely on the
typing environment. Given a class µ class c extends c′ {F M }
in codebase C where F = [c1 f1, . . . , cn fn], a typing envi-
ronment with field and this type information is prepared via
the following deterministic function:

fields(c) def= ∀A.((Γ ] [f1 7→ c1@α1, . . . fn 7→ cn@αn])
�[this 7→ c@α0])

if fields(c′) = ∀A′.Γ
A = A′ ] [α1, . . . , αn]
Γ(this) = c′@α0, α1, . . . , αn distinct

and the base case is fields(Objectµ) = ∀[α].[this 7→
Objectµ@α]. This function deterministically assigns each
field a distinct type variable, as well as assigning one for
this. The function is implicitly parameterized by the fixed
codebase C . It is able to support field inheritance but dis-
allows field shadowing for simplicity. As an example, the
function has the following behavior on class Loader :

fields(Loader) = ∀[α300, α301].[
toLoad 7→ Counter@α301

this 7→ Loader@α300

]



To make the parametric nature of constraints more ex-
plicit, a class-indexed constraint store C computed in (T-
Cls) and (T-ClsTop) is always of the form ∀A.M, where
A is computed by the previous fields function. A method-
indexed constraint store M computed in (T-Md) is always
of the form ∀A.∀S.K, with A containing the two type vari-
ables representing the argument and the return value of the
method, and S being the set of A labels appearing in the
body of the method. S is computed by the following func-
tion:

labels(x ) def= ∅
labels(newA c(e)) def= {A} ∪ labels(e)

labels(newA1,A2 c(e)) def= {A1,A2} ∪ labels(e)
labels(e ∗A m(e′)) def= {A} ∪ labels(e) ∪ labels(e′)

labels((c)e) def= labels(e)
. . .

We require the type variables computed by fields , by mtype ,
and by labels to be pairwise disjoint. We now provide a
complete picture of all the constraints produced for class
Loader:

C(Loader) = ∀[α300, α301].M
M(Loader) = ∀[α200, α201].∀[[α100]].

Kloader1 ∪ {α300 ≤ α201}
∪{thost T

99K α200}
M(loadWorkUnit) = ∀[α202, α203].

∀[[α101], [α102, α103]].
Kloader2 ∪ {[α101]α301,dec,α101}
∪{α102 ≤ α203}

3.4 Type Closure

We first define reflexive and transitive binary relation Ω
∆
↪→

Ω′ by the proof system in Fig. 6. This relation denotes Ω
closes to Ω′ under calling context

∆
↪→. A calling context ∆

is represented as a sequence of tuples δ, each of the form
〈β; c; m〉 denoting a call to method m of object β of class
c on the call chain. We use β, B, ω, Ω to represent the
closure-time counterparts of modular-typing-time α, A, κ,
K, respectively. We differentiate these syntactic entities to
highlight the fact that β’s and α’s are chosen to be disjoint.
The set of all β’s are denoted CTV. It includes one special
type variable tmain to represent the bootstrapping task.

Type closure 	 C, as used in (T-Program), is defined as

the largest set Ω where relation boot
[ ]
↪→ Ω holds under

implicit C, and boot is sugar for
{[tmain]tmain,main,tmain, [tmain]Main ≤ tmain}. Intuitively
the delayed contour marker in this set indicates that the
main method of the Main class is invoked, with tmain
representing the “main” task and irrelevant arguments and
return values. The overall goal of type closure is to merge
local per-class and per-method constraints into one global

set, so that all access constraints β
θ
99K β′ can form one

static access graph for the key well-formedness check. Rule
(C-Canon) “canonizes” access constraints, i.e. it traces back
the chain of the flow constraints so that the type variable
generated at instantiation point is used as a canonical name
for the object. This is de facto applying a concrete type
analysis to the object aliases, expressed as type variables
here, appearing in access constraints. We use constraint form
β

θ−→ β′ to represent the canonized version. To facilitate the
process of instantiation-point back-tracing, rules (C-Flow=)
and (C-Flow+) assert that flow constraints ≤ are reflexive
and transitive. The transitivity rule (C-Flow+) enables any
type variable to ultimately find its instantiation point(s) via
the previously explained flow constraint placed in (T-New).
This is why in the map function of the Mapper class, our
type system ultimately will find out what objects flow into
ul, even though ul is not instantiated in its scope. (C-
Task=) and (C-Task+) define reflexivity and transitivity for
T−→ – if a protected zone β1 encloses protected zone β2, and
β2 encloses β3, then β1 can be viewed as enclosing β3.

The main complexity of the closure algorithm arises from
context sensitivity, captured by (C-Contour). Recall that for
a context-sensitive algorithm, the type constraints associated
with the method body need to be “refreshed” according to
the specific calling context. We define a function for picking
type variables:

gen(∆,A) def= generate(collapse(∆),A)
where generate is a deterministic function defined as fol-
lows:

generate(∆,A) def= B where |A| = |B|,
all elements in B distinct

with the additional requirement that for anyA1,A2, the type
variables in sequences generate(∆,A1) and generate(∆′,A2)
are disjoint if collapse(∆) 6= collapse(∆′) or A1 6= A2

Note this requirement can be concretely satisfied by index-
ing the variables on the call string.

