
1

From Operational Semantics to Domain Theory

Ian A. Mason∗

University of New England, Armidale, NSW Australia 2350
iam@cs.stanford.edu

Scott F. Smith†

The Johns Hopkins University, Baltimore, Maryland 21218
scott@cs.jhu.edu

and

Carolyn L. Talcott∗

Stanford University, Stanford, California 94305
clt@sail.stanford.edu

Abstract

This paper builds domain theoretic concepts upon an operational foundation. The basic
operational theory consists of a single step reduction system from which an operational ordering
and equivalence on programs are defined. The theory is then extended to include concepts
from domain theory, including the notions of directed set, least upper bound, complete partial
order, monotonicity, continuity, finite element, ω-algebraicity, full abstraction, and least fixed
point properties. We conclude by using these concepts to construct a (strongly) fully abstract
continuous model for our language. In addition we generalize a result of Milner and prove the
uniqueness of such models.

Contents

1 Introduction 2

1.1 Related Work . 3

2 The Syntax and Semantics 3

2.1 Syntax . 3
2.2 Semantics . 4

3 Operational Approximation and Equivalence 6

3.1 The CIU Theorem for !∼ . 7
3.2 Other Notions of Ordering and Equivalence . 8
3.3 The Lack of !∼-Least Upper Bounds . 10
3.4 The Failure of !∼-Continuity . 11

4 Directed Set Ordering and Equivalence 12

4.1 Basic Properties of !∼s
. 13

4.2 The CIU Theorem for !∼s
. 14

4.3 Fixed Point Properties . 17
4.4 Finite Expressions . 18
4.5 The Existence of !∼s

-Least Upper Bounds . 21
4.6 !∼s-Continuity and ω-Algebraicity. 22

∗Partially supported by NSF grants CCR-8917606 and CCR-8915663, and DARPA contract NAG2-703.
†Partially supported by NSF grants CCR-9109070 and CCR-9301340.

2 Mason, Smith, and Talcott

5 Constructing and Characterizing Models 24

5.1 The Notion of Model . 24
5.2 Classification of Models . 26
5.3 Isomorphisms between Models . 29
5.4 Existence and Uniqueness of Models . 30
5.5 Milner’s Uniqueness Theorem . 32

6 Concluding remarks 35

From Operational Semantics to Domain Theory 3

1 Introduction

This paper presents a bottom-up approach to the construction of semantic domains from an un-
derlying operational semantics. There is a practical motivation for taking this approach. The
power of domain theory is well-known; however, it suffers a shortcoming that often limits its use-
fulness. For many languages, program equivalence induced from domain constructions does not
correspond exactly to operational equivalence. This is known as the full abstraction problem. No
such problem is encountered in a bottom-up approach as the structure is built using operational
tools alone. A complete discussion of full abstraction is outside the scope of this paper, see for
instance [Stoughton, 1988, Bloom, 1990].

We study a variant of the untyped call-by-value lambda calculus enriched with arithmetic,
pairing, and branching primitives. The syntax and semantics of our language is defined in section
2. In section 3, a basic operational theory of this language is developed, consisting of an operational
approximation relation a !∼ b, and the corresponding equivalence relation a ∼= b. a ∼= b means no
program context can distinguish a and b. In section 3.1 we give an alternate characterization of
!∼ as equivalent to the ordering !∼

ciu. This characterization is an analogue of Milner’s context
lemma [Milner, 1977] and is used to prove a number of properties such as extensionality of !∼. !∼
however fails to satisfy several basic domain theoretic requirements. In sections 3.3 and 3.4 we
show by simple computability arguments that !∼ does not form a CPO and that the operational
analogue of continuity fails. A basic operational theory thus needs new concepts to be developed
further.

Section 4 presents an extension to the basic operational theory. We define a simple ordering !∼s
on !∼-directed sets of expressions, and the corresponding equivalence ∼=s. This ordering extends !∼:
a !∼ b iff {a} !∼s

{b}. One view of the use of !∼s
is that it allows an expression, a, to be decomposed

into a !∼-directed set of expressions, A, such that {a} ∼=s A. Then, to prove properties about a it
suffices to prove properties about the set A. A particular instance of this is the case of fixed points.
We show

{λx.bot, f(λx.bot), f(f(λx.bot)), . . . , fk(λx.bot), . . .} ∼=s {fix(f)},

for a functional f and suitable fixed-point combinator fix. This property is an analogue to the
least fixed-point principle from domain theory,

⊔

{[[λx.bot]], [[f(λx.bot)]], [[f(f(λx.bot))]], . . . , [[fk(λx.bot)]], . . .} = [[fix(f)]],

for a domain with valuation function [[·]]. The basic theory of !∼s is developed in sections 4.1 and 4.2.

We establish an alternative characterization, !∼
ciu
s , of !∼s mirroring the alternate characterization

!∼
ciu given for !∼. Extensionality of !∼s

and the above fixed-point property are proved. The goal is
to show !∼s

induces a CPO, but this does not follow directly. Next in section 4.4 we consider the
structure of the finite expressions. We show that the finite elements are the image of syntactically
definable projection functions, an idea taken from [Abadi et al., 1991b]. In sections 4.5 and 4.6
we use the finite elements to show that !∼s-directed sets (of !∼-directed sets) have !∼s-least upper
bounds, and that the resulting CPO is ω-algebraic. Furthermore, application is continuous.

In section 5 we study the general notion of a model of a functional call-by-value programming
language with numbers and pairing. Our approach builds on the work of Milner [Milner, 1977] and
Meyer [Meyer, 1982]. We begin by defining the notion of an FLD domain (functional programming
language domain). These are reflexive domains with an extensional partial ordering " reflecting
degrees of definedness. Next we define a notion of FLEM (functional language environment model)

4 Mason, Smith, and Talcott

for interpreting expressions in an FLD domain. We classify these models according to what proper-
ties they possess. We then construct a model, using !∼s, that is (strongly) fully abstract, continuous,
and ω-algebraic, using the results of section 4.6. Following Milner [Milner, 1977] we show all such
models are isomorphic, generalizing his result to the untyped case. Full abstraction alone is not
enough to prove uniqueness of models in the untyped case, we need to slightly strengthen the
condition to so-called strong full abstraction to obtain uniqueness.

1.1 Related Work

There is a considerable corpus of work developing basic operational theories found in the liter-
ature, though mostly for call-by-name languages. A number of properties are desired, including
congruence and extensionality of ∼=. Researchers that have developed methods to directly prove
basic operational properties include [Milner, 1977], [Talcott, 1985], [Howe, 1989], [Bloom, 1990],
[Jim and Meyer, 1991], [Mason and Talcott, 1991], and [Gordon, 1994]. It also should be men-
tioned that for simple untyped functional languages like the one studied here, domain models may be
altered by various means to give fully abstract models [Abramsky, 1990, Ong, 1988]. [Talcott, 1985]
studies general notions of equivalence for languages based on the call-by-value lambda calculus, and
develops several schemes for establishing properties of such relations. [Howe, 1989] proves congru-
ence for a class of languages with a particular style of operational semantics. This schema suc-
ceeds in capturing many simple functional programming language features. [Jim and Meyer, 1991,
Ong, 1992, Howe, 1995] present other such schemata. [Mason and Talcott, 1991] have proven re-
spect of computation and congruence for more complex languages than the language presented
here—the languages have continuations as first-class objects and a global state. This work gives
anecdotal evidence that the results presented herein may apply to more complex languages, a
subject for future work.

An earlier version of some of this work treated a call-by-name variant [Smith, 1992]. This work
could be said to be a descendant of [Milner, 1977], and may ultimately be traced back to results
for the pure λ-calculus [Hyland, 1976, Wadsworth, 1976].

2 The Syntax and Semantics

In this paper, a simple untyped call-by-value functional language with numbers and pairing is
studied. The syntax and execution semantics is first presented.

2.1 Syntax

To present the syntax of our language we assume given a countable set of variables X and natural
numbers N. We let x, y, z range over X, and n range over N. Operators for the language are as
follows.

Definition 2.1 (Operators O) The unary, binary, and ternary operators are:

O1 = {isnat, pred, succ, ispr, fst, snd} O2 = {app} O3 = {br} On = ∅ for n > 3

O =
⋃

n∈N

On

The operators are largely self-explanatory; app is function application, br is conditional branching,
and isnat and ispr recognize numbers and pairs, respectively. Recognizers are an important
feature of untyped programming languages such as Lisp and Scheme, and since an untyped language

From Operational Semantics to Domain Theory 5

is being studied here, they are a natural feature to include. We also define the extended operators
to include pairing: O

+
1 = O1, O

+
2 = O2 ∪ {pr}, O+

3 = O3, O+ = O
+
1 ∪ O

+
2 ∪ O

+
3 . We let op ∈ O

range over operators, and op+ ∈ O
+ range over extended operators. The pairing operator is given

a special status for technical reasons.
The set of λ-abstractions L, value pairs P, value expressions V, and expressions E are defined,

mutually recursively, as the least sets satisfying the following equations.

Definition 2.2 (Syntax of Expressions L, P, V, E)

P = pr(V,V) L = λX.E E = V+
⋃

n∈N

O
+
n (

n
︷ ︸︸ ︷

E, . . . ,E) V = X+ N+ L+ P

We let v range over V, and a, b, c, d, e range over E.
λ is a binding operator and free and bound variables of expressions are defined as usual. Two

expressions are considered equal if they are the same up to renaming of bound variables. FV(a)
is the set of free variables of a. For any syntactic domain Y and set of variables X we let YX

be the elements of Y with free variables in X. A closed expression is an expression with no free
variables, thus E∅ is the set of all closed expressions. a{x:=b} is the result of substituting b for the
free occurrences of x in a taking care not to trap free variables of b.

A value substitution is a finite map from variables to values. We let σ range over value sub-

stitutions (i.e. σ ∈ X
finite
−−→ V). aσ is the result of simultaneous substitution of free occurrences

of x ∈ Dom(σ) in a by σ(x), again taking care not to trap variables. Value substitutions play an
important role due to the call-by-value nature of the language.

A value substitution, σ, is a finite map from variables to values (i.e. σ ∈ X
finite
−−→ V). aσ is the

result of simultaneous substitution of free occurrences of x ∈ Dom(σ) in a by σ(x), again taking
care not to trap variables. Substitutions σ are defined on values only due to the call-by-value nature
of the language.

Several syntactic abbreviations will be made to aid in readability of programs. These include

a(b) = app(a, b)

t = 1

f = 0

if(a, b, c) = br(a,λx.b,λx.c)(0) where x is new

bot = (λx.x(x))(λx.x(x))

fix = λy.(λx.λz.y(x(x))(z))(λx.λz.y(x(x))(z))

islam(a) = if(ispr(a), f, if(isnat(a), f, t))

nateq(a, b) = fix(λz.λx.λy.if(iszero(x),
if(iszero(y), t, f),
if(iszero(y, f, z(x)(y)))))

iszero(a) = if(isnat(a), if(a, f, t), f)

a1 ◦ . . . ◦ an = λx.a1(. . . (an(x)) . . .)

Observe typewriter font parentheses a(b) abbreviate function application. if is a defined construct
because arguments to operators are evaluated before the operator is applied. fix is a call-by-value
version of the standard fixed-point combinator for functionals. Note that bot is an expression, not
a value.

6 Mason, Smith, and Talcott

2.2 Semantics

The operational semantics of expressions is given by a reduction relation)→, using the convenient
notion of a reduction context (a.k.a. evaluation context) taken from [Felleisen et al., 1987]. C[•]
denotes a context, an expression C with occurrences of holes “•”.

Definition 2.3 (Contexts C)

C = {•} + X+ N+ λX.C+
⋃

n∈N

O
+
n (

n
︷ ︸︸ ︷

C, . . . ,C)

We let C range over C. C[a] denotes the result of replacing all holes in C by a. Free variables of a
may become bound in this process.

Definition 2.4 (Redices Erdx) The set of redices, Erdx, is defined as

Erdx =
⋃

n∈N

On(

n
︷ ︸︸ ︷

V, . . . ,V)

Redices are either immediately available for execution, succ(0), or are stuck, succ(λx.x). In this
presentation stuck computations are treated as divergences for simplicity. Observe that pr(v, v′) is
not a redex since only operators in O may be used to form redices—this is the technical reason for
having different sets O and O

+. Reduction contexts R determine the subexpression that is to be
reduced next.

Definition 2.5 (Reduction Contexts R) The set of reduction contexts, R, is the subset of C
defined by

R = {•} +
⋃

n∈N,m∈N

O
+
m+n+1(

m
︷ ︸︸ ︷

V, . . . ,V,R,

n
︷ ︸︸ ︷

E, . . . ,E)

We let R range over R. In expression R[a], R denotes the continuation for the computation a.
Reduction contexts are used in evaluation as follows. In order to perform one step of computation
of some none-value expression a, it is uniquely decomposed into a = R[b] for some R and redex b
by the following Lemma. Uniqueness of decomposition implies evaluation is deterministic.

Lemma 2.6 (Decomposition) Either a ∈ V or a can be written uniquely as R[b] where b ∈ Erdx.

Definition 2.7 (Evaluation)→) The evaluation relation)→ is the transitive, reflexive closure of
the single-step evaluation relation)→1, which is generated by the following clauses:

(beta) R[(λx.a)(v)])→1 R[a{x:=v}]

(br) R[br(v, v1, v2)])→1

{

R[v1] if v *= f and v *∈ X

R[v2] if v = f

(isnat) R[isnat(v)])→1

{

R[t] if v ∈ N

R[f] if v ∈ P ∪ L

(ispr) R[ispr(v)])→1

{

R[t] if v ∈ P

R[f] if v ∈ N ∪ L

From Operational Semantics to Domain Theory 7

(pred) R[pred(n+ 1)])→1 R[n] for n ∈ N

(succ) R[succ(n)])→1 R[n+ 1] for n ∈ N

(fst) R[fst(pr(v0, v1))])→1 R[v0]

(snd) R[snd(pr(v0, v1))])→1 R[v1]

Note it is possible to compute with open expressions using the above definition. a is defined
(written a ↓) if it evaluates to a value, a ↑, otherwise. The relation - orders definedness of expres-
sions.

