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Symbolic backwards execution (SBE) is a useful variation on standard forward symbolic evaluation; it allows a

symbolic evaluation to start anywhere in the program and proceed by executing in reverse to the program
start. SBE brings goal-directed reasoning to symbolic evaluation and has proven effective in e.g. automated

test generation for imperative languages.

In this paper we define DDSE, a novel SBE which operates on a functional as opposed to imperative language,

and furthermore it is defined as a direct abstraction of a backwards-executing interpreter. We establish the

soundness of DDSE and define a test generation algorithm for this toy language. We report on an initial

reference implementation to confirm the correctness of the principles.

1 INTRODUCTION
Symbolic execution, the evaluation of a program over symbolic ranges of values instead of over

concrete values, has proven to be a useful technique with real-world applications from lightweight

program verification to automated test generation; see [Baldoni et al. 2018] for a recent survey of

the area. Path explosion is a major shortcoming with symbolic execution and a backward approach

will avoid searching a vast number of paths which would never get near the target.

This paper focuses on symbolic backwards execution (SBE) [Baldoni et al. 2018, §2.3], a variation

on symbolic evaluation where evaluation can start anywhere in the middle of the program and

proceed in reverse to the program start. This reverse propagation is similar in spirit to how Dijkstra

weakest-preconditions (wps) are propagated, and how classic backward program analyses propagate

constraints in reverse. The advantage of SBE is the same as any goal-directed reasoning: by focusing

on the goal from the start, there are fewer spurious paths to be taken.

SBEs have been developed for imperative languages; examples include [Chandra et al. 2009;

Charreteur and Gotlieb 2010; Dinges and Agha 2014; Ma et al. 2011]. These reverse techniques are

useful for goal-directed reasoning about paths leading to a particular program point: if a condition

at a program point can be propagated back to the program start this will deduce its validity. The

aforecited systems are capable of automatically generating tests exercising a particular program

point, using backward symbolic execution to accumulate constraints required to reach the target.

These imperative language systems unfortunately do not directly generalize to functional lan-

guages. Functional languages have a combination of non-local variables and a control flow that can

itself depend on (function) data flow which makes this gap non-trivial. So, in this paper we develop

DDSE, a demand-driven symbolic evaluator for higher-order functional languages which also

propagates constraints backwards. We show how, unlike existing SBEs, DDSE may be constructed

as a direct generalization of a backward concrete evaluator; this follows how forward symbolic

evaluators are constructed as generalizations of forward concrete evaluators and lends a regularity

to the process. With this regularity it is also easy to formally prove DDSE is correct, something not
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previously proven for an SBE. In order to show applicability of DDSE, we develop a theory and

implementation of test generation for a functional language. While the paper focuses on the test

generation application to show that concrete results are possible, DDSE is also applicable to other

goal-directed problems that SBEs can address.

In Section 2 we give a high-level overview of the principles behind the approach. Section 3

defines a largely standard operational semantics for a simple functional language that also includes

input; this interpreter is then extended with a non-standard notion of fresh variable generation

to support demand-driven execution. Section 4 defines the (concrete) demand-driven interpreter

and shows it equivalent to the standard one. Section 5 extends the demand-driven interpreter to

the symbolic DDSE and shows how it can be used for test generation. We formally prove that

the symbolic interpreter extends the concrete one, and that tests inferred will in fact exercise the

indicated line of code they were supposed to. Section 6 describes the implementation of the test

generation algorithm and its performance on small benchmarks. Section 7 gives related work, and

we conclude in Section 8.

2 OVERVIEW
Goal-directed program reasoning has a long tradition in programming languages, dating back to

Dijkstra weakest-precondition (wp) propagation. We review a very simple example in Figure 1 to

recollect wp propagation.

1 let x = input in
2 (* {x > 0 ∧ x < 25} *)
3 if x > 0 then
4 (* {x < 25} *)
5 if x < 25
6 then x+1 (* {true} *)
7 else x-1
8 else x-2

Fig. 1. Weakest precondition propagation

Suppose we started at line 6 with true as our (vac-

uous) assertion. By wp propagation since we know we

are coming only from the true branch of the conditional,

before line 3 we must have precondition {x < 25}, and

continuing to propagate, we have {x > 0∧x < 25} in line

2. So, it means that input must be in the range of 1 . . . 24
for the target line 6 to be reached. This example gives

some idea of how existing first-order symbolic backward

executors (SBEs) [Chandra et al. 2009; Dinges and Agha

2014] work: they start with a vacuous precondition and

back-propagate to the start of the program.

The goal of this paper is to show how a demand-driven symbolic evaluator can be developed for

higher-order functional languages. Weakest precondition logic was designed for first-order stateful

programs, and there does not exist any direct analogue for higher-order functional programs.

Recall that the general case of higher-order functions includes two key differences from first-order

programs: functions are passed as data, thus causing data flow to influence control flow, and function

bodies capture non-local variables in closures. The aforecited systems give some consideration to

functions as data: they accommodate virtual method calls by an iterative process for estimating

the call graph. However, no soundness properties are asserted in those works and it is not clear

if the analysis is sound in the face of a mis-estimated call graph. By starting with a higher-order

functional basis, we can develop a direct and provably sound demand-driven symbolic evaluator.

We will describe DDSE in stages: first defining the demand-driven evaluator, then extending it to

deal with input, and finally performing symbolic evaluation starting from an arbitrary program

point.

2.1 Demand-Driven Functional Evaluators
A functional evaluator can be written to be more demand-driven than the standard closure-based,

environment-based, or substitution-based evaluators: the evaluator only needs to retain the current
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stack of function calls invoked, and from this information it is possible to reconstruct any variable’s

value. Consider for example the program
1
in Figure 2.

For the f y call, a standard evaluator would pass in the actual value 0 by some means. In our

truly demand-driven evaluator, however, the body x + 1 executes without any binding for x, only
knowing that the function was called from line 3. When x’s value is needed in the body to add 1 to

it, we rely on the fact that the call site was recorded as being at the location
2 fy. We know that x’s

value will take on the value of y at that call site, which in turn can be seen to be 0. We know that x
does not have the value 1 from the other call site since fy, and not f1, was the call site recorded.
When the evaluator executes the f1 call, it will again compute x + 1 but this time under the call

site stack f1, and there x will have value 1.

1 let y = 0 in
2 let f = (fun x ->
3 let fresult = x + 1 in
4 fresult) in
5 let fy = f y in
6 let f1 = f 1 in
7 let result = fy + f1
8 in result

Fig. 2. Simple demand-driven evaluation ex-
ample

We now trace this more precisely. We define a variable

lookup function L
ω
(x,n,C) = v to mean that v is the

result of a lookup of variable x , starting the (reverse)

search from just before line n, and assuming the current

call site stack context is C . This call stack C is not the

forward execution stack, since we are wp-style walking
the program in reverse; it denotes the calls entered and

not yet exited in this reverse-order sequence. This lookup
function lacks some accounting parameters for clarity

of discussion but is otherwise the heart of the evaluator

we formally define in later sections. We now illustrate

lookup in detail by showing how the value of result in

the above program is looked up from the program end and empty call stack, L
ω
(result, 8, []).

(1) This lookup first inspects the previous line: line 7. This line defines result in terms of two

other variables, so we now have two lookup sub-goals to find result’s value: looking up fy
and f1 will allow us to establish the result L

ω
(fy, 7, []) + L

ω
(f1, 7, []). We will trace only fy

in this example since f1 is similar.

(2) Considering L
ω
(fy, 7, []) and proceeding backward, we may skip over f1’s definition as it is

irrelevant. In line 5, we find the definition of fy which is not yet a value but is a function

call. So, fy’s value is in fact the result of the function call by a similar reverse process: first

look up the definition of function f (L
ω
(f, 7, []) = fun x ->. . . ), and then in turn search for

the result value of the function body, fresult, having pushed this call site on the call stack:

L
ω
(fresult, 4, [fy]).3

(3) Performing L
ω
(fresult, 4, [fy]), fresult can be seen to be defined in the previous line,

line 3, as expression x + 1. The value for fresult is therefore L
ω
(x, 4, [fy]) + 1, recursively

invoking lookup on x.
(4) Looking up x, it can immediately be seen as the parameter to the function, so we want to look

up the value of this parameter at the original call site; we know that is fy as it was recorded

on the call stack. So, L
ω
(x, 4, [fy]) induces a lookup of the parameter value y from the call

site fy: L
ω
(y, 5, []). This lookup steps back over line 2 and to line 1 where y is observed to be

0 and so L
ω
(y, 5, []) = 0.

(5) Popping off lookup obligations,L
ω
(x, 2, [fy]) = L

ω
(y, 5, []) = 0, whichmeansL

ω
(fresult, 2, [fy]) =

0 + 1 = 1, which means L
ω
(fy, 7, []) = 1.

1
We A-normalize our programs to clarify operator ordering. We use an informal OCaml-like syntax in this section and give

a formal ANF grammar in the following section.

2
We use unique variables in our A-normalized programs, so variable definitions serve to uniquely identify program points.

3
Note that this logic is for call-by-name function call; for the call-by-value implemented here we need to also verify that the

argument is not divergent by looking it up.
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Non-local variables are variables used in a function but whose definitions lie outside of that
function; they must be placed in closures in standard functional language evaluators. To support

non-local variable lookup in a reverse evaluator, we cannot rely on closures as they are a forward-

passed structure. So, we instead use an additional stack to record the chain of call frames we need

to walk back through to find where a non-local variable is local. For readers familiar with access

links in compiler implementations of non-local variable lookup, it is an analogous stucture. So,

lookup is now more generally L
ω
(X ,n,C) = v , where X = [x1, . . . , xn] is a chain (list) of function

definitions to be searched for. We have removed the variable looked up, x , from the argument

list, instead interpreting list head x1 as this variable; all lookups in the previous example were

singletons, L
ω
([x],n,C) = v .

1 let g = (fun x ->
2 let gresult = (fun y ->
3 let gyresult = x + y in gyresult)
4 in gresult) in
5 let g5 = g 5 in
6 let g51 = g5 1 in
7 let g6 = g 6 in
8 let g62 = g6 2 in
9 let result = g51 + g62
10 in result

Fig. 3. Non-local variable example

2.1.1 Non-Local Variables. Consider the exam-

ple of a Curried addition function in Figure 3;

x in line 3 is a non-local variable. Suppose we

want the value of g51 in line 9, L
ω
([g51], 9, []);

this is the value of the call in line 6, which

means we need to find the function and then

call it (in reverse). First the function definition

g5 must be found, via L
ω
([g5], 6, []); as in the

previous example it is the result of the applica-

tion in line 5 so we in turn look up g there

and trace into it’s gresult to find it is the

fun y ... in line 2: L
ω
([g5], 6, []) = fun y . . . .

