
The Coverage of Operational
Semantics

Scott F. Smith
Department of Computer Science
The Johns Hopkins University
scott@cs.jhu.edu
http://www.cs.jhu.edu/scott/

Abstract

Techniques of operational semantics do not apply universally to all lan-
guage varieties: techniques that work for simple functional languages may
not apply to more realistic languages with features such as objects and mem-
ory effects. We focus mainly on the characterization of the so-called finite
elements. The presence of finite elements in a semantics allows for an ad-
ditional powerful induction mechanism. We show that in some languages a
reasonable notion of finite element may be defined, but for other languages
this is problematic, and we analyse the reasons for these difficulties.

We develop a formal theory of language embeddings and establish a
number of properties of embeddings. More complex languages are given
semantics by embedding them into simpler languages. Embeddings may be
used to establish more general results and avoid reproving some results. It
also gives us a formal metric to describe the gap between different languages.

Dimensions of the untyped programming language design space ad-
dressed here include functions, injections, pairs, objects, and memories.

1 Introduction

This paper is an exploration of a space of (untyped, deterministic) languages to
determine what fundamental operational notions may be fruitfully defined.

A full and faithful notion of equivalence may be defined over an operational
semantics via the Morris/Plotkin notion of operational/observational equivalence
between program expressions,

�� . Operational equivalence has also been shown
to yield good notions of equivalence for languages with memories (Mason and
Talcott 1991), explicit control operators (Talcott 1989), types and objects (Gordon
and Rees 1996), and distributed objects (Agha, Mason, Smith, and Talcott 1992).

It is important to characterize what “full and faithful” means: it is full in the sense
that as many programs are equivalent as is possible, and it is faithful in the sense
that we do not go overboard and equate programs that have differing behaviors.
Operational equivalence � �� � is defined to precisely capture this notion: two
program fragments are equivalent unless some use inside a larger program text can

1

2 Smith

distinguish the two. This program text can be viewed as a particular “test” of � .
Letting � denote a program text and � � � � the result of placing � in some “hole”
in this text, we then may define � �� � as � � � � and � � � � having the same testing
outcome. For many languages, termination suffices as the observation. Thus, to
prove operational equivalence � �� � , one supposes for arbitrary context � that� � � � terminates and establishes that � � � � also terminates, by induction on the size
of � � � � ’s computation (and, vice-versa).

It is a difficult question how operational equivalences � �� � may be established
in practice (see (Talcott 1997) in this volume for more on this topic). Using compu-
tational induction as outlined above to directly establish operational equivalences is
in fact very difficult. Even proving � � � �� 	 is difficult since a context could make
many copies of � � � (if for instance � � � occurred in a function which was being
passed to another function) before evaluating it. However, proofs are possible. A
number of alternate characterizations of

�� have been developed to make proofs of
equivalence much simpler, including bisimulation (Abramsky 1990), applicative
orderings (Bloom 1990), and ciu equivalence (Mason and Talcott 1991). These
alternate characterizations may be shown to be the same as

�� (a so-called fully
abstract alternate equivalence). Bisimulation equivalences give rise to a coin-
duction principle which makes establishing equivalences easier; ciu equivalences
still often must be established by computational induction, but the inductions are
considerably simpler. Applicative orderings are very close in spirit to bisimulation
orderings; in many settings the difference between the two could be called trivial.

The focus of this paper is the search for additional proof techniques for estab-
lishing fully abstract equivalences and other properties of programs. The main
focus is the additional inductive structure of the finite or
 -algebraic elements in a
domain. To review very briefly, the finite elements of a domain are the elements
that are the lub of no infinite � -directed set.�

is finite iff for all � -directed sets with
� � � � � � � �

for some
� � �

Then,
 -algebraicity is the property that any domain element
�

can be decomposed
into its finite elements:

for all
� � � � � � � � � � �

is finite and
� � � � �

This equivalence allows a property of
�

to be proved by instead proving the property
for each

� � � �
(assuming continuity also holds). If the finite elements also may

be stratified into finite ranks � � 	 � � � � � � � � � � , this gives rise to the possibility of
proving properties of

�
by proving it for all

� � � �
by induction on the finite rank

of
� �

. This is very important because it gives a new, and often powerful, induction
principle.