Definition 2.8 (Definedeness ↓, ↑, -) For a, b, v ∈ E∅,

a ↓ ⇔ (∃v)(a)→ v) a ↑ ⇔ ¬(a ↓) a - b ⇔ a ↓ ⇒ b ↓

A few simple properties concerning computation are the following.

Lemma 2.9 (Uniformity of Reduction)

(i) b0 = b1 if a)→1 bi for i < 2

(ii) a)→1 b ⇒ aσ)→1 bσ

(iii) a)→1 b ⇒ R[a])→1 R[b]

3 Operational Approximation and Equivalence

In this section we define the operational approximation and equivalence relations on expressions
and study their general properties. Operational equivalence formalizes the notion of equivalence as
black-boxes. Treating programs as black boxes entails only observing what values they produce,
and not how they produce them.

Definition 3.1 (Operational Relations !∼, ∼=)

a !∼ b ⇔ (∀C ∈ C C[a], C[b] ∈ E∅)(C[a] - C[b])

a ∼= b ⇔ a !∼ b ∧ b !∼ a

Lemma 3.2 (Elementary !∼ / ∼= Properties)

(i) !∼ / ∼= are nontrivial, in particular ¬(0 !∼ 1).

(ii) !∼ is transitive and reflexive (a pre-order).

(iii) ∼= is an equivalence relation.

(iv) !∼ is a pre-congruence, i.e. a !∼ b implies C[a] !∼ C[b].

(v) ∼= is a congruence, i.e. a ∼= b implies C[a] ∼= C[b].

(vi) If a !∼ b, then for v ∈ V∅, a
{x:=v} !∼ b{x:=v}.

Proof: For (i), let C = if(•, 0, bot). (ii)–(iii) are direct by inspection of the definitions. For
(iv), this follows by the observation that contexts compose. Assume a !∼ b; to show C[a] !∼ C[b], by
the definitions we must show C ′[C[a]] ↓ implies C ′[C[b]] ↓, and this is direct from assumption a !∼ b,

picking the context to be C ′[C]. (v) is direct from (iv). For (vi), we must show C[a{x:=v}] ↓ ⇒
C[b{x:=v}] ↓ for arbitrary C (it suffices to pick C that contains no x). Picking C ′ = (λx.C[•])(v),
from the assumption a !∼ b we obtain (λx.C[a])(v) ↓ ⇒ (λx.C[b])(v)) ↓, which by computing is
what we wanted to show. "

8 Mason, Smith, and Talcott

3.1 The CIU Theorem for !∼

Several alternate formulations of operational equivalence ∼=alt have been developed. These have the
common feature that equivalence is defined using a restricted set of observing contexts. Trivially,
a ∼= b implies a ∼=alt b. The significance of these alternate formulations is that the converse also
holds. What is then gained is not a different notion of equivalence, but simpler methods for
establishing equivalence.

We define such an alternate notion in this paper, restricting contexts to be Closed Instances
of all Uses of an expression. This equivalence is thus called CIU equivalence, ∼=ciu, following
[Mason and Talcott, 1991]. a ∼=ciu b means a and b behave identically when closed (the closed
instances part) and placed in any reduction context R (the uses part). As alluded to above, we can
prove ∼= is the same as ∼=ciu, so we have gained a simpler characterization of operational equivalence.
This result is the cornerstone of the (non-trivial) equational theory of ∼=.

Definition 3.3 (CIU ordering, !∼
ciu)

a !∼
ciu b ⇔ (∀R,σ R[aσ], R[bσ] ∈ E∅)(R[aσ] - R[bσ])),

(Recall the convention that σ ranges over value substitutions.)

Theorem 3.4 (CIU) a !∼ b ⇔ a !∼
ciu b.

This theorem is a corollary of theorem 4.6, which is proved in section 4.2. An important application
of theorem 3.4 is the proof of the following theorem.

Theorem 3.5 (!∼ Extensionality) For v0, v1 ∈ L,

v0 !∼ v1 ⇔ (∀v)(v0(v) !∼ v1(v)).

Proof: ⇒ is direct from the pre-congruence of !∼. For ⇐ , assume (∀v)(v0(v) !∼ v1(v)) and
show v0 !∼ v1 for v0, v1 ∈ L. By Theorem 3.4, it suffices to assume v0, v1 are closed and to show

a{z:=v0} ↓ implies a{z:=v1} ↓ for arbitrary a ∈ Ez, by induction on computation length. Assume
a{z:=v0} ↓. Consider the first step of computation performed. Suppose a steps uniformly for all
v′ ∈ L, i.e. there exists an a′ such that a{z:=v′})→1 a′{z:=v′} for all v′ ∈ L. Then, the conclusion
follows directly by the induction hypothesis. So, consider steps not uniform in L. By inspection
of the rules, it must have been an (app) step starting from a = R[z(v)] for some R, v. Then,
(R[v0(v)]){z:=v0} ↓ implies (R[v0(v)]){z:=v1} ↓ by the induction hypothesis, and the uniformity of
this step in the z occurring free in R, v. And, since v0 now sits in an applicative reduction context
here, the assumption may be applied to yield (R[v1(v)]){z:=v1} ↓. "

We now list a collection of basic ∼= / !∼ properties, all derivable from the CIU Theorem. These
properties will be used implicitly in proofs that follow.

Lemma 3.6 (Basic !∼ / ∼= Properties)

(i) bot !∼ a.

(ii) For a ∈ E∅, a ↑ iff a ∼= bot.

(iii) R[bot] ∼= bot.

(iv) ∼= respects computation, i.e. a ∼= b if a)→ b.

From Operational Semantics to Domain Theory 9

(v) For D ∈ {L,P, {0}, {1}, . . .}, if a, b ∈ E∅, a !∼ b, and a)→ v for v ∈ D, then b)→ v′ for some
v′ ∈ D.

(vi) If a ∈ pr(E,E), then a ∼= pr(fst(a), snd(a)).

(vii) If v ∈ L and y *∈ FV(v), then v ∼= λy.v(y).

Proof: We prove each case in turn, implicitly allowing switches between !∼ and !∼
ciu by The-

orem 3.4. (i) is direct since R[bot] ↑. For (ii), a ↑ iff (∀R)R[a] ↑ iff ((∀R)R[a] ↑ iff R[bot] ↑) iff
a ∼=ciu ⊥. For (iii), it suffices to show R[bot] ∼=ciu bot, which is direct from the definition
of ∼=ciu. For (iv), by Lemma 2.9 cases (ii) and (iii), R[aσ])→ R[bσ], so R[aσ] ↓ iff R[bσ] ↓ and
a ∼=ciu b by the definition of ∼=ciu. For (v), for each D the proof is similar, we prove it for
D = L. There are two cases where b)→1 v′ for v′ ∈ L fails: either b ↑, or v′ *∈ L. The for-
mer is ruled out as follows: by (ii), then b ∼= bot, and by (iv) v !∼ b ∼= bot, but v !∼ bot is
a contradiction for the case C = •. Now supposing v′ *∈ L, it suffices to show v !∼ v′ fails,
by (iv). picking C = if(islam(•), 1, bot) accomplishes this: C[v] ↓ but C[v′] ↑. For (vi), let
a = pr(a0, a1). It suffices to show R[pr(a0, a1)] ↓ iff R[pr(fst(pr(a0, a1)), snd(pr(a0, a1)))] ↓.
Observing R[pr(fst(pr(a0, a1)), snd(pr(a0, a1)))])→ R[pr(a0, a1)] establishes the result. For (vii),
By Theorem 3.5 it suffices to show v(v′) ∼= (λy.v(y))(v′), which is direct by computing via (iv)
above. "

3.2 Other Notions of Ordering and Equivalence

We briefly compare !∼
ciu with some other characterizations of !∼ found in the literature, in particular

applicative approximation !∼
app of [Jim and Meyer, 1991] and applicative bisimulation !∼

bisim of
[Abramsky, 1990]. The main difference centers on the fact that our R may be of the form v(•),
while !∼

app / !∼
bisim have no such case in their definition. Here we show for this particular language

all notions are in fact equivalent.
The distinction between call-by-name and call-by-value becomes important here; in a call-by-

name reduction system [Smith, 1992], arguments to functions are not first computed to a value,
and v(•) would thus not be included amongst the reduction contexts. Without this case !∼

ciu and
!∼

bisim/!∼
app are of a very similar character and may be easily shown equivalent.

Consider then the call-by-value case under study here. What we show is the v(•) case may
be removed from the definition of reduction context, giving an ordering !∼

app such that !∼
app is

equivalent to !∼
ciu. We lastly show !∼

app equivalent to !∼
bisim, and thus all notions are equivalent.

For simplicity, we work over closed terms only.

Definition 3.7 (Applicative Approximation !∼
app) Let the applicative reduction contexts be

R
app = R− R[app(V,R)], with P ranging over R

app, and for a, b ∈ E∅ define

a !∼
app b ⇔ (∀P P [a], P [b] ∈ E∅)(P [a] - P [b])).

Lemma 3.8 (∀a, b ∈ E∅)(a !∼
app b ⇔ a !∼

ciu b).

Proof: The ⇐ direction is trivial from the definitions. We prove the ⇒ direction. A rough
idea of this proof is as follows. What the v(•) case does upon execution is copy the hole value to
multiple points in the function v; however, this copying operation has no real effect since the hole is
not touched, and it is only when the hole is touched that its contents matter. What the proof then
needs to do is to keep track of these hole values as they are copied around. The difficult part of

10 Mason, Smith, and Talcott

the proof is that the hole could contain a higher-order object: the hole could be copied into v, later
applied to some value which returns a functional result, which in turn gets copied around some
more, and applied at some still later time, etc. All of these intermediate points must be recorded
in a list of applicative uses of the hole value. This list is finite because the computation eventually
terminates.

For closed a we let [[a]] denote the value expression a reduces to. [[a]] = v if a)→ v, and write
[[a]] ↑ if no such value expression exists. It suffices to prove the result for the case a and b are values
v0 and v1: first, we show it suffices for a to be a value v0. Proceed by cases on whether a ↓. If
not, then the Lemma vacuously holds. If so, then a)→ v0 for some v0, and then by Lemma 3.6
(iv), it then suffices to show v0 !∼

app b ⇒ v0 !∼
ciu b by Lemma 2.9 (iii). Now, proceed by cases on

whether b ↓. If not, then v1 !∼
app b is false by the case P = •, so the Lemma vacuously holds. If

b ↓, then b)→ v1 for some v1, and by reasoning analogous to that for a ↓ above, it then suffices to
show v0 !∼

app v1 ⇒ v0 !∼
ciu v1. Now, assuming v0 !∼

app v1, the following generalized statement is
proven:

(∀e, P1, . . . , Pn e ∈ E{x1,...,xn}, Pi ∈ R
app

{x1,...,xi−1})

((
∧

1≤i≤n
j<2

[[Pi
σ[vj][vj]]] ↓) ⇒ eσ[v0] ↓ ⇒ eσ[v1] ↓)

where σ[vj] abbreviates {x1 := [[P1[vj]]]} ◦ . . . ◦ {xn := [[Pn[vj]]]} for j < 2, e{y0:=[[e0]]}◦{y1:=[[e1]]} ab-

breviates (e{y1:=[[e
{y0:=[[e0]]}
1]]}){y0:=[[e0]]}, and each xi is distinct. From this, v0 !∼

ciu v1 follows by

picking n = 1 and P1 = •. We proceed by induction on the length of the computation of eσ[v0].
Consider the next step of computation; if no xi is touched, the induction hypothesis establishes
the conclusion. Consider then the cases where xi is touched for some i ≤ n. We focus on the
case of function application, e = R[app(xi, v)]. By assumption, Rσ[v0][app([[Pi

σ[v0][v0]]], vσ[v0])] ↓, so
Rσ[v0][[[app(Pi

σ[v0][v0], vσ[v0])]]] ↓ and in fewer steps since the application has also been computed to
a value in the latter.

Define σ′[vj] = σ[vj] ◦{xn+1 := [[app(Pi[vj], v)]]}, j < 2 and fresh xn+1, and apply the induction

hypothesis for the substitution σ′ and expression R[xn+1]. Observe that [[app(Pi
σ′[v1], vσ

′[v1])]] ↓ by
assumption v0 !∼ v1 and the fact that xn+1 does not occur free in Pi or v. Thus, we may conclude

Rσ[v1][[[app(Pi
σ[v1][v1], vσ[v1])]]] ↓, and by the definition of [[·]], Rσ[v1][app([[Pi

σ[v1][v1]]], vσ[v1])] ↓. "

Definition 3.9 (Applicative Bisimulation !∼
bisim) !∼

bisim is the greatest relation such that for

all a, b ∈ E∅, a !∼
bisim b iff

(i) a)→ λx.a′ ⇒ b)→ λx.b′ ∧ (∀v)((λx.a′)(v) !∼
bisim (λx.b′)(v))

(ii) a)→ pr(a0, a1) ⇒ b)→ pr(b0, b1) ∧ a0 !∼
bisim b0 ∧ a1 !∼

bisim b1

(iii) a)→ n ⇒ b)→ n for n ∈ N.

Bisimulation orderings have received considerable attention, e.g. [Ong, 1992, Pitts and Stark, 1993,
Gordon, 1994, Pitts, 1994, Howe, 1995]. They have the advantage alluded to above of lacking the
v(•) case. One consequence of this is all cases are then “destructive” on the expression, and a
coinduction (i.e., greatest fixed-point induction) principle is thus sound. The !∼

ciu characterization

has no coinduction principle. We have never had difficulty establishing properties for !∼
ciu even

though there is no coinduction principle, but it is reasonable to expect coinduction to simplify some
proofs. Bisimulation has a significant disadvantage when compared to !∼

ciu, however: it does not

From Operational Semantics to Domain Theory 11

easily extend to languages with state or explicit control operators (an important aim of this paper
is to use techniques that are as widely applicable as possible). Although it is possible to define a
bisimulation ordering for languages with state that is a congruence [Ritter and Pitts, 1995], there
has yet been no bisimulation ordering defined which exactly corresponds to the operational ordering
[Pitts and Stark, 1993]. The ∼=ciu form of equivalence in a memory-based language can be shown to
correspond to ∼=; see [Mason and Talcott, 1991, Honsell et al., 1995] for complete definitions and
proofs (the latter citation contains a more complete proof of the CIU Theorem).