Function collapse determines whether a recursive invoca-
tion has been made, and if so, reuses the results of the initial
invocation:

collapse([ ]) def= [ ]
collapse(δ : ∆) def= [δ, δ1, . . . , δn]

if collapse(∆) = [. . . , δ, δ1, . . . , δn]
collapse(δ : ∆) def= δ : collapse(∆)

if δ /∈ collapse(∆)

Given calling context ∆ = [〈β1; c1; m1〉, . . . , 〈βn; cn; mn〉],
partial function pzone(∆) is used to compute the “current
protected zone.” It is defined as βi for some i ∈ [1..n] where
modifier(ci) 6= ε, and for any j such that 1 ≤ j < i,
modifier(ci) = ε. Substitution notation •[σ] replaces all
type variables α ∈ dom(σ) in • with σ(α). Let us now illus-
trate one inductive step of closure – when the constraints
associated with Mapper class’s map method have been



(C-Canon) {β′1
θ
99K β′2, (β1 : B1)c1 ≤ β′1, (β2 : B2)c2 ≤ β′2}

∆
↪→ {β1

θ−→ β2} (C-Flow=) ∅ ∆
↪→ {β ≤ β}

(C-Flow+) {β̂1 ≤ β, β ≤ β2}
∆
↪→ {β̂1 ≤ β2} (C-Task=) ∅ ∆

↪→ {β T−→ β}

(C-Task+) {β1
T−→ β2, β2

T−→ β3}
∆
↪→ {β1

T−→ β3}

(C-Contour)

δ = 〈β; c; m〉 ∆′ = δ : ∆ C(c) = ∀A1.M
M(m) = ∀A2.∀S.K σ = (A1 7−→ B) ] (A2 7−→ [βarg, βret]) ]

⊎
A∈S
A 7−→ gen(∆′,A)

{[βret]β,m,βarg ,Bc ≤ β} ∆
↪→ {〈K[σ]〉δ}

(C-GlobalIntro) {β̂ ≤ β, 〈Ω〉δ} ∆
↪→ 〈Ω ∪ {β̂ ≤ β}〉δ

(C-GlobalElim)
Bβret,m,βarg /∈ Ω′

{〈Ω ∪ Ω′〉δ} ∆
↪→ Ω′[thost 7→ pzone(δ : ∆)] ∪ {〈Ω〉δ}

(C-Union)
Ω1

∆
↪→ Ω2

Ω ∪ Ω1
∆
↪→ Ω ∪ Ω2

(C-Subset)
Ω

∆
↪→ Ω1 ∪ Ω2

Ω
∆
↪→ Ω1

(C-Context)
Ω1

δ:∆
↪→ Ω2

〈Ω1〉δ
∆
↪→ 〈Ω2〉δ

β ∈ CTV type variables in closure
B ::= β β sequence
∆ ::= δ calling context
δ ::= 〈β; c; m〉 call site
Ω ::= ω closure

ω ::= β̂ ≤ β | Bβ,m,β′ | β θ
99K β′ | β θ−→ β′ | 〈Ω〉δ constraints in closure

β̂ ::= β | Bc flow elements in closure

σ ::= α 7→ β substitution

WF (Ω) def= ∀β.β′ W−→ β ∈ Ω =⇒ cutExists(Ω, {β′|β′ θ−→ β})

cutExists(Ω,B) def= ∃βc.
∧
β∈B

(βc
T−→ β) ∧ (∀β′c 6= βc.

∧
β∈B

(β′c
T−→ β) =⇒ (β′c

T−→ βc))

Figure 6. Type Constraint Closure and Isolation Preservation

merged, we show how (C-Contour) helps merge in the con-
straints for the method body of loadWorkUnit. Let us
assume the closure at that step includes:

[β401]β402,loadWorkUnit,β403

which results from typing ul!->[α401]loadWorkUnit()
in Mapper and

[β404, β405]Loader ≤ β402

from typing new[α404,α405] Loader(cf) in Main and by
flow transitivity. Using the definition for C(Loader) given
previously, the substitution built up in (C-Contour) thus is

A1 7−→ B is
[
α300 7→ β404

α301 7→ β405

]
A2 7−→ [βarg, βret] is

[
α202 7→ β403

α203 7→ β401

]
⊎
A∈S A 7−→ gen(∆′,A) is

 α101 7→ β601

α102 7→ β602

α103 7→ β603


and given β406 represents the Mapper object, and ∆′ =
[〈β402;Loader;loadWorkUnit〉, 〈β406;Mapper;map〉,
〈tmain;Main;main〉], the gen function is:

gen(∆′, [α101]) = [β601]
gen(∆′, [α102, α103]) = [β602, β603]



There are two interesting points here. First, if function
loadWorkUnit were invoked via different call chains,
the gen function would map ∆′ to different type variable
lists, so that different instances of WorkUnit instantiated
from loadWorkUnit can be differentiated. This is also
why different Counter instances in Fig. 2 can be approx-
imated statically even though they are all instantiated from
one program point. Second, rather than immediately merg-
ing the substituted constraints into the type closure, a spe-
cial contextual constraint of the form 〈Ω〉δ is used, a marker
denoting constraints Ω in the calling context of δ is to be
merged to the type closure. The real merging happens at (C-
GlobalElim). Here any constraint other than delayed contour
markers can be “yanked” out of the contextual constraint –
in other words, these constraints are not “context-sensitive”.
Note that when this happens, the placeholder for the “current
protected zone,” thost, needs to be properly replaced. Con-
tinuing with the example above, any constraint inside the 〈〉
of the contextual constraint obtained via (C-Contour) can be
“yanked” out with thost replaced with β402. It represents
the Loader object itself. This is the value of thost here be-
cause shared tasks create protected zones of their own. Other
rules related to contextual constraints, (C-GlobalIntro) and
(C-Context), are self-explanatory.