A closely related property is fixed point induction (Scott 1976). The greatest
utility of the finite elements lies in the proof principle of rank induction, as just
mentioned. For special cases of

�
it is possible to consider special forms of � -

ordered chain. One such example is fixed point induction, which is based on the

The Coverage of Operational Semantics 3

finite approximation set

� �
�� � � �

for fixed point
� � � � �

. As in the case of finite elements, it is then possible to prove
a property of the fixed point by proving a property of the finite approximants, by
induction on � . So, even if
 -algebraicity cannot be established, there still may
be particular finitary decompositions that lead to useful proof principles. Another
example of the use of rank induction is found in the ideal model construction
(MacQueen, Plotkin, and Sethi 1984), where it is used to give semantics to recursive
types.

The obvious solution for defining finite elements is to work in a domain that
models the language. The inductive structure is usually present in a domain directly
by its manner of definition (Scott 1976). However, it is well-known that for many
languages it is difficult to define a domain which has a notion of equivalence that
is fully abstract. In fact, none of the languages studied in this paper have such
a model extant in the literature. Our alternate approach here is to build finite
elements out of the program syntax. This approach has proved successful for a
particular simple functional language (Mason, Smith, and Talcott 1996). Syntactic
projection functions ! �

(") are defined within the programming language to project
expression " to be a finite expression of level � . In this operational theory an
additional powerful induction principle is thus obtained: induction on the rank of
the finite elements.

Since memory-based languages often contain cyclical structures formed by
memory self-references (for instance a function is in a cell and the function body
contains a reference to the cell it is in), the idea of applying this technique to
memory-based languages is particularly appealing. One problem in particular it
could address is the question of a semantic definition of types in the presence of
memory, a problem that is currently open.

So, the main goal of this paper is to address how the concept of finite elements
generalizes to a broader class of languages. We will show that in some cases an
effective finite element structure may be defined, and in other cases this cannot be
established in a fully abstract manner (i.e., finiteness may only be established with
respect to an equivalence which is not operational equivalence

��), showing the
semantic tools which may be brought to bear on certain varieties of language are
currently limited in this regard.

We want to consider a range of languages rather than addressing a single pro-
gramming language. A series of (untyped) programming languages # is studied.# $ % & contains only the call-by-value ' -calculus and injections. # () % adds booleans,
numbers, and pairs. # * (& has simple objects, and # + has a memory. We will not
explicitly address control operators, typed languages, or concurrent or distributed
computation. All languages we study follow the evaluation order most common
in programming languages today, namely function application is call-by-value,
pairing and injection are strict, and evaluation never takes place inside a ' .

4 Smith

Rather than presenting multiple semantic definitions, we give semantics to
languages by defining language embeddings that map high-level languages down
to low-level languages that lack many of the high-level features. In particular, all
languages are mapped down to languages with injections only, # $ % & . This approach
makes clear what the “difference” between languages is, and helps us focus on
the particular difficulties that arise in some languages. A theory of embeddings
is developed and a number of theorems proved to better characterize what can be
embedded in what and how well. The mappings also allow us to define some
hybrid forms of language quite easily, and in certain cases allows the “lifting”
of theorems from low-level to high-level languages. The approach of defining
language features by embeddings has a long history going back to Strachey (Milne
and Strachey 1976). We obtain some interesting results about these mappings, and
the mappings themselves are an additional topic of the paper.

An outline of the paper is as follows. A language-independent framework for
operational semantics and language embeddings is defined in Section 2. Next, in
Section 3 the injection language # $ % & is studied in detail and its finite element theory
developed. Then, in Sections 4 and 5 a wider space of languages is explored via
embeddings into # $ % & . Section 5 presents a memory language # + in full detail.
Conclusions regarding what succeeds and what fails are found in Section 6.

