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Abstract. A singleton abstraction occurs in a program analysis when
some results of the analysis are known to be exact: an abstract binding
corresponds to a single concrete binding. In this paper, we develop a
novel approach to constructing singleton abstractions via relative store
fragments. Each store fragment is a locally exact store abstraction in that
it contains only those abstract variable bindings necessary to address a
particular question at a particular program point; it is relative to that
program point and the point of view may be shifted. We show how an
analysis incorporating relative store fragments achieves flow-, context-,
path- and must-alias sensitivity, and can be used as a basis for envi-
ronment analysis, without any machinery put in place for those specific
aims. We build upon recent advances in demand-driven higher-order pro-
gram analysis to achieve this construction as it is fundamentally tied to
demand-driven lookup of variable values.

1 Introduction

A singleton abstraction [Mig10b], also known as a must analysis [Mid12], is a
common thread found across advanced program analyses: some results of the
analysis are known to be exact, meaning the abstraction set is in fact a singleton
in those cases. Singleton abstractions have traditionally been used in must-alias
analyses for first-order programs, e.g. [CWZ90]. For higher-order programs they
have been used in lightweight closure conversion [SW97] in must-alias analysis
[JTWW98], and abstract garbage collection has been used to produce singleton
abstractions [MS06b].

This paper develops a novel approach to constructing singleton abstractions
using relative store fragments. Unlike stores in traditional abstract interpreta-
tion, these are fragments in that they contain information about a subset of
the store necessary to address a particular analysis question; there is no global
store. Instead of storing binding information in terms of global calling context,
these fragments express binding information relative to a particular point in the
program using call path difference information similar to ∆CFA frame strings
[MS06a,GM17].
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In this paper we define Demand-driven Relative Store Fragment analysis, ab-
breviated DRSF. DRSF incorporates relative store fragments to achieve flow-,
context-, path- and must-alias sensitivity, and can be used as a basis for envi-
ronment analysis [Shi91,BFL+14,GM17], without any extra machinery put in
place for those specific aims. We define for this analysis an algebra of relative
store fragment composition and relativization to combine these fragments in the
process of answering control- and data-flow questions. We now briefly describe
some dimensions of DRSF’s expressiveness.

Path Sensitivity: Path-sensitivity is well-known as an important dimension of ex-
pressiveness in program analyses [BA98,DLS02,XCE03,DMH15,THF10]. Path-
sensitive analyses observe control-flow decisions and use this information to refine
their results. DRSF’s store fragments are naturally conducive to path sensitiv-
ity: the values of variables used to dictate control flow are recorded in store
fragments and used to discard impossible control flow combinations.

Must-alias Analysis: The original purpose of singleton analyses was to extract
must-alias properties [CWZ90,JTWW98]. The case where a variable must (not
just may) alias another means an assignment to one must (not just may) also af-
fect the other. We can additionally use our singleton store abstraction to achieve
must-alias properties over a mutable heap.

Context Sensitivity: Another pleasant aspect of the theory is that context-
sensitivity [Shi91] also comes “for free”: the call path annotations on variables
additionally disambiguate contexts. Creating a multiplicity of store fragments
is expensive, but the multiple purposes they may be put to allows the effort
to be amortized. Along with standard k-CFA style context sensitivity [Shi91],
CPA-style context-sensitivity [Age95,Bes09,VS10] also naturally emerges.

Environment Analysis: While we are primarily focused on fundamentals and not
on potential clients of the analysis, the environment problem is a classic stress
test for higher-order program analyses [Shi91,BFL+14,GM17] and DRSF can be
used a basis to address that problem.

The Context: Demand-Driven Higher-Order Analysis We work in the
context of DDPA, a demand-driven higher-order analysis [PS16] which applies
ideas of first-order demand-driven analyses [Rep94,DGS97,SR05] to higher-order
programs. DDPA incorporates filters on data lookup for some path-sensitivity
but lacks “alignment”: it considers each variable separately.

Results This paper is a proof-of-concept study of DRSF: we give a complete
definition of the analysis for a simple functional language, prove some basic
properties, and describe an implementation with additional features including a
mutable heap. While we establish that the algorithm has an exponential worst-
case, in practice on benchmarks it has reasonable performance.

2 Overview
In this section we will present a series of examples that illustrate the concepts
behind DRSF. The analysis builds on DDPA [PS16], and basic features of that
analysis will be introduced as we go.
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2.1 A simple example illustrating path-sensitivity

We start with a very simple program in an ML-like language:

1 let b = coin_flip () in
2 let x =
3 if b then 4 else "dr" in
4 let y =
5 if b then 5 else "sf" in
6 x + y

b x y x + y

xx 4 xx

xx "dr" xx
b?b?

4

8

yy 5 yy

yy "sf" yy
b?b?

4

8

The coin_flip primitive non-deterministically returns either true or false.
Operator + is overloaded to append strings; it is not defined when the operand
types mismatch – i.e., there is no implicit coercion à la JavaScript. This program
never has a type mismatch: the types of x and y are aligned by b. To observe that
addition is safe in this program, an analysis must observe this alignment. Using
◦̂ for the abstract entity corresponding to a concrete ◦, the analysis must show
x̂ = {4̂} and ŷ = {5̂} occur together (and similarly for the strings), and, more

importantly, prove that x̂ = {4̂} and ŷ = {"̂sf"} do not co-occur. DRSF is path-
sensitive: it preserves this connection. We now outline how this is accomplished.

Both DDPA and DRSF construct a Control-Flow Graph (CFG) of the pro-
gram; the CFG constructed by DRSF here appears to the right of the code.
Given a (perhaps partial) CFG, the analyses answer questions of the type “what
are the possible abstract values that reach this variable at this program point?”
The analyses perform a lookup by traversing the CFG backward, in the direction
opposite to control-flow, until they find a definition, in the tradition of demand-
driven program analyses [Rep94,DGS97,SR05,HT01,PS16]. For example, if asked
“what are the possible abstract values for b at the end of the program?” the
analyses would initiate a lookup at the CFG node representing the end of the
program and traverse the graph backward with respect to control-flow to reach
the clause b = coin_flip (), producing the result b̂ = {t̂rue, f̂alse}.

There are two complications in building demand-driven analyses for higher-
order languages: the first is preventing unbounded search along cyclic paths
in a CFG; the second is building the CFG itself, because higher-order functions
determine control-flow, so data-flow and control-flow are intertwined. To address
the former, DDPA and DRSF encode the CFG traversal in terms of a PDA
reachability problem, building on ideas in [JSE+14,EMH10,BEM97]. For CFG
construction, the analyses can perform lookups on partial CFGs and let the
results inform the incremental construction of the full CFG.

The CFG above illustrates this process on our running example. The black
and brown edges represent control flow, with black edges determined directly
from program syntax, and brown edges introduced by the analysis. Initially,
only the bottom-most spine exists, representing the statements at the top level.
The analysis first wires in the upper-left widget for the conditional returning x: a
lookup of b shows it can be true and so the 4 node is wired in. Since the lookup of
b can also be false the "dr" node is also wired in. Similarly the branches of the y
conditional are wired in one by one. In general, both DDPA and DRSF construct
the CFG in a forward manner but use reverse lookup through the (partial) CFG
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to find potential values which can inform CFG construction. By induction, all
the information necessary to resolve control-flow at a program point is already
available in the partial CFG when the program point is considered.