Lemma 3.10 (Ordering Equivalences)

(∀a, b ∈ E∅)(a !∼
bisim b ⇔ a !∼

app b ⇔ a !∼
ciu b ⇔ a !∼ b)

Proof: Using the previous Lemma and Theorem 3.4 we only need a !∼
bisim b ⇔ a !∼

app b. The
forward direction follows by showing

a !∼
bisim b ⇒ (∀P)(P [a] !∼

bisim P [b])

by an induction on the size of P . The reverse direction follows by coinduction on the bisimulation
definition. "

Ong [Ong, 1992] has proved congruence of ∼=bisim for a family of languages that include call-by-
value languages, giving a direct means for showing ∼= and ∼=bisim are identical relations.

3.3 The Lack of !∼-Least Upper Bounds

Operational approximation !∼ is a pre-order. We will show in this section that this pre-order is not
complete. In the following section we will show that there are functions denoted by λ-expressions
that are not continuous. These failures are due to missing (uncomputable) limit points. Thus we
must look for an alternative pre-order to realize our goal of developing domain theoretic tools in
an operational setting.

First, some preliminaries and notation for directed sets of terms are defined. For technical
reasons, we only allow directed sets with finitely many free variables, otherwise a directed set may
contain all the variables X free and problems may arise in obtaining fresh variables.

Definition 3.11 (!∼-Directed Sets ∆) A set A is directed iff for all a, b ∈ A, there is some
c ∈ A where a !∼ c and b !∼ c. We define ∆X to be the !∼-directed subsets of EX for finite X ⊂ X

and let ∆ =
⋃

X∈Pω(X)∆X .

We let A,B range over ∆, and V range over ∆ such that V ⊆ V. We allow directed sets of
expressions to be used as subexpressions with the convention C[A] = {C[a] a ∈ A}. Value
substitutions σ extend pointwise to sets of expressions: Aσ = {aσ a ∈ A}. Both of these
operations clearly preserve directedness:

Lemma 3.12 (∆ Closure Conditions) If A,A1, . . . , An ∈ ∆, op+ ∈ O
+
n , and σ is a value sub-

stitution, then

(i) λx.A ∈ ∆

(ii) op+(A1, . . . , An) ∈ ∆

(iii) C [A] ∈ ∆

12 Mason, Smith, and Talcott

(iv) Aσ ∈ ∆

We write
⊔

A = a to mean that a is a !∼-least upper bound of A.

Definition 3.13 (Least Upper Bound
⊔

A = a)
⊔

A = a (“A has least upper bound a”) iff
a0 !∼ a for all a0 ∈ A, and for all b, if a0 !∼ b for all a0 ∈ A, then a !∼ b.

This is a partial operation as the following theorem reveals.

Theorem 3.14 (Incompleteness) The pre-order <E∅,!∼> is not complete; there exists a directed
set A ∈ ∆∅ with no !∼-least upper bound.

Proof: Let φ be an uncomputable function mapping N to {0, 1}. Define the !∼-directed set D0

as

D0 = {fk | k ∈ N} where fk(n))→
{

φ(n) for n ≤ k,
bot otherwise

observing that functions fk are computable since they have finitely many non-bot values. This set
cannot have an upper bound, for any upper bound is a computation coding uncomputable φ. !∼
is thus not complete. Also note that some directed sets have upper bounds, but no least upper
bound. The set

D1 = {dk k ∈ N} where dk(n))→
{

0 if n ≤ k and φ(n) = 0,
bot otherwise

has the upper bound d = λx.0, but for instance assuming φ(k) = 1,

λx.if(nateq(x, k), bot, 0)

is a smaller upper bound. It is easy to show by a computability argument that no least upper
bound of D1 exists. "

3.4 The Failure of !∼-Continuity

Definition 3.15 (Continuity) For f ∈ L∅, f is continuous iff
⊔

A = a implies
⊔

f(A) = f(a).

Theorem 3.16 (Discontinuity) Application is not continuous. There exist A, a, and g such
that

⊔

A = a, but not
⊔

g(A) = g(a).

Proof: The failure of continuity is shown by counterexample. Before giving A, a, and g,
let us motivate their construction. As already observed, the key problem is the missing points
corresponding to uncomputable functions. We define A with least upper bound a, is such a way
that a is least for artificial reasons, i.e. because the “ideal” least upper bound is uncomputable.
We can then detect this artificiality by applying a function g to A and a that makes the “ideal”
least upper bound of g(A) computable again, demonstrating a discontinuity in g’s behavior.

Definition 3.17 Expressions ak, a, g, and ck, for k ∈ N, and directed set A are defined as follows:

ak = λx.if(islam(x), if(nateq(x(fk), 0), 0, bot), 0)

A = {ak k ∈ N}

a = λx.0

g = λx.x(λy.bot)

ck = λx.if(nateq(x(0),φ(0)), . . . if(nateq(x(k),φ(k)), 0, bot), . . . , bot)

From Operational Semantics to Domain Theory 13

A is trivially directed. Before proving
⊔

A = a, some auxiliary lemmas are established. The
functions ck are “checker” functions that recognize expressions at least as defined as fk.

Lemma 3.18 For all k and e, if ck(e))→ 0 then fk !∼ e.

Proof: By induction on k, using Theorem 3.5. "

Lemma 3.19 Given some aub such that ak !∼ aub for every ak ∈ A, it then follows that aub(λx.b))→
0, and furthermore aub(λx.b) computes uniformly in b.

Proof: Suppose the computation were not uniform. By inspection of the rules, λx.b must
then be applied (islam executes independently of the function body). Consider the first such
application in the course of computation: aub(λx.b))→ R[(λx.b)(v)]. Thus by uniformity, we also
have aub(ck))→ R[ck(v)], for all k. If ck(v) ↓ for all k, by Lemma 3.18 fk !∼ v for all k, but v would
thus have the behavior of φ and contradict its uncomputability. Thus, cn(v) ↑ for some n and thus
aub(cn) ↑, but an(cn) ↓, contradicting the assumption that an !∼ aub. Thus, the computation is
uniform. So since a0 !∼ aub and a0(λx.0))→ 0, aub(λx.b))→ 0. "

Lemma 3.20
⊔

A = a.

Proof: ak !∼ a for all ak ∈ A trivially. Suppose for all ak ∈ A, ak !∼ aub for some aub, show
a !∼ aub. We in fact show something stronger, aub ∼= a. By Theorem 3.5, it suffices to show that
aub(v) ∼= 0. We proceed by cases on v ∈ L.
case v ∈ L: Then by Lemma 3.19, aub(v) ∼= 0.
case v *∈ L: Then by inspection of the definition, ak(v) ∼= 0, so since ak !∼ aub, 0 !∼ aub(v) and
thus aub(v) ∼= 0. "

The proof of the theorem is now straightforward.
⊔

A = a by the previous Lemma, but
g(ak) ∼= bot for all k, and g(a) ∼= 0 and clearly

⊔

{bot} = 0 fails. "

4 Directed Set Ordering and Equivalence

In the previous section we demonstrated that the pre-order <E∅,!∼> was not complete due to
the lack of limit points for directed sets. In this section we rectify this shortcoming, and in the
process of doing so prove other useful results, including an operational analogue to the least fixed-
point theorem. The primary tool used is a simple pre-ordering, !∼s, defined on !∼-directed sets of
expressions. One view is that these sets serve to represent the uncomputable limit points. This
pre-ordering also has the nice property that a !∼ b ⇔ {a} !∼s {b}. The obvious definition of !∼s,

A !∼
obvious
s B ⇔ (∀a ∈ A)(∃b ∈ B)(a !∼ b)

is not particularly useful since Lemma 4.11 below will fail: there is a functional f such that

{fix(f)} !∼
obvious
s

{λx.bot, f(λx.bot), f(f(λx.bot)), . . . , fk(λx.bot), . . .}

would fail to hold. This has the additional consequence that extensionality fails for !∼
obvious
s

.
To motivate a more useful definition of A !∼s B we note that for the purpose of observing

termination, any context can use only a finite amount of information about what fills its holes.

14 Mason, Smith, and Talcott

Thus what we care about is that for any use (context) of an element a in A, there is some element b
of B that can be used without losing termination. Note that different contexts may require different
elements of B.

We first formalize the above intuition, defining the approximation relation !∼s. We then establish
some basic properties, including a least-fixed point property for ∼=s. Next, we develop the theory
of !∼-finite expressions. A syntactic notion of projection, πn, is defined and used to characterize
the finite expressions. The theory of finite expressions is used to show !∼s

-least upper bounds of
!∼s

-directed sets of expressions always exist, and !∼s
is thus a complete pre-order. We conclude by

demonstrating that !∼s
is ω-algebraic, and that the natural extensions of the primitive operations

are continuous.

4.1 Basic Properties of !∼s

We begin with the definition of !∼s
alluded to above, recalling from the previous section that ∆ is

the set of !∼-directed sets and A and B range over ∆.

Definition 4.1 (Set Relations !∼s,
∼=s) For A,B ∈ ∆, define

A !∼s
B ⇔ (∀a ∈ A)(∀C ∈ C C[A], C[B] ⊆ E∅)(∃b ∈ B)(C[a] - C[b])

A ∼=s B ⇔ A !∼s B ∧ B !∼s A

Some basic properties of !∼s
include the following.

Lemma 4.2 (Elementary !∼s
/ ∼=s Properties)

(i) !∼s
is a pre-congruence: A !∼s

B ⇒ C[A] !∼s
C[B].

(ii) ∼=s is a congruence: A ∼=s B ⇒ C[A] ∼=s C[B].

(iii) {a} !∼s
{b} ⇔ a !∼ b.

(iv) A !∼s
{b} ⇔ (∀a ∈ A)(a !∼ b).

(v) a ∈ A ⇒ {a} !∼s A.

Proof: (i)-(v) are direct from the definitions. "

A counterexample to A !∼s B ∧ a ∈ A ⇒ (∃b ∈ B)(a !∼ b) is given by the A and B of Lemma
4.11 below. The following two lemmas relate A ∼=s {a} to the domain notion of both A having lub
a and A having glb a.

Lemma 4.3 (Greatest Lower Bound) {a} ∼=s A iff {a} !∼s A and for all a′, if {a′} !∼s A, then
a′ !∼ a.

Proof: The forward implication is trivial. For the reverse implication we need only show A !∼s
{a}

(the other direction of ∼=s is given). This is achieved by showing a′ !∼ a for arbitrary a′ ∈ A. Since
{a′} !∼s

A, this follows directly by assumption. "

Returning to the discussion of !∼-directed set lubs in the previous section, we concluded the
notion of lub,

⊔

A ∼= a, was not useful since it was not continuous. Using this new ordering we
can define a related property, A ∼=s {a}. By the congruence of ∼=s, we have f(A) ∼=s {f(a)}, the
continuity property that failed for lub. Thus, the two properties must be different. Their difference
is captured in the following Lemma.

From Operational Semantics to Domain Theory 15

Lemma 4.4 A ∼=s {a} ⇒
⊔

A ∼= a, and the converse fails.

Proof: For the forward implication, it suffices to consider the case when A and a are closed.
A !∼s {a} is trivial. Suppose A !∼s {a

′}. We show a !∼ a′. Expanding the definition of !∼, we assume
R[a] ↓, and show R[a′] ↓. {a} !∼s A, so R[a′′] ↓ for some a′′ ∈ A; thus, by assumption, R[a′] ↓.
To see that converse fails, suppose the contrary. Assuming

⊔

A ∼= a, we have A ∼=s {a}, and f(A) ∼=s

{f(a)}. Applying the first case of this lemma,
⊔

f(A) = f(a), i.e. continuity, contradicting
Theorem 3.16. "

4.2 The CIU Theorem for !∼s

As was the case for !∼, we desire an alternate characterization of !∼s
, !∼

ciu
s

, that uses fewer contexts

in its definition, and which we may show equivalent to !∼s. The analogy is very close, !∼
ciu
s differs

from !∼s
in the same manner !∼

ciu differs from !∼: we replace all contexts with closed instances of all
uses. One of many uses of this characterization will be to prove the extensionality of !∼s

, Lemma
4.10 below.

Definition 4.5 (CIU Set Ordering !∼
ciu
s) For A,B ∈ ∆

A !∼
ciu
s B ⇔ (∀a ∈ A)(∀σ,R R[Aσ],R[Bσ] ⊆ E∅)(∃b ∈ B)(R[aσ] - R[bσ])

The main characterization we desire is,

Theorem 4.6 (Set Ordering CIU) A !∼s B ⇔ A !∼
ciu
s B.

We give a proof that synthesizes ideas from proofs in [Smith, 1992, Mason and Talcott, 1991,
Howe, 1989]. We first give an informal overview of the proof. The (⇒) direction is not difficult,
since !∼

ciu
s has a smaller collection of contexts to distinguish expressions than !∼s has. (⇐) is the

difficult direction. This proof uses the observation that it suffices to show !∼
ciu
s is a pre-congruence.

To establish this, we prove lemmas that establish pre-congruence for single constructors: operators
O
+ (Lemma 4.7) and λx (Lemma 4.8) may be placed around sets of expressions while preserving

!∼
ciu
s

.

Lemma 4.7 (Set Ordering Operator CIU) If A !∼
ciu
s

B then op+(c̄, A, d̄) !∼
ciu
s

op+(c̄, B, d̄) for
any op+ ∈ O

+.