2 A Framework for Operational Semantics

Before studying particular languages we define a simple semantic framework for
languages with an operational evaluation relation, and for embeddings between
languages. It is general enough to encompass all languages studied herein, but is
not intended as a general framework along the lines of (Mosses 1992). In particular
it will not fully capture nondeterministic or concurrent languages. It will allow for
a general notion of language embedding to be defined. We will give definitions
and properties that hold over an arbitrary operational structure; these definitions
will then not have to be repeated for each language studied.

2.1 Operational Structures

We begin with an official definition of a language structure, called an operational
structure. Languages are taken to come with an operational evaluation relation.
Some of the language mappings need to be based on the grammatical structure of
the language, so a general notation for operators , - is also defined in the tradition
of a theory of arities (Harper, Honsell, and Plotkin 1993). All languages are defined
with respect to a single shared set of program variables . for simplicity.

DEFINITION 2.1 A Language # has structure / 0 � 1 � 2 � 34 5 where

0 is the set of expressions of the language

The Coverage of Operational Semantics 5

1 6 0 are the value expressions

2 are the operators. Each operator , - � 2 can be viewed as a map from� . 7 8 9 0 � 9 � � � 9 � . 7 : 9 0 �
to 0 for some values of � and ; < , � = > = �

associated with , - .

34 � 0 9 0 is the evaluation relation, mapping expressions to final computation
results. It is reflexive on values.

Our notion of operational evaluation relation maps expressions to expressions;
although this may seem restrictive, it is possible to define evaluation relations
for languages with control primitives and effects in a purely syntactic fashion
(Mason and Talcott 1991; Felleisen and Hieb 1992). We impose some informal
regularity on the notation used for languages. # is implicitly / 0 � 1 � 2 � 34 5 , # $ % & ? < @
taken to be / 0 $ % & ? < @ � 1 $ % & ? < @ � 2 $ % & ? < @ � 34 $ % & ? < @ 5 , # A taken to be / 0 A � 1 A � 2 A � 34 A 5 , etc.
We let B � C � D range over . , E range over 1 , � � � � F � � � " range over 0 , and, - range over 2 . For the remainder of this section we develop results for an
arbitrary fixed language # . Each definition of this section, e.g.

�� , is applied to a
particular language by subscripting:

�� + indicates the
�� relation for language # + .

The operators are a general notation which allows each field to bind some number
of variables. In each product

� . 7 G 9 0 �
, the variables bind free occurrences in the

expression. An example operator is

H I J - K L M , - � B � C � " N � " O � D � " P �
—free B and C in " N and free D in " P are bound, and no other free variables in" N � " O � " P are bound. We will use this informal notation of writing out an example
to define the arity of an operator.

The set of expressions 0 is constrained to be the least superset of . closed under
the operators in 2 . We will implicitly coerce between operators of one language
and operators of another language, provided the arities of the two operators are the
same. Furthermore, if an expression " � # N is constructed with operators which
are all in 2 O for some # O , then " may be implicitly coerced to be in 0 O by the
obvious pointwise operator mapping.

A closed expression is an expression with no free variables; 0 Q is the set of all
closed expressions. � R S T U V is the result of substituting � for the free occurrences ofB in � taking care not to trap free variables of � . Contexts � � W

are expressions
with holes “X ” punched in them, and � � " � denotes placing " in the hole(s) in � ,
possibly incurring the capture of some free variables in " .

A value substitution is a finite map from variables to values. We let Y range
over value substitutions. � R Z V is the result of simultaneous substitution of free
occurrences of B � [\] � Y �

in � by Y � B �
, again taking care not to trap variables.

6 Smith

2.2 Operational Ordering and Equivalence

In this section we give basic definitions of orderings and equivalence that are
uniform with respect to the language studied.