Now that we have found the function body being executed in the line 6 call, we need to lookup

the result variable of that function, gyresult: L
ω
([gyresult], 3, [g51]) (by entering the function

body we now are inside the call from site g51, thus g51 is on the call stack). Continuing, gyresult
is defined in line 3 as expression x + y, so we need to look up x (and y) at this point in order to

get gyresult’s value: L
ω
([x], 3, [g51]). In this sub-lookup, we are inside fun y ... and x is not

defined in the current context: it is a non-local. So, since x is not in the current body, we must

exit the g51 call and redirect our search: since x is non-local, we can find its definition point if we

(again) look up the function definition g5, where x has to be defined as it must be lexically in scope

of that function definition. Once we reach g5’s definition, we will be able to resume our lookup of

x. In other words, we need to perform L
ω
([g5, x], 6, []). When performing this lookup, we are at

line 6 at the top level of the program looking for the definition point of g5. Once we have found the
definition point of g5 in line 2, will we pop g5 off of the non-locals stack giving goal L

ω
([x], 2, [g5])

(the [g5] call stack here reflects that we had to enter the g5 call site to find the fun y definition).
L
ω
([x], 2, [g5]) is now just a local parameter lookup: this is the parameter at the g5 call site which

in turn can be traced to be 5.
The above examples describe the core ideas; for deeper lexical nesting the non-locals stack

will just get deeper, similar to how access links extend. For recursive functions, definable here

via self-passing, the context stack may grow unboundedly but there is no need for any special

handling in the lookup definition. Demand-driven functional evaluators of the above form were to

our knowledge first developed in [Palmer and Smith 2016] (the ωDDPAc evaluator there), for the
purpose of proving a program analysis sound.

2.2 Demand-Driven Symbolic Execution: DDSE
The novel contribution of this paper is to make a symbolic demand-driven evaluator, DDSE, based

on the demand-driven evaluator of the previous subsection, and to show how DDSE may then
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be used to infer tests to reach an arbitrary line of code. There are several extensions to the above

evaluator that are needed in order for it to evaluate symbolically and to infer tests. First, rather

than lookup returning values, constraints on values are accumulated, in the form of logical formulae.

This yields a symbolic evaluator. Then, the symbolic evaluator is modified to include input and to

allow (reverse) execution to commence from any point in the program including inside a function

or conditional; this latter modification may be used to generate a test reaching that program point.

We will now work through these extensions.

2.2.1 Constraint-based execution. First we show how the demand-driven evaluator can be extended

to a symbolic demand-driven evaluator. The basic idea is simple: to accumulate all constraints on

variable values in a global formula Φ which must remain satisfiable, and to define lookup to return

a variable over which constraints can be constructed. But, there are subtleties on how to name

variables given there may be many activations of the same variable at runtime. Fortunately, the

runtime heap location is uniquely determined by the pair of variable name and current call site

stack (assuming that the initial program had any duplicate variable definitions renamed, i.e. the

program was alphatized). We use notation
Cx for the pair of variable x annotated with context

stack C , to uniquely identify runtime heap locations. Note that every such pair denotes where the

variable is defined; at a program point where we have only the use of a variable we must look it

up to find its defining variable pair, as equations on variables must be on their definitions (heap

locations), not uses. Every variable use is invariably a chain of variable aliases back to a definition

of the variable; such chains may go through function calls. The symbolic lookup function is of the

form L
S

(x,n,C) = C ′

x ′
, and will additionally produce a global set of constraints Φ over all lookups.

(For simplicity here we revert to single-variable lookup notation x .)
Let us re-evaluate the Figure 2 example symbolically to illustrate the differences. Consider

looking up the variable result from line 8 with an empty call stack, L
S

(result, 8, []). Proceeding
to line 7 we have arrived at a definition of result and are looking to add a constraint of the form

[]result =L
S

(fy, 7, []) + L
S

(f1, 7, []) to global set Φ. The two lookups for fy and f1 in the above

equation need to be computed to find the defining variables to put in the equation, and they may

entail other constraints. Let us trace only L
S

(fy, 7, []) since f1 is similar. This lookup is structurally

identical to the demand evaluator above. So, as previously, lookup of fy entails (and has the result

of) lookup of f’s result fresult: L
S

(fy, 7, []) is equal to L
S

(fresult, 4, [fy]).

Now, L
S

(fresult, 4, [fy]) immediately finds the definition of fresult, x + 1. We have reached

a point where a concrete value is constructed, so the equation
[fy]fresult =L

S

(x, 3, [fy]) + 1 must

be generated. Here,
[fy]fresult is the defining variable: the stack annotation [fy] disambiguates to

mean the fy call site allocation of fresult. As with the call site above, we have induced a lookup

of x required to complete the equation. So, looking up L
S

(x, 3, [fy]) as in the evaluator above, we see

it entails and has the result of L
S

(y, 5, []) which is defined on line 1, and yields the constraint
[]y = 0

since it is a value definition. Further, L
S

(y, 5, []) returns []y and so L
S

(x, 3, [fy]) also returns []y. Given
these results, we construct the addition equation

[fy]fresult = []y + 1 and we return
[fy]fresult as

the defining variable for fy which finishes half of the original equation in step 1. A similar process

repeats for f1 and also completes the equation in step 1.

The constraint set Φ for this lookup is then fully:

Φ = {[]result = [fy]fresult + [f1]fresult, [fy]fresult = []y + 1, [f1]fresult = 1 + 1, []y = 0}

By basic arithmetic we can conclude that
[]result = 3 is logically deducible from satisfiable Φ. In

the DDSE implementation we simply call out to a SMT solver to check for satisfiability of Φ; the
implementation will be discussed in Section 6 below.
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2.2.2 Adding input. While relatively easy in forward evaluators, adding input in this backward

evaluation model is somewhat challenging. Forward evaluators simply process input in sequence

as they execute the program. In the demand-driven process described above, however, values are

looked up in the (reverse) order in which they are used rather than the order in which they are

defined. For example, consider the program in Figure 4. Here, the input keyword reads an integer

off standard input. When looking up ifresult, we must first establish the value of the conditional

i2, which is neither the first or last value in the input sequence. All we know about this value is

that it is an input which was allocated to the heap on line 2.

To address this issue, we record inputs not as a stream but as a mapping from call-site annotated

variables to values, in a similar manner to how we used annotated variables to uniquely identify

heap locations in the symbolic evaluator above. If the input sequence of the original program were

[1, 2, 3], we would re-cast it as ι = {[]i1 7→ 1, []i2 7→ 2, []i3 7→ 3}. Since all three variables are
defined at top level, their call stack annotations are empty.

1 let i1 = input in
2 let i2 = input in
3 let i3 = input in
4 let f = fun x ->
5 let fresult =
6 if x = 0
7 then let fresultp = x + 1 in fresultp
8 else let fresultm = x - 1 in fresultm
9 in fresult
10 in
11 let ifresult =
12 if i2 = 0
13 then let fi1 = f i1 in fi1
14 else let fi2 = f i2 in fi2
15 in ifresult

Fig. 4. Input Example

Section 3 formalizes both the stream and

mapping notion of input and proves their equiv-

alence in a conventional (forward) evaluator;

Section 4 then develops a demand-driven eval-

uator which uses the mapping model of input

and which is also proved to be equivalent to

the forward evaluator. The symbolic evaluator

of Section 5 also uses the mapping notion of

input.

2.2.3 Test generation. We may finally consider

how to generate a test exercising any particular

line of the program. Consider again the Figure

4 input example and suppose our goal is to find

inputs which reach (i.e., cover) line 7. Lookup of

fresultp from line 7 is non-trivial: this search

begins inside the body of f, there are two call

sites to f, and either could have been the calling
point. So, a search is fundamentally required. A conservative approach would be that any call site

could have called f, but a simple program analysis can build a conservative call graph to winnow

out nearly all call sites from contention. For this search process two additional global structures

are present, along with formula Φ: a path choice, Π, which records which call site was chosen in

the current search attempt; and a conservative call graph, G.
Suppose here we arbitrarily guessed f i2 in line 14 as the call site that got us to line 7, recording

this choice in Π; let us at a high level describe the lookup constraints Φ produced. In this case, we

also know that with this choice the call stack when we started must be [fi2] since the call site is at
the top level. In general, we only have a partial notion of the full call stack if we start deeply in the

program, but we can incrementally construct an isomorphic structure on-the-fly which we term a

relative stack; see Section 5.1 for details.

We began our search in the then branch, so we know the conditional expression to be true; we

will ultimately express this with a constraint of the shape L
S

(x, 5, [fi2]) = 0 where L
S

(x, 5, [fi2])
is the defining variable obtained by looking up x. This lookup in turn has the same result as

looking up fi2’s call site argument, i2, reducing our work in determining L
S

(i2, 14, []). We now

exit the conditional on that line and, since we came from the else branch, we will eventually

record a constraint of the shape L
S

(i2, 14, [])<>0 to remember that this condition must have failed.
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Continuing with L
S

(i2, 5, []), we finally arrive at its definition in line 2. Since i2 is defined as an

input, we do not constrain it. Having completed lookup, we can fill in the holes in the previous

constraints: the else constraint is
[]i2 <> 0 (because L

S

(i2, 11, []) = []i2) and the original then

constraint is
[]i2 = 0 (since L

S

(x, 5, [fi2]) = L
S

(i2, 11, []) = []i2). These two constraints,
[]i2<>0 and

[]i2 = 0, are immediately contradictory, meaning that this path will never happen and so the fi2
call site choice is discarded.

So, rewinding back to the start, we will this time record in Π that the fi1 call site was the caller

of f. Skipping the details, it produces Φ = {[]i2 = 0}. Any input mapping conforming to these

constraints, such as {[]i1 7→ 0, []i2 7→ 0, []i3 7→ 0}, will exercise line 6, and so we have successfully

deduced a test case.

Note that if all potential paths are unsatisfiable, we have a proof that there is no such test reaching

the line, i.e. is it dead code. It also could be the case that the code is unreachable but there are

infinitely many paths and so the search for a path will never terminate and the algorithm will be

unable to prove the code is unreachable.