With the complete CFG it is possible to look up the potential values of final
expression x+y. This, in turn, requires the lookups of variables x and y. The
key difference between DDPA and DRSF is in how the analyses answer to these
lookups. DDPA produces only sets of abstract values: x̂’s result is {4̂, "̂dr"}
and ŷ’s result is {5̂, "̂sf"}; any path-sensitivity has been lost by the form of
the output. DRSF, in addition to abstract values, produces abstract store sets
associated with them: x̂’s store set is {〈4̂, {b̂ 7→ t̂rue, x̂ 7→ 4̂}〉, 〈"̂dr", {b̂ 7→
f̂alse, x̂ 7→ "̂dr"}〉} and ŷ’s store set is {〈5̂, {b̂ 7→ t̂rue, ŷ 7→ 5̂}〉, 〈"̂sf", {b̂ 7→
f̂alse, ŷ 7→ "̂sf"}〉}. Observe that each individual store in the store set contain
singletons representing a potential slice of the runtime; it is a pair of a value
and the mappings for each variable that led to that value. The key advantage
of DRSF is that, to compute the addition, a store merge is performed on the
store sets for x̂ and ŷ. This store merge operation eliminates impossible stores;
for example, it discards the combination of x̂ 7→ 4̂ and ŷ 7→ "̂sf" because the
corresponding abstract stores disagree on their values for b̂. The set of stores
can be non-deterministic, but each store contains singletons which agree on all
mappings. This can be used to solve a whole class of issues concerning correlation
between bindings, such as fake rebinding [VS10].

One important aspect of abstract stores is that they are not absolute for the
whole program, but relative to the program point in which the lookup initiated.
They are also fragments: only the variables incident on the current lookup need
be included. This latter property will be made clear in the subsequent examples.

2.2 A simple example of context-sensitivity

The following example illustrates a use of higher-order functions:

1 let f = fun _ -> 4 in
2 let g = fun _ -> "s" in
3 let c = fun h -> h () in
4 let x = c f in
5 let y = c g in
6 x f g c x y x

ff 4 ff gg "s" gg

cc h cc

To look up x from the end of the program assuming the full CFG has been
previously constructed, DRSF traverses the CFG in reverse from the program
end. Walking backward, call site x in line 4 is the source of the result; the analysis
must then proceed in reverse into c’s body, whereupon it finds a call to h. At this
point it must find which functions h could be; h is a parameter to c, so DRSF
has to exit its body to look for the arguments that could have been passed in.

Now, the analysis faces a dilemma: there are two wirings to c’s body in the
CFG. One is at x, where h is bound to f; the other is at y, where h is bound to
g. The former wiring matches the execution we are tracing but, in a naive walk
back through the CFG, this information has been lost.
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DRSF achieves context-sensitivity via traces attached to variables to indicate
the relative call stack context the variable was found in. When f is looked up
from the perspective of the top-level program, the trace is empty: []. The result of
this lookup is f̂ = {〈f̂un4, {f̂@[] 7→ f̂un4}〉}: trace [] indicates that the definition
of f̂ was found in the same calling context as where the question was asked.

During our lookup of x, however, we must find a store fragment for ĥ, the
parameter of the ĉ function, from inside of that function’s body. ĥ is defined
in terms of f̂, but that definition occurs in the same calling context as ĉ’s call
site; that is, we must go to where ĉ is called to find the value of f̂. One caller
of ĉ is site x̂ and we use the trace [Îx] to describe that x̂ is the caller of the
program point where our lookup started. Thus, one store we can obtain in looking
up ĥ from within c is 〈f̂un4, {f̂@[Îx] 7→ f̂un4, ĥ@[] 7→ f̂un4}〉. Similarly, if we
consider that ĉ can be called from site ŷ, we obtain another potential store:
〈f̂uns, {ĝ@[Îy] 7→ f̂uns, ĥ@[] 7→ f̂uns}〉.

Now recall that, in the path we were originally taking to search for x, we
had entered h via call site x. So, to relativize the above stores to the top level
of the program, we must append aJx̂ to the trace on all store variables. This
gives stores containing {f̂@[Îx,Jx̂] 7→ f̂un4, ĥ@[Jx̂] 7→ f̂un4} and {ĝ@[Îy,Jx̂] 7→
f̂uns, ĥ@[Jx̂] 7→ f̂uns}. Trace [Îx,Jx̂] is a no-op which cancels out to []. On the
other hand, [Îy,Jx̂] is a contradiction since call and return do not align and it
means this latter store can be eliminated and only the former is sound. So, the
lookup of x̂ yields only the result of x̂; this demonstrates context-sensitivity.

Our call string logic is related to ∆CFA’s delta frame strings [MS06a,GM17].
Note that trace-based context-sensitivity also influences path-sensitivity: DRSF
is path-sensitive for sources of non-determinism not related to loss of context
sensitivity: user input, coin_flip, integer comparisons in which precision was
lost, and so on. We will see later that, just as in kCFA, the loss of context-
sensitivity takes a toll path-sensitivity as well.

2.3 Precise non-local variable lookup

One of the key features of DDPA inherited by DRSF is precision in non-local
variable lookup. Consider the following program.

1 let f = fun x ->
2 let g = fun y -> x in g
3 in
4 let a = f 0 in
5 let b = a 5 in
6 b

f a b

ff g ff gg x gg

To look up b from the end of the program, DRSF first finds b = a 5 so the
function in a must be entered in reverse to find the value. a itself is a closure over
the function g, so it then has to look up g’s return value, x. But if the analysis
continues traversing the CFG backward with respect to control-flow looking for
x, it comes back to the call site b and proceeds to skip over a and f, failing to find
x at the start of the program. DRSF solves this problem with a statically-scoped
search for non-locals in the style of access links in compiler implementations.
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So, at the point where we were looking up x above, DRSF first must look up
the definition of the function that was applied, g, and resume search for x from
there as that is where x’s definition lexically occurs. Searching for g from within
call site b, it is the return value from call site a which continues the search into
f’s body. At that point, it finds g’s definition, and can resume lookup for x from
that CFG location, where it finds that x is the function parameter. So DRSF
returns to the call site a and finds the argument 0, which leads to result b̂ = {0̂}.

2.4 Must-alias analysis

Each relative store contains singletons and this property naturally leads to must-
alias analysis expressiveness. Consider the following program.

1 let f = fun rx -> rx := "dr" in
2 let r1 = ref 4 in
3 let r2 = r1 in
4 f r2;
5 !r1 + "sf"

f r1 r2 f r2 !r1 + "sf"

ff rx ff

In looking up r1, we encounter a call to f. Since this is a stateful lookup
unlike earlier lookups above, we must examine the f call for side effects; we
discover that it sets its parameter rx. If we knew that rx must be an alias for
r1 we would have found the most recent assignment to rx, so this condition is
checked. Searching for rx shows it must be r2, which in turn must be r1. So,
there is only one viable store here and in it "dr" is the most recent assignment
to r1. Therefore !r1 always returns a string.