DEFINITION 2.2 (�̂ ,
��)

� �̂ � iff for all � � W
such that � � � � � � � � � � 0 Q � � � � � _ implies � � � � _� �� � iff � �̂ � and � �̂ �

Note, � is defined (written � _) if it evaluates to a result: � 34 � for some � . And, � `
if � _ fails to hold. In this definition of observational equivalence we are implicitly
taking termination as the single observable property because it is a proper notion
of observation for the languages studied herein. A more complete treatment would
allow for a more general notion of observation than just termination.

LEMMA 2.3 (ELEMENTARY �̂ a �� PROPERTIES) (i) �̂ is transitive and reflexive
(a pre-order).

(ii)
�� is an equivalence relation.

(iii) �̂ is a pre-congruence, i.e. � �̂ � implies � � � � �̂ � � � � .
(iv)

�� is a congruence, i.e. � �� � implies � � � � �� � � � � .
Over any operational structure, it is also possible to define an operational notion

of directed set. This is simply a �̂ -directed set of expressions in place of a � -
directed set of domain elements.

DEFINITION 2.4 (�̂ -DIRECTED SETS) A set b is directed iff for all � � � , if � � � � b ,
then there is some F � b where � �̂ F and � �̂ F .

We let b � c range over directed sets with finitely many free variablesN , and d range
over directed sets with d 6 1 . We allow directed sets of expressions to be used as
subexpressions with the convention � � b � � � � � � � � � � b �

. Value substitutions Y
extend pointwise to sets of expressions: b R Z V � � � R Z V � � � b �

.

The first hurdle encountered is the lack of an operational analogue of a lub
operator e . Some chains may not even have an upper bound because each element
of the chain could be a function with a finite domain, but the lub could have an
infinite domain and be uncomputable. Thus, �̂ is not complete.

A number of solutions to this problem are possible. For one, we could restrict
the directed sets b to be recursively enumerable (r.e.) sets. The lub will also be
r.e. since b is r.e. This approach may be effectively applied to the simply typed' -calculus (Freyd, Mulry, Rosolini, and Scott 1990).f

For technical reasons, we only allow directed sets with finitely many free variables, otherwise a
directed set may contain all the variables g free and problems may arise in obtaining fresh variables.

The Coverage of Operational Semantics 7

A variation would be to further require that the directed set b is internally
represented by a function h in # such that h (�) for natural number � produces the� -th element of the directed set, and to have an expression K i j (h) in the language
which internally computes the lub of h (this argument assumes the language # has
functions and numbers). Unfortunately, K i j must then have the ability to dovetail
computations in the directed set, and this will require new syntax in the language
and change the underlying equivalence. So, this approach may be of limited value.

It thus does not appear to be feasible to construct structures isomorphic to
domains directly on expressions. It is however possible to make progress by using�̂ -directed sets of expressions as a space over which an ordering is defined (Smith
1992). A simple pre-ordering on directed sets of expressions, � k � �̂ � k � , is defined
for this purpose. This pre-ordering has the property that � �̂ � iff � � � �̂ � � �

,
meaning that it fully and faithfully generalizes �̂ .

DEFINITION 2.5 (SET RELATIONS � k � �̂ � k � , � k � �� � k �
) For b � c directed, define

b �̂ c iff for all � � b and for all � � W
such that � � b � � � � c � 6 0 Q �

if � � � � _ then there exists a � � c such that � � � � _ �b �� c iff b �̂ c and c �̂ b
This ordering is not quite what one might initially expect, as the � � c may
be chosen depending on the particular testing context � which exercises � � b .
Therein lies the power of the ordering. From the context of use it will be possible to
disambiguate between �̂ and � k � �̂ � k �

. Some elementary properties of � k � �̂ � k �
include the following.

LEMMA 2.6 (ELEMENTARY � k � �̂ � k � a � k � �� � k � PROPERTIES) (i) � k � �̂ � k � is
a pre-congruence: b �̂ c implies � � b � �̂ � � c � .

(ii) � k � �� � k �
is a congruence: b �� c implies � � b � �� � � c � .

(iii) � � � �̂ � � �
iff � �̂ � .