The discussion above glosses over an important detail: lookup is a data flow operation but

we are searching for a control flow path. In fact, we needed to look up all variables encountered
in the reverse search and cannot completely skip over any statement as it may have an input

or non-termination side effect. In this process we will map the full control of the program as a

consequence of tracing the origin of every value definition needed: the complete data flow of a
functional program fully defines the control flow. The same lookup is triggered many times because

of this and the implementation caches it to avoid blowup.

Section 5 formally presents DDSE symbolic evaluator, and our reference implementation is

described in Section 6.

3 A STANDARD FORWARD OPERATIONAL SEMANTICS

e ::= [c, . . .] expressions
c ::= Fx =b clauses
x ::= (identifiers) variables
b ::= v | Fx | input | Fx Fx bodies

| Fx ? e : e | Fx ⊙ Fx
f ::= fun Fx -> ( e ) functions
⊙ ::= + | - | < | = | and | or | xor binops
v ::= f | Z | B values
F ::= ϵ | ⊤ | . . . freshening tags

I ::= [v, . . .] input list
E ::= [Fx =v, . . .] environments

Fig. 5. Langauge Grammar

We begin the formal development by defining a stan-

dard forward-proceeding operational semantics. The

grammar of our language appears in Figure 5. This

figure additionally includes a few elements needed

for the operational semantics: environments E are

mappings from variables to values and input se-

quences I are lists of values which will be provided

as input during execution.

The grammar in Figure 5 is in a shallow A-normal

form: all steps are variable assignments and each

computation step’s arguments are variables. We also

require all variable bindings to be unique (i.e., al-

phatized). These two properties ensure that each

program point is uniquely identified by the variable

it defines; we will thus pun between variables and

program points throughout the paper.

Additionally, in this development we need to be careful with how variables are freshened, and so

we formally define variables as pairs of tags F and underlying variable x , which we will notate
Fx .

The F ’s can be any countable set which includes two distinct values: ⊤ (which we discuss below)

and ϵ . The ϵ value indicates an unfreshened variable; all source programs contain only unfreshened

variables. Variable
ϵx will be freshened by replacing ϵ with a fresh F to give

Fx . This explicit
freshening notation may look heavyweight, but it is critical to distinguish different activations of
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Alias

(F2x2 =v) ∈ E

E | |[F1x1 =
F2x2] | | e, I −→

1 E | |[F1x1 =v] | | e, I

Input

I = [v] | | I ′

E | |[F1x1 = input] | | e, I −→
1 E | |[F1x1 =v] | | e, I

′

Binop

{F2x2 =v2,
F3x3 =v3} ⊆ E v = v2 ⊙ v3

E | |[F1x1 =
F2x2 ⊙

F3x3] | | e, I −→
1 E | |[F1x1 =v] | | e, I

Call

e0 = E | |[F1x1 =
F2x2

F3x3] | | e (F2x2 = funx4 -> e
′) ∈ E (F3x3 =v) ∈ E e ′′ = Freshene0 (e

′)

e0, I −→
1 E | |[Fx4 =v] | | e

′′ | |[F1x1 = RetV(e ′′)] | | e, I

Conditional True

F1x1 = true ∈ E Fx ′ = RetV(e1)

E | |[Fx = (F1x1 ? e1 : e2)] | | e, I −→
1 E | | e1 | |[

Fx = Fx ′] | | e, I

Conditional False

F1x1 = false ∈ E Fx ′ = RetV(e2)

E | |[Fx = (F1x1 ? e1 : e2)] | | e, I −→
1 E | | e2 | |[

Fx = Fx ′] | | e, I

Fig. 6. Standard Forward Operational Semantics

the same variable in the symbolic evaluator in Section 5. To prevent clutter, we occasionally use

unmarked variables x to refer to their unfreshened counterparts
ϵx .

We define the small step operational semantics as a relation e −→1 e using the following

definitions:

Definition 3.1. Let RetV(e) = x if e = [c, . . . , x =b]. That is, x is the last variable of e .

Definition 3.2. e −→1 e ′ holds iff a proof exists in the system of Figure 6. We write e0 −→
∗ en to

denote e0 −→
1 . . . −→1 en .

The rules in Figure 6 are largely straightforward. The auxiliary function RetV returns the last

variable defined in an expression, which is taken to be the expression’s result. I is the input stream
during evaluation

4
.

The variable freshening function Freshene (
ϵx) used in the rules is any function returning

F ′

x ′
for

F ′
not occurring in e; one (inefficient) version of such a function would be for F = e , tagging the

variable with the full computation state. We will never re-freshen variables: Freshene (
Fx) for F , ϵ

is identity. Below we will make a more nuanced version which is our primary purpose in focusing

on freshening.

We extend this freshening function to clauses and expressions. Function freshening Freshene (f )
freshens only non-local variable uses in the function’s body because the function is not being invoked
at this point. All other clause bodies as well as clauses and expressions are freshened homomorphi-

cally; e.g. expressions are freshened as Freshene ([c1, . . . , cn]) = [Freshene (c1), . . . , Freshene (cn)]. Note
that all clause variable definitions are also freshened, Freshene (

ϵx =b) = (Freshene (
ϵx) = Freshene (b)).

4
Note that we use a finite list I to represent the input stream for simplicity. A finite n-step run of a program will only

consume at most the first n elements of an infinite stream; any non-terminating evaluation can be modeled as the limit of

incrementally larger finite step executions.
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Demand-Driven Symbolic Evaluation 9

Source programs contain only un-freshened variables
ϵx , but we maintain an invariant that

variables in the top level of a program under evaluation are freshened. To set up this invariant

initially, The evaluation of a source program e begins by computing e ′ = Freshen⊤(e)which freshens
all top-level variables by giving them the initial freshening tag ⊤; the resulting e ′ is then evaluated

by Definition 3.2. Concretely, we will use stacks of call sites as freshening tags, and ⊤ will be the

empty stack, as explained below.

3.1 Freshening with call site stacks
For the symbolic interpreter we need to have a more focused notion of freshening. In particular, we

would like to use the stack of call sites as indices on variables and not the whole execution state as in

our example freshening function above. But we need to show that this will satisfy the requirements

of a freshening function: it will rename variables to names not currently in use anywhere in the

global execution state.

We start by defining each element of F to be either the unique ϵ or a call stack C . Here, a call
stack is a list of call sites:

C = [x1 =x
′
1
x ′′
1
, . . . , xn =x

′
n x ′′

n ]

with the head of the list meaning the top of stack; i.e. the most recent call here was at call site

x1 =x
′
1
x ′′
1
. These call sites are the literal clauses in the original program: variables xi are just the

program (base) variables and are not freshened. F must include a distinguished element ⊤ and here

we fix ⊤ = []. (ϵ remains distinguished and not an element of the formC .) We can then equivalently

define freshened variables as an x,C pair which we will notate
Cx .

We then may define freshening as

Freshen
cs

E | |[Cx1=C
′x2 C′′x3] | | e

(x) = ([x1=x2 x3] | |C)x

The context C on the defined variable invariably represents the call stack at the point when this

particular call was executed, and so we want to simply add the current call site (the source name

for it, not the freshened version) to C .

Lemma 3.3. Freshen
cs
E | |[Cx1=C

′x2 C′′x3] | | e
(x) is a freshening function: for any execution e0 −→∗

. . . −→∗ E | |[Cx1 =
C ′

x2
C ′′

x3] | | e −→∗ . . . en , for any variable x , Freshencs
E | |[Cx1=C

′x2 C′′x3] | | e
(x) does

not occur in (E | |[Cx1 =
C ′

x2
C ′′

x3] | | e).

Proof. Proceed by induction on the length of the derivation to prove the lemma (referred herein

as (1)) strengthened with the additional assertions that (2) each call site
Cx1 =

C ′

x2
C ′′

x3 is executed
(i.e. replaced) only once (since each time the same point in the original program is revisited, the

variables will be fresh), and (3) that all variable definitions in each program state are unique.

So, assume previous steps have these three properties, and wolog show the step evaluating the

call
Cx1 =

C ′

x2
C ′′

x3 will preserve them. For (2), since by induction all variable definitions are unique,

there is only one occurrence of the call
Cx1 =

C ′

x2
C ′′

x3 in the program, and the call rule removes

that clause and so it will no longer appear in the program. So, since the call is removed in the

remainder of the derivation it cannot be invoked again. Now for the lemma property, (1). We know

by induction that
Cx1 must be unique. By property (2) we know there must not have been another

call of
Cx1 earlier in the derivation, so there will be no variables

[x1=x2 x3]] | |Cx for any x occurring in

the execution state. Thus, all variable definitions
[x1=x2 x3]] | |Cx are fresh and (1) is established. For

(3), all variable definitions by induction were unique and by showing (1) just now we established

all new variable definitions are also unique with respect to existing variables, thus all variable

definitions are unique, establishing (3). □

From now on we will assume that Freshen
cs
is the function used for variable freshening.
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10 Zachary Palmer, Theodore Park, Scott Smith, and Shiwei Weng

e , I −→∗ e , I e , I , ι −→∗ e , I , ι

e −→∗
ι ee , I −→∗

ι e , I

input stream interpreter ι-building interpreter

input map interpreterI -building interpreter

Fig. 7. Modeling Input as a Mapping

3.2 Modeling input equivalently as a mapping
Streaming is the most natural model for input in a forward-running operational semantics. As

illustrated above, however, a demand-driven interpreter looks up inputs in the (reverse) order of

how they are used, not how they are defined. We address this by modeling input for the demand-

driven interpreter as a mapping ι from heap locations (uniquely identified by freshened variables)

onto the values they will input. By Lemma 3.3, freshened variables are used at most once, so such a

mapping is sufficient to disambiguate inputs at runtime and we can build an isomorphism between

the stream and mapping views.

To do this, we will make an instrumented version of the substitution-based interpreter above. In

this instrumented interpreter, each evaluation of a clause
Cx = input adds the mapping

Cx 7→ v to ι.
By executing the entire computation, we may incrementally build the full ι. Once ι is defined we

can build another interpreter −→∗
ι which only needs ι but is otherwise equivalent. We will later

need the reverse direction as well, constructing I from ι and a dual process will work there. This

approach is summarized in Figure 7.

Formally we will define ι by the following grammar rule.

ι ::= {Cx 7→ v, . . . , Cx 7→ v} inputs

We now define e, I , ι −→1 e, I , ι. On the non-input rules the additional arguments I and ι are just
related as identity, so we leave out those rules.