These small examples illustrate DRSF’s expressiveness. Fortunately, the prin-
ciples of the analysis are general: precision is retained on less trivial examples
we run through the implementation in Section 4.1. The next step is to formalize
the analysis to make its meaning precise.

3 The Analysis

We formally analyze the grammar of the language in Figure 1. All expressions
in this language are in A-normal form [FSDF93] to better align the expressions
and the analysis; we also require that every variable declaration is unique. This
grammar is a small subset of the implemented language; we leave out deep pat-
tern matching, state, and atomic data and operators. The operational semantics
for this simplistic call-by-value language is straightforward and is not given here
for space reasons. For this discussion, it bears mentioning that conditional clause
bodies are functions; when the condition is matched (or not matched), we call
the appropriate function with the matched argument.

e ::= [c, . . .] expressions r ::= {` =x, . . .} records

c ::= x = b clauses f ::= fun x -> ( e ) functions

b ::= v | x | x x | x ˜ p ? f : f | x.` clause bodies x variables

v ::= r | f values ` labels

p ::= {`, . . .} | fun | any patterns

Fig. 1. Expression Grammar
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As in the previous section, we express the abstraction of a construct ◦ as ◦̂.
In this simple language, these constructs are in fact identical; we use two distinct
forms for readability only.

The DRSF analysis incrementally constructs a control flow graph, a process
which relies heavily upon a variable-value lookup function. Given a variable and
a point in the program, this lookup function generally produces relative store
fragments which indicate possible (abstract) values for that variable as well as
store mappings for any variables which influenced this decision. We begin our
definition of the analysis by defining these relative store fragments and then
specify the lookup function and single-step CFG construction operation in turn.

3.1 Relative Store Fragments
The grammar for the analysis store constructs is given in Figure 2. We further
restrict Ψ̂ such that there cannot be two mappings ψ̂/ψ̂′ with the same ρ̂, pro-
vided ρ̂ = x̂@∆̂ and ∆̂ is a full trace. And, we impose an invariant that for any
rooted store 〈ψ̂, Ψ̂〉, ψ̂ ∈ Ψ̂ .

ρ̂ ::= x̂@∆̂ relative trace variable σ̂ ::= 〈ψ̂, Ψ̂〉 rooted store

∆̂ ::= [δ̂, . . .] | (δ̂, . . .] full and partial relative traces Ψ̂ ::= {ψ̂, . . .} raw store

δ̂ ::= Îc |Jĉ relative trace part ψ̂ ::= ρ̂ 7→ v̂ store mapping

Fig. 2. Abstract Store Grammar

A lookup of a variable in the DRSF analysis does not just produce a set of
abstract values; it more generally returns a set of store fragments σ̂ paired with
locations where they are found (discussed in Section 3.2). Each store fragment σ̂
is a rooted store because it includes a root mapping ρ̂ 7→ v̂ indicating the abstract
value v̂ of the looked-up variable (in the Overview we elided the “ρ̂ 7→” on the
root mapping for simplicity), as well as a raw store Ψ̂ of mappings for all other

relevant variables in context. Mappings ψ̂ do not map raw variables x̂ to values:
they map trace-relative variables ρ̂ = x̂@∆̂ to values, with the traces ∆̂ defining
the context where the variable was defined relative to the current context.

Relative traces come in two forms. The first form is a full trace [. . . ] which
is precise: it describes exactly from where the result of lookup is obtained. The
second form (. . . ] is a partial trace which represents a lossy suffix of the for-
mer, trimmed to allow the analysis to terminate. We formally define a trimming
operation on relative traces here which retains only the rightmost k elements:

Definition 1. We define (∆̂)dk such that

[δ̂n, . . . , δ̂1]dk=
{

[δ̂n, . . . , δ̂1] when n ≤ k
(δ̂k, . . . , δ̂1] otherwise

(δ̂n, . . . , δ̂1]dk= (δ̂min(k,n), . . . , δ̂1]

We are using standard notation [a1, . . . , an] for regular lists and ∆̂ || ∆̂′ for
list append. Relative traces are list-like, so it is convenient to use similar notation
to our lists when considering list suffixes; for instance, we may write ∆̂ = ∆̂′ ||[δ̂]
to indicate that δ̂ is the last item of the trace ∆̂. Because traces may be partial,
however, we only use this notation when the trace is the left operand and the
right operand is a simple list of trace parts.
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We also define here two convenience routines for creating rooted stores and
extracting the underlying value from them:

Definition 2. 1. We define 〈|x̂, v̂|〉, the “store creation” operation, as
〈x̂@[] 7→ v̂, {x̂@[] 7→ v̂}〉.

2. We define Lσ̂M, the “store read” operation, as L〈ρ̂ 7→ v̂, Ψ̂〉M = v̂.

Trace Suffixing. Raw stores Ψ̂ map relative trace variables to values. As indi-
cated in Figure 2, each relative trace variable is a pairing between a variable and
a relative trace which describes the location of that variable relative to the cur-
rent program stack. If a value was originally constructed outside of the current
function, for instance, the trace [Îc] indicates that the call site ĉ was pushed onto
the stack since the value was bound. If lookup found a value originally bound
inside of a function that has since returned, the trace may contain [Jĉ].

As every mapping in a store is relative to the current position of variable
lookup, we must uniformly modify these traces as lookup moves between function
calls. We begin by defining an operation which suffixes an existing relative trace
with a new stack operation. This may cancel redundant values: [Îc,Jĉ] enters
and exits a function from the same call site and so is a no-op. Trace suffixing
may also fail on impossible stack transformations: [Îc,Jĉ′] for ĉ 6= ĉ′ returns to
a point not the calling point, an impossibility.

We now define a trace suffixing operation to formalize the above. Traces
longer than a given k are trimmed to partial traces of the form (. . . ] by truncating
the front of the list. This prevents traces from growing arbitrarily long and allows
stores to keep finite context, as described above. We represent suffix failure in
impossible cases by leaving the operation undefined.

Definition 3. For each k ≥ 0, trace suffixing nk is defined as follows:

[] nk δ̂ = [δ̂]dk (] nk δ̂ = (δ̂]dk
∆̂ ||[Îc] nkJĉ = ∆̂ ∆̂ ||[Îc1] nkJĉ2 is undefined if ĉ1 6= ĉ2
∆̂ ||[Îc1] nk Îc2 = (∆̂ ||[Îc1, Îc2])dk ∆̂ ||[Jĉ] nk δ̂ = (∆̂ ||[Jĉ, δ̂])dk

We extend the trace suffixing operator to operate on pairs of traces. We allow
n = 0 and/or m = 0 below.

∆̂ nk [δ̂1, . . . , δ̂n] = ∆̂nk δ̂1 nk . . .nk δ̂n
∆̂ nk (δ̂1, . . . , δ̂n] = (δ̂1, . . . , δ̂n]dk

Observe that traces are pop/push-bitonic [Mig07] in that they have the form
[Jĉ1, . . .Jĉn, Îc1, . . . Îcm] for n,m ≥ 0.

Trace suffixing homomorphically extends to stores and other entities.