Proof: Pick arbitrary op+, R,σ such that R[(op+(c̄, A, d̄))σ], R[(op+(c̄, B, d̄))σ] ⊆ E∅. Since op
+

does not bind, σ may be factored in, so it suffices to show for arbitrary a ∈ A and arbitrary closed
c̄ and d̄ that

R[op+(c̄, aσ, d̄))] ↓ ⇒ (∃b ∈ B)(R[op+(c̄, bσ, d̄))] ↓)

We proceed by induction on the length of the computation of the assumption.
Assume the conclusion is true for all c̄, d̄ with shorter computations. Proceed by cases on

whether all elements c̄ are values. Suppose so (or if c̄ is empty): then, define R0 = R[op+(c̄, •, d̄))],
and the conclusion follows directly by assumption. Suppose not. Then there is some ci such that
ci *∈ V and ck ∈ V for k < i. This means we have reduction context

R0 = R[op+(c0, . . . , ci−1, •, ci+1, . . . , cn, a
σ, d̄)],

16 Mason, Smith, and Talcott

and by Lemma 2.9 (ii),

R[op+(c0, . . . , ci−1, ci, ci+1, . . . , cn, a
σ, d̄)])→1 R[op+(c0, . . . , ci−1, c

′
i, ci+1, . . . , cn, a

σ, d̄)],

so by induction hypothesis the conclusion is direct. "

Lemma 4.8 (Set Ordering Lambda CIU) If A !∼
ciu
s B, then λx.A !∼

ciu
s λx.B.

Proof: It suffices to prove the Lemma for the case A,B ⊆ E{x}, for by the definition of !∼
ciu
s the

conclusion then follows. Given arbitrary R ∈ R∅, show for fixed a ∈ A

R[λx.a] ↓ ⇒ (∃b ∈ B)(R[λx.b] ↓).

Generalize this statement to

e{z:=λx.a} ↓ ⇒ (∃b ∈ B)(e{z:=λx.b} ↓),

for e ∈ E{z}. The original goal follows by letting e = R[z]. Proceed by induction on the length of
the computation of the assumption. Consider whether e is uniform in z, i.e. whether

e)→1 e
′

for some e′. If it is uniform, then by Lemma 2.9 (ii),

e{z:=λx.e′′})→1 e
′{z:=λx.e′′}, for all e′′,

and the result follows directly by induction hypothesis.
Consider the case where e is stuck, i.e. does not reduce. Since e{z:=λx.a} ↓, it does not get stuck

when a λ-value is substituted for z. By inspection of the rules, replacing z with a λ-value causes a
stuck computation to become un-stuck in two cases. The first is if the redex is isnat(z) or ispr(z);
but these cases are still uniform for any λ-value and reasoning analogous to the previous uniform
case applies. The only other non-uniform case is where e = R[z(v)] for some R, v, containing z
possibly free. Consider this case. By inspection of the (app) rule, we have the following:

R[(λx.e′)(v)])→1 R[e′{x:=v}],

for all expressions e′, v,R. In particular, it holds for e′ being a or any b ∈ B. It thus suffices to
show

(∃b ∈ B)((R[b{x:=v}]){z:=λx.b} ↓).

By the induction hypothesis,

(∃b′ ∈ B)(R[a{x:=v}]){z:=λx.b′} ↓ .

Then by assumption A !∼
ciu
s B, a above can be replaced by some b′′ ∈ B (take σ in the definition

of !∼
ciu
s to be {x := v{z:=λx.b′}}), giving

(∃b′′ ∈ B)(R[b′′{x:=v}]){z:=λx.b′} ↓ .

By the directedness of B, we can find b such that b′, b′′ !∼ b, and this means first that

(R[b′′{x:=v}]){z:=λx.b} ↓ .

Now by Lemma 3.2 case (vi), b′′{x:=v′} !∼ b{x:=v′} for v′ = v{z:=λx.b}, so

(R[b{x:=v}]){z:=λx.b} ↓ .

"

From Operational Semantics to Domain Theory 17

Lemma 4.9 (!∼
ciu
s Pre-congruence) !∼

ciu
s is a pre-congruence, A !∼

ciu
s B implies C[A] !∼

ciu
s C[B].

Proof: We proceed by induction on the size of C. For the base case, either C = • or C = v for
v ∈ N. For the former the result follows by assumption, and for the latter by reflexivity. Otherwise
we consider two cases: C = λx.C0; and C = op+(C0, . . . , Cn) for op+ ∈ O

+. In the first case
C0[A] !∼

ciu C0[B] by the induction hypothesis. Thus λx.(C0[A]) !∼
ciu λx.(C0[B]) by Lemma 4.8,

and hence (λx.C0)[A] !∼
ciu (λx.C0)[B].

In the second case, by induction hypothesis, Ci[A] !∼
ciu Ci[B], for i ≤ n. Then, by Lemma 4.7,

op+(C0[A], C1[A] . . . Cn[A]) !∼
ciu op+(C0[B], C1[A] . . . Cn[A])

!∼
ciu op+(C0[B], C1[B] . . . Cn[A])

...
...

!∼
ciu op+(C0[B], C1[B] . . . Cn[B]).

"

We now prove the main theorem.
Proof of Theorem 4.6: For the forward direction, pick C such that C[e])→ R[eσ] for all e;
one such C is

C = (λx1, . . . ,λxn.R[•])(v1) . . . (vn),

where Dom(σ) = {x1, . . . xn} and σ(xi) = vi for i < n.

For the reverse direction, we assume C[a] ↓ and find b ∈ B such that C[b] ↓. By Lemma 4.9,
C[A] !∼

ciu
s C[B]. From the definition of !∼

ciu
s , pick C[a] ∈ C[A], R = •, σ = ∅, gives C[b] ∈ C[B]

such that C[b] ↓. "

Note that Theorem 3.4 now follows from Theorem 4.6 and part (iii) of Lemma 4.2.

Lemma 4.10 (!∼s
Extensionality) For directed V0, V1 ⊆ L, V0 !∼s

V1 ⇔ (∀V ∈ ∆∅)(V0(V) !∼s
V1(V)).

Proof: The forward direction follows from the pre-congruence of !∼s. For other direction assume
(∀V)(V0(V) !∼s V1(V)). To show V0 !∼s V1 for V0, V1 ⊆ L it suffices, by Theorem 4.6, to assume

V0, V1 are closed and to show for fixed v0 ∈ V0 and all a ∈ Ez, a{z:=v0} ↓ implies a{z:=v1} ↓ for
some v1 ∈ V1. Proceed by induction on computation length. Assume a{z:=v0} ↓. Consider the
next step of computation performed. If a{z:=v′})→1 a′{z:=v′} for some a′ uniformly for all v′ ∈ L,
then the conclusion follows directly by the induction hypothesis. So, consider steps not uniform
in L. By inspection of the rules, it must have been an (app) step starting from a = R[z(v)] for
some R, v. Then, (R[v0(v)]){z:=v0} ↓ implies (R[v0(v)]){z:=v1} ↓ by the uniformity of this step in
the z occurring free in R, v and the induction hypothesis. And, since v0 is now being applied, the
assumption may be used at V = {v} to yield (R[v′1(v)])

{z:=v1} ↓ for some v′1 ∈ V1. Now, since V1

is directed, pick v′′1 ∈ V1 such that v′′1 #∼ v′1, v1 and we have (R[v′′1(v)])
{z:=v′′1 } ↓. "

18 Mason, Smith, and Talcott

4.3 Fixed Point Properties

We establish some basic properties of fixed points: fixed points are equivalent to their set of finite
unrollings, a least fixed-point property holds, and fixed-point induction is justified. We make the
following abbreviation: for a functional f = λx.λy.a, define f0 = λx.bot and fn+1 = f(fn). The
key lemma is the following.

Lemma 4.11 (Fixed Point Approximation) For a functional f ,

{fix(f)} ∼=s {f
n n ∈ N}.

Proof: Without loss of generality take f to be closed, for from this case the result follows for
arbitrary f by Theorem 4.6. The #∼s

direction follows by induction on n; consider then proving !∼s
.

First note fix(f) ∼= u(u) where u = λx.λz.f(x(x))(z), so it suffices to show {u(u)} !∼s {fk |
k ∈ N}. Expanding definitions, the desired result is

(∀a ∈ Ex)(a
{x:=u(u)} ↓ ⇒ (∃k)(a{x:=fk} ↓)).

Assume a{x:=u(u)} ↓, proceed by induction on the length of this computation to show the above
statement. Consider the next step of computation performed on a{x:=u(u)}. If the step is uniform
in u(u), the conclusion follows directly by induction hypothesis. Then, consider non-uniform steps;
all such cases can easily be seen to be of the form

a{x:=u(u)} = R{x:=u(u)}[u(u)])→1 R
{x:=u(u)}[λz.f(u(u))(z)],

we show R{x:=fk}[fk] ↓ for some k. By the induction hypothesis, R{x:=fk0}[λz.f(fk0)(z)] ↓ for some

k0, so since fk0 !∼ fk0+1 and λz.f(fk0)(z) ∼= fk0+1 by extensionality, R{x:=fk0+1}[fk0+1] ↓, and
letting k be k0 + 1, the desired conclusion has been reached. "

Lemma 4.12 (Least Fixed Point) For a functional f , fix(f) ∼= f(fix(f)), and (∀a)(λx.a ∼=
f(λx.a) ⇒ fix(f) !∼ λx.a)

Proof: The first half follows by computing; for the second half, suppose for arbitrary λx.a that
λx.a ∼= f(λx.a). {fk k ∈ N} !∼s {λx.a} follows from showing fk !∼ λx.a by induction on k. By

Lemma 4.11, {fk k ∈ N} ∼=s {fix(f)}. Thus, {fix(f)} !∼s {λx.a}, so fix(f) !∼ λx.a by Lemma
4.2 (iii). "

One of the most useful induction principles for proving facts about fixed points is Scott fixed-
point induction ([deBakker and Scott, 1969]; see also [Manna, 1974]). The justification of fixed-
point induction necessitates functions be continuous in a domain. All that is needed to justify
fixed-point induction here is Lemma 4.11.

Theorem 4.13 (Atomic Fixed Point Induction) For a functional f , if for all k, C[fk] !∼
C ′[fk], then C[fix(f)] !∼ C ′[fix(f)].

Proof: By Lemma 4.11 and congruence of ∼=s, {C[fk] | k ∈ N} ∼=s {C[fix(f)]} and {C ′[fk] |
k ∈ N} ∼=s {C ′[fix(f)]}. Then, using the fact {C[fk] | k ∈ N} !∼s {C

′[fk] | k ∈ N} (by definition of
!∼s) and the above equivalences, the result is immediate. "

It is a simple matter to extend this theorem to logical formulas in which statements C[fix(f)] !∼
C ′[fix(f)] occur, although only certain admissible formulas admit a fixed-point induction principle
[Paulson, 1987, Igarashi, 1972].

From Operational Semantics to Domain Theory 19

4.4 Finite Expressions

An important tool in the further development of the theory of !∼ and !∼s
are the finite expressions.

Most importantly here, they will be used to show !∼s is complete. Finite expressions are criti-
cal to a number of constructions, including the ideal model construction [MacQueen et al., 1984,
Abadi et al., 1991b]. Construction of finite expressions is the first point in the paper where the
presence of recognizers ispr and isnat in the language become critical. The following definition
of finite expressions relies on the representation of limits by directed sets of expressions.

Definition 4.14 (Finite Expressions E
ω) The set of finite expressions E

ω is defined by

E
ω = {d ∈ E∅ (∀A ∈ ∆∅)({d} !∼s

A ⇒ (∃a ∈ A)(d !∼ a))}

We hereafter let d range over E
ω. Note we define closed finite expressions only; it is possible to

generalize to allow open finite expressions, but the resulting definitions are more complex, and
for our purposes working over closed expressions suffices. Finite expressions per se are of little
use without a stronger characterization of their structure. To this end we define expressions πn

that compute the “finite projections” familiar from the inverse limit domain construction. The key
results are:

(i) The finite approximation property, {λx.x} ∼=s {πn n ∈ N} (Theorem 4.19);

(ii) the range of πn is finite (modulo ∼=) for each n (Lemma 4.21);

(iii) E
ω may be characterized as the union of the images of the finite projections πn (Lemma 4.23).

The idea of syntactically defined projection functions is found in [Abadi et al., 1991b], though
the uses we put them to here are significantly different.

Definition 4.15 (Finite Projections πn) The projection functional π, finite projections πn,
and infinite projection π∞ are defined as follows.

π = λy.λx.

if(isnat(x), if(iszero(x), 0, succ(y(pred(x)))),

if(ispr(x), pr(y(fst(x)), y(snd(x))),

if(islam(x), y ◦ x ◦ y

bot)))

π0 = λx.bot

πn+1 = π(πn)

π∞ = fix(π)

Observe the syntactic construction of projections πn would be impossible without recognizers
isnat, ispr. The following lemma serves to characterize the basic properties of the projections.

Lemma 4.16 (Elementary πn/π∞ Properties)

(fix) π∞ ∼=s {π
n n ∈ N}

(idemp) πn ◦ πn ∼= πn, π∞ ◦ π∞ ∼= π∞

20 Mason, Smith, and Talcott

(compose) πm ◦ πn ∼= πmin(m,n)

(order) πn !∼ πn+1 !∼ π∞

(num.0) πn(m) ∼= bot if m ≥ n

(num.+) πn(m) ∼= m if m < n, π∞(m) ∼= m

(pair) πn+1(pr(v0, v1)) ∼= pr(πn(v0),π
n(v1)), π∞(pr(v0, v1)) ∼= pr(π∞(v0),π

∞(v1))

(fun.0) π1(λx.e) ∼= λx.bot

(fun.+) πn+1(λx.a) ∼= πn ◦ λx.a ◦ πn, π∞(λx.a) ∼= π∞ ◦ λx.a ◦ π∞

(prune) πn(a) !∼ a, π∞(a) !∼ a

Proof: (fix) follows from Lemma 4.11. The first part of (idemp) follows by induction on n and
computation. The second part follows from (fix) and the congruence of ∼=s, using context C = •◦•.
(compose) may be proved by showing πn+1 ◦ πn ∼= πn and πn ◦ πn+1 ∼= πn by induction on n, and
then composing one of these two facts m − n or n −m times. (order) follows by induction on n.
The first part of (prune) is proved by induction on n and the previous πn facts, noting it suffices to
consider the case where a is a closed value. The second part is proved from the first part and (fix):
{π∞(a)} ∼=s {πn(a) n ∈ N} !∼s

{λx.x}. The remaining cases are obvious from the definitions. "

π∞ may be characterized as nothing but a fancy identity function; from this the finite approx-
imation property alluded to previously will be an immediate corollary.