Input

I = [v] | | I ′

E | |[Cx1 = input] | | e, I , ι −→
1 E | |[Cx1 =v] | | e, I

′, ι ∪ {Cx1 7→ v}

e, I , ι −→1 e ′, I ′, ι′ holds if a proof exists in the above system; e0, I0, {} −→∗ en, In, ιn is the

usual closure. Note that ι0 here is the empty mapping {}; the mapping ιn is synthesized by the

computation.

With an inferred ι we may then define computation which takes as given a fixed input mapping.

This is the system that can be related to the demand-driven and symbolic interpreters in the

following sections.

So, we next define −→∗
ι , where ι is a (fixed) parameter on the relation. Again the rules are nearly

the unchanged, so we only present the Input rule:

Input

(Cx1 7→ v) ∈ ι

E | |[Cx1 = input] | | e −→
1

ι E | |[Cx1 =v] | | e

e −→1

ι e
′
holds if a proof exists in this system; e0 −→

∗
ι en is the usual closure.

We can then establish soundness of the stream-to-mapping conversion.

Lemma 3.4. If e0, I0, {} −→∗ en, In, ιn then e0 −→∗
ιn en .

For test generation we also need to be able to convert in the opposite direction: we are going to

find test inputs using the mapping notion of input, and would like to map them back to a standard
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interpreter. For this we can create another system which infers I from ι. Note that if ι(Cx) is not
defined, that means the input was never used and so the demand-driven inference algorithm never

needed the value; for these cases an arbitrary value can be chosen.

Input

(Cx1 7→ v) ∈ ι or Cx1 < Dom(ι)

E | |[Cx1 = input] | | e, I −→
1

ι E | |[Cx1 =v] | | e, (I | |[v])

e, I −→1

ι e
′, I ′ holds if a proof exists in the above system; e0, I0 −→

∗
ι en, In is the usual closure.

Observe that we built the input mapping by adding the elements as they appear to the end of

the input; in the stream-based system we read off the front of the final stream inferred. That is

reflected in the following soundness property.

Lemma 3.5. If e0, [] −→∗
ι en, In then e0, In −→∗ en, [].

Given this isomorphism between stream and mapping forms of input, we will hereafter use

the mapping form; our test inference algorithm will produce a mapping ι and we can then use

the above stream inference method to produce an input stream usable by a standard compiler or

interpreter to exercise the test case.

4 A REVERSE CONSTRUCTION INTERPRETER
In this section we construct a demand-driven interpreter for our language following the formal

definition of the ωDDPAc interpreter in [Facchinetti et al. 2019]. This section follows Section 5.4 of

[Facchinetti et al. 2019], but here we also add in input statements needed for test generation, as

well as conditional branching statements as well as atomic data and operations; we will refer to the

resulting language as ωιDDPAc with the ι standing for the input addition.
Figure 8 contains the language grammar as well as all of the constructs needed to define the

interpreter.

Definition 4.1. We use the following notational sugar for control flow graph edges:

• a1 << a2 << . . . << an abbreviates {a1 << a2, . . . ,an−1 << an}.
• a′ << {a1, . . . ,an} (resp. {a1, . . . ,an} << a′) denotes {a′ << a1, . . . ,a

′ << an} (resp. {a1 <<
a′, . . . ,an << a′}). That is, << implicitly generates a product on sets.

• a′ << [a1, . . . ,an] (resp. [a1, . . . ,an] << a′) denotes {a′ << a1 << . . . << an} (resp. {a1 <<
. . . << an << a′}). That is, << preserves ordering for lists (specifically because expressions e
are a form of list).

• We write a << a′ to mean a << a′ ∈ G for some graph G understood from context.

V ::= {v, . . .} value sets

a ::= c | x
Ic
= x | x

Jc
= x annotated clauses

| vIc | Start | End

д ::= a << a control flow edges
G ::= {д, . . .} control flow graphs
C ::= [c, . . .] clause stacks
C ::= {C, . . .} clause stack sets
X ::= [x, . . .] continuation stacks

Fig. 8. Structures for graph-based interpreterωιDDPAc

We use standard notation [x1, . . . , xn] etc for
lists and | | for list append.

The definition of lookup proceeds with re-

spect to a current context stack C which corre-

sponds to the runtime call stack. The context

stack is used to align calls and returns to rule

out cases of looking up a variable based on a

non-sensical call stack.

Lookup also proceeds with respect to a

lookup stack X . The topmost variable of this

stack is the variable currently being looked up.
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12 Zachary Palmer, Theodore Park, Scott Smith, and Shiwei Weng

The rest of the stack is used to remember non-local variable(s) we are in the process of looking up

while searching for the lexically enclosing context where they were defined.

Lookup finds the value of a variable starting from a given graph node. Given a control flow graph

G, we write L
ω
(G,X ,a0,C, ι) to denote a lookup using stack X in G relative to graph node a0 with

context C and input mapping ι (recall that in Section 3.2 we re-mapped inputs from a stream to a

mapping to better align with our demand interpreters). For instance, a lookup of variable x from

program point a with empty context would be written L
ω
(G, [x],a, [], ι). Note that this refers to

looking for values of x upon reaching program point a but before that point is executed (much like

the convention of interactive debuggers); we are looking for a definition of x in the predecessors of
a but not within a itself.

It is possible (and likely) that the variable for which we are searching is found before lookup

walks back to the start of the program. This is because we are attempting to establish a complete

control flow using lookup, a data flow operation. If we permit lookup to produce a result without

reaching the start of the program, it may produce results based upon e.g. dead code. To help address

this problem, we require each discovered value to prove it arises from a valid control flow from the

start of the program. To aid this, we define FirstV([x1 =b1, . . .]) = x1.

Definition 4.2. Given control flow graphG for program e , L
ω
(G,X ,a0,C, ι) is the function return-

ing the least set of values V satisfying the following conditions given some a1 << a0:

(1) Value Discovery

If a1 = (x =v) and X = [x], then v ∈ V ,

provided that if x , FirstV(e), L
ω
(G, [FirstV(e)],a1,C, ι) is non-empty.

(2) Input

If a1 = (x = input) and X = [x], then v ∈ V if v ∈ Z, and ι(Cx) = v ,
provided that if x , FirstV(e), L

ω
(G, [FirstV(e)],a1,C, ι) is non-empty.

(3) Value Discard

If a1 = (x1 =v) and X = [x1, . . . , xn] for n > 0, then L
ω
(G, [x2, . . . , xn],a1,C, ι) ⊆ V .

(4) Alias

If a1 = (x =x ′) and X = [x] | |X ′
then L

ω
(G, [x ′] | |X ′,a1,C, ι) ⊆ V .

(5) Binop

If a1 = (x =x ′ ⊙ x ′′), X = [x] | |X ′
, v ′ ∈ L

ω
(G, [x ′],a1,C, ι) and v

′′ ∈ L
ω
(G, [x ′′],a1,C, ι), then

v ′ ⊙ v ′′ ∈ V , provided that (1) L
ω
(G, [FirstV(e)],a1,C, ι) is non-empty, and

(2) if X ′ , [], then L
ω
(G,X ′,a1,C, ι) is non-empty.

(6) Function Enter Parameter

If a1 = (x
Ic
= x ′), X = [x] | |X ′

, C = [c] | |C ′
, c = (xr =xf xa), and fun x -> ( e ) ∈

L
ω
(G, [xf ],a1,C

′, ι), then L
ω
(G, [x ′] | |X ′,a1,C

′, ι) ⊆ V .

(7) Function Enter Non-Local

If a1 = (x ′′ Ic
= x ′), X = [x] | |X ′

, C = [c] | |C ′
, x ′′ , x , c = (xr =xf xa), and fun x ′′ -> ( e ) ∈

L
ω
(G, [xf ],a1,C

′, ι), then L
ω
(G, [xf , x] | |X

′,a1,C
′, ι) ⊆ V .

(8) Function Exit

If a1 = (x
Jc
= x ′), X = [x] | |X ′

, c = (xr =xf xa), x
′ = RetV(e), and fun x ′′ -> ( e ) ∈

L
ω
(G, [xf ], c,C, ι), then L

ω
(G, [x ′] | |X ′,a1, [c] | |C, ι) ⊆ V .

(9) Skip

If a1 = (x ′′ =b), X = [x] | |X ′
, x ′′ , x , and L

ω
(G, [x ′′],a0,C, ι) is non-empty, then

L
ω
(G,X ,a1,C, ι) ⊆ V .
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(10) Conditional Top

If a1 = vIc , c = (x =x1 ? e1 : e2), and v ∈ L
ω
(G, [x1], c,C, ι),

then L
ω
(G,X ,a1, ÛC, ι) ⊆ V .

(11) Conditional Bottom - True

If a1 = (x
Jc
= x ′), c = (x =x1 ? e1 : e2), X = [x] | |X ′

, true ∈ L
ω
(G, [x1] | |X

′,a1,C, ι), and
x ′ = RetV(e1), then L

ω
(G, [x ′] | |X ′,a1,C, ι).

(12) Conditional Bottom - False

If a1 = (x
Jc
= x ′), c = (x =x1 ? e1 : e2), X = [x] | |X ′

, false ∈ L
ω
(G, [x1] | |X

′,a1,C, ι), and
x ′ = RetV(e2), then L

ω
(G, [x ′] | |X ′,a1,C, ι).

This represents an extension of Definition 5.12 of [Facchinetti et al. 2019] to include conditionals

and atomic data and operations. The intuitions for this definition were given in examples in Figures

2 and 3 in Section 2.1: the lookup operations described there are informal versions of the operation

in Definition 4.2.

Some lookup arguments were implicitly left out in the informal presentation. In the Figure 2

description, for example, the informal lookup L
ω
(result, 8, []) is formally L

ω
(G, [result],a9, [], ι).

The informal OCaml-ANF used in the overview does not exactly correspond to our formal grammar

which consists of clauses only; here, a9 is an extra line such as end = result appended to that

figure to allow a search for the final value.G and ι were elided in the informal discussion as they are

constant throughout lookup. Further, the lookup stack in that example was always a singleton, so

lookup was presented using a single variable rather than a stack. The trace of the Figure 3 example

shows the case where the lookup stack is not a singleton.

4.1 CFG construction
See Figure 9 for the single-step relation which incrementally builds a minimal CFG: it only wires in

edges that are in fact needed in a lookup. The relation is parameterized by a fixed input mapping ι.