Definition 4. We extend trace suffixing to variables, mappings, raw stores, and
rooted stores as follows:

(x̂@∆̂) nk δ̂ = x̂@(∆̂nk δ̂) (x̂@∆̂) nk ∆̂′ = x̂@(∆̂nk ∆̂′)
(ρ̂ 7→ v̂) nk δ̂ = (ρ̂nk δ̂) 7→ v̂ (ρ̂ 7→ v̂) nk ∆̂ = (ρ̂nk ∆̂) 7→ v̂

Ψ̂ nk δ̂ =
{
ψ̂ nk δ̂

∣∣∣ψ̂ ∈ Ψ̂} Ψ̂ nk ∆̂ =
{
ψ̂ nk ∆̂

∣∣∣ψ̂ ∈ Ψ̂}
〈ψ̂, Ψ̂〉nk δ̂ = 〈ψ̂ nk δ̂, Ψ̂ nk δ̂〉 〈ψ̂, Ψ̂〉nk ∆̂ = 〈ψ̂ nk ∆̂, Ψ̂ nk ∆̂〉
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Note that in each case above if any of the nk on the right are undefined, the
suffixing operation on the left is taken to be undefined.

To illustrate how the “undefinedness” of trace suffixing is fully propagated,
x̂@[Îc1] nkJĉ2 and {x̂@[Îc1] 7→ v̂, . . .} nkJĉ2 are both undefined if ĉ1 6= ĉ2.
Hereafter we will take k to be fixed and abbreviate nk as n.

Store Merge. Some lookup operations in DRSF require a subordinate lookup.
For example, before proceeding from a call site into a function body, we must
perform a lookup to make sure that function is called at this site. A key feature
of DRSF is how stores from lookups can be merged : formally, Ψ̂1⊕ Ψ̂2. Any store
that represents an inconsistent run-time state can be eliminated in ⊕. There
are two conditions which cause store merge to fail. First, a variable could be
inconsistent: one store maps x to an integer while the other maps x to a record.
Second, the call stack implied by the store could be inconsistent, for example
one store contains r@[Jx,Iy] and the other contains r@[Jx,Iz]: these constraints
cannot simultaneously be satisfied and merge fails.

We now define store merge. The first condition – merging inconsistent vari-
ables – is implicitly addressed by the manner in which we propagate the unde-
fined cases of the definitions above. To handle the second condition, we must
define an auxiliary trace relation ∆̂1 l ∆̂2 and apply it to stores.

Definition 5. 1. We define the trace consistency relation ∆̂1 l ∆̂2 to hold iff
there exist some ∆̂′0, ∆̂′1, and ∆̂′2 such that the following hold:

– No terms of the form Îc appear in ∆̂′0, ∆̂′1, or ∆̂′2;
– ∆̂1 n ∆̂′0 = ∆̂′1, and ∆̂2 n ∆̂′0 = ∆̂′2.

2. Two stores Ψ̂1 and Ψ̂2 are trace consistent (written Ψ̂1 l Ψ̂2) iff ∀(x̂1@∆̂1) 7→
v̂1 ∈ Ψ̂1, (x̂2@∆̂2) 7→ v̂2 ∈ Ψ̂2. ∆̂1 l ∆̂2.

3. The merge Ψ̂1 ⊕ Ψ̂2 of two unrooted stores Ψ̂1 and Ψ̂2 is the union of their
mappings, Ψ̂1 ∪ Ψ̂2, provided the following conditions hold:

– For all ρ̂ 7→ v̂1 ∈ Ψ̂1 and ρ̂ 7→ v̂2 ∈ Ψ̂2, if ρ̂ of form x̂@[. . .] then v̂1 = v̂2
– Ψ̂1 l Ψ̂2

If these conditions do not hold, then Ψ̂1 ⊕ Ψ̂2 is undefined.

Two forms of merge for rooted stores are used in DRSF and we make ex-
plicit definitions for readability. Parallel store merge σ̂1⇔ σ̂2 merges two stores
computed from the same reference point and the root of the merged store is
set to the root of σ̂1. Serial store merge σ̂1" σ̂2 merges stores whilst offsetting
the reference point of the first store by the reference point of the second. This
adjustment is used to support the non-local lookups described in Section 2.3.

Definition 6. 1. The parallel store merge operation ⇔ is defined as follows:
〈ψ̂1, Ψ̂1〉⇔〈ψ̂2, Ψ̂2〉 = 〈ψ̂1, Ψ̂1 ⊕ Ψ̂2〉

2. The serial store merge operation, ", is defined as follows:
σ̂"〈x̂@∆̂ 7→ v̂, Ψ̂〉 = (σ̂ n ∆̂)⇔〈x̂@∆̂ 7→ v̂, Ψ̂〉
These operations are undefined when any of the component operations are

undefined.
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Singleton Abstractions. At this point we have all the tools necessary to
construct and utilize singleton abstractions in the analysis. Each mapping in a
relative store fragment includes a relative trace ∆̂ which is either partial or full.
Full traces describe in the analysis a set of memory locations at run-time that
share a property, for example, closures over the same lambda or records with
the same fields corresponding to the same variables. The conditions for unrooted
store merge ⊕ (and, by extension, the store merge operations⇔ and") are then
used to identify and discard cases in which stores have immediately dissonant
values for full-trace bindings.

Note that immediate dissonance is only evident for values in which the
concrete-to-abstract mapping is one-to-one, as is the case for our functions and
records. When extending DRSF to other kinds of values (for example, numbers
and strings) the analysis must conservatively assume dissonance whenever the
abstract values fall out of the range for which the concrete-to-abstract map-
ping is one-to-one. For those values within the one-to-one mapping, subsequent
lookups of e.g. function non-locals or record fields can be used to check for dis-
sonance deeply within a structure. By induction, when these lookups reach the
leaves of these data structures, they prove that a chain of full-trace bindings
represent singleton abstractions. This allows the analysis we define below to be
a basis for expressing singleton abstractions, though using DRSF to develop e.g.
an environment analysis is beyond the scope of this paper.

3.2 Lookup over Control Flow Graphs

Before defining variable lookup for the analysis, we must formally define the
control flow graphs described in Section 2. The grammar appears in Figure 3.
Recall that our simplified language is A-normalized and each variable declaration
is unique. Each â is a program clause (a program point in Overview terminol-
ogy) and each â << â is a CFG edge (a brown or black arrow in the Overview
CFGs) collected into set Ĝ, the full CFG. Variable lookup produces a set of
positioned stores Φ̂, which are relative store fragments together with a reference
point for them. This reference point is used to support the statically scoped
search described in Section 2.3.

â ::= ĉ | x̂ Îc
= x̂ | x̂Jĉ

= x̂ | Start | End abstract annotated clauses

ĝ ::= â << â control flow edges

Ĝ ::= {ĝ, . . .} control flow graphs

φ̂ ::= 〈â, σ̂〉 positioned store

Φ̂ ::= {φ̂, . . .} positioned store set

Fig. 3. DRSF Analysis Grammar

For notational purposes, we overload each operation on stores σ̂ to positioned
stores φ̂; for instance, we let 〈â, σ̂〉nδ̂ = 〈â, σ̂nδ̂〉 and L〈â, σ̂〉M = Lσ̂M. We overload

each such operation to sets of φ̂; for example, Φ̂n δ̂ = {φ̂n δ̂ | φ̂ ∈ Φ̂}.
Let Match(v̂, p̂) be the natural shallow pattern match relation between a

value and a pattern. Let RV(e) be the last variable defined in an expression:

RV([. . . , x̂ = b̂]) = x̂.
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We are finally in a position to define variable lookup Ĝ(â, x̂), a function
returning the set of positioned stores that give a value to x̂ from the perspective
of program point â.