3.5 Isolation Preservation
Isolation is enforced by the WF function in Fig. 6. It checks
that for any non-shared ordinary object, either it is only
accessed once, all accesses are reads, or the accessing tasks
as in B must satisfy cutExists(Ω,B).

The cutExists(Ω,B) function in Fig. 6 formally defines
the notion of cut vertex alluded to in Sec. 2.2: the subgraph
including all static access paths ending with a type variable
in B must have a cut vertex (or articulation point), and if
there is more than one cut vertex for that subgraph, there
must be a “least upper bound” of them. The definition here is
phrased so as to allow a shared task (or the ordinary objects it
owns) to access the objects belonging to its “ancestor” tasks,
as long as the cut vertex invariant is not violated.

4. Operational Semantics and Formal
Properties

In this section we briefly describe the operational semantics
of our language, with a focus on features that are related to
stating the proven formal properties. Small-step reductions
S ⇒ S′ are defined over configurations S = 〈H; Σ; e〉
for H the object heap, Σ the dynamic constraint set, and e
the expression. The reductions are implicitly parameterized
by class list C . We use S ⇒∗ S′ to represent multi-step
reduction, which is defined as the transitive closure of ⇒.
We use ⇒C S to represent a computation of program C
starting in the initial state and computing in multiple steps to
S. We use S ⇑ to mean there is some computation of S that
computes forever.

H ::= o 7→ 〈Bc; Fd〉 heap

Σ ::= p
θ−→ o | p θ; o dynamic constraint set

β ::= · · · | o extended type variable

ω ::= · · · | β θ; β′ extended constraint
Fd ::= f 7→ v field store
v ::= o | null value

o, p, q ∈ OID object ID
e ::= · · · | 〈e〉δ |

θ

o | e; e extended expressions
| v | post e | e ‖ e

E ::= • | E ‖ e | e ‖ E evaluation context
| fζ:=E | (c)E
| E ∗[β] m(e) | v ∗[β] m(E)
| newB c(E)
| newB1,B2 c(E)
| E; e | 〈E〉δ

Figure 7. Dynamic Semantics Definitions

Fig. 7 gives defines related data structures. To reuse data
structures that have been defined for static semantics, we
extend type variables β to include o’s as well. As a result,
the previous definition of calling context – a sequence of
call sites in the form of 〈β; c; m〉’s – can also be viewed
as that for the dynamic calling context, in the form of a
list of 〈o; c; m〉’s. H is a mapping from objects o to field
stores (Fd ), and its program point information Bc of their
instantiation. Expressions are extended with values v, which
are either object ID’s or null. Auxiliary expression 〈e〉δ is
used to represent an expression e evaluated inside a dynamic
call site δ. Expression

θ

o
is a helper expression to indicate o

is accessed in mode θ, and post e is a helper expression to
“post” a “root” task for later execution. Parallel operator e ‖
e′ is commutative. Dynamic constraint set Σ includes two
kinds of constraints: θ−→ and θ;. We reuse the θ−→ constraint
from the static type system, which is computed only for
stating theorems and is not collected by the compiler. We use
E to represent evaluation contexts. The initial configuration
is 〈Hinit; ∅; einit〉 where Hinit = [o 7→ 〈[tmain]Main; [ ]〉] for
some o and einit = o->[tmain]main(null).

Operational Semantics A complete definition of opera-
tional semantics can be found online [TT]. We now only
focus on what is relevant for stating meta-theories, espe-
cially access invariants. First, reductions under a particular
dynamic calling context ∆ is represented by the S ∆=⇒ S′,
and this relation is connected with⇒ by a self-evident con-
text rule.

H,Σ,E[ e ]⇒ H ′,Σ′,E[ e′ ] if H,Σ, e
cxt(E)
=⇒ H ′,Σ′, e′

where



cxt(•) def= [ ]
cxt(JE Ko) def= cxt(E)
cxt(〈E〉δ) def= cxt(E) : [δ]
cxt((c)E) def= cxt(E)

. . .

The reductions related to access take the following shape,
where H ′ and e′ are irrelevant information we elide here:

H,Σ, freg:=v ∆=⇒ H ′,Σ,
W

o
; e′

if ∆ = 〈o; c; m〉 : ∆′

H,Σ, freg ∆=⇒ H,Σ,
R

o
; e′

if ∆ = 〈o; c; m〉 : ∆′

H,Σ, o ∗[β] m(v) ∆=⇒ H,Σ,
T

o
; e′

H,Σ,
θ

o ∆=⇒ H,Σ ∪ dset(µ, θ, p, o), e′

if progressable(H,Σ, µ, θ, p, o), p = pzone(∆)
H,Σ, 〈v〉〈o;c;m〉 ∆=⇒ H,Σ− {o1

θ; o2 | o1 or o2 is o}, v
if H(o) = 〈Bc; Fd〉,modifier(c) ∈ task

H,Σ, 〈v〉〈o;c;m〉 ∆=⇒ H,Σ, v
if H(o) = 〈Bc; Fd〉,modifier(c) /∈ task

In essence, all object access controls (field read/write or
messaging) have been delegated to the reduction of