Definition 4.3. Fixing e and ι, G −→1

ι G
′
holds if a proof exists in the system of Figure 9. We

write G0 −→
∗
ι Gn iff G0 −→

1

ι . . . −→
1

ι Gn , and G ↓ι G
′
iff G −→∗

ι G
′
and no G ′′ , G ′

exists such

that G ′ −→1

ι G
′′
.

Definition 4.4. The initial embedding of an expression into a graph, Embed([c1, . . . , cn]), is the
graph G = Start << c1 << . . . << cn << End. We write e ↓ι G, the CFG constructed for e over input
mapping ι, to mean Embed(e) ↓ G.

This CFG construction process is an extension of Definition 5.14 in [Facchinetti et al. 2019] to

include conditionals.

4.2 A CFG for Symbolic Evaluation
Since different inputs may lead to different CFGs (some code/wirings will be dead with some inputs

and not others), producing a CFG for each different set of inputs is undecidable as it would require

running the program on all possible inputs. Fortunately, we don’t need the completely accurate

CFG for our symbolic evaluation algorithm to be useful: the rules verify that a wiring is correct in

context by first looking up the function. So, the CFG only needs to be a conservative approximation

of the actual CFG for those inputs – it may have spurious function call wirings which will not

happen in any program run, and they will not change the final result of any lookup. So, it is trivial

to construct a maximal CFG which wires all function bodies to all call sites and the lookup process

would still produce the same results, albeit more slowly due to all the traversing of invalid call
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Application

c = (x1 =x2 x3)

C ∈ Active(c,G) (fun x0 -> ( e )) ∈ L
ω
(G, [x2], c,C, ι) v ∈ L

ω
(G, [x3], c,C, ι)

G −→1

ι G ∪
(
Preds(c) << (x0

Ic
= x3) << e << (x1

Jc
= RetV(e)) << Succs(c)

)
Conditional True

c = x1 = (x2 ? e1 : e2) C ∈ Active(c,G) true ∈ L
ω
(G, [x2], c,C, ι)

G −→1

ι G ∪
(
Preds(c ′) << trueIc << e1 << (x1

Jc
= RetV(e1)) << Succs(c)

)
Conditional False

c = x1 = (x2 ? e1 : e2) C ∈ Active(c,G) false ∈ L
ω
(G, [x2], c,C, ι)

G −→1

ι G ∪
(
Preds(c ′) << falseIc << e2 << (x1

Jc
= RetV(e2)) << Succs(c)

)
where in the above

Preds(a) = {a′ | a′ << a}, Succs(a) = {a′ | a << a′}, and
Active(G,a) is the least setC conforming to the following conditions:

1. If c << a then Active(G, c) ⊆ C .

2. If a′ << a for a′ = (x
Ic
= x ′) and C ∈ Active(G,a′), then (C | |[c]) ∈ C .

3. If Start << a then [] ∈ C .

Fig. 9. The Single-Step CFG Construction Relation −→1

ι

paths. Formally, we require the CFG G to at least have all the edges needed for any possible inputs.

We term any such G to be complete.
There are two obvious complete CFGs which an implementation can use. The first is to use the

maximal CFG, but this choice incurs a significant performance penalty. A more efficient approach is

to run some simple program analysis which conservatively approximates the CFG; such a CFG will

be complete since the analysis is conservative. Any program analysis that constructs a conservative

call graph suffices in this case.

We define the “best” (minimal complete) CFG for symbolic evaluation as union of CFGs over all

possible inputs mappings, and a “good” (complete) CFG is any superset.

Definition 4.5. Given program e the minimal complete CFG is

⋃
ι {G | e ↓ι G}. And, a complete

CFG for program e is any superset of the above minimal complete CFG.

In order to correctly perform lookups, any complete CFG will suffice.

Lemma 4.6. Given two complete CFGsG andG ′ for program e , for any input ι and lookup parameters
x/c/C , L

ω
(G, [x], c,C, ι) = L

ω
(G ′, [x], c, [], ι).

4.3 Equivalence of Demand and Forward Interpreters
The standard forward operational semantics of Section 3 is equivalent to the demand interpreter of

this section, a fact we now establish.We show a bisimulation relation between a chain of interpreters

to prove the result. We will fix the interpreters to all take the ι view of input, as a mapping, so the

forward interpreter we will compare with is −→1

ι .

For notational convenience, we write ↓ι to indicate a sequence of −→
1

ι (in all interpreters) which

cannot make further progress. We then phrase equivalence as follows:
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Lemma 4.7 (Eqivalence of Demand and Forward Interpreters). For any e , e ↓ι e ′ if and
only if {Start << e << End} ↓ι G such that Active(G, End) , ∅.

We now sketch this argument working from the analogous proof in [Facchinetti et al. 2019],

Theorem 5.19; the proof in that paper is over 10 pages and requires development of several interme-

diate interpreters to ease the proof burden. Since there are relatively minor differences between the

above assertion and the analogous Theorem 5.19 of [Facchinetti et al. 2019], we are not going to

reproduce it here. Instead, we will briefly outline the differences and how they can be accounted for.

First, the language of [Facchinetti et al. 2019] lacks input, conditionals, and integers; conditionals

and integers are found in an earlier version [Palmer and Smith 2016]. Input only amounts to reading

values from the fixed input map ι; the early interpreters in the chain of [Facchinetti et al. 2019]

all need to be revised use the Freshen
cs

method for freshening variables to align with ι’s domain.

In the final ωιDDPAc interpreter, the call stack C must be paired with the variable x to give the

appropriate
Cx in the domain of ι. Lastly, the interpreter chain in [Facchinetti et al. 2019] starts with

a closure-based interpreter and Lemma is needed to show the forward interpreter we start with

here is equivalent to the initial closure-based interpreter of [Facchinetti et al. 2019]; fortunately,

this equivalence is well-known.

5 A SYMBOLIC DEMAND-DRIVEN EVALUATOR
Now we may finally modify the ωιDDPAc lookup operation to produce DDSE, the symbolic

demand-driven evaluator that is the goal of this paper. Two key modifications are required. First,

we must make the interpreter symbolic, allowing arbitrary ranges of input values to be searched

simultaneously. Second, we must replace the concrete stacks C in the lookup process with relative
stacks ÛC; this supports variable lookups that start in the middle of the program without knowing

how we may have arrived at that point.

For the symbolic interpreter, we use a global cache of constraints expressed as a (single) logical

formula Φ which can simultaneously constrain all run-time variables in the program. In order

to disambiguate different runtime versions of the same variable due to recursion, we index each

variable by its call stack: variables in Φ are of the form
ÛCx . Lookup paths are realizable only if the

constraints of Φ can be met; that is, Φ must always be satisfiable for some variable assignment. The

implementation uses an SMT solver to verify this condition.

In a symbolic interpreter, there is no single path of execution. First, since we can start loopup

mid-program, we may start very deep inside an (unknown) call stack and, as the correct caller is

not known, we must search through all callers. We address this issue by adding a parameter Π to

lookup which remembers the call sites chosen by a particular lookup path. Second, conditionals

could have both true and false branches satisfiable if we had not (yet) accumulated any constraints

in Φ to indicate otherwise; as with the call site exploration, both branches must be tried one at a

time. These two points of non-determinism capture the unknown control flows which may lead to

the program point at which our lookup started; when they are fixed, the symbolic lookup process

becomes deterministic.

Since our symbolic interpreter does not know the program stack at the time that lookup started,

it uses a relative stack ÛC in lieu of the concrete stack from Figure 8. At the beginning of symbolic

lookup, the stack is unknown; if we start within a function body, for instance, we do not know from

where that function was called. As we move backward through the program recording decisions in

the aforementioned Π, we also retrospectively learn what the stack was when lookup began. The

relative stack ÛC consists of two parts: the normal stack, which represents those frames which have

been pushed since we began lookup; and the co-stack, which represents those frames which have

been popped since we began lookup.
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In the ωιDDPAc interpreter we had the luxury of incrementally building a CFG customized for

the particular concrete input values. In this system there are many input values, and the CFGs

could be radically different based on the input values. So, for this symbolic interpreter we assume a

CFGG has previously been constructed which must include any edge possible in any input: it must

be a complete CFG as defined in Definition 4.5. As with the interpreter, having spurious edges in

the CFG will not introduce incompleteness into the algorithm: the lookup function verifies the

correctness of each CFG call edge it uses by looking up the called function to see if it in can arrive

at the current call site under the current context.

5.1 Stacks which start mid-program
Here we give the details on how a relative stack is constructed. Consider a lookup for a point in the

program which could, at runtime, be reached with the stack [c3c2c1] (where c3 is the most recently

called site). We will show how this call stack can be constructed without the use of an oracle.

Lookup begins with a relative stack ÛC = []?[]; here, the empty stack on the left is the co-stack

while the empty stack on the right is the normal stack. Moving backward through the program,

we exit the call site c3; we then proceed with a new relative stack, ÛC = [c3]?[]. This relative stack
indicates that, if we considered an execution of the program leading to the lookup site, the runtime

stack of our current location could be derived from the runtime stack of the place at which lookup

began by popping c3. Likewise, we would likely next encounter the relative stack ÛC = [c2c3],
indicating that c2 has also been removed since lookup started (and was removed most recently).

Throughout a particular lookup, a relative stack is isomorphic to a concrete runtime stack. At the

end of the lookup algorithm, when the start of the program has been reached, we can reconstruct

the concrete stack which existed at the start of lookup using the relative stack we had when lookup

reached the top of the program. For example, given that the full stack is [c3c2c1], the relative stack
[c3]?[] is (in retrospect) the concrete stack [c2c1] and [c2c3]?[] is [c1]: the concrete stack is derived by
reversing the co-stack (as those pops were discovered by walking backward through the program)

and then removing them from the head of the known, final concrete stack [c3c2c1] to give the

corresponding stack at that point during lookup.

The other part of the relative stack is used to address functions we have entered (in reverse)

during lookup. Even though we do not yet know the outer frames, we can track these inner frames

and ensure that they are correctly popped by our lookup path. Continuing the above example,

ÛC = [c2c3]?[c5c4] means that, while walking backward, we popped out of c3 and c2 but then entered

two (known) call sites: first c4 and then c5.

5.2 Formal preliminaries to lookup
First theC grammar and stack operations are replacedwith relative stacks ÛC = [c1, . . . cn]?[c

′
1
, . . . c ′n′].

The operations on these stacks are defined as follows.