Definition 7. For CFG Ĝ, let Ĝ(â0, x̂) be the function returning the least set

of positioned stores Φ̂ for some â1
Ĝ

<< â0 satisfying the following clauses:

1. Variable search
(a) Value Discovery

If â1 = (x̂ = v̂) then 〈â1, 〈|x̂, v̂|〉〉 ∈ Φ̂.
(b) Value Alias

If â1 = (x̂ = x̂′) then Ĝ(â1, x̂
′) ⊆ Φ̂.

(c) Clause Skip

If â1 = (x̂′ = b) and x̂′ 6= x̂, then Ĝ(â1, x̂) ⊆ Φ̂.
2. Function wiring

(a) Function Enter: Parameter Variable

If â1 = (x̂ ĉI
= x̂′) and ĉ = (x̂′′1 = x̂′′2 x̂′), 〈â′, σ̂〉 ∈ Ĝ(â1, x̂

′′
2), then

(Ĝ(â1, x̂
′)⇔ σ̂) n Îc ⊆ Φ̂.

(b) Function Exit: Return Variable

If â1 = (x̂Jĉ
= x̂′), ĉ = (x̂ = x̂′′2 x̂

′′
3), 〈â′1, σ̂1〉 ∈ Ĝ(ĉ, x̂′′2), 〈â′2, σ̂2〉 ∈ Ĝ(ĉ, x̂′′3),

(fun x̂′′4 -> ( ê )) = Lσ̂M, and RV(ê) = x̂′, then
((Ĝ(â1, x̂

′) nJĉ)⇔ σ̂1⇔ σ̂2) ⊆ Φ̂.
(c) Function Enter: Non-Local Variable

If â1 = (x̂′′ Îc
= x̂′), ĉ = (x̂′′1 = x̂′′2 x̂′), x̂′′ 6= x̂, and 〈â′1, σ̂1〉 ∈ Ĝ(â1, x̂

′′
2),

〈â′2, σ̂2〉 ∈ Ĝ(â1, x̂
′), then

((Ĝ(â′1, x̂)" σ̂1)⇔ σ̂2 n Îc) ⊆ Φ̂.
3. Conditional wiring

(a) Conditional Enter: Parameter Positive

If â1 = (x̂′ Îc
= x̂1), ĉ = (x̂2 = x̂1 ˜ p̂ ? f̂1 : f̂2), f̂1 = fun x̂′ -> ( ê ), and

x̂ ∈ {x̂′, x̂1}, then

{φ̂|φ̂ ∈ Ĝ(â1, x̂1) ∧Match(Lφ̂M, p̂)} ⊆ Φ̂.
(b) Conditional Enter: Parameter Negative

If â1 = (x̂′ Îc
= x̂1), ĉ = (x̂2 = x̂1 ˜ p̂ ? f̂1 : f̂2), f̂2 = fun x̂′ -> ( ê ), and

x̂ ∈ {x̂′, x̂1}, then

{φ̂|φ̂ ∈ Ĝ(â1, x̂1) ∧ ¬Match(Lφ̂M, p̂)} ⊆ Φ̂.
(c) Conditional Enter: Non-Parameter Positive

If â1 = (x̂′ Îc
= x̂1), ĉ = (x̂2 = x̂1 ˜ p̂ ? f̂1 : f̂2), f̂1 = fun x̂′ -> ( ê ), x̂ /∈

{x̂′, x̂1}, 〈â′, σ̂〉 ∈ Ĝ(ĉ, x̂1), and Match(Lσ̂M, p̂), then
(Ĝ(â1, x̂)⇔ σ̂) ⊆ Φ̂.

(d) Conditional Enter: Non-Parameter Negative

If â1 = (x̂′ Îc
= x̂1), ĉ = (x̂2 = x̂1 ˜ p̂ ? f̂1 : f̂2), f̂2 = fun x̂′ -> ( ê ), x̂ /∈

{x̂′, x̂1}, 〈â′, σ̂〉 ∈ Ĝ(ĉ, x̂1), and ¬Match(Lσ̂M, p̂), then
(Ĝ(â1, x̂)⇔ σ̂) ⊆ Φ̂.
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(e) Conditional Exit: Return Positive

If â1 = (x̂Jĉ
= x̂′), ĉ = (x̂ = x̂1 ˜ p̂ ? f̂1 : f̂2), f̂1 = fun x̂′′ -> ( ê ), RV(ê) =

x̂′, 〈â′, σ̂〉 ∈ Ĝ(ĉ, x̂1), and Match(Lσ̂M, p̂), then
(Ĝ(â1, x̂

′)⇔ σ̂) ⊆ Φ̂.
(f) Conditional Exit: Return Negative

If â1 = (x̂Jĉ
= x̂′), ĉ = (x̂ = x̂1 ˜ p̂ ? f̂1 : f̂2), f̂2 = fun x̂′′ -> ( ê ), RV(ê) =

x̂′, 〈â′, σ̂〉 ∈ Ĝ(ĉ, x̂1), and ¬Match(Lσ̂M, p̂), then
(Ĝ(â1, x̂

′)⇔ σ̂) ⊆ Φ̂.
4. Record projection

(a) Record Projection

If â1 = (x̂ = x̂′.`), 〈â′, σ̂〉 ∈ Ĝ(â1, x̂
′), Lσ̂M = r̂, and (` = x̂′′) ∈ r̂, then

(Ĝ(â′, x̂′′)" σ̂) ⊆ Φ̂.

We will write v̂ ∈ Ĝ(ĉ, x̂) as an abbreviation for v̂ = Lφ̂M for some φ̂ ∈ Ĝ(ĉ, x̂).

Understanding lookup. There is a lot going on in Definition 7. To better
understand the clauses, we will trace the lookup example of Section 2.2. Below
is that example translated to the formal A-normalized grammar we use in this
section, retaining integer and string data from the original example for clarity.
(Note that there is only one of each, so singleton properties hold.) The diagram
to the right is the final CFG produced by the wiring rules described in Section
3.3 below; here we illustrate variable lookup on this final CFG.

1 f = fun a -> ( r = 4 );
2 g = fun b -> ( s = "s" );
3 c = fun h -> ( t = h true );
4 x = c f;
5 y = c g;
6 z = x; Start f g c x y z End

ff r ff gg s gg

cc t cc

a=true It

t=rJt

b=true It

t=sJt

h=f Ix x=tJx

h=g Iy y=tJy

There are a few differences between this CFG and the informal presentation
of Section 2.2 – this CFG precisely matches the dependency graph notation of
Figure 3. Each black or brown arrow-tipped edge in the CFG corresponds to a
dependency â << â ∈ Ĝ, for Ĝ being the whole CFG. The green half circles are
only block delimiters for readability and do not correspond to nodes – the brown
wiring edges go through them. The rectangular brown nodes are the wiring nodes

x̂
Îc
= x̂′ and x̂

Jĉ
= x̂′ of the â grammar, and the whole CFG starts at node Start

and ends with End. The program is in ANF and all program points have names
(except for the dummy argument in the function call at t); the result of function
f, for instance, is named r.