(iv) b �̂ � � �
iff for all � � b � � �̂ � .

(v) � � b implies � � � �̂ b .

This ordering will be used to characterize the finite expressions.

DEFINITION 2.7 (FINITE EXPRESSIONS 0 l) The set of finite expressions 0 l is de-
fined by

0 l � � � � 0 Q �
for all closed b � if � � � �̂ b then � �̂ � for some � � b �

It is worth emphasizing that the previous development was language-independent:
the ordering � k � �̂ � k �

was successfully defined over any language # . Much of
the power of this relation is derived from its generality. This completes the brief
general theory of languages. We next define a theory of embeddings between
languages.

8 Smith

2.3 Language Embeddings

For the purpose of embedding one programming language in another, a general
theory of language embeddings is now defined. Other closely related notions
of language embedding have been previously defined (Felleisen 1991; Mitchell
1993; Riecke 1993). Our definitions combine ideas from these approaches. The
embeddings will be used to give semantics to a number of languages in Section
4, and will enable a number of properties to be proved concerning the relation
between equivalences in one language and equivalences in a similar language.

DEFINITION 2.8 (EMBEDDING) Given high- and low-level languages # m and # n , a
sound embedding �� k �� � # m 4 # n is defined as maps �� k �� � 0 m 4 0 n �� k �� � W m 4 W n
and an initial context o $ % $ p � W n such that

(i) For � � W m � " � 0 m , �� � � " � �� � �� � �� � �� " �� �
(ii) For closed " � 0 m , " _ m iff o $ % $ p � �� " �� � _ n

o $ % $ p is not X for embeddings that require a special initial context; for most embed-
dings, o $ % $ p will just be X . Our (i) is Mitchell’s (R1) condition, and (ii) is similar to
Felleisen’s condition 2 of his Eliminability notion (Felleisen 1991).

For brevity in this presentation, we will generally not define _ m and 34 m for the
high-level languages. We will often leave 34 m undefined and take (ii) above as
a definition of _ m . Since operational equivalence needs only to have termination
defined, termination alone is a sufficient operational characterization for our pur-
poses. Sound embeddings will thus only need to satisfy (i). Value set definitions1 m will similarly not be needed. We take �� b �� to abbreviate � �� � �� � � � b �

.

It is useful to consider the induced ordering �� � �� �̂ n �� � �� . Since programs in # m
will be able to be tested by contexts that are not in the codomain of the translation,
this equivalence may be more fine-grained than �̂ m .

LEMMA 2.9 If �� � �� �̂ n �� � �� then � �̂ m � ; and, if �� b �� �̂ n �� c �� then b �̂ m c .

PROOF: For arbitrary C, suppose � � � � _ m , show � � � � _ m , assuming �� � �� �̂ n �� � �� .
Since the embedding is sound, �� � � � � �� � �� � �� � �� � �� � and o $ % $ p � �� � �� � �� � �� � � _ n and thus by
assumption o $ % $ p � �� � �� � �� � �� � � _ n , allowing us to conclude � � � � _ m . The proof for the
set-based ordering is similar, noting that if �� b �� is directed, b also is. q

An even more desirable property of embeddings is full abstraction, Mitchell’s
(R2). This is the case when the # n contexts cannot expose any more structure than
the # m contexts already had exposed.

DEFINITION 2.10 An embedding �� k �� � # m 4 # n is fully abstract if � �̂ m � iff�� � �� �̂ n �� � �� . It is set fully abstract if b �̂ m c iff �� b �� �̂ n �� c �� .
Set full abstraction trivially implies full abstraction by the definitions, but not the
converse. (It is an open question whether the converse holds).

The Coverage of Operational Semantics 9

Full abstraction imposes a strong global structure on the embedding, one that
many embeddings will fail to satisfy. It is also useful to consider imposing local
structure on the embedding. The first additional constraint we impose is the notion
of a parametric embedding.