(1) Push([c1, . . . cn]?[c
′
1
, . . . c ′n′], c) = [c1, . . . cn]?[c, c

′
1
, . . . c ′n′],

(2) Pop([c1, . . . cn]?[], c) = [c, c1, . . . cn]?[],
(3) Pop([c1, . . . cn]?[c

′
1
, . . . c ′n′], c) = [c1, . . . cn]?[c

′
2
, . . . , c ′n′] for c = c ′

1
,

(4) [c1, . . . cn]?[c
′
1
, . . . c ′n′] is empty iff n′ = 0 (the stack is empty, the co-stack may not be).

Above, we described how non-determinism in the lookup function is problematic and, as we

indicated, we will include an additional parameter Π which represents the choices made. Concretely,

we let Π range over mappings from relative stacks ÛC to function entry wiring edges x
Ic
= x ′

(where

c is a call site). Key ÛC is the current relative stack and the mapped wiring edge is the one which

should be chosen by the lookup function under this call stack. The lookup function takes a full Π
as parameter; our implementation will need to search through the space of Π mappings. Formula Φ

, Vol. 1, No. 1, Article . Publication date: November 2019.



Demand-Driven Symbolic Evaluation 17

is similarly oracular in the specification, and the implementation builds Φ mostly-monotonically. Φ
also contains conditional branch choices which are not monotonic if both cases are satisfiable, and

a search over the choice is made in the implementation.

The following is a summary of the grammar changes discussed above.

ÛCx annotated variables
X annotated variable sets
ÛC ::= C?C relative stacks

ς ::=
ÛCx | ςtrue formulae symbols

ϕ ::=
ÛCx =

ÛCx ⊙
ÛCx |

ÛCx =
ÛCx |

ÛCx =v | stack =C formulae atoms
Φ ::= ϕ ∧ . . . ∧ ϕ formulae

Π ::= { ÛC 7→ x
Ic
= x, . . .} search paths

5.3 Lookup, finally
In the definition of lookup, we use the following notational abbreviations and auxiliary definitions:

• We may pun Φ = ϕ1 ∧ . . .ϕn equivalently as the set of its atomic conjunctions, Φ =
{ϕ1, . . . ,ϕn}.

• We define isSAT(Φ) to hold if there is a satisfying assignment for Φ.
• We define SATs(Φ) to be the set of all satisfying assignmentsM mapping (annotated) variables

in Φ to values v .
• We substitute annotated variable sets for annotated variables to abbreviate set comprehen-

sions. For instance, (X =
ÛCx) abbreviates the set {

ÛCx ′ =
ÛCx |

ÛCx ′ ∈ X}.

• We overload L
S

(G,X ,a0, ÛC,Φ,Π) as a predicate, to mean L
S

(G,X ,a0, ÛC,Φ,Π) , ∅.

• Function Stackize(C?[]) = Reverse(C): when the lookup search reaches the top level with stack

C?[], this function extracts the actual stack that the program point the search started on. Since

the normal stack and co-stack grow oppositely, the co-stack at the top needs to be reversed

to obtain the stack at the start point. This function is undefined if the stack portion of the

pair is non-empty, a condition which never arises at the top level of the program (where the

first variable is declared). We add constraint form stack =C for this; these constraints fix

what the initial stack must have been at program start, converting the final relative stack

into the (now-known) concrete stack, C .

Definition 5.1. Given control flow graph G , Φ with isSAT(Φ) holding, and path mapping Π, DDSE

variable lookup, L
S

(G,X ,a0, ÛC,Φ,Π), is the function returning the least set of annotated variables

X satisfying the following conditions given some a1 << a0:

(1) Value Discovery

If a1 = (x =v), X = [x], then
ÛCx ∈ X and (

ÛCx =v) ∈ Φ,
provided (1) if x = FirstV(e) then (stack = Stackize( ÛC)) ∈ Φ, and (2) if x , FirstV(e), then

L
S

(G, [FirstV(e)],a1, ÛC,Φ,Π).
(2) Input

If a1 = (x = input) and X = [x], then
ÛCx ∈ X and ςtrue = (

ÛCx =
ÛCx) ∈ Φ,

provided (1) if x = FirstV(e) then (stack = Stackize( ÛC)) ∈ Φ, and (2) if x , FirstV(e), then

L
S

(G, [FirstV(e)],a1, ÛC,Φ,Π).
(3) Value Discard

If a1 = (x1 =v) and X = [x1, . . . , xn] for n > 0, then L
S

(G, [x2, . . . , xn],a1, ÛC,Φ,Π) ⊆ X.

(4) Alias

If a1 = (x =x ′) and X = [x] | |X ′
then L

S

(G, [x ′] | |X ′,a1, ÛC,Φ,Π) ⊆ X.
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(5) Binop

Ifa1 = (x =x ′⊙x ′′),X = [x] | |X ′
,X′ = L

S

(G, [x ′],a1, ÛC,Φ,Π), andX
′′ = L

S

(G, [x ′′],a1, ÛC,Φ,Π),

then L
S

(G, [FirstV(e)],a1, ÛC,Φ,Π), provided that (1)
ÛCx =X′ ⊙ X′′ ∈ Φ for some

ÛCx ∈ X, and

(2) if X ′ , [], then L
S

(G,X ′,a1, ÛC,Φ,Π).
(6) Function Enter Parameter

If a1 = (x
Ic
= x ′), X = [x] | |X ′

, ÛC ′ = Pop( ÛC, c), c = (xr =xf xa), Xf = L
S

(G, [xf ], c, ÛC
′,Φ,Π),

Π( ÛC) = (x
Ic
= x ′), and (Xf = fun x -> ( e )) ∈ Φ,

then L
S

(G, [x ′] | |X ′,a1, ÛC
′,Φ,Π) ⊆ X.

(7) Function Enter Non-Local

If a1 = (x ′′ Ic
= x ′), X = [x] | |X ′

, ÛC ′ = Pop( ÛC, c), x ′′ , x , c = (xr =xf xa), Xf =

L
S

(G, [xf ], c, ÛC
′,Φ,Π), Π( ÛC) = (x ′′ Ic

= x ′), and (Xf = fun x -> ( e )) ∈ Φ,

then L
S

(G, [xf , x] | |X
′,a1, ÛC

′,Φ,Π) ⊆ X.

(8) Function Exit

If a1 = (x
Jc
= x ′), X = [x] | |X ′

, c = (xr =xf xa), Xf = L
S

(G, [xf ], c, ÛC,Φ,Π), x
′ = RetV(e), and

(Xf = fun x -> ( e )) ∈ Φ,

then L
S

(G, [x ′] | |X ′,a1, Push( ÛC, c),Φ,Π) ⊆ X.

(9) Skip

If a1 = (x ′′ =b), X = [x] | |X ′
, x ′′ , x , and L

S

(G, [x ′′],a0, ÛC,Φ,Π),

then L
S

(G,X ,a1, ÛC,Φ,Π) ⊆ X.

(10) Conditional Top

If a1 = vIc , c = (x =x1 ? e1 : e2), X1 = L
S

(G, [x1], c, ÛC,Φ,Π), and (X1 =v) ∈ Φ,

then L
S

(G,X ,a1, ÛC,Φ,Π) ⊆ X.

(11) Conditional Bottom - True

If a1 = (x
Jc
= x ′), c = (x =x1 ? e1 : e2), X = [x] | |X ′

, RetV(e1) = x ′
, X1 = L

S

(G, [x1], c, ÛC,Φ,Π),
and (X1 = true) ∈ Φ,

then L
S

(G, [x ′] | |X ′,a1, ÛC,Φ,Π) ⊆ X.

(12) Conditional Bottom - False

If a1 = (x
Jc
= x ′), c = (x =x1 ? e1 : e2), X = [x] | |X ′

, RetV(e2) = x ′
, X1 = L

S

(G, [x1], c, ÛC,Φ,Π),
and (X1 = false) ∈ Φ,

then L
S

(G, [x ′] | |X ′,a1, ÛC,Φ,Π) ⊆ X.

Understanding The Clauses of Symbolic Lookup. The clauses of Definition 5.1 closely mirror those

of the concrete ωιDDPAc lookup function in Definition 4.2. However, instead of returning a value v
as the result we return the defining variable of the value, allowing us to return symbolic constraints
(which will be in Φ) instead of concrete values. For example, the Value Discovery rule directly

returns the defining variable
Cx . This defining variable may then be used by other rules such as the

Binop rule, which invokes lookup on both operator parameters and uses the defining variables to

build the equation constraining the binary operator behavior in Φ. By using stack-indexed variable

definitions
Cx in the Φ constraints, we can be guaranteed that there are no collisions of different

activations of the same variable. Lemma 3.3 establishes this.

The Function Enter . . . rules are extended to support the case that a search is started lexically

within a function body. In this case Π is consulted for the choice to make and a frame is added to

the co-stack by the Pop.
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The Conditional Bottom . . . rules may both match in the implementation, and so it may be

necessary to search through both possibilities. Here in the specification we assume the answer was

already wired into Φ, similar to how Π has pre-wired the single possibility for the function call site

choice.

Section 2.2 informally traces some examples through this definition; with the formal definition

the results of that example can be confirmed.

5.4 Defining test generation and showing computability
This section uses the above symbolic lookup function to formally define a function T which

generates a test exercising a particular line of code. We show T to be partially recursive and

complete: if an input sequence exists which will test a particular line of code, T will find it.

We begin by observing a bound on the sets produced by lookup:

Lemma 5.2. L
S
(G, [x],a, []?[],Φ,Π) is deterministic: the result is either a singleton or empty set.

Proof. By induction on the clauses of Definition 5.1. □

Lookup yields a singleton set if the line of code is reachable and an empty set if it is not. A line

may be unreachable because (1) it is dead code, i.e. no input values will exercise that line; (2) the

program diverged before reaching the relevant line; or (3) there was a run-time type error. We are

primarily concerned with singleton sets, as a singleton set corresponds to a viable input sequence.

The goal of test generation is to find inputs exercising a particular line (clause) in the program.

We will formally define it as looking up the first variable in the program from that clause.

Definition 5.3. We write L
S

(G,a, ÛC,Φ,Π) to mean L
S

(G, [FirstV(e)],a, ÛC,Φ,Π). We analogously

define L
ω
(G,a,C, ι) for the interpreter.

We now define the test generation function itself:

Definition 5.4. Given expression e , a complete CFGG for e , and a clausea in e , we sayT(e,a,G,Φ,Π)

holds if L
S

(G,a, []?[],Φ,Π) is non-empty. We say e,G,a is coverable iff T(e,a,G,Φ,Π) holds for some

Φ,Π.