Recall from the overview that we desire to look up the final value, ẑ, from the
end of the program: Ĝ(End, ẑ). (We coventionally begin the search not at the
indicated node, e.g. End here, but at any predecessors to this node). Looking
back from End, we see z defined as x; rule 1b of Definition 7 tells us to first
continue by looking up x̂ from ẑ: Ĝ(ẑ, x̂). (We will use the variable – ẑ here –
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alone as shorthand for its clause). We proceed lookup with rule 1c, which allows
us to skip the clause y = c g as it does not affect x̂. Our lookup is then Ĝ(ŷ, x̂).

From ŷ, rule 2b applies, which first entails looking up both function ĉ and
argument f̂ from point x̂; these two lookups are both straightforward under the
variable search rules 1a and 1c. Each returns a store which then gets parallel-
merged to 〈ĉ@[] 7→ f̂unh, {ĉ@[] 7→ f̂unh, f̂@[] 7→ f̂un4}〉. Continuing, it remains
to look up t̂ from the wiring node, suffix the result with the trace [Jx̂], and
merge that result with the aforementioned store. Note that this merge requires
all three to be in sync, a key to giving us path- and context-sensitivity.

The fact that we align the argument lookup in particular corresponds with
what CPA [Age95,Bes09,VS10] achieves. CPA separately analyzes function calls
with differing types of arguments. DRSF does so as well by creating for each
argument type a distinct relative store fragment (the result of the lookup of
Ĝ(ĉ, x̂′′3) in rule 2b). This alignment requires only one operation and no special
machinery in DRSF, as relative store fragments are already used to model many
other kinds of inter-binding relationships as well.

We now tackle the lookup of t̂. We begin by exploring call site t = h true:

again, rule 2b applies. Here, there are two candidate wiring nodes: t
Jt
= r and

t
Jt
= s; both are possible, as either f̂un4 or f̂uns may reach this call site. By

rule 1a, looking back through node t
Jt
= r yields înt while node t

Jt
= s yields

ŝtring. Clearly only the înt is possible at run-time. What does DRSF do here?

Lookup in DRSF can in general produce multiple (singleton) stores repre-

senting multiple abstract values. The lookup Ĝ(t Jt
= r, r̂) produces the store

〈r̂@[] 7→ înt, {r̂@[] 7→ înt}〉, which is then suffixed withJt̂. The resulting store
〈r̂@[Jt̂] 7→ înt, {r̂@[Jt̂] 7→ înt}〉 is then merged with the store used to ver-
ify that f̂un4 could be called at this site, yielding 〈r̂@[Jt̂] 7→ înt, {r̂@[Jt̂] 7→
înt, f̂@[Îx] 7→ f̂un4}〉. At this point, the lookup of t̂ is complete and trace [Jx̂]
can finally be suffixed to this result, giving 〈r̂@[Jt̂,Jx̂] 7→ înt, {r̂@[Jt̂,Jx̂] 7→
înt, f̂@[] 7→ f̂un4, ĉ@[] 7→ f̂unh}〉 for x̂.

The lookup Ĝ(tJt
= s, ŝ), demonstrates how store merging prunes impossible

paths. This lookup produces the store 〈ŝ@[] 7→ ŝtring, {ŝ@[] 7→ ŝtring}〉, which

we then suffix and merge as we did above to yield 〈ŝ@[Jt̂] 7→ ŝtring, {ŝ@[Jt̂] 7→
ŝtring, ĝ@[Îy] 7→ f̂uns}〉. Next, this store should be suffixed withJx̂ to adjust
the perspective to be back out of the x̂ call site, but this is undefined : the suffixing
ĝ@[Îy] nJx̂, is undefined because reading in the forward-running direction it
indicates a call at site ŷ but which returns to site x̂, an impossibility at run-
time. So, this store is eliminated at the merge, and lookup of Ĝ(End, ẑ) yields
only the înt store described above.

Conditionals and records are variations on how functions are handled: the
CFG is traversed in reverse, and stores are merged and relativized along the way
as necessary. The parallel merges in conditional lookup give path-sensitivity on
the conditional value: only aligned stores can merge.
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3.3 Abstract Evaluation
We now present the single-step abstract evaluation relation which incrementally
adds edges to build a full CFG. The above lookup function is the key subroutine.

Active nodes. To preserve standard evaluation order, we define the notion of an
Active node: only nodes with all previous nodes already executed can fire. This
serves a purpose similar to an evaluation context in operational semantics.

Definition 8. Active(â′, Ĝ) iff path {Start << â1, . . . , âi << âi+1, . . . , ân <<

â′} ⊆ Ĝ such that no âi is of one of the forms x̂ = x̂′ x̂′′ or x̂ = x̂′ ˜ p̂ ? f̂ : f̂ ′.

Wiring. Function application requires the concrete function body to be “wired”
into the call site:

Definition 9. Let Wire(ĉ, fun x̂0 -> ê, x̂1, x̂2) =
{ĉ′ << (x̂0

Îc
= x̂1) | ĉ′

Ĝ

<< ĉ} ∪ {(x̂0
Îc
= x̂1) << ê << (x̂2

Jĉ
= RV(ê))} ∪ {(x̂2

Jĉ
=

RV(ê)) << ĉ′ | ĉ
Ĝ

<< ĉ′}.
ĉ′ here is the call site, and we are wiring in function body ê at this site.

Application
ĉ = (x̂1 = x̂2 x̂3) Active(ĉ, Ĝ) f̂ ∈ Ĝ(ĉ, x̂2) Ĝ(ĉ, x̂3) 6= ∅

Ĝ −→1 Ĝ ∪Wire(ĉ, f̂ , x̂3, x̂1)

Record Conditional True
ĉ = (x̂1 = x̂2 ˜ p̂ ? f̂1 : f̂2) Active(ĉ, Ĝ) ∃φ̂ ∈ Ĝ(ĉ, x̂2).Match(Lφ̂M, p̂)

Ĝ −→1 Ĝ ∪Wire(ĉ, f̂1, x̂2, x̂1)

Record Conditional False
ĉ = (x̂1 = x̂2 ˜ r̂ ? f̂1 : f̂2) Active(ĉ, Ĝ) ∃φ̂ ∈ Ĝ(ĉ, x̂2).¬Match(Lφ̂M, p̂)

Ĝ −→1 Ĝ ∪Wire(ĉ, f̂2, x̂2, x̂1)

Fig. 4. Abstract Evaluation Rules

Next, we define the abstract small-step relation −→1 on graphs; see Figure 4.
The evaluation rules end up being straightforward after the above preliminaries.
For application, if ĉ is an Active call site, lookup of the function variable x̂2
returns function body f̂ and some value v̂ can be looked up at the argument po-
sition, we may wire in f̂ ’s body to this call site. Note that v̂ is only observed here
to constrain evaluation order to be call-by-value. The case clause rules are simi-
lar. We define the small step relation −→1 to hold if a proof exists in the system
in Figure 4. We write Ĝ0 −→∗ Ĝn to denote Ĝ0 −→1 Ĝ1 −→1 . . . −→1 Ĝn.