θ

o
, where

function progressable(H,Σ, µ, θ, p, o) is defined as:
HHH

HHµ
θ

T R or W

ε true true
shared roots(H,Σ, o) ⊆ roots(H,Σ, p) true

shared task roots(H,Σ, o) ⊆ roots(H,Σ, p) true

task (o T; o) /∈ Σ true
and function dset(µ, θ, p, o) is defined as

HH
HHHµ

θ
T R or W

ε ∅ {p θ; o, p θ−→ o}
shared {p T; o, p T−→ o} ∅

shared task {p T; o, p T−→ o}, ∅
task {o T; o, o T−→ o} ∅

By now the difference between θ−→ and θ; should be clear:
θ−→ constraints monotonically grow in the dynamic constraint

set, recording the entire “history” of the dynamic access
since the program is bootstrapped. θ; constraints on the
other hand are removed whenever the invocation to a (shared
or non-shared) task object ends – intuitively, a task “frees”
all its accessing objects at the end of its execution. For
that reason, θ; only records the access relation at a specific
runtime snapshot. We next define a function to compute the
set of “root” task objects (i.e. non-shared task objects) that
are currently accessing o.
Definition 1 (Roots). Function roots(H,Σ, o) is defined
as the largest set of o0 such that H(o0) = 〈Bc; Fd〉,

modifier(c) = task, and there exists some n ≥ 0, {o0
T;

o1, . . . on−1
T; on, on

θ; o} ⊆ Σ.

Let us now study liveness. The reduction for
θ

o
shows

field read/write is never blocked, and messaging to non-
shared ordinary objects is never blocked. This is precisely
why declaring objects as non-shared ordinary objects im-
proves performance. When the messaging target is a shared
ordinary/task object, the execution is not blocked iff the tar-
get is not accessed by any task (roots(H,Σ, o) = ∅) or it is
a reentrant access (roots(H,Σ, o) = roots(H,Σ, p)). These
two cases, combined with the fact that |roots(H,Σ, p)| = 1
(by the nature of how call stacks grow and shrink), can be
summarized with predicate roots(H,Σ, o) ⊆ roots(H,Σ, p).
If the target is a non-shared task object, messages are pro-
cessed one at a time, as we discussed in Sec. 2. This is why
pre-condition (o T; o) /∈ Σ is used in that case.

Properties We next discuss the properties of our language,
starting with some definitions. With a language runtime with
blockings, deadlocks are possible:

Definition 2 (Deadlock). S = 〈H; Σ; 〈E[
T

o0
]〉〈p0;c0;m0〉 ‖

· · · ‖ 〈E[
T

on

]〉〈pn;cn;mn〉 ‖ e〉 is a deadlock configuration iff
for i = 0..n, H(oi) = 〈Bci

i ; Fd i〉, and
pi ∈ roots(H,Σ, o(i+1) mod (n+1))

The definition here shows how Task Types programming
can help programmers reduce the likelihood of deadlocks by
encouraging the default non-shared memory model. Dead-
lock cannot happen on non-shared ordinary objects: if there
are no locks, there are no deadlocks. Next, some run-time ex-
ceptions standard in Java-like languages are possible in our
language:
Definition 3 (Null Pointer Exception). S leads to a null
pointer exception iff S = 〈H; Σ; E[null ∗[β] m(v)]〉.
Definition 4 (Bad Cast). Configuration S leads to a bad cast
exception iff S = 〈H; Σ; E[(c′)o]〉 where H(o) = 〈Bc; Fd〉
and c′ /∈ supers(c).

The type soundness property is as follows.
Theorem 1 (Type Soundness). If `p C : C, then there exists
S such that⇒C S, where either S ⇑, or S = 〈H; Σ; v〉, or
S is a deadlock configuration, or it leads to a null pointer or
bad cast exception for some H , Σ.

This Theorem states that the execution of a statically
typed program either diverges, leads to a deadlock configu-
ration, leads to a standard exception, or computes to a value.
The Theorem is established by showing Lemmas of Subject
Reduction, Progress, and the trivial fact that the bootstrap-
ping process leads to a well-typed initial state.
Theorem 2 (Type Decidability). For any program C it is
decidable whether there exists a C such that `p C : C.

We now move on to state theorems related to the non-
shared memory model. Let us first introduce the definition
of a well-partitioned heap:



Definition 5 (Well Partitioned Heap). partitioned(H,Σ)
holds iff for all o such that o0

W; o ∈ Σ, |roots(H,Σ, o)| =
1.

The predicate says that at runtime, if a non-shared ordi-
nary object is write accessed, then all accesses must be ini-
tiated by only one non-shared task. We now describe some
properties related to task isolation.
Theorem 3 (Static Task Isolation). If ⇒C 〈H; Σ; e〉, then
partitioned(Σ).