Often the e and G will be fixed in context, and so we may then assert a program point a is

coverable (or not) as shorthand.
The above definition is a predicate and does not produce program inputs ι directly. However,

an ι may always be constructed from Φ; in particular, the SAT solver can produce such an input

mapping. Formally, we say ι satisfies the constraints Φ if isSAT(Φ∪ {
ÛCx =v |

ÛCx 7→ v ∈ ι}); that is, Φ
is not inconsistent with the mapping ι. We first observe that, for any consistent Φ, such a mapping

always exists:

Lemma 5.5. Given expression e and complete CFG G for e and clause a, if T(e,a,G,Φ,Π) for some
Φ,Π then there exists an ι such that ι satisfies Φ.

Searching for such a mapping is not decidable, but it is recursively enumerable:

Lemma 5.6. Given e,a and completeG , Finding a Φ,Π for which T(e,a,G,Φ,Π) holds is recursively
enumerable.

Proof. The space of (Φ,Π) pairs is trivially recursively enumerable since each set is r.e. and

pairing preserves r.e. Lookup is recursively enumerable as it is a non-deterministic recursive

function with boundedly finite branching, so dovetailing lookups over the Φ,Π enumeration will

enumerate the valid Φ,Π. □
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Lemma 5.6 demonstrates that, if a a in some e,G is coverable, then T will eventually find a

suitable input sequence. While we assume the control flow graph G to have been computed, any

complete G (including the trivially computable case in which all calls are wired to all call sites)

suffices. While the enumeration strategy presented here is perhaps underwhelming – a naive

implementation would run out of time or memory and the worst-case complexity is the same

as brute-force dovetailing through all inputs on a standard interpreter – Lemma 5.6 leads us to

the observation that we can find suitable test inputs by working backward from the destination. In
practice, this allows us to constrain our search by observing operations on data (rather than using

heuristics to predict which control flow paths will ultimately lead us to our goal) and should lead

to more efficient implementations. We discuss in Section 6.1 the approach we use to search more

efficiently for input coverings.

5.5 Correctness
Here we show that DDSE is fully and faithfully modeling the demand interpreter ωιDDPAc from
the previous section (which was itself shown to be equivalent to a standard substitution-style

interpreter in Lemma 4.7).

5.5.1 Concretizing the relative stack. In our first step toward showing correctness, we will replace

the relative stacks used by symbolic lookup with concrete stacks to align them with the stacks in

ωιDDPAc. We formalize the notation | ÛC |@C = C ′
to mean the normalization of a relative stack ÛC

to its concrete equivalent C ′
given the stack at the starting point in retrospect was learned to be C .

Definition 5.7. |Cc?Cs |@C = Cs | |C
′
where C = Reverse(Cc ) | |C

′
; this operator is undefined if

the latter equation fails for all C ′
. Let |

ÛCx |@C = | ÛC |@Cx , let |X|@C = {|
ÛCx |@C |

ÛCx ∈ X}, and let

|Φ|@C = Φ[(|X|@C)/X], for X being the set of all variables in Φ.

For example, |[a]?[b]|@[a, c] = [b, c]. We demonstrate that, using this operation, we can con-

cretize the arguments of a lookup such that all formulae and variables use concrete stacks rather

than relative stacks.

Lemma 5.8. If ÛCx ∈ L
S
(G,X ,a0, ÛC0,Φ,Π) and (stack =C) ∈ Φ then | ÛC |@C is defined and | ÛC |@Cx ∈

L
S
(G,X ,a0, []?C, |Φ|@C,Π).

5.5.2 Eliminating the search path. Now that we have a concrete stack, we no longer need the

argument Π: the call site invoking a function is always on the call stack. Formally, we define Πmax

as the maximal mapping from each (
ÛCx) to every x

Ic
= x ′

in the CFG. Since this mapping is maximal,

all of the Π conditions in L
SC

will vacuously hold, neutralizing them. We then may easily show the

following.

Lemma 5.9.
ÛCx ∈ L

S
(G,X ,a0, []?C,Φ,Π) iff

ÛCx ∈ L
S
(G,X ,a0, []?C,Φ,Π

max) .

5.5.3 Constructing values from constraints. By this point, we have removed two key differences

between the concrete and symbolic lookup: the relative stack ÛC and the search path Π. The only
remaining differences are the constraints Φ and the fact that DDSE lookup returns a (constrained)

variable rather than a value.

Since the equational constraints of DDSE have the same actual equivalences in ωιDDPAc and
by Lemma 3.3, we know that

Cx variable names will never collide. In the following, we rely upon

this non-collision property to implicitly convert between
Cx (stack annotations) and

[]?Cx (stack

with empty co-stack annotations) when relating the two lookup functions. Since the co-stack is

always empty, we will use
Cx below for both systems. Recall that notation used below is defined in

Section 5.3.
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Lemma 5.10.

(1) If Cx ∈ L
S
(G,X ,a0, []?C,Φ,Π

max) then for all M ∈ SATs(Φ), if Cx 7→ v ∈ M then v ∈

L
S
(G,X ,a0,C,M).

(2) v ∈ L
ω
(G,X ,a0,C, ι) implies Cx ∈ L

S
(G,X ,a0, []?C,Φ,Π

max) for some Φ such that for some
M ∈ SATs(Φ), ι ⊆ M and Cx 7→ v ∈ M .

Proof. For (1), proceed by induction on the depth of the definition of
Cx ∈ L

S

(G,X ,a0, []?C,Φ,Π
max)

and pick arbitrary M with
Cx 7→ v ∈ M . Proceed by cases of which clause matched in L

S

. For

the base case of Value Discovery , v ∈ V is immediate by the L
S

requirements that
Cx ∈ X and

(Cx =v) ∈ Φ. All other cases have similar direct analogues between the two definitions, symbolic

returning a variable and requiring a constraint, and concrete inlining that constraint. Observe that

the co-stack is always empty and the stack operations coincide in this case.

For (2), proceed by induction on the depth of the definition of v ∈ L
ω
(G,X ,a0,C, ι) to both

incrementally construct a Φ/M and show
Cx ∈ L

S

(G,X ,a0, []?C,Φ,Π
max). In other words, we

strengthen the induction hypothesis to also assume a Φ0 and M0 has been constructed in each

inductive reference, and will produce a new extended Φ and M . For the Value Discovery base

case we simply construct {(Cx =v)} = Φ and {(Cx 7→ v)} = M . Considering the Input case, it only

adds ςtrue = (
Cx =Cx) to Φ and nothing about actual inputv , but since it is unconstrained (other than

being an integer by the previous) we can add
Cx 7→ v toM and it will be a satisfying assignment.

This also preserves the requirement that ι ⊆ M . The other cases proceed similarly. □

From the chain of Lemmas defined above, we may now directly conclude that test generation is

sound and complete.

Lemma 5.11. Test generation is sound and complete:

• If T(e,a,G,Φ,Π) then L
ω
(G,a,C, ι) is non-empty for some ι satisfying Φ, and some C .

• If L
ω
(G,a,C, ι) is non-empty for some ι andC , then T(e,a,G,Φ,Π) holds for some Φ satisfied by

ι, and some Π.

6 IMPLEMENTATION
In this section we describe the reference implementation of DDSE. This implementation closely

follows the specification and is primarily designed to confirm correctness of the specification; while

it includes some optimizations many more are needed for good performance. First we describe the

implementation and then we outline its performance on some known challenging test generation

examples.

6.1 Methodology
Definition 5.1 gives the lookup function which symbolically executes a program in a demand-driven

fashion. This definition is declarative, treating the logical formulae Φ and the search path Π as

oracular, to improve readability. For a feasible implementation, however, we must construct Φ and

Π as we search for control flows which satisfy the lookup rules. Designing this algorithm presented

three key challenges – nondeterminism, nontermination, and caching – which we discuss here.

Our implementation searches for paths through a program to a desired destination by moving

backward through the control flow graph and applying the rules of Definition 5.1 as possible. This

naturally gives rise to a nondeterministic algorithm: if multiple rules or uses of a rule apply, each

of those choices is attempted. As choices are made, incoherent universes (e.g. with Φ containing

unsatisfiable formulae) are discarded. This application of nondeterminism is common in proof
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Benchmark Time Cache size
ack 0.86s 2564

tak 44.12s 14092

cpstak 11.61s 8374

blur 0.12s 364

facehugger 0.19s 840

ack’ 63.60s 5626

tak’ timeout (600s)

cpstak’ timeout (600s)

blur’ timeout (600s)

facehugger’ 3.65s 2113

mt nk Time Cache size Inferred input
1 1 2.16s 2277 [1, 2]

2 1 33.54s 4608 [2, 2]

3 1 timeout (600s)

1 2 7.74s 3042 [1, 4]

2 2 50.36s 4705 [2, 4]

3 2 timeout (600s)

1 3 218.21s 7616 [1, 8]

2 3 253.28s 7616 [2, 8]

3 3 timeout (600s)

1 4 timeout (600s)

Table 1. DDSE Scheme benchmarks Table 2. DDSE backotter C benchmark

searching algorithms, transitive closures, and similar domains ; however, nondeterminism is non-

trivial to combine with other features of computation [Zwart and Marsden 2018].

One example of this poor interaction is with nonterminating computations. As stated in Sec-

tion 5.4, lookup is recursively enumerable (Lemma 5.6) but not decidable. Thus, traditional imple-

mentations of nondeterminism (such as the concatMap approach used in Haskell’s list monad) do

not enumerate correctly: even if one thread of nondeterministic computation fails to terminate,

we want other threads to be productive. We address this by modeling computations as promises,

routinely yielding control. This allows our implementation to explore the tree of nondeterministic

computations in a breadth-first fashion via a simple continuation-based worklist algorithm. We use

a simple priority function on the worklist: we prioritize the shortest relative stacks with the most

unique frames (fewest recursions).

Finally, we observe that most lookup rules includemultiple child lookups and that the descendants

of those children often overlap. In the Skip Rule, for instance, the lookup of both x ′′
and x will

often perform the same operation on a1’s predecessors. This recursion is exponential akin to naive

Fibonacci algorithms and can be resolved the same way: via caching. Here, we must contend

with caching nondeterministic and potentially nonterminating computations. Our implementation

introduces a publish/subscribe messaging model: a cached computation publishes its results as

the worklist algorithm produces them, while computations relying upon the cache consume value

messages to produce a promise of future work. Of note, this publish/subscribe messaging model

is global to the evaluation – that is, cached computations do not recursively maintain their own

caches – ensuring that cached values are shared between all subordinate lookups regardless of

where they appear in the computational tree. Simpler caching models, such as associating each

nondeterministic computation with its own cache, proved in practice to be little different from no

caching at all.