Now we can finally put it all together to analyze a program. We define a typi-
cal program abstraction function Embed(e) to denote the lifting of an expression
e into a CFG Ĝ:

Definition 10. Embed([c1, . . . , cn]) is the graph Ĝ0 = {Start << ĉ1, . . . , ĉi <<
ĉi+1, . . . , ĉn << End}, where each ĉi = ci.

This initial graph is simply the linear sequence of clauses in the “main program”.
The DRSF Analysis for a program e is then graph Ĝ where Embed(e) −→∗ Ĝ
and Ĝ can only further step to itself.
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3.4 DRSF Soundness

Soundness of DRSF is proven in two steps: we first demonstrate equivalence
between a standard small step operational semantics and a graph-based opera-
tional semantics [PS16]; we then show that DRSF conservatively approximates
the latter. We begin by overloading −→1 to a canonical small step evaluation
relation on expressions e (straightforward and elided for reasons of space). Next,
we define a graph-based operational semantics using ωDRSF: DRSF where trace
concatenation n never loses information (and so never produces partial traces).
We use unhatted analogues of the grammars in Figures 2 and 3 for ωDRSF enti-
ties. We also overload the operators on traces and stores to work similarly on the
unhatted grammar, where trace concatenation has no maximum trace length.

We align these two operational semantics by defining a bisimulation e ∼= G
and showing that it holds throughout evaluation. Key to this bisimulation is an
alignment between the freshenings of bound variables in e and the traces in the
mappings of concrete store fragments in G. We state the equivalence of these
operational semantics as follows:

Lemma 1 (Equivalence of Operational Semantics). For any e ∼= G:

if e −→1 e′ then G −→∗ G′ such that e′ ∼= G′; and
if G −→1 G′ then e −→∗ e′ such that e′ ∼= G′.

The discrepancy in the number of steps arises in how the operational seman-
tics process variable aliasing. The small step operational semantics processes
aliases eagerly while ωDRSF need not step for variable aliases (due to demand-
driven lookup).

Given the equivalence of these operational semantics, we now show kDRSF
simulates ωDRSF. We do this via a simulation relation 4 defined from each
non-hatted term to its hatted analogue. The only non-trivial case here is that of
traces, in which a full trace is simulated by the partial trace of any of its suffixes
(e.g. [Jx1,Ix2] 4 (Îx2]).

Lemma 2 (Simulation). If G 4 Ĝ and G −→1 G′, then Ĝ −→∗ Ĝ′ such that
G′ 4 Ĝ′.

Lemma 2 is proven by establishing a Galois connection between ωDRSF and
kDRSF following standard techniques [CC77,NNH99,VHM10,Mig10a]. Sound-
ness of the overall analysis is an immediate corollary of the above two lemmas.

3.5 DRSF Complexity

DRSF as presented above has exponential worst-case complexity, but this can
be mitigated. We now outline a proof of this property to understand its singular
cause. Fortunately, our initial experiments suggest that this worst case is not
common in practice; see Section 4.

DRSF’s complexity is shown by bounding the size of Ĝ produced by the
abstract evaluation rules of Figure 4. We begin by counting the forms of the
grammar in Figure 2. Restricting that grammar to the program being analyzed
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and to traces of length at most k, we observe there are a polynomial number of
forms of δ̂, ∆̂, ρ̂, and ψ̂.

The exponential growth of DRSF lies in the definition of Ψ̂ , which admits
any subset of the ψ̂ forms above. This leads us to the following key Lemma:

Lemma 3 (Exponential Raw Store Growth). Restrict the grammar of
Figure 2 to contain only clauses, values, and variables appearing within ê and
only traces of length at most k. Let |LΨ̂ | be the number of values of form Ψ̂ and

let |Lσ̂| be the number of values of form σ̂. Then |LΨ̂ | and |Lσ̂| are O(2nk+2).
The rest of the proof demonstrates that DRSF is polynomial in |Lσ̂|. Defini-

tion 7’s lookup operation is reduced to a reachability problem on a push-down
automaton [PS16] (which is polynomial in the size of the automaton [BEM97])
and the abstract evaluation relation Ĝ −→1 Ĝ′ is shown to be confluent, bound-
ing the number of lookups to a polynomial of |Lσ̂|. This leads us to:

Theorem 1 (DRSF Analysis Complexity). The DRSF analysis of a pro-
gram e is computable in time polynomial in |Lσ̂|.

3.6 Weakening DRSF
While the exponential case of DRSF appears to be uncommon, it may ultimately
be necessary to apply weakenings to guarantee polynomial behavior. A full ex-
ploration of such weakenings is beyond the scope of this paper, but we outline
one such weakening here.

Consider adding a “time-to-live” index to each mapping. Mappings with TTL

are written ρ̂
`7→ v̂, where ` ∈ N. Each singleton store creates its single mapping

with ` equal to some fixed value d. Finally, the raw store merge operation ⊕
decreases the value of each mapping’s `, and discards mappings with ` = 0.
When merging two mappings with the same ρ̂ and v̂, the maximum ` is retained.

With this TTL index, it is possible to prove no raw store can be created with
a number of mappings greater than 2d. Since d is a fixed constant, this bounds
the number of mappings per raw store to be fixed. With only polynomially many
stores, it follows from a lemma similar to Lemma 3 that |Lσ̂| is also polynomial,
and by Theorem 1, the analysis with TTL is polynomial.

4 Implementation
An implementation of DRSF is available on GitHub3 which additionally in-
cludes binary operators, deep pattern matching, and state as well as integers and
strings for basic values. The abstraction function maps all integers and strings
to the same abstract integer and abstract string, so the singleton abstractions
are lost for them. The implementation proceeds as described in Section 3.5:
lookups are performed by reduction to a reachability problem on a push-down
automaton just as in DDPA [PS16]. We improve on previous reachability algo-
rithms [BEM97,JSE+14,EMH10] by generalizing over patterns appearing in the
automaton which arise due to the form of DRSF’s lookup definition. We also
rely upon the confluence of abstract evaluation to reuse work performed during
lookup, even across lookup invocations.

3 https://github.com/JHU-PL-Lab/odefa/tree/sas2017-drsf
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4.1 Evaluation

To evaluate the performance of DRSF, we benchmarked it against an implemen-
tation of DDPA [PS16,PF16]. The analysis client in these experiments answers
the question “what are all possible values for all variables at the top level of the
program?” We used this client to compare both running times and precision.