This theorem says that a written non-shared ordinary
object cannot be accessed by more than one “root” task at
the same time. This theorem may appear appealing, but it
in fact is weaker than what Task Types enforce for non-
shared ordinary objects, because it cannot prevent a non-
shared ordinary object from first being accessed by one task,
released, and then accessed by another. The theorem that
fully reflects the spirit of non-shared ordinary objects is the
following:
Theorem 4 (Thread Locality). If `p C : C and ⇒C

〈H; Σ; e〉, then WF (Σ).
This crucial theorem says the run-time constraint set we

are computing in fact “conforms” to the statically checked
one, in that cut vertices still exist for all non-shared ordinary
objects. Note that WF works on θ−→ constraints, which in
this case include the entire “history” of access. This theorem
implies each non-shared ordinary object is accessed by at
most one task over its entire lifetime.

Let us now state some concurrency properties:
Theorem 5 (Race Freedom). `p C : C, then there are no
race conditions for field access in any execution of C .

This theorem can be easily derived from Thm. 3, which
states the most important subcase that fields with non-shared
ordinary objects can never be accessed by more than one
“root” tasks. For fields of other kinds of objects, the pre-
condition progressable() suffices to guarantee race freedom.
Last, we can prove Task Type programs preserve atomicity:
Theorem 6 (Atomicity). `p C : C, then pervasive quan-
tized atomicity defined in [LLS08] is preserved for all exe-
cutions of C .

Since this property is identical to the one defined in
[LLS08], we defer it to an accompanying technical report
online [TT]. Informally it is the pervasive, partitioned atom-
icity property described in Sec. 2.2. The definition of that
property is based on the Theory of Reductions [Lip75], a
standard method for proving atomicity properties.

5. Implementation and Evaluation
A prototype implementation of Task Types has been built
on top of the CoqaJava compiler [LLS08], a compiler built
using the Polyglot Java framework [NCM03]. We support
the core syntax presented in Fig. 4, plus standard Java fea-
tures including primitive values, local variable declarations

and assignment, local method invocations, public field ac-
cess, multiple-argument methods, return statement, field ini-
tializers, arrays, static classes and methods, method and con-
structor overloading, super invocations in constructors, super
invocations for regular methods, and control flow expres-
sions (loops, branches, and exception handling). We rely on
Polyglot 2.4’s built-in inner class remover to process inner
classes, and conservatively wrap static fields as shared ordi-
nary objects (with lock protection) among all instances since
they are global variables that any access to may constitute an
atomicity break point. The current implementation does not
support reflection or native methods.

We now report some preliminary benchmarks. We picked
two programs on the opposite ends of the contention spec-
trum: the low-contention RayTracer and the high-contention
PuzzleSolver. All benchmarks were performed on a 4 x 6-
Core Intel E7450 2.4GHz CPU machine (24 cores total) us-
ing 64GB RAM, running Debian GNU/Linux 2.6.26.

RayTracer RayTracer is a computationally intensive algo-
rithm for rendering 3D images and is taken from the Java
Grande Suite [SBO01]. We tweaked the program to fit the
new Task Types syntax. In the test runs we created 12 non-
shared tasks to process individual Scene objects concur-
rently; each scene contains 150 * 500 pixels. The programs
were executed 50 times and the first 2 runs were discarded.
Table. 1 below reports the elapsed time in milliseconds,
which is the median of the 48 hot runs.

# Cores
1 2 4 6 12

Coqa 741 593 450 364 340
Task Types 622 540 279 264 289

Table 1. RayTracer Benchmark: Coqa vs. Task Types

In the table, the “Task Types” results are an implemen-
tation of RayTracer with the minimal sharing declarations
needed for the program to pass the Task Types typechecker.
The program contains 1955 lines of code in 16 classes. We
are able to declare 12 classes out of them to be non-shared
ordinary classes (µ = ε); two are non-shared task classes,
i.e. thread launchers, and two needed to be declared shared.
The fact that the vast majority of classes are typable as non-
shared ordinary classes confirms our earlier assertion that
most objects can be coded normally – no special sharing
declaration is needed. “Coqa” is a re-implementation of the
same program with all 16 ordinary objects above explicitly
declared as shared, meaning the program will follow the
Coqa model and all non-task objects will be guarded with
runtime locks so at most one task can use them at a time.

As can be seen, the use of non-shared objects led to a
nontrivial performance improvement, averaging about 20%
faster across the cases here. This preliminary result confirms



that a nontrivial speedup will be obtained compared to the
purely dynamic approach of Coqa.

PuzzleSolver The PuzzleSolver benchmark was discussed
earlier in Sec. 2.3.1. We benchmarked both the Task Types
re-implementation of PuzzleSolver as well as the original
Java implementation. To give meaningful multicore data, we
created 1 task in the 1-core run, 2 tasks in the 2-core run, and
so on. The programs were executed 20 times and the first 2
runs were discarded. Table. 2 below reports the elapsed time
in milliseconds, which is the median of the rest of 18 hot
runs.

# Cores
1 2 4 6 12

Task Types 123 617 94 99 100
Java 80 564 91 74 82

Table 2. PuzzleSolver Benchmark Results

Observe that for a single-core execution, the Task Type
implementation is about 35% slower. As the number of cores
increases, the slowdown decreases to around 20%. Observe
also that due to high contention this benchmark is not ap-
preciably faster with multiple cores; it also exhibits an odd
slowdown at two cores which is hard to explain but is in
the underyling Java concurrency implementation since both
implementations exhibit it. Our implementation of runtime
shared task locking is still inefficient and can be improved,
and we are also unnecessarily locking PuzzlePosition
accesses in this benchmark as was pointed out in Sec. 2.3.1.
So, we expect these numbers to improve considerably in
a production implementation. That is not to say we expect
there will be no runtime penalty at all; it is unlikely to go all
the way to zero as some of the locking will not be necessary
for correctness.