Theorem 4.17 (Identity of π∞) π∞ ∼= λx.x

To prove this, we inductively define τ(a) and τ(R) as follows:

τ(x) = x

τ(n) = n

τ(op(a0, . . . , an)) = π∞(op(τ(a0), . . . , τ(an)))

τ(pr(a0, a1)) = pr(τ(a0), τ(a1))

τ(λx.a) = π∞ ◦ λx.τ(a) ◦ π∞

τ(R) = τ(R[x]){x:=•}

The τ -expressions are an intermediate form that expresses how π∞ subexpressions can distill
throughout an expression in the course of computing π∞(a). Basic properties of these expres-
sions include the following.

Lemma 4.18

(i) For a ∈ E∅, π
∞(τ(a)) ∼= τ(a).

(ii) τ(a) !∼ a, and τ(R[x]) !∼ R[x].

(iii) τ(R[b]) = τ(R)[τ(b)], and τ(a{x:=v}) = τ(a){x:=τ(v)}.

Proof: For (i), proceed by induction on the structure of a. If a ∈ N, the result follows by
N induction. If a = op(a0, . . . , an), then τ(a) = π∞(op(τ(a0), . . . , τ(an))), so by Lemma 4.16
(idemp),

π∞(τ(a)) ∼= π∞(π∞(op(τ(a0), . . . , τ(an)))) ∼= π∞(op(τ(a0), . . . , τ(an))) ∼= τ(a).

From Operational Semantics to Domain Theory 21

If a ∈ P, then τ(a) = pr(τ(a0), τ(a1)). Observe if either τ(a0) ↑ or τ(a1) ↑, τ(a) ↑ and the result
is then trivial. So, assume without loss of generality that τ(ai))→ vi, i < 2. Then, by Lemma
4.16 (pair), π∞(pr(v0, v1)) ∼= pr(π∞(v0),π∞(v1)), so substituting gives π∞(pr(τ(a0), τ(a1))) ∼=
pr(π∞(τ(a0)),π∞(τ(a1))) and the result follows by induction. Finally, if a = λx.a′, τ(a) is of
the form π∞ ◦ λx.τ(a′) ◦ π∞, and π∞(τ(a)) ∼= π∞ ◦ τ(a) ◦ π∞ by computing, which expands to
π∞◦π∞◦λx.τ(a′)◦π∞◦π∞ and by Lemma 4.16 (idemp) simplifies then to π∞◦λx.τ(a′)◦π∞ ∼= τ(a).
For (ii), this easily follows by induction on the structure of a/R, using Lemma 4.16 (prune) and
Theorem 3.5. Property (iii) follows by structural induction on R or a. "

Proof of Theorem 4.17: The !∼ direction follows from Lemma 4.16 (prune) and Theorem
3.5. For the #∼ direction, we successively rephrase the statement five times. It suffices to show
for all a that R[a] ↓ ⇒ R[π∞(a)] ↓ by Theorems 3.5 and 3.4. For this it then suffices to show
R[a] ↓ ⇒ R[π∞(τ(a))] ↓ by Lemma 4.18 (ii). Then, by Lemma 4.18 (i), it suffices to show R[a] ↓ ⇒
R[τ(a)] ↓. Next, generalizing it suffices to show a0 ↓ ⇒ τ(a0) ↓ by Lemma 4.18 (ii) and (iii):
R[a] ↓ ⇒ τ(R[a]) ↓ ⇒ τ(R)[τ(a)] ↓ ⇒ R[τ(a)] ↓. And lastly, to show this it suffices to show
a0)→1 a1 ⇒ τ(a0) ∼= τ(a1), for the conclusion then follows by induction on computation length
and the observation that τ(v) ∈ V for any value v.

So, assume a0)→1 a1, show τ(a0) ∼= τ(a1). Consider this step of computation; a0 = R[a] for
some redex a, proceed by cases on the form of a.

If a = app(λx.c, v), then a1 = R[c{x:=v}]. By inspection of the definitions of τ(a) and τ(R),
τ(a0) must be of the form

τ(R)[π∞(app(π∞ ◦ λx.τ(c) ◦ π∞, τ(v)))].

Computing from this point yields

∼= τ(R)[π∞(π∞(app(λx.τ(c),π∞(τ(v)))))]

∼= τ(R)[π∞(app(λx.τ(c), τ(v)))] by Lemmas 4.16 (idemp) and 4.18 (i)

∼= τ(R)[π∞(τ(c){x:=τ(v)})]

∼= τ(R)[τ(c){x:=τ(v)}] by Lemma 4.18 (i) and (iii),

and τ(R[c{x:=v}]) = τ(R)[τ(c){x:=τ(v)}] by Lemma 4.18 (iii).
If a is any other redex, the proof is similar to the previous case. "

The Finite Approximation Theorem is now a simple corollary.

Theorem 4.19 (Finite Approximation) {πn n ∈ N} ∼=s {λx.x}.

Proof: {πn n ∈ N} ∼=s {π∞} ∼=s {λx.x} by Lemmas 4.16 and 4.17. "

Now we justify the use of the term “finite”, and characterize all finite expressions d as those
equivalent to the projection of some expression, d ∼= πn(e).

Definition 4.20 (En) Define E
n = {a a ∈ E∅ ∧ a ∼= πn(a)}.

Lemma 4.21 (Finite Cardinality) For all n ∈ N, En contains finitely many ∼=-distinct expres-
sions.

Proof: The proof is by induction on n, using Theorem 3.5 and the observation that there are
only finitely many functions that map a finite set to a finite set. "

22 Mason, Smith, and Talcott

Lemma 4.22 (Finiteness of Projections) For all a ∈ E∅ and n ∈ N, πn(a) is finite.

Proof: Given an arbitrary set A with {πn(a)} !∼s A, find a0 ∈ A such that πn(a) !∼ a0. Observe
that πn(A) is directed and of finite cardinality (modulo ∼=). Thus there is some a0 ∈ A such that
πn(a′) !∼ πn(a0) for all a′ ∈ A. Hence {πn(a)} ∼=s {πn(πn(a))} !∼s π

n(A) !∼s {π
n(a0)} !∼s {a0}

and thus πn(a) !∼ a0. "

Lemma 4.23 (Finite Characterization) E
ω =

⋃

n∈N E
n

Proof: We show d is finite iff d ∼= πn(a) for some n ∈ N. The backwards implication follows
from Lemma 4.22. To prove the forward implication, pick d ∈ E

ω, and show πn(d) ∼= d, for some
n. d !∼s

{πn(d) n ∈ N} by Theorem 4.19. Thus, by finiteness of d, d !∼ πn(d) for some n.
Furthermore, πn(d) !∼ d by 4.16, so πn(d) ∼= d. "

We conclude by showing !∼ is ω-algebraic.

Definition 4.24 (Finite Projection Π(a)) For a ∈ E∅ define

Π(a) = {d ∈ E
ω d !∼ a}

Lemma 4.25 (!∼ ω-algebraicity) For a ∈ E∅,

(i) Π(a) ∈ ∆∅, and Π(a) ∼=s {a}

(ii)
⊔

Π(a) = a.

Proof: (i) follows directly from Theorem 4.19 and Lemma 4.23. (ii) follows from (i) and Lemma
4.4. "

4.5 The Existence of !∼s
-Least Upper Bounds

In this section we show that !∼s-directed sets have least upper bounds. As for finite expressions,
we restrict our attention to closed expressions. Note that A !∼s B does not imply that A ∪ B is a
!∼-directed set. Consider the following simple example.

fk(x) =
{

1 if x *∈ N or x < k or x is even.
bot otherwise.

gk(x) =
{

1 if x *∈ N or x < k or x is odd.
bot otherwise.

Then

Lemma 4.26 {gk k ∈ N} ∼=s {fk k ∈ N} ∼=s {λx.1} but {gk k ∈ N} ∪ {fk k ∈ N} is not
!∼-directed.

Consequently the lub operation on !∼s
-directed sets cannot be a simple union operation. To con-

struct lubs we use the theory of finite expressions developed in the previous section, lifting those
results to consider finite approximants of directed sets of expressions instead of finite approximants
to a single expression.

We begin by making some observations that enable us to restrict our attention to !∼-directed
subsets of Eω.

From Operational Semantics to Domain Theory 23

Definition 4.27 (Set Finite Projection Π(A)) Π(A) =
⋃

a∈AΠ(a).

Lemma 4.28 (Elementary Π Properties) For A ∈ ∆∅,

(i) Π(A) ∈ ∆∅,

(ii) Π(A) = {d ∈ E
ω (∃a ∈ A)(d !∼ a)}

(iii) Π(A) is ∼=-closed

(iv) Π(A) ∼=s A

Proof: (i) and (iv) follow immediately from Lemma 4.25, and the remainder are direct from the
definitions. "

Definition 4.29 (Directed Sets ∆∅) ∆∅ is the set of !∼s-directed subsets of ∆∅.

Definition 4.30 (!∼s-Least Upper Bounds) For S ∈ ∆∅,
⊔

S = A for some A ∈ ∆ iff A is a
!∼s-least upper bound of S.

Lemma 4.31 (Existence !∼s-Least Upper Bounds) If S ∈ ∆∅, then its least upper bound ex-
ists and equals:

⊔

S =
⋃

A∈S

Π(A) = {d ∈ E
ω (∃A ∈ S)(∃a ∈ A)(d !∼ a)}

Proof: First, we show that
⋃

A∈S Π(A) is directed. Let a0, a1 ∈
⋃

A∈S Π(A). We must find an
upper bound of these two points. By definition of a0 and a1, that means ai ∈ Π(Ai) for some
Ai ∈ S, i < 2. {ai} !∼s Π(A

′), i < 2, for A′ ∈ S by !∼s-directedness of S. Thus, by the definition
of finiteness, there are a′i for a′i ∈ Π(A′), i < 2, such that ai !∼ a′i, i < 2. Since Π(A′) is directed,
there is an a2 ∈ Π(A′) such that a′i !∼ a2, i < 2. Thus, ai !∼ a2, the upper bound we sought.

To prove
⋃

A∈S Π(A) is an upper bound, let A ∈ S. We must show A !∼s

⋃

A∈S Π(A). Since
A ∼=s Π(A), the result is trivial by set inclusion. To prove

⋃

A∈S Π(A) is least, let A0 be such that
A !∼s

A0 for each A ∈ S. We must show
⋃

A∈S Π(A) !∼s
A0. For this, let a ∈

⋃

A∈S Π(A), and thus
a ∈ A for some A ∈ S. {a} !∼s

A0 by definition of !∼s
, so the result follows directly. "

4.6 !∼s
-Continuity and ω-Algebraicity.

In Section 4.5, we showed that <∆∅,!∼s> is a complete pre-order, and thus the quotiented <∆∅/ ∼=s

,!∼s> is a complete partial order. In this section, we show it is also ω-algebraic and that the
O
+-induced operations are continuous. We begin by showing that there is a natural choice of

∼=s equivalence class representative, the !∼-downward-closed directed sets of finite elements Π(A).
ω-algebraicity and continuity will be proved for this representation.

Lemma 4.32 (Finite Set Representation) For A0, A1 ∈ ∆∅,

A0 !∼s
A1 ⇔ Π(A0) ⊆ Π(A1)

A0
∼=s A1 ⇔ Π(A0) = Π(A1)

The elements of the CPO, ∆ω
∅ , are the Π(A).

24 Mason, Smith, and Talcott

Definition 4.33 (Finite Directed Sets ∆ω
∅) ∆ω

∅ = {Π(A) A ∈ ∆∅}

We let D range over ∆ω
∅ . Note that ∆ω

∅ is the set of !∼-directed subsets of Eω that are downward
closed (order ideals).

Theorem 4.34 (CPO) <∆ω
∅ ,⊆> is a Complete Partial Order, with

⊔

S =
⋃

S.

Proof: <∆∅,⊆> is a CPO directly from Lemmas 4.31 and 4.32.
⊔

S for ⊆-directed S ⊆ ∆ω
∅ is

precisely ∪S by Lemma 4.31 above and the observation that Π(Π(A)) = Π(A). "

A corollary of Lemma 4.32 is that <∆∅/ ∼=s,!∼s
> and <∆ω

∅ ,⊆> are isomorphic structures.

Lemma 4.35 (Finite Elements) {Π(d) d ∈ E
ω} are the finite elements of CPO <∆ω

∅ ,⊆>.

Proof: We show that Π(d) ⊆ ∪D implies Π(d) ⊆ Π(A) for some Π(A) ∈ D. Since the Π
operation produces !∼-downward closed sets, it suffices to show d ∈ ∪D implies d ∈ Π(A) for some
Π(A) ∈ D, and this is immediate. "

Now we define the O
+-induced operations on ∆ω

∅ .

Definition 4.36 (Induced Operations) For op+ ∈ O
+ we define op+ : (∆ω

∅)
n → ∆ω

∅ as follows:

op+(D1, . . . ,Dn) = {d ∈ E
ω (∃d1 ∈ D1, . . . , dn ∈ Dn)(d !∼ op+(d1, . . . , dn))}.

Then we have the following:

Theorem 4.37 (Continuity) <∆ω
∅ ,⊆> is continuous: all op+ ∈ O

+ are continuous in each argu-
ment.

Proof: For simplicity consider a unary operator op+ ∈ O
+
1 , the general case is similar. It suffices

to show
⋃

D∈S op
+(D) = op+(

⋃

S), i.e.

⋃

D∈S

{d0 (∃d ∈ D)(d0 !∼ op+(d))} = {d0 (∃d ∈
⋃

S)(d0 !∼ op+(d))}.

These are clearly the same sets. "

Note, in particular that application, app ∈ O2, is continuous in both its arguments.

Theorem 4.38 (ω-Algebraic) <∆ω
∅ ,⊆> is ω-Algebraic.

Proof: Note that by Lemma 4.35 there are only countably many finite elements, and for D ∈ ∆ω
∅ ,

⊔

{Π(d) Π(d) ⊆ D} =
⋃

{Π(d) Π(d) ⊆ D} = D.