We developed the implementation with OCaml 4.07.1 using Z3 4.8.1 to check formulae. The

symbolic interpreter is implemented in monadic style: one module defines a monad addressing the

above challenges while another implements each rule of Definition 5.1 as straight-line imperative

code. This design permits additional language features to be supported with minimal effort.

6.2 Preliminary Evaluation
We have performed a preliminary evaluation of our reference implementation using some standard

Scheme benchmarks
5
as well as some C examples challenging for symbolic execution [Ma et al.

2011]. The C examples do not use higher-order programming, but they are a good stress test of our

5
From http://www.larcenists.org/benchmarksAboutR7.html and https://bitbucket.org/ucombinator/p4f-prototype/src/

master/benchmarks/.
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implementation. Our implementation does not support data structures or mutable state, limiting

the number of existing benchmarks which it can operate on in it’s current state.

The formal ANF syntax of Figure 5 is difficult to code in, so we implemented a translator

which allows direct coding in an ML-like syntax; this syntax is seen in the Section 2 examples.

Recursive functions or loops appearing in the original Scheme and C benchmarks are encoded via

self-application in the ANF.

The Scheme benchmarks supported by our implementation include ack (Ackermann function),

tak (Takeuchi function), cpstak (CPS-converted tak), blur, and facehugger. We modified the

benchmarks to use inputs instead of hard-coded constants. The first part of Table 1 shows the

time required to find control flow to the top of each benchmark’s recursive calls; DDSE finds these

cases very quickly. The cache size numbers indicate the number of different lookup operations

requested (identified by variable, program point, and stack); some of these lookups may have been

in-progress and not yet complete when a correct input was found.

1 let xi = input
2 in let yi = input
3 in let rec ack m n =
4 if m == 0
5 then
6 n+1
7 else
8 if n == 0
9 then
10 ack (m-1) 1
11 else
12 let target = 0 in
13 let r =
14 ack (m-1) (ack m (n-1)) in
15 let target' = 0 in r
16 in
17 if 0 <= xi and 0 <= yi
18 then ack xi yi
19 else 0

Fig. 10. Ackermann function

We also evaluated DDSE by finding control flow to

the bottom of each benchmark’s recursive calls; the ack’
benchmark, for instance, shows the time required to

find control flow to the target’ variable in Figure 10.

The tak’, cpstak’, and blur’ benchmarks time out.

These cases contain numerous recursive call sites within

the same function and we believe the timeout to be a

weakness in the current implementation as it pursues

sublookups without respect to the accumulated con-

straints of the parent lookups which depend upon them.

For the C examples, we ran two synthetic pro-

grams from a C-based symbolic interpreter [Ma et al.

2011]: pro-backotter-3.c (Figure 4 in that paper) and

pro-mix-1.c (Figure 6 in that paper); here we only focus

on pro-backotter-3.c. The corresponding ML code we

used appears in Figure 11. This program takes integer

inputs m and n. The main_loop function in the C code is

a for-loop from 0 to 1000; it calls f when the loop index

equals input m. Function f in C starts with a for-loop from

0 to 6 which returns 0 only when the last six bits of the

input n are zero. After the for-loop is a while-true-loop which aborts only if the number of 1’s is

0 and m equals the constant mk, 7 here. Table 1 of [Ma et al. 2011] shows how standard forward

symbolic interpreters get stuck on this example, since they will spend most of their work time

stuck in the infinite while-loop.

The backward execution starts at the target variable in line 12. It immediately infers the goal

formula that m must equal mt, so the outer for-loop search will be bounded by mt and not 1000.

The inner for-loop needs to be fully unwound to determine how nt constrains n. The search

strategy prioritizes relative stacks with the least repetition, which will allow the search to escape

the while-true-loop quickly. So, we avoid the pitfalls of standard forward symbolic execution.

Our current implementation times out after over an hour on the Figure 11 example as written,

but if we reduce the value of nk and mt we can successfully generate input examples. Table 2 shows

the results for various values of nk and mt. Changing the for-loop index from 1000 does not affect

our results as the loop only unrolls on demand and only needs mt unrollings total.
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1 let f m n =
2 let rec f_loop n sum i =
3 let nk = 6 in
4 if i == nk
5 then sum
6 else (
7 let a = n % 2
8 in let sum_next = sum +
9 (if a == 0 then 0 else (a + 1))
10 in f_loop (n/2) sum_next (i+1))
11 in let loop_result = f_loop n 0 0
12 in let rec f_while c =
13 let mt = 7 in
14 if (loop_result == 0) and (m == mk)
15 then let target = false in 1
16 else (
17 if c
18 then f_while c
19 else 0)
20 in f_while true
21 in let rec main_loop i =
22 if i == 1000
23 then 0
24 else (
25 let _ =
26 if m == i
27 then f m n
28 else 0
29 in main_loop (i+1))
30 in main_loop 0

Fig. 11. Translated backotter

While the wall times of this reference implemen-

tation are slow, the size of the lookup cache is not

growing unreasonably. Our reference implementa-

tion is intelligent in that avoids getting stuck in

extremely deep search paths, but has a very high

overhead since the lookup function is more or less

implemented directly as specified in Definition 5.1.

For example, looking up a variable defined in the

current basic block is achieved by manually check-

ing each previous line in turn for its definition; since

the definition point is lexically known this is very

wasteful.

7 RELATEDWORK
Symbolic execution has been an active area of re-

search for almost 50 years; we refer readers to a

recent complete survey for broader background [Bal-

doni et al. 2018].

Our work lies under the umbrella of symbolic

backwards execution (SBE) [Chandra et al. 2009;

Charreteur and Gotlieb 2010; Dinges and Agha 2014].

Our general philosophy is similar in principle to

these works. In detail, however, there are many dif-

ferences as we are addressing higher-order func-

tional languages and these papers address impera-

tive languages. We also have only a small toy lan-

guage and implementation, but with rigorous seman-

tics, an implementation that very closely follows the

semantics, and correctness proofs of the semantics.

CCBSE [Ma et al. 2011] is a forward evaluator which

steps back incrementally from the target to try to “hit” it, giving it some character of the SBE

school. Their Mix-CCBSE system combines forward symbolic execution with this partial-reverse

strategy; it improves performance by combining the advantages. [Dinges and Agha 2014] combines

SBE with concrete forward execution to narrow the search space. The idea of combining forward

and backward would also likely benefit DDSE: a forward phase would eliminate a class of search

paths by propagating some constraints forward which would preclude those paths from ever being

considered in the backward phase.

Many of the issues and challenges of these systems we also share. The key problem in symbolic

execution is the well-known path explosion problem [Anand et al. 2013, 2008]: the search space grows

far too rapidly and the algorithm founders. We currently use a simple cache of the lookup function

L
S

to avoid repeated lookup, but it would not be hard to extend this to caching of whole families

of lookups: in many cases parameters are fully or partly irrelevant. Some caching of function

summaries is performed by Snugglebug [Chandra et al. 2009]. Snugglebug speeds up SMT queries

by solving most of them internally rather than calling out to a solver; this is because the logic is

nearly always very simple and an industrial SMT solver is overkill. Our DDSE artifact also performs

simple on-the-fly SAT checks to eagerly catch obvious inconsistencies. All symbolic interpreters

suffer when the logical assertions are beyond the capabilities of the solver; we share that weakness.
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These existing systems have many complex phases and heuristics; one advantage of DDSE is how

the formal specification can fit on a page (Definition 5.1), and it is a direct generalization of a

non-symbolic interpreter (Definition 4.2) to symbolic data.

The demand-driven interpreter which we symbolize here is based on the ωDDPAc interpreter of
[Facchinetti et al. 2019; Palmer and Smith 2016], where it was developed solely to show soundness

of a demand-driven program analysis.

While we address functional code here, there is in principle no problem with extending these

results to include side effects beyond input and non-termination. For mutation for example, a

demand evaluator in this style finds the most recent assignment to the cell, verifying no aliases of

it were skipped over [Facchinetti et al. 2019; Palmer and Smith 2016].

Automated test generation is a well-studied research topic withmany complementary approaches;

see [Anand et al. 2013] for a survey. Simple automated test generators such as QuickCheck [Claessen

and Hughes 2000] are very useful but test coverage will often be incomplete: some lines of code

will still have no test exercising them. Some variations allow the distribution of data to be altered

[Lampropoulos et al. 2017] to improve coverage, but code structure is not taken into account; this

ameliorates the incompleteness problem but does not solve it. In general, there is an infinite search

space of possible inputs and, in practice, test generation algorithms will be incapable of reaching

some program points. This is a consequence of path explosion and is a major problem in automated

test generation. As mentioned above, SBE [Chandra et al. 2009; Dinges and Agha 2014; Ma et al.

2011] aims squarely at this issue, taking a goal-directed approach to deal with path explosion: paths

that would never lead to the goal line are not even initiated. DDSE aims to extend the SBE approach

to functional languages.

Forward symbolic evaluators have been developed for extended functional languages, e.g. Rosette

[Torlak and Bodik 2013] for Racket and Kaplan [Köksal et al. 2012] for Scala. DDSE complements

these in that it is more suited to goal-directed reasoning.

8 CONCLUSIONS
Here we developed the theory and reference implementation of DDSE, a symbolic backwards

executor (SBE) for higher-order functional programs. Unlike existing SBE’s, DDSE works on

higher-order functional languages and is characterized as a direct symbolic generalization of a

(non-symbolic, backward) interpreter. This places demand symbolic interpreters closer to forward

symbolic interpreters, which are also direct generalizations of forward non-symbolic interpreters.

We described initial results from a reference implementation.

This paper represents the initial effort in this direction; handling more language features and

a more optimized implementation are key extensions needed. There are several fronts on which

this approach can lead to new applications. Currently the test generation approach only generates

tests for whole programs. By using type and data structure information it should also be able to

generate tests for code fragments, to e.g. be used to generate unit tests. The underlying logic of

DDSE lookup embodies a novel approach to reasoning about programs and may be useful as a

program logic: it’s goal-directed nature naturally aligns with theorem provers.
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