Compilation Time Compilation of both benchmarks took
only a few seconds; the constraint closure step took around
1/3 sec. in each case, which shows it is not a significant
factor here. More efficient implementations of context-
sensitive/polymorphic type closure have been investigated
[MRR05; EGH94; Age96; WS01; WL04]. As we move on
to larger code samples, we will consider implementing var-
ious optimizations such as BDDs [BLQ+03; WL04] and
constraint garbage collection [WS01] if they are needed.

6. Related Work
Type Systems, Static Analyses, and Logics Flanagan and
Qadeer [FQ03] first explored type system support for atom-
icity; their work takes a shared-memory model as basis, and
supports reasoning about the composibility of atomic blocks
over the shared memory, whereas Task Types can be viewed
as carving out a non-shared-memory model in which atom-
icity violations cannot arise.

STM systems primarily use dynamic means to enforce
atomicity [HF03; WJH04; CMC+06]. The problem of weak
atomicity has attracted significant interest recently, and a
number of static or hybrid solutions exist to ensure transac-
tional code and non-transactional code do not interfere with
each other. Such a property is enforced by Shpeisman et.
al. [SMAT+07] via a hybrid approach with dynamic escape
analysis and a not-accessed-in-transaction static analysis.
The latter has the good property of allowing “data handoff”:
a transaction can pass along an object without accessing it.
Data handoff is useful for different threads sharing a data
structure (say a queue) but not the elements in it. This prop-
erty also holds for Task Types. Passing along an object refer-
ence or storing the reference is not considered access since
atomicity is not violated. AME [ABHI08] describes a con-
ceptually static procedure to guarantee violation-freedom of
transactional code and non-transactional code. Harris et. al.
[HMPJH05] used the monads of Haskell to separate compu-
tations with effects and those without.

Constructing type systems to assure race condition free-
dom is a well-explored topic. These systems work under
significantly different assumptions than we do: they typi-
cally assume a Java-like shared memory with explicit lock
acquire/release expressions. Given the non-shared memory
assumption and protected access to shared task objects, race
conditions do not occur in our system.

Static inference techniques have been designed to auto-
matically insert locks to enforce atomicity for atomic blocks
[MZGB06; HFP06; EFJM07; CCG08]. These techniques as-
sume that atomic blocks are a fundamentally “local” con-
struct, and make assumptions that are unrealistic for sup-
porting the larger atomic regions we aim for: Autolocker
[MZGB06] requires all invocations in an atomic block to be
inlined, a static bound on lock resources is needed in others
[EFJM07; CCG08; HFP06], and some require that all ob-
jects accessed in the atomic block not be accessed elsewhere
[HFP06].

Our locality enforcement algorithm is related to owner-
ship/region types, and particularly their inference [CCQR04;
Wre03; DM07; LS08]. Cut vertices are evocative of domina-
tors in the owners-as-dominators ownership type systems; in
Task Types, DAGs can be freely formed inside the bound-
ary of the dominator. A major challenge of our design –
the problem that motivated task twinning – is not an is-
sue for ownership/region types. When recursion happens,
there is nothing wrong for ownership/region type declara-
tion/inference systems to assign the same type variable to all
recursive occurrences, but this would lead to atomicity viola-
tion in our situation; “two copies” of the task static instances
are needed. .

There are many static analysis algorithms for tracking the
flow of objects. Closest to our work are several thread es-
cape analyses [CGS+99; WR99; Bla99] for object-oriented
languages, which use reachability graphs to prevent or track



alias escape from threads. Task Types share a focus on thread
locality with this work, but differ in two important aspects:
(1) the pervasive atomicity of our language requires shared
task-style sharing, which is a “partial escape” that should be
allowed but has no representation in these analyses; (2) Fun-
damentally, object references do not need to be confined to
guarantee atomicity: it is perfectly fine for a task to create
an object, pass it over to another task, which in turn stores
it or passes it further to a third task. The key to atomicity is
there is no conflicting object access. The effect of these dif-
ferences is to produce unique issues that escape analyses do
not encounter and we need to solve here.

A type system is a logical system and our work has a dis-
tant relation to program logics such as separation logic. In
separation logic, local properties of the heap can be guar-
anteed by partitioning the heap, reasoning about the com-
ponents, and then soundly re-composing to get the property
over the full heap. Task Types share this philosophy of heap
partitioning in how the access relations partition objects. Al-
though there are currently no separation logics for concur-
rent object-oriented languages as we know of, there has been
work on separation logics for Java [PB05; PB08] and for
concurrency [OHe07; Bro07]. We believe the locality prop-
erty of relation cutExists is difficult to express with heap
partitioning since they are a subtle form of heap sharing;
these may be useful areas on which to focus extensions to
separation logic.

Language Designs for Atomicity The shortcomings of ex-
plicitly declared atomic blocks are summarized in [VTD06].
In that work, a data-centric approach is taken: the fields of an
object are partitioned into statically labelled atomic sets, and
access to fields in the same set is guaranteed to be atomic,
analogous to declaring different shared tasks for different
atomic sets in Task Types. Their data-centric approach is
a step forward compared with atomic blocks, but the de-
sign philosophy is still no-atomicity-unless-you-declare-it,
and hence fundamentally different from our notion of perva-
sive atomicity.