"

The CPO construction of this section relies on properties of finite expressions; it is also pos-
sible to derive a continuous CPO from a !∼s ordering by a simpler ideal completion construction
[Smith, 1992]. The construction in this section has the advantage that we can show that the
ordering !∼s itself is a complete pre-order, and is ω-algebraic.

From Operational Semantics to Domain Theory 25

5 Constructing and Characterizing Models

In this section we study the general notion of a model for a functional call-by-value programming
language with numbers and pairing. Our approach builds on the work of Milner [Milner, 1977]
and Meyer [Meyer, 1982]. We begin by defining the notion of an FLD domain (functional pro-
gramming language domain). These are reflexive domains with an extensional partial ordering "
reflecting degrees of definedness. Next we define a notion of FLEM (functional language environ-
ment model) for interpreting expressions in an FLD domain. We classify these models according
to what properties they possess. The classifications are adequacy (AD), full abstraction (FA),
strong full abstraction (SFA), completeness (CPO), continuity (CON), ω-algebraic (ALG), least
fixed-point (LFP), and standard (STD). Strong full abstraction is a strengthening of full abstrac-
tion, discussed in more detail below. A standard model is the well-known notion from logic, here
meaning all points in the model correspond to computations.

We construct a standard model using !∼, and show that this model is fully abstract but not
continuous, using the results of section 3.4. We then show that all standard, fully abstract models
are isomorphic, and thus no such model is continuous. We then construct a model, using !∼s, that
is strongly fully abstract, continuous, and ω-algebraic, using the results of section 4.6. Following
Milner [Milner, 1977] we show all such models are isomorphic.

5.1 The Notion of Model

We use the usual lifting operator, D⊥ = D ∪ {⊥}, adding distinguished element ⊥ to arbitrary set

D. D⊥
strict
−→ D′

⊥ denotes the space of strict functions from D⊥ to D′
⊥, i.e. functions φ ∈ (D⊥ → D′

⊥)

where φ(⊥) =⊥. Define lift(φ) to take φ ∈ (D → D′
⊥) and lift it to the strict D⊥

strict
−→ D′

⊥. If
φ ∈ (D⊥ × . . . ×D⊥) → D⊥ we say it is strict if it is strict in each argument. A general notion of
domain is now defined.

Definition 5.1 (FLD domain) An FLD domain is a structure

S = (D,N ,P,L,F ,Φ,Π ,Π1,Π2,+N ,−N , ι,")

where

D = N + P + L, a disjoint sum

ι ∈ N
bijection
−−→ N ,

+N ,−N : N 2 → N ,

F ⊆ D⊥
strict
−→ D⊥,

Φ ∈ L
bijection
−−→ F ,

Π ∈ D⊥ ×D⊥
strict
−→ P⊥, also satisfying Π ∈ D ×D → P,

Π1,Π2 ∈ P⊥
strict
−→ D⊥, also satisfying Π1,Π2 ∈ P → D

such that

(i) ι : <N,+,−> ∼= <N ,+N ,−N> as standard first order structures.

(ii) Π1(Π(δ, δ′)) = δ, Π2(Π(δ, δ′)) = δ′ for δ, δ′ ∈ D,

(iii) Π(Π1(p),Π2(p)) = p for p ∈ P

and " ⊆ D⊥ ×D⊥ has the following properties:

26 Mason, Smith, and Talcott

1. " is a partial order (transitive, reflexive, anti-symmetric), with <N⊥,"> being flat.

2. ⊥" δ for all δ ∈ D,

3. monotone: for every φ ∈ F ∪ {Π1,Π2}, δ0 " δ1 implies φ(δ0) " φ(δ1); similarly Π is
monotone in each argument.

4. extensional: For φ ∈ F , φ(δ) " φ′(δ) for all δ ∈ D⊥ iff Φ−1(φ) " Φ−1(φ′).

We let δ range over D; it will be clear from context what particular set D is. Let the collection
of environments be Env = X → D. Now that the algebraic structure is defined we define the
requirements an environment model must meet.

Definition 5.2 (Environment Models (FLEM)) The set FLEM of functional language en-
vironment models consists of structures M = (S, [[·]]·) where S is a FLD domain, and [[·]]· ∈
E×Env → D⊥ satisfies the following:

(i) lift(λδ : D.[[a]](ρ{x := δ})) ∈ F for ρ ∈ Env, a ∈ E,

(ii) [[x]]ρ = ρ(x) for x ∈ X,

(iii) [[n]]ρ = ι(n) for n ∈ N,

(iv) [[app(a, b)]]ρ = (Φ([[a]]ρ))([[b]]ρ) if [[a]]ρ ∈ L, else ⊥,

(v) [[λx.a]]ρ = Φ−1(φ) where φ = lift(λδ : D.[[a]](ρ{x := δ})),

(vi) [[pr(a, b)]]ρ = Π([[a]]ρ, [[b]]ρ)

(vii) [[fst(a)]]ρ = Π1([[a]]ρ) if [[a]]ρ ∈ P, else ⊥,

(viii) [[snd(a)]]ρ = Π2([[a]]ρ) if [[a]]ρ ∈ P, else ⊥,

(ix) [[ispr(a)]]ρ = 1 if [[a]]ρ ∈ P, 0 if [[a]]ρ ∈ L ∪N , otherwise ⊥,

(x) [[isnat(a)]]ρ = 1 if [[a]]ρ ∈ N , 0 if [[a]]ρ ∈ L ∪ P, otherwise ⊥,

(xi) [[pred(a)]]ρ = n−N ι(1) if [[a]]ρ = n for n ∈ N , otherwise ⊥,

(xii) [[succ(a)]]ρ = n+N ι(1) if [[a]]ρ = n for n ∈ N , otherwise ⊥,

(xiii) [[br(a, b, c)]]ρ = [[b]]ρ if [[a]]ρ = 1, [[c]]ρ if 1 *= [[a]]ρ *=⊥, otherwise ⊥,

Note that the first condition is simply a closure condition on the set F . Modulo this closure
condition the nature of [[·]]· is completely determined by the structure of the underlying FLD

domain S as we shall show in Lemma 5.20. For closed a, [[a]] abbreviates [[a]] ∅.

Lemma 5.3 (Substitution) [[a]]ρ{x := [[v]]ρ} = [[a{x := v}]]ρ.

Proof: By induction on the structure of a. "

Lemma 5.4 [[·]]· respects computation: a)→ b ⇒ [[a]] = [[b]].

From Operational Semantics to Domain Theory 27

Proof: Direct from properties (ii)–(xiv) of Definition 5.2 and Lemma 5.3. "

We let M range over FLEM models and D ⊆ D. If M ∈ FLEM, then we let Ddef be the set
of definable elements of D, those elements that interpret some closed expression. Fdef ⊆ F are the
definable functions.

Definition 5.5 (Ddef Fdef Definable elements and functions)

Ddef = {δ (∃a ∈ E∅)([[a]] = δ)}

Fdef = {φ (∃δ ∈ Ddef)(Φ(δ) = φ)} = {φ (∃a ∈ L∅)(Φ([[a]]) = φ)}

Definition 5.6 (Finite)
⊔

D denotes the "-least upper bound of directed D, if it exists. We say
δ ∈ D is finite if for any directed D ⊆ D such that δ "

⊔

D, there is some δ′ ∈ D such that δ " δ′.

5.2 Classification of Models

In this section we define some important properties of FLEM models, and establish some relation-
ships between these properties.

Definition 5.7 (FLEM model classifications) Given an M ∈ FLEM, define

Adequacy: M ∈ AD iff for all closed a (a)→ v for some v iff [[a]] *=⊥)

Full abstraction: M ∈ FA iff M ∈ AD and for all δ0, δ1 ∈ Ddef , δ0 " δ1 iff for all φ ∈ Fdef ,
φ(δ0) *=⊥ implies φ(δ1) *=⊥.

Strong full abstraction: M ∈ SFA iff M ∈ AD and for all δ0, δ1 ∈ D, δ0 " δ1 iff for all
φ ∈ Fdef , φ(δ0) *=⊥ implies φ(δ1) *=⊥.

Complete: M ∈ CPO iff M ∈ AD and all "-directed sets D ⊆ D⊥ have a lub,
⊔

D.

Continuous: M ∈ CON iff M ∈ CPO and for all φ ∈ F and directed sets D ⊆ D⊥, φ(
⊔

D) =
⊔

{φ(δ) δ ∈ D}.

ω-Algebraic: M ∈ ALG if D has countably many finite elements, and for each δ ∈ D, letting
D = {δ0 | δ0 is finite and δ0 " δ}, D is directed and

⊔

D = δ.

Least Fixed-Point: M ∈ LFP if M ∈ CPO and

(i) Defining fix (φ) =
⊔

{

n
︷ ︸︸ ︷

φ(. . . φ(λx. ⊥) . . .) n ∈ N} where λx. ⊥ is the everywhere ⊥
function, fix (φ) = φ(fix (φ)) for all φ ∈ F .

(ii) Φ([[fix]])(φ) = fix (φ), for all φ ∈ F .

Standard: M ∈ STD if M ∈ AD and Ddef = D, i.e. if [[·]]∅ is a surjection.

Some trivial consequences of the definitions are summed up in the following lemma.

Lemma 5.8

(i) SFA ⊆ FA ⊆ AD.

(ii) CON ⊆ CPO ⊆ AD.

28 Mason, Smith, and Talcott

Proof: Trivial by inspection of the definitions. "

Full abstraction above is defined over functions in the domain; the following Lemma demon-
strates this is equivalent to the standard definition of full abstraction.

Lemma 5.9 M ∈ FA ⇔ (M ∈ AD ∧ (∀a0, a1 ∈ E∅)(a0 !∼ a1 ⇔ [[a0]] " [[a1]])).

Proof:

a0 !∼ a1 ⇔ (∀C ∈ C∅)(C[a0] ↓ ⇒ C[a1] ↓) ⇔ (∀C)([[C[a0]]] *=⊥⇒ [[C[a1]]] *=⊥)

by 3.4 and adequacy, respectively. Define φ = Φ[[λx.C[x]]] and observe φ([[ai]]) = [[C[x]{x := [[ai]]}]] =
[[C[ai]]], i < 2. Thus,

(∀C)([[C[a0]]] *=⊥⇒ [[C[a1]]] *=⊥) ⇔ (∀φ ∈ Fdef)(φ([[a0]]) *=⊥⇒ φ([[a1]]) *=⊥) ⇔ [[a0]] " [[a1]]

by definition of φ ∈ Fdef , and assumption M ∈ FA, respectively. "

Strong full abstraction is an extension of full abstraction to require δ0 " δ1 on non-definable
elements δ0, δ1 to mean δ0 and δ1 are indistinguishable by any definable functions φ ∈ Fdef . The
analogous result to 5.9 in the case of strong full abstraction is the following lemma.

Definition 5.10 Working over M ∈ CPO, we may define [[A]] =
⊔

{[[a]] a ∈ A} for A ∈ ∆∅.

Lemma 5.11 (Set Full Abstraction) If M ∈ SFA ∩CON, then for any A,B ∈ ∆∅

A !∼s
B ⇔ [[A]] " [[B]].

Proof: For the forward implication, we begin by assuming that [[A]] *" [[B]]. Thus by SFA there
exists an φ ∈ Fdef such that φ([[A]]) *=⊥ while φ([[B]]) =⊥. Now φ([[B]]) = φ(

⊔

{[[b]] b ∈ B}) =
⊔

{φ([[b]]) b ∈ B}) =⊥ by continuity. Thus φ([[b]]) =⊥ for all b ∈ B. Similarly since φ([[A]]) *=⊥ we
have that there is an a ∈ A with φ([[a]]) *=⊥. Thus A *!∼s

B.
For the reverse implication, assume that [[A]] " [[B]] and choose a ∈ A, φ ∈ Fdef such that

φ([[a]]) *=⊥. Thus φ([[A]]) *=⊥, and consequently φ([[B]]) *=⊥. This last fact also implies φ([[b]]) *=⊥
for some b ∈ B. "

In [Milner, 1977] a straightforward induction argument establishes that, in the simply typed
lambda calculus, a fully abstract, continuous model with ω-algebraic base types that contains
the finite projections is also ω-algebraic. In the untyped framework, whether or not an analogous
result remains true is an open question. In particular it is open whether all continuous fully abstract
models are ω-algebraic. The difference between the simply typed and untyped cases is in a simply
typed language a finite number of applications or projections will always produce an expression of
base type, but some untyped computations (such as fix(λx.λy.x)) have no such property. Similar
problems will arise in typed languages with recursive types. Thus there could in principle be an
element of the model of this infinitary form which is not expressible as the lub of a collection of
finite elements. Strong full abstraction is introduced to close this gap in the untyped case; we show
the following.

Theorem 5.12 SFA ∩CON ⊆ ALG.

To prove this theorem we first establish a series of four simple lemmas.

From Operational Semantics to Domain Theory 29

Lemma 5.13 For M ∈ SFA ∩CON, [[λx.x]] =
⊔

{[[πn]] n ∈ N}.

Proof: By Lemma 5.11 and Theorem 4.19. "

Definition 5.14 (Semantic Projection) Define πn = Φ([[πn]]) ∈ F , the semantic meaning of
the projection function.

Lemma 5.15 For M ∈ FLEM, πk(δ) " δ for all k.

Proof: The proof is by induction on k. The base case is trivial. We proceed by cases on the form of
δ. If δ ∈ N , then the result is also trivial if δ = 0; otherwise, computing πk by Lemma 5.4 we derive
πk(δ) = πk−1(δ−1)+1, and applying the induction hypothesis, πk−1(δ−1)+1 " δ−1+1 = δ, com-
pleting this case. If δ ∈ P, then by computation we derive πk(δ) = Π(πk−1(Π1(δ)),πk−1(Π2(δ))).
Applying the induction hypothesis yields Π(πk−1(Π1(δ)),πk−1(Π2(δ))) " Π(Π1(δ),Π2(δ)), and
by the definitions Π(Π1(δ),Π2(δ)) = δ, completing this case. If δ ∈ L, then by computing we
derive Φ(πk(δ)) = λδ0.πk−1(Φ(δ)(πk−1(δ0))) ∈ F . Using " extensionality, it suffices to show
πk−1(Φ(δ)(πk−1(δ0))) " Φ(δ)(δ0) for arbitrary δ0, and this follows directly from the induction
hypothesis. "

We now characterize the finite elements of fully abstract, continuous models. The next two
Lemmas are domain analogues of Lemmas 4.21 and 4.23 on directed sets of expressions, respectively.