DEFINITION 2.11 (PARAMETRIC EMBEDDING) Given a sound embedding �� k �� � # m 4# n , it is parametric if for each , - � 2 m , an expression " r s with t u v v w x u y � " r s � �
� C N � � � � � C � �

exists such that

�� , - � B N � " N � � � � � B � � " � � �� � " r s z RR { 8 VV T | 8 } ~ ~ ~ } RR { : VV T | : �
where � z S T U � indicates a substitution of all free occurrences of variable B by � ,
allowing the free variables of � to be captured in � . Furthermore, there is a # n
context � � � � such that �� B �� � � � � � � B �
� � � � interprets variables; in more complex embeddings such as state and control,
variables cannot just map to themselves. The reader may now want to look ahead to
Definitions 4.3, 4.18, and 5.3, which contain examples of parametric embeddings.
Parametric embeddings are closely related to Felleisen’s condition 3, so-called
“Macro Eliminability” (Felleisen 1991).

One other important property of an embedding is the syntax of some high-level
operators may be preserved by the embedding.

DEFINITION 2.12 (HOMOMORPHIC EMBEDDING) Given a parametric embedding �� k �� �
m 4 # n , this embedding is a homomorphic embedding with respect to operators2 if

(i) o $ % $ p � X
(ii) 2 6 2 m � 2 n , and the arity of operators in 2 is the same in 2 n and 2 m

(iii) for each , - � 2 , the embedding is homomorphic:

�� , - � B N � " N � � � � � B 7 � " � � �� � , - � B N � �� " N �� � � � � � B 7 � �� " � �� �
(iv) � � � � � X

In terms of equivalence, homomorphic embeddings preserve equations that only
use operators in 2 . This allows equations in the low-level language to be lifted to
the higher language, avoiding the need to re-prove them.

LEMMA 2.13 (LIFTING) If � �̂ n � and � and � only use operators in 2 , and �� k �� �
m 4 # n is a homomorphic embedding with respect to 2 , then � �̂ m � . Similarly,b �̂ n c implies b �̂ m c when b and c only use operators in 2 .

10 Smith

PROOF: �� � �� � � and �� � �� � � in this case; the result then follows from the fact
that all testing contexts � � W m can be mapped to �� � �� � W n . q

The main advantage of homomorphic embeddings is the abilty to use the Lifting
Lemma. Our notion of homomorphic embedding is closely related to Felleisen’s
eliminability definition, condition 1 (Felleisen 1991). Definitions 4.3 and 4.18
below are examples of homomorphic embeddings.

Embeddings compose in the obvious fashion.

LEMMA 2.14 Define �� k �� � # N 4 # P as the composition of �� k �� N � # N 4 # O and�� k �� O � # O 4 # P formed by defining �� k �� � 0 N 4 0 P as �� k �� O � �� k �� N .
(i) �� k �� � # N 4 # P is a sound embedding.

(ii) If �� k �� N and �� k �� O are both parametric (resp., homomorphic with respect to 2 N
and 2 O) embeddings, then �� k �� is also a parametric (resp., homomorphic with
respect to 2 N � 2 O) embedding.

3 The Injection Languages � � � � � � �
The development up to this point has been independent of a particular language.
We now study a particular family of languages in-depth, the family of injection
languages # $ % & ? N @ � # $ % & ? O @ � � � � . Following this section, we define a series of lan-
guages via embeddings into # $ % & ? � @ . Pure ' -expressions plus injections provide
just enough syntax to allow a wide range of programming languages to be faith-
fully embedded. The injections � � � < � � �

serve to wrap high-level expressions � to
distinguish different sorts; Lemma 4.5 below shows why the pure ' -calculus will
not suffice as an embedding target language. The injection languages consist of
the untyped call-by-value ' -calculus augmented with a finite number of injections.
The language # $ % & ? � @ has injections � � � N � � � � � � � � � � � � � � �

.

DEFINITION 3.1 (# $ % & ? � @) For
� � �

, define

$ % & ? � @ � / 0 $ % & ? � @ � 1 $ % & ? � @ � 2 $ % & ? � @ � 34 $ % & ? � @ 5
as follows.