The Actor model and related message-passing languages
[Agh90; Arm96; SM08] achieve atomicity by imposing
stronger limitations on object sharing: threads communi-
cate only at thread launch. A primary appeal of this model is
each actor message handler thread executes atomically. If a
synchronous communication is needed however, the sender
needs to have an explicit message handler for processing the
return value. The synchronous sender must thus be coded
as two handlers, the code for actions up to and including
the send, and the post-send return value handler (the contin-
uation); this breaks the sender into two different atomicity
regions. Additionally, this breaks the obvious control flow
that would be apparent in synchronous messaging syntax,
making programming more difficult. Some implemented
Actor-based languages do include implicit CPS transfor-
mation syntax to ease coding, but that convolutes the code

meaning (variable scoping for example) and does not repair
the fact that the span of an atomic region was broken. Kilim
[SM08] is a more recent actor-like language, with a focus
on providing refined message passing mechanisms with-
out sacrificing the isolation property of Actors. The Kilim
type system relies on extra programmer declarations called
isolation modifiers to denote how each parameter can be
passed/used in the inter-actor context. Kilim and Task Types
have the same focus on object isolation, but in orthogonal
design spaces: Kilim on message passing, and Task Types
on atomicity.

A recent work that is closer to our spirit of pervasive
atomicity is AME [IB07; ABHI08]. The language constructs
of AME are along the lines of Actors, where an async e
expression starts up an atomicity-preserving thread. AME
is different from our work in its support of an expression
unprotected e, meaning atomicity is not preserved for e.
This is fundamentally different from pervasive atomicity. In
addition, AME does not support synchronous messaging,
and does not overlap with the static type system aspect of
our work.

A more conservative approach than atomicity is to de-
sign determinism into a concurrent language, such as build-
ing a type and effect system to guarantee threads are de-
terministic [BAD+09]. While this system is very useful for
some algorithms, it is surprisingly subtle the properties that
make algorithms deterministic and their system is often too
weak to detect the determinism. Also, many algorithms are
in fact not deterministic because some choices can be arbi-
trary. Note that both of our benchmarks are fundamentally
arbitrary – the PuzzleSolver for example has tasks compet-
ing for next moves and the processor timing will dictate
which task wins). The pervasive atomicity of this paper is a
less rigid notion for the programmer in that threads must be
divided into deterministic segments but need not be wholly
deterministic. The two approaches are compatible; perhaps
an ideal language would use the DPJ approach when deter-
minism was feasible to guarantee, and fallback to Task Types
when not.

7. Discussion
In our initial experience we have not found it difficult to
port basic concurrency patterns to Task Types, but further
work is needed to increase accuracy of the system to cover
the full spectrum of programming patterns. Since increased
accuracy also brings increased complexity, there needs to be
a strong justification for an extension before it is made. We
left out several potentially useful extensions in this paper,
which we discuss now.

Simple Extensions Several features are left out from the
formal system for simplicity, but can be added with minimal
change. The first feature is per-object sharing declarations
(rather than per-class sharing declarations as found in the
core calculus). For instance, the PuzzlePosition class



of Sec. 2.3.1 is a case where a per-object declaration of the
sharing policy, in place of the current per-class declaration,
would have allowed the program to typecheck without the
need for runtime locks. This extension is technically trivial.
Because our polymorphic type system is able to differenti-
ate objects of the same class anyways, the only change to
implement it would be (1) turning types from c@α to a more
verbose form such as c@α of µ, and (2) whenever a flow
constraint is generated, a constraint asserting both sides have
compatible modifiers is collected.

A second extension which would have allowed the same
program above to typecheck is a call-by-copy parameter
passing mechanism. This is a variation on immutability
which allows object data to be freely passed from one task
to another since the callee gets a fresh copy and thus no
back-channel will be created.

A third extension in which the granularity of sharing
could be made finer is to take individual fields of objects
as the atomic units of sharing, meaning some fields could be
owned by one thread and other fields by another thread. This
approach may indeed lead to more programs to typecheck
and it is not difficult to implement, but it is not clear to us
that this is a good idea for object-oriented programmers (as
opposed to C programmers). It violates a principle of object-
based design in how an object has dual allegiance; in fact
this may very well be a sign that such an object needs to be
refactored into two different objects.

On the design spectrum with full declaration on one end
and full inference on the other, Task Types lie somewhere
in the middle: it is a type inference system but shared and
task classes and messaging must be explicitly declared. In
general, the design principle here is that sharing policies and
execution policies for classes are essential and should be de-
clared, but enforcement can be the job of a program analy-
sis, in this case a polymorphic type inference algorithm, for
programmability reasons. The ideas here are to some degree
independent of this spectrum: it would be possible to infer
sharing when needed, and it would also be possible to have
an explicit declarative type system to capture the necessary
well-formedness properties.