Definition 5.16 Dk = {δ ∈ D δ = πk(δ)}, Dω = ∪k∈ND
k.

Lemma 5.17 For M ∈ FA∩CON, Dk is of finite cardinality for each k ∈ N, and Dω is countable.

Proof: The countability of Dω is direct from the finiteness of the Dk. The latter is proved by
induction on k. The base case is trivial, D0 is empty by observing [[bot]] =⊥ from the fact that
M ∈ AD. For the induction case, it suffices to prove Dk ∩ L, Dk ∩N , Dk ∩P are each finite sets.

For Dk ∩N observe that {δ δ = πk(δ) ∧ δ ∈ N} = {δ δ = 0 ∨ δ = πk−1(δ − 1) + 1} which

is finite by the finiteness of {δ δ = πk−1(δ)} by inductive assumption. Similarly, Dk ∩ P is seen
to be finite.

For Dk∩L observe that {δ δ = πk(δ) ∧ δ ∈ L} = {δ Φ(δ) = λδ0.πk−1(Φ(δ)(πk−1(δ0))) ∈ F}.
By inductive assumption each of these functions is restricted to a finite domain and codomain, so
there can only be finitely many such functions. "

Lemma 5.18 For M ∈ SFA ∩CON, δ finite iff δ ∈ Dω.

Proof: For the forward implication,
⊔

{πk(δ) n ∈ N} = δ by Lemma 5.13 and continuity, so by

the finiteness of δ, δ " πk(δ) for some k. Since πk(δ) " δ by Lemma 5.15, πk(δ) = δ.
For the reverse implication observe that by Lemma 5.17, each Dk set is of finite cardinality,

thus no infinite ascending chains may be defined in Dk, so all its elements must be finite. "

Proof of 5.12: There are countably many finite elements by Lemma 5.17. Next, given δ, set
D = {δ0 δ0 " δ ∧ δ0 finite }. We show

⊔

D = δ.
⊔

D " δ follows pointwise so it suffices to show
⊔

D < δ.
⊔

D =
⊔

{πk(δ0) π
k(δ0) " δ} by Lemma 5.18

<
⊔

{πk(δ) k ∈ N} by Lemma 5.15

= δ by Lemma 5.13.

"

30 Mason, Smith, and Talcott

5.3 Isomorphisms between Models

In this section we define the notion of an isomorphism between two models. This notion will play
an important role in demonstrating that certain properties uniquely characterize the models which
satisfy them.

Definition 5.19 (Isomorphism over FLEM) Given two elements of FLEM, Mi for i < 2,

Mi = (Si, [[·]]i·)

where

S = (Di,Ni,Pi,Li,Fi,Φi,Π
i,Π i

1,Π
i
2,+

i
N ,−i

N , ιi,"i)

we say they are isomorphic, M0 ∼ M1, iff there exists a Σ ∈ D0
bijection
−−→ D1 such that

(i) Σ maps P0 to P1, L0 to L1, and N0 to N1 commuting with ιi.

(ii) Σ is order-preserving, δ0 "0 δ1 ⇔ Σ(δ0) "1 Σ(δ1)

(iii) (∀δ0 ∈ L0, δ1 ∈ D0)(lift(Σ)(Φ0(δ0)(δ1)) = Φ1(Σ(δ0))(Σ(δ1)))

(iv) (∀δ0, δ1 ∈ D0)(Σ(Π
0(δ0, δ1)) = Π

1(Σ(δ0),Σ(δ1))

(v) (∀δ ∈ P0)Σ(Π
0
1(δ)) = Π

1
1(Σ(δ))

(vi) (∀δ ∈ P0)Σ(Π
0
2(δ)) = Π

1
2(Σ(δ))

An alternate, but equivalent definition, is to define Σ̂ = λφ.lift(Σ) ◦ φ ◦ lift(Σ−1), and require
the following hold in place of (iii) above:

1. Σ̂ : F0 → F1

2. Φ0 = Σ̂−1 ◦Φ1 ◦Σ

Note that the definition of isomorphism does not mention [[·]]i·. This is because it is uniquely
determined by the underlying structure. The following lemma validates this observation.

Lemma 5.20 (Evaluation isomorphism) Suppose that M0 ∼ M1 via Σ. Then

(∀a ∈ E)(∀ρ ∈ Env0 = X → D0)(lift(Σ)([[a]]0ρ) = [[a]]1(Σ ◦ ρ))

Proof: The proof is by induction on the structure of a. We provide the interesting cases.
case a = app(b, c): For simplicity we shall assume that [[a]]0ρ *=⊥.

lift(Σ)([[a]]0ρ) =

= lift(Σ)((Φ0([[b]]0ρ))([[c]]0ρ))

= Φ1(Σ([[b]]0ρ))(Σ([[c]]0ρ))) by isomorphism property (iii)

= (Φ1([[b]]1Σ ◦ ρ))([[c]]1Σ ◦ ρ) by induction hypothesis

= [[a]]1Σ ◦ ρ

From Operational Semantics to Domain Theory 31

case a = λx.b:

lift(Σ)([[a]]0ρ) = [[a]]1Σ ◦ ρ

⇔ [[a]]0ρ = lift(Σ−1)([[a]]1Σ ◦ ρ)

⇔ (∀δ0 ∈ D0)(lift(Σ)(Φ0([[a]]0ρ)(δ0)) = Φ0(lift(Σ
−1)([[a]]1Σ ◦ ρ))(δ0)) since Φ0 bijective

⇔ (∀δ0 ∈ D0)(lift(Σ)(Φ0([[a]]0ρ)(δ0)) = Φ1([[a]]1Σ ◦ ρ)(Σ(δ0))) by isomorphism property (iii)

⇔ (∀δ0 ∈ D0)(lift(Σ)([[b]]0ρ{x := δ0}) = Φ1([[b]]1(Σ ◦ ρ){x := Σ(δ0)}))

⇔ (∀δ0 ∈ D0)(lift(Σ)([[b]]0ρ{x := δ0}) = Φ1([[b]]1Σ ◦ (ρ{x := δ0}))

which follows by induction hypothesis. "

5.4 Existence and Uniqueness of Models

In this section we construct models with various combinations of properties. We also show that
there are combinations of properties that have exactly one (up to isomorphism) model that satisfies
them. We begin by constructing the canonical standard model, the term model.

Definition 5.21 Define term model Mt as follows:

Mt = (St, [[·]]i·)

where

S = (Dt,N t,Pt,Lt,F t,Φt,Π t,Π t
1,Π

t
2,+

t
N ,−t

N , ιt,"t)

and

[v] = {v′ ∈ V∅ v ∼= v′}

N t = {[v] v ∈ N}

Pt = {[v] v ∈ P}

Lt = {[v] v ∈ L}

Dt = N t + Pt + Lt

[[a]]tρ =
{

[v] if aρ)→ v (where a{x:=[v]} = a{x:=v})
⊥ otherwise

Φt([λx.a]) = lift(λ[v] ∈ Dt.[[a]]t{x := [v]}), F t = Rng(Φt)

Π
t([v1], [v2]) = [pr(v1, v2)]

Π
t
1([pr(v1, v2)]) = [v1]

Π
t
2([pr(v1, v2)]) = [v2]

"t= {⊥}×Dt
⊥ ∪ {<[v1], [v2]> v1 !∼ v2}

noting that Φt, Π t, Π t
1, and Π

t
2 are in fact functions since any member of the equivalence class

returns the same value.

One obvious property it is important not to forget is that the term model is indeed a standard
model and is fully abstract.

32 Mason, Smith, and Talcott

Lemma 5.22 (STD) Mt ∈ STD ∩FA.

Proof: First we show Mt ∈ FLEM. Φt is easily shown to be bijective: it is onto by definition,
and into by ∼= extensionality. The properties of Πt, Π t

1, and Π
t
2 are similarly direct. "t is a partial

order since !∼ is a pre-order and "t is anti-symmetric by the quotienting operation. " Property 2.
is direct from the definition, 3. follows by !∼ pre-congruence, and 4. by !∼ extensionality. [[·]]t· is
an environment model by a simple structural induction. Thus, Mt ∈ FLEM. Mt ∈ FA is direct
from Lemma 5.9. "

A standard model must have no extra points, so the only room for variance is to have alternate
notions of ". If we require " to be fully abstract we fix its value at all points so there is no room
for variance and all models are then isomorphic.

Theorem 5.23 All M ∈ FA ∩ STD are isomorphic.

Proof: It suffices to show for arbitrary M = (D,Φ,Π ,Π1,Π2,", [[·]]·) ∈ FA ∩ STD that
M ∼ Mt. Define Σ([v]) = [[v]]. Note this indeed defines a function since by full abstraction of M
all v0 ∼= v1 ∈ [v] must map to the same point in M.

First, Σ is a bijection: it is onto by the standardness of M, and is into by the full abstraction
of M. We now proceed to establish isomorphism requirements (i)–(vi). For property (i), we show
first that Σ maps Pt to P. By the definitions of Pt and Σ it suffices to show [[pr(v0, v1)]] ∈ P,
and this is direct from the definitions. The cases for N and L are similar. For property (ii), the
⊥ cases are direct and [v0] "t [v1] ⇔ v0 !∼ v1 ⇔ Σ([[v0]]) " Σ([[v1]]), the former by definition and
the latter by M full abstraction. For property (iii), we show lift(Σ)(Φt([v0])([v1])) = Φ([[v0]])([[v1]]).
Since [v0] ∈ Lt, v0 = λx.a. Proceed by cases on whether v0(v1) ↓. If not, lift(Σ)(Φt([v0])([v1])) =⊥
by definition and Φ([[v0]])([[v1]]) = [[v0(v1)]] =⊥ by the definition of [[·]]· for applications and by
adequacy of M, respectively. Consider then the case v0(v1) ↓.

lift(Σ)(Φt([v0])([v1])) = Σ([v2]) = [[a{x := v1}]] = [[a]]{x := [[v1]]} = Φ([[λx.a]])([[v1]])

by the definition of Φt (where v0(v1))→ v2), Lemma 5.4, Lemma 5.3, and the definition of [[·]]·,
respectively. Properties (iv)-(vi) are direct from the definitions. "

Define CON− to be CON but without the requirement CON ⊆ CPO.

Definition 5.24 (CON−) M ∈ CON− iff for all φ ∈ F and directed sets D ⊆ D⊥, if
⊔

D is
defined then φ(

⊔

D) =
⊔

{φ(δ) δ ∈ D}.

We then may show no fully abstract standard model is continuous or complete.

Corollary 5.25 FA ∩ STD ∩CON− = ∅ = FA ∩ STD ∩CPO.

Proof: These are immediate from Theorem 5.23 and Theorem 3.16, section 3.3. "

Now we construct a model, Ms, that is in SFA∩CON. The ultimate goal will be to show Ms

is the unique continuous, strongly fully abstract model. Elements of Ds are ∼=s-equivalence classes
of directed sets of expressions. Following the development of section 4.6, we pick a particular
representative of the equivalence class to make proofs easier, the downward-closed sets of finite
elements ∆ω

∅ . Over this set, !∼s is not only a pre-order, it is a partial order.

From Operational Semantics to Domain Theory 33

Definition 5.26

Ms = (Ss, [[·]]i·)

where

S = (Ds,N s,Ps,Ls,Fs,Φs,Πs,Πs
1,Π

s
2,+

s
N ,−s

N , ιs,"s)

and

Π(A) =
⋃

a∈A

{d ∈ E
ω d !∼ a}

Ds
⊥ = ∆ω

∅ = {Π(A) A ∈ ∆∅}

Ls = {D ∈ Ds
⊥ D ∩ L *= ∅}

Ps = {D ∈ Ds
⊥ D ∩ P *= ∅}

N s = {D ∈ Ds
⊥ D ∩ N *= ∅}

Ds = N s + Ps + Ls

[[a]]sρ = Π({aρ})

Φs(Π(λx.D0)) = lift(λD ∈ Ds.[[D0{x := D}]]s), Fs = Rng(Φs)

Π
s(Π(D1),Π(D2)) = Π(pr(D1,D2))

Π
s
1(Π(pr(D1,D2))) = Π(D1)

Π
s
2(Π(pr(D1,D2))) = Π(D2)

"s = !∼s

Recall that by Lemma 4.32, !∼s
restricted to ∆ω

∅ is just ⊆, and by Definition 5.10, [[A]] =
⊔

{[[a]]
a ∈ A}, for A ∈ Ds.

Lemma 5.27 Ms ∈ SFA ∩CON.

Proof: First we establish Mt ∈ FLEM. Φs is onto by definition. To see that it is into, suppose
not. Then there would be λx.D0 *∼= λx.D1 and (λx.D0)(D) ∼= (λx.D1)(D) for all D by definition
of Φs, but this contradicts !∼s

extensionality, Lemma 4.10. The required properties of Πs, Πs
1,

and Π
s
2 are similarly direct. "s is a partial order over ∆ω

∅ by Lemma 4.34. " Property 2. is
direct from the definition, 3. follows by !∼s pre-congruence, and 4. by !∼s extensionality. [[·]]s· is
an environment model by a simple structural induction. Thus, Ms ∈ FLEM. Next we show that
Ms ∈ SFA. Expanding definitions, this amounts to showing Π(D0) ∼=s Π(D1) iff for all Π(D) ∈ Ls,
Π(D)(Π(D0)) ↓ ⇔ Π(V)(Π(D1)) ↓. This in turn is direct from the definition of ∼=s and Theorem
4.6. That Ms ∈ CPO follows directly from Lemma 4.34. Ms ∈ CON is a consequence of Lemma
4.37. "

5.5 Milner’s Uniqueness Theorem

In this section we prove an untyped version of Milner’s uniqueness theorem [Milner, 1977]: all
continuous, fully abstract models of the typed lambda calculus that articulate their base domains are
isomorphic. In the untyped framework we prove that all continuous, strongly fully abstract models

34 Mason, Smith, and Talcott

are isomorphic. This slight weakening is due to the open question, raised earlier, of whether or not
continuous fully abstract models are ω-algebraic in the untyped case. We begin by characterizing
the finite elements in strongly fully abstract, continuous FLEM models, leading to a proof that all
finite elements of such models are definable.