The test cases were taken from other higher-order program analysis evalua-
tions [GLA+16,JLMVH13]. These Scheme programs were automatically trans-
lated to our core language. Many of these benchmarks are moderate sized pro-
grams which represent real-world uses.4 Others are micro-benchmarks designed
to stress particular aspects of the analysis.5

We conducted three experiments to measure the performance of the analy-
ses.6 For a monomorphic baseline we selected k = 0. For the second and third
experiments, we selected k = 2 and k = 4 somewhat arbitrarily: on several of
the benchmarks, k = 4 gave full precision, and k = 2 is a midpoint. The results
are shown in Figure 5.
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Fig. 5. The benchmark results. Numerical labels on bars are running times. Unlabeled
bars timed out after 30 minutes. Numbers in parentheses are program point counts.
The dotted lines separate the real-world programs from the micro-benchmarks.

DDPA is faster in all test cases, with a few exceptions, in which the difference
between DDPA and DRSF is negligible. This is an expected result when compar-
ing a polynomial analysis (DDPA) to an exponential one (DRSF). Both regex
and deriv involve recursive functions operating on symbols and lists of symbols,
which we encode as records in DRSF. We conjecture that DRSF’s performance
degenerates in these cases because they contain recursive functions, which is a

4 regex is a regular expression engine using derivatives; rsa performs the RSA encryption algorithm;
primtest is the Fermat primality testing algorithms; and deriv performs symbolic derivation of
an equation.

5 sat is a SAT solver, which stresses path- and context-sensitivity; cpstak is the TAK micro-
benchmark in continuation-passing style, which stresses nested function calls and non-local
lookups; and church tests the distributive property of multiplication over addition on Church
numerals which includes polymorphic recursive functions and a massive number of function calls,
stressing the function-wiring part of the analysis.

6
Intel(R) Xeon(R) CPU E31220 @ 3.10GHz, 8GB of RAM, Debian GNU/Linux 8.8.
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know weak spot in both analyses. The regex test case triggers this bad behavior
more intensively because it includes a set of mutually recursive functions, which
causes even DDPA to time out.

Besides the test cases we ran for performance measurement, we also tested
the implementation with micro-benchmarks which serve primarily to exercise
context-, path- and flow-sensitivity, as well as the capacity to precisely approx-
imate the heap state with must-alias analysis. For most test cases, DRSF loses
no precision other than value abstraction (e.g. 5 7→ înt) given a sufficient k. Our
implementation confirms the expressiveness improvements predicted in theory;
for example, DDPA loses precision in the program from Section 2.1, and DRSF
approximates it exactly, due to path-sensitivity. Further empirical expressive-
ness evaluations are left for future work due to the significant loss of precision
in recursive functions, mentioned above. This impedes the development of more
sophisticated clients because recursive programs, in particular those with poly-
morphic recursion, exhaust the abstract heap, regardless of our choice for k, caus-
ing the analyses to lose call-return alignment, and context- and path-sensitivity.
This problem regarding recursion is orthogonal to the advancements in DRSF
and we plan to address it in future work using a refined model of finitization for
the abstract traces, for example, one based on regular expressions [GLA+16].

The abstract stores produced by DRSF may suffice to solve the generalized
environment problem [Mig10b,Shi91,BFL+14,GM17]. Unfortunately, the most
relevant clients for this feature are difficult to test in isolation. For example,
Super-β inlining exercises the resolution of circular dependencies that occur in
recursive programs. As discussed above, DRSF loses precision in those cases, so
we plan to evaluate these clients after addressing this weakness.

Finally, we attempted to compare DRSF to state-of-the-art forward analyses
including P4F [GLA+16] and OAAM [JLMVH13]. Unfortunately, these analy-
ses are too different from DRSF to draw any significant conclusion. OAAM’s
reference implementation does not support k > 0 resulting in lower precision
but faster running times. DRSF runs faster than the P4F reference implemen-
tation, but the latter was designed for correctness and not performance so this
is arguably not a fair comparison.

5 Related Work

Anodization [Mig10b] aims for singleton abstraction by separating bindings so
that there is only one concrete binding per abstract binding, making a structure
similar to our relative store fragments. Anodization does not create local, rela-
tivized stores like we do here and is not a demand-driven analysis. It also has
not been implemented or analyzed for complexity. Other higher-order analyses
that incorporate a form of singleton abstraction include [JTWW98,SW97]; the
former is carefully engineered to achieve a quartic time bound but is focused on
must-alias analysis and lacks path- or general context-sensitivity.

∆CFA’s delta frame strings [MS06a,GM17] are very similar in structure to
our relative traces, but due to differences in forward- and reverse-analyses they
are incorporated into the analysis quite differently. In DRSF they are placed on



Relative Store Fragments for Singleton Abstraction 19

variables on the store to singularize them; in ∆CFA they are part of the state.
Moreover, ∆CFA defines an abstraction for frame strings which loses more infor-
mation than DRSF; for example, it discards the order of invocations of different
procedures. A recent ∆CFA extension [GM17] shows how the environment prob-
lem can be solved, but there is no implementation or evaluation.

There are many different approaches to building path-sensitivity into pro-
gram analyses. Early work on path-sensitivity directly built the logic into an
analysis [BA98]; subsequently, path-sensitivity was was implemented using SMT
model-checkers over boolean-valued programs [DLS02,XCE03]. Some higher-
order type systems contain analogues of path-sensitive precision [THF10]. Re-
cent work shows how path sensitivity can be viewed as one of several orthogonal
dimensions of analysis expressiveness along with context- and flow-sensitivity
[SDM+13,DMH15]. In the first-order abstract interpretation literature, trace
partitioning techniques give an added expressiveness that is related to DRSF
traces [HT98,Bou92] – like DRSF these techniques add path information to the
analysis state and path-sensitivity becomes an emergent property.

DRSF’s store fragments are related to the heap fragments of separation logic
[Rey02]: there are many partial stores for different program contexts which are
merged. This analogy with separation logic is only high level since we are com-
paring first-order program logics to higher-order program analyses, but it points
to potential applicability of store fragments to higher-order program logics.

We build on the DDPA higher-order demand-driven analysis [PS16]. Other
demand-driven higher-order analyses include [RF01,FRD00,SDAB16], but these
are flow-insensitive; they as well as DDPA lack a singleton abstraction. In [PS16]
call-return alignment can fully replace the need for an explicit context-sensitivity
mechanism, but it requires an explicit call stack. This comes for free in DRSF
since it is embedded in the store variable traces.

The exponential problem we run into here is a fundamental issue in path-
sensitive analyses. DRSF attemps to infer when path sensitivity is needed, erring
on the side of precision rather than performance. SMT solvers are useful in
[DLS02,XCE03] in part for their ability to handle a large state-space search.

6 Conclusions

In this paper we develop a general notion of singleton abstraction, relative
store fragments, that cuts across many of the classic expressiveness dimensions
of higher-order program analysis: the resulting analysis, DRSF, exhibits flow-,
context-, path- and must-alias sensitivity solely through an accurate and com-
positional singleton abstraction. We give a formal definition of DRSF, sketch its
soundness and complexity, and report on initial results from an implementation.

Future work. While DRSF is usually avoiding its exponential worst-case com-
plexity in practice, this issue will need to be addressed in a more realistic im-
plementation. Also, like DDPA and other analyses such as kCFA, DRSF finitely
unrolls recursive cycles and this usually adds no expressiveness as the analysis
contour depth k gets larger, but can adversely affect running times; we plan to
study how to avoid k-unrolling of recursive cycles when it is not helpful.
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