Non-Trivial Extensions Task Types disallow a non-shared
ordinary object to be used in “phases”, each of which be-
longs to a different task: “from bootstrapping to a partic-
ular point of execution, object o belongs to task X; from
that point on however, o will never be used by X again,
and can be grabbed by task Y.” To see why this could in
some cases be a useful feature, consider the Swing AWT
invokeAndWait method. This method allows one thread
to pass some GUI-manipulating code to the AWT thread
where it will be queued up as an event and handled. Since
Swing is not thread-safe this is the only safe way another
thread can interact with Swing widgets outside of listen-
ers. Consider the following example, taken from the Swing
threading documentation:

void printTextField() throws Exception {
final String[] myStrings = new String[2];
Runnable getTextFieldText = new Runnable() {

public void run() {
myStrings[0] = textField0.getText();
myStrings[1] = textField1.getText();

}
};

SwingUtilities.invokeAndWait(getTextFieldText);
System.out.println(myStrings[0] + " " + myStrings[1]);

}

Here invokeAndWait will pass the code snippet in
run() for execution on the AWT thread; the current thread
will block until run() completes. If this Java code was
ported directly to Task Types, the myStrings array would
want to be statically owned by both the main task and the
AWT task and so typing would fail; not even making the
array a shared ordinary object would help since even after
run() completes the AWT thread will not release the array
since it has not completed. A call-by-copy semantics, as dis-
cussed above, would restore typability since the original task
will have a fresh copy of the data; however, this adds unnec-
essary overhead. This example shows it may be useful to add
an object transfer feature. As can be seen in the above ex-
ample, tasks hold on to shared ordinary objects even if they
are in fact finished with them, but early release at an exist-
ing atomicity break point would not increase the number of
atomic regions and would allow programs such as the above
to statically typecheck: at the point where run() completes,
the myStrings array can safely be transferred back to the
original task. For the above example a flow-insensitive type
analysis should be able to determine that myStrings does
not escape run() and if a singular capability to run()
were passed to the AWT task, object transfer upon return is
sound. In more complex cases it may be necessary to use a
flow-sensitive analysis to detect when an object is no longer
used.

We discussed task twinning in Sec. 2.2. This method is
relatively easy to prove correct, but in practice this conser-
vative definition can be refined in several situations. such as
a program point is obviously not instantiating more than one
task, or if it does, the instantiated tasks are obviously not
accessing the same objects. One refinement was mentioned
in Sec. 2.2: twinning is not needed when a simple analysis
determines a program point is not in a recursive context. An-
other refinement would be to track information flow in and
out of the task object: no sharing can happen between two
tasks instantiated from the program point – twinning is not
needed as a result – if there is no flow leading them to share.

Limitations A common complaint of constraint-based
type systems such as this one is they are non-modular, since
the whole program is needed to compute the constraint clo-
sure. This mainly leads to two problems: (1) the burden of
typechecking overhead at dynamic loading time a la Java,
and (2) the difficulty of printing precise error messages. As
was discussed in Sec. 3, problem (1) motivated us to for-
mulate our system in two phases, so that many type errors



can in fact be discovered modularly. Furthermore, if dynam-
ically loaded code was certified by signature to be identical
to the compile-time code, no additional dynamic link check-
ing would be needed. We agree that problem (2) is a real
challenge. Indeed, any system with type inference across
modularity boundaries – such as the type inference of ML –
is faced with this challenge. As our compiler matures, we are
interested in studying various error localization approaches.

8. Conclusion
We have presented an approach to achieve atomicity in mul-
tithreaded object-oriented programs, by making the follow-
ing contributions:

• We develop a top-down, mostly static approach to en-
force atomicity as opposed to the usual bottom-up, dy-
namic approach. Atomicity with Task Types is top-down
in the sense that it is pervasive instead of building islands
of atomic blocks. Principled language constructs for shar-
ing between tasks are provided, and strong atomicity is
achieved for all code regardless of sharing.

• We provide a programming model whose language syn-
tax requires only minor changes to standard object syn-
tax, but the philosophy of a non-shared memory model
as a default, and explicit support for data sharing between
threads, is significantly different than the norm. As a con-
sequence, the object sharing between tasks is brought
front and center for the programmer, where it should be.

• Task Types incorporate a precise and provably sound
polymorphic/context-sensitive analysis which statically
verifies that non-shared ordinary objects are appropri-
ately partitioned between tasks. Since the partitioning is
verified statically, there is no need for dynamic partition-
ing of non-shared objects between tasks, meaning there
is no additional runtime overhead.

• The viability of Task Types has been confirmed by a pro-
totype compiler, and initial benchmark results are reason-
able.

Task Types are a complex type system; we believe this
stems from complexity inherent in writing shared-memory
concurrent programs correctly. Although it could be argued
that means shared-memory concurrency needs to be aban-
doned, we are perhaps too far down that road to turn around,
and Task Types represent a compromise between the “Wild
West” of Java programming today and the rigid straight-
jacket of non-shared memory concurrency. Programmers
also need not understand every detail of the type system,
only that some object is shared more than the type system
is allowing, and either its use must be restricted or its class
must be lifted to be a shared class.

As in many type system approaches, the programmer bur-
den of typing under Task Types will be nontrivial. However,
that is not necessarily a bad thing: the ML language by anal-
ogy has a type system that is challenging for new program-

mers, but greatly increases productivity in the long term, be-
cause the type system catches what would have been difficult
run-time bugs and so the extra time spent typechecking is
more than made up in the time saved in later debugging. We
believe Task Types will offer a similar advantage for concur-
rent programming.

The webpage of Task Types [TT] includes all reduction
rules, a complete set of proofs for all the theorems presented
in this paper, as well as the source code of the compiler.
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