Definition 5.28 (GLB =(a, b))

=(a, b) = if(isnat(a), if(isnat(b), if(nateq(a, b), a, bot), bot),

if(ispr(a), if(ispr(b), pr(=(fst(a), fst(b)),=(snd(a), snd(b))), bot),

if(islam(a), if(islam(b),λy. = (app(a, y), app(b, y)), bot), bot)))

!(δ0, δ1) = [[=(x, y)]]{x := δ0}{y := δ1}

Lemma 5.29 (Greatest Lower Bound) For D ∈ FLEM, δ0, δ1 ∈ Dk, !(δ0, δ1) " δ0, δ1, and if
some other δ " δ0, δ1, then δ " !(δ0, δ1).

Proof: By induction on k, using " extensionality to prove the function case. "

Define sets of definable finite elements as follows: Dk
def = Dk ∩Ddef , Dω

def = Dω ∩Ddef , Fk
def =

Φ(Dk
def ∩ L).

Lemma 5.30 For M ∈ SFA ∩CON,

(∀k)(δ0, δ1 ∈ Dk ⇒ (∀φ ∈ Fk+1
def)(φ(δ0) *=⊥⇒ φ(δ1) *=⊥) ⇒ δ0 " δ1).

Proof: The result is trivial for k = 0, assume k > 0. By the definition of SFA, to show δ0 " δ1
it suffices to show

(∀φ ∈ Fdef)(φ(δ0) *=⊥⇒ φ(δ1) *=⊥)

Further, without loss of generality we may restrict φ in the above to have range {0,⊥}. Letting
φ′ = πk ◦ φ ◦ πk,

φ′(δi) *=⊥⇔ π
k(φ(δi)) *=⊥⇔ φ(δi) *=⊥, i < 2,

by observing πk ◦ πk = πk, and πk(0) = 0 and πk(⊥) =⊥. So, it suffices to show

(∀φ ∈ Fdef)(φ
′(δ0) *=⊥⇒ φ′(δ1) *=⊥)

And, φ′ = Φ(πk+1(Φ−1(φ))) by the definition of [[·]]·, so φ ∈ Fk+1
def and the above goal then corre-

sponds to our assumption. "

We now prove the key lemma: all finite elements in the domain are the interpretations of some
expression in the model. This means the finite expressions of E and finite elments of D coincide.

Lemma 5.31 (Definable) For M ∈ SFA ∩CON, all finite elements in D are definable: Dω =
Dω

def .

Proof: We prove Dk = Dk
def by induction on k, from this Dω = Dω

def follows directly. Suppose
there existed an undefinable δ ∈ Dk, δ *∈ Dk

def . for each δ′ ∈ Dk
def , either δ " δ′ or not. Group the

former δ′ into the set Da, the rest into Db. We consider two cases depending on whether or not
Da = ∅.

From Operational Semantics to Domain Theory 35

case Da *= ∅: Both sets are finite by Lemma 5.17. Define δ) = !Da; δ) ∈ Ddef by Lemma 5.29.
Thus, δ " δ) and δ *= δ). So, by Lemma 5.30, there is a definable φ) ∈ Fk+1

def with φ)(δ)) *=⊥,
φ)(δ) =⊥.

Next consider Db; for its (finite) members δ1, . . . , δm ∈ Db, by Lemma 5.30 again, there are
φ1, . . . ,φm ∈ Fk+1

def such that φi(δ) *=⊥ and φi(δi) =⊥.
Letting φ−1 = a such that Φ([[a]]) = φ, defined on all φ ∈ Fdef , form expressions

H1 = λx.seq(φ−1
1 (x), . . . ,φ−1

m (x),φ−1
) (x))

H2 = λx.seq(φ−1
1 (x), . . . ,φ−1

m (x))

and observe H1
∼= H2: it suffices to show app(H1, a) ∼= app(H2, a) for a ∼= πk(a) by Theorem 3.5

and the finiteness of φ ∈ Fk+1
def . This is clear, because both H1 and H2 converge for δ′ ∈ Da, while

they both diverge for δ′ ∈ Db, and that covers all (definable) finite elements at level k. However,
clearly Φ([[H1]])(δ) and Φ([[H2]])(δ) are distinct, as the first is equivalent to ⊥ and the second to 1,
so [[H1]] *= [[H2]]. Thus, full abstraction is contradicted, so there must have been no such δ to begin
with.
case Da = ∅: In this case form expressions

H1 = λx.seq(φ−1
1 (x), . . . ,φ−1

m (x))

H2 =⊥

and reason as in the previous case. "

We may now prove Milner’s Uniqueness Theorem.

Theorem 5.32 (Milner’s Uniqueness Theorem) All M ∈ SFA ∩CON are isomorphic.

Proof: We establish this result by showing for arbitrary M ∈ SFA ∩ CON that M ∼ Ms.
Define Σ ∈ Ds → D to be λD.[[D]], recalling [[A]] =

⊔

{[[a]] a ∈ A}. We now proceed to show
all the requirements of the isomorphism definition are satisfied. To verify that Σ is into, suppose
[[D0]] = [[D1]], we show D0 = D1. By Lemma 5.11, D0

∼=s D1, thus D0 = D1 by Lemmas 4.28
and 4.32, uses of which we refrain from citing hereafter. To verify that Σ is onto, we pick an
arbitrary δ ∈ D and show Σ(A) = δ for some A. By Lemma 5.12, and Lemma 5.31, letting
D =

⊔

{δ0 ∈ Dω
def δ0 " δ}, we have δ =

⊔

D. For δ ∈ D, let δ−1 be [[δ−1]] = δ, let and

D−1 = {δ−1
0 δ0 ∈ D}. Pick A to be Π(D−1). Then,

Σ(Π(D−1)) = δ iff [[Π(D−1)]] = δ

iff
⊔

{[[Π(δ−1)]] δ−1 ∈ D−1} =
⊔

D

iff (∀δ0 ∈ D)([[Π(δ−1
0)]] = δ0)

iff (∀δ0 ∈ D)([[δ−1
0]] = δ0)

and the final equation is trivial by definition. Property (i) is direct by inspection of the definition
of Σ and [[·]]·. Property (ii) is also direct by Lemma 5.11. To verify property (iii), we show
that lift(Σ)(Φs(D0)(D1)) = Φ(Σ(D0))(Σ(D1)). D0 ∈ Ls, and thus, without loss, may be written
D0 = λx.A. Working from the right side of the equation,

Φ(Σ(λx.A))(Σ(D1)) = Φ([[λx.A]])([[D1]])

= [[A]]{x := [[D1]]}

36 Mason, Smith, and Talcott

= [[A{x := D1}]] By Lemma 5.3

= Σ(A{x := D1}) if A{x := D1} ↓, otherwise =⊥

= Σ(Φs(D0)(D1)) if Φs(D0)(D1) *=⊥, otherwise =⊥

= lift(Σ)(Φs(D0)(D1)).

To verify property (iv) observe that

Σ(Πs(D0,D1) = Σ(pr(D0,D1))

= [[pr(D0,D1)]]

= Π([[D0]], [[D1]])

= Π(Σ(D0),Σ(D1))

The remaining properties are proved similarly. "

Corollary 5.33 SFA ∩CON ⊆ LFP

6 Concluding remarks

A topic for future work is to consider the generality of techniques employed in this paper. There
appear to be no significant problems in defining a useful !∼s

relation on enriched languages with
features such as state and explicit control operators. The basic theory of !∼s

strongly parallels
the basic theory of !∼ developed within (in fact the proofs for !∼s

are very minor generalizations
on proofs !∼, see sections 3.1 and 4.2), and for instance in [Mason and Talcott, 1991] it is shown
how a basic theory of !∼ may be developed for languages with state. However, it is unclear if the
notion of finite expression will generalize to languages with features such as state and continuations.
The presence or absense of recognizers ispr, isnat are irrelevant for all results up to the finite
expressions of section 4.4. However, they play a key rôle in the construction of finite expressions.
It is an open problem if finite expressions can be constructed for a language without recognizers.
Recognizers are desired for untyped languages, and indeed are present in untyped languages such
as Lisp and Scheme, so their inclusion here is appropriate. There also have been a number of
proposals for type recognizers of some form as a feature of typed languages [Abadi et al., 1991a].

Acknowledgements

We wish to thank the anonymous referees for helpful comments, and one of the referees in particular
for ideas leading to a cleaner proof of Theorem 3.16.

References

[Abadi et al., 1991a] Abadi, M., Cardelli, L., Pierce, B., and Plotkin, G. (1991a). Dynamic typing
in a statically typed language. Transactions on Programming Languages and Systems, 13(2):237–
268.

[Abadi et al., 1991b] Abadi, M., Pierce, B., and Plotkin, G. (1991b). Faithful ideal models for
recursive polymorphic types. International Journal of Foundations of Computer Science, 2(1):1–
21.

From Operational Semantics to Domain Theory 37

[Abramsky, 1990] Abramsky, S. (1990). The lazy lambda calculus. In Research Topics in Functional
Programming, pages 65–116. Addison-Wesley.

[Bloom, 1990] Bloom, B. (1990). Can LCF be topped? Information and Computation, 87:264–301.

[deBakker and Scott, 1969] deBakker, J. W. and Scott, D. (1969). A theory of programs. unpub-
lished Notes.

[Felleisen et al., 1987] Felleisen, M., Friedman, D., and Kohlbecker, E. (1987). A syntactic theory
of sequential control. Theoretical Computer Science, 52:205–237.

[Gordon, 1994] Gordon, A. D. (1994). Functional Programming and Input/Output. Cambridge
University Press.

[Honsell et al., 1995] Honsell, F., Mason, I. A., Smith, S. F., and Talcott, C. L. (1995). A variable
typed logic of effects. Information and Computation, 119(1):55–90.

[Howe, 1989] Howe, D. J. (1989). Equality in lazy computation systems. In Proceedings of the
Fourth Annual Symposium on Logic in Computer Science, pages 198–203. IEEE.

[Howe, 1995] Howe, D. J. (1995). Proving congruence of bisimulation in functional programming
languages. Preprint.

[Hyland, 1976] Hyland, J. M. E. (1976). A survey of some useful partial order relations on terms
of the lambda calculus. In Boehm, C., editor, Lambda Calculus and Computer Science Theory,
volume 37 of Lecture Notes in Computer Science, pages 83–93. Springer-Verlag.

[Igarashi, 1972] Igarashi, S. (1972). Admissibility of fixed-point induction in first-order logic of
typed theories. Technical Report Stan-CS-72-287, Stanford University Computer Science De-
partment.

[Jim and Meyer, 1991] Jim, T. and Meyer, A. (1991). Full abstraction and the context lemma.
In Theoretical Aspects of Computer Science, volume 526 of Lecture Notes in Computer Science,
pages 131–151. Springer-Verlag.

[MacQueen et al., 1984] MacQueen, D. B., Plotkin, G., and Sethi, R. (1984). An ideal model of
types. In Conference Record of the Eleventh Annual ACM Symposium on Principles of Program-
ming Languages.

[Manna, 1974] Manna, Z. (1974). Mathematical Theory of Computation. McGraw-Hill.

[Mason and Talcott, 1991] Mason, I. A. and Talcott, C. L. (1991). Equivalence in functional lan-
guages with effects. Journal of Functional Programming, 1:287–327.

[Meyer, 1982] Meyer, A. R. (1982). What is a model of the lambda calculus? Information and
Computation, 52:87–122.

[Milner, 1977] Milner, R. (1977). Fully abstract models of typed λ-calculi. Theoretical Computer
Science, 4:1–22.

[Ong, 1988] Ong, C.-H. L. (1988). Fully abstract models of the lazy lambda calculus. In Symposium
on the Foundations of Computer Science, pages 368–376.

38 Mason, Smith, and Talcott

[Ong, 1992] Ong, C.-H. L. (1992). The concurrent lambda calculus i: a general precongruence
theorem for applicative bisimulation. Proceedings on Seminars on Parallel Programming Systems,
Department of Information Systems and Computer Science, National University of Singapore.

[Paulson, 1987] Paulson, L. C. (1987). Logic and Computation: Interactive Proof with Cambridge
LCF. Cambridge.

[Pitts, 1994] Pitts, A. M. (1994). A co-induction principle for recursively defined domains. Theo-
retical Computer Science, 124:195–219.

[Pitts and Stark, 1993] Pitts, A. M. and Stark, I. D. B. (1993). Observable properties of higher
order functions that dynamically create local names, or: What’s new? In Mathematical Founda-
tions of Computer Science, Proc. 18th Int. Symp., Gdańsk, 1993, volume 711 of Lecture Notes
in Computer Science, pages 122–141. Springer-Verlag, Berlin.

[Ritter and Pitts, 1995] Ritter, E. and Pitts, A. M. (1995). A fully abstract translation between a
λ-calculus with reference types and standard ml. In 2nd Int. Conf. on Typed Lambda Calculus
and Applications, Edinburgh, 1995, volume 902 of Lecture Notes in Computer Science, pages
397–413. Springer-Verlag, Berlin.

[Smith, 1992] Smith, S. F. (1992). From operational to denotational semantics. In MFPS 1991,
volume 598 of Lecture notes in Computer Science, pages 54–76. Springer-Verlag.

[Stoughton, 1988] Stoughton, A. (1988). Fully abstract models of programming languages. Research
Notes in theoretical computer science. Pitman.

[Talcott, 1985] Talcott, C. L. (1985). The essence of Rum: A theory of the intensional and exten-
sional aspects of Lisp-type computation. PhD thesis, Stanford University.

[Wadsworth, 1976] Wadsworth, C. (1976). Relation between computational and denotational prop-
erties for Scott’s D∞ models of the λ-calculus. SIAM J Computing.