2 $ % & ? � @ � � I - - � � � � � � K I J j � I � B � � � � � � N � < � � � � � � < � � � � , i � < � � � � � H < � � � �
1 $ % & ? � @ � . � � K I J j � I � B � � � � � � 0 $ % & ? � @ � � � N � < � � � � � � < � E � � E � 1 $ % & ? � @ �
34 $ % & ? � @ is defined below.

For the remainder of this section, the
�

in # $ % & ? � @ is taken to be some arbitrary fixed
value and we write # $ % & , 0 $ % & , etc. Several syntactic abbreviations will be made

The Coverage of Operational Semantics 11

to aid in readability of programs through the use of more conventional notation.
These include

' B � � � K I J j � I � B � � �
� (�) � I - - � � � � �

K L � B = � � � � � � ' B � � �
(�)j , � � � ' B � B (B) �

(' B � B (B))L � � i L � ' B � ' C � B (B)L � I K H L � ' B � ' C � C (C)L � � � � � � � F � � � (' B � �)(' B � F) for fresh B� � � � ' C � � ' B � ' D � C (B (B))(D) �
(' B � ' D � C (B (B))(D))� � � � ' B � � (� (B))

Booleans and conditional are encoded via the standard method. The “L ” prefixingL � � i L � L � I K H L � L � � indicates that these are L ncoded notions of these constructs
and not primitives. Observe typewriter font parentheses � (�) abbreviate function
application. � � � is a call-by-value version of the standard fixed-point combinator
for functionals.

3.1 Operational Semantics

The operational semantics of expressions is given by a single-step evaluation re-
lation 34 $ % & , using the convenient notion of a reduction context (a.k.a. evaluation
context) from (Felleisen, Friedman, and Kohlbecker 1987). The redices are ex-
pressions of the form E (�), � H < � E �

, or , i � < � E �
. Redices are either immediately

available for execution, , i � < � � � � < � � � �
, or are stuck, , i � < � ' B � B �

. In this presenta-
tion stuck computations are treated as divergent for simplicity. Reduction contexts� $ % & determine the subexpression that is to be reduced next.

DEFINITION 3.2 (REDUCTION CONTEXTS
� $ % &) The set of reduction contexts, � �� $ % & , is the least subset of

W $ % & that includes

X � � (") � E (�) � � � � < � � � � , i � < � � � � � H < � � �
for all " � 0 $ % & , E � 1 $ % & , � � � $ % & , and � = > = �

.

In an expression � � � � , � denotes the continuation for the computation � . Reduction
contexts are used in evaluation as follows. In order to perform one step of com-
putation of some non-value expression � , it is uniquely decomposed into � � � � � �
for some � and redex � by the following Lemma. Uniqueness of decomposition
implies evaluation is deterministic.

LEMMA 3.3 (DECOMPOSITION) Either � � 1 $ % & or � can be written uniquely as � � � �
where � is a redex.

12 Smith

DEFINITION 3.4 (EVALUATION 34 $ % &) The evaluation relation 34 $ % & for # $ % & ? � @ is the
transitive, reflexive closure of the single-step evaluation relation 34 N$ % & , which is
generated by the following clauses:

(beta) � � � ' B � � �
(E)� 34 N$ % & � � � R � T U V �

(out) � � , i � < � � � � < � E � � � 34 N$ % & � � E �
(is-t) � � � H < � � � � < � E � � � 34 N$ % & � � L � � i L �
(is-f) � � � H < � � � � � � E � � � 34 N$ % & � � L � I K H L � where > �� �

(is-lam) � � � H < � ' B � � � � 34 N$ % & � � L � I K H L �
Note it is possible to compute with open expressions using the above definition.

A few simple properties concerning computation are the following.

LEMMA 3.5 (UNIFORMITY OF EVALUATION) (i) � � � � N if � 34 N$ % & � �
and � 34 N$ % &� N

(ii) � 34 N$ % & � implies � R Z V 34 N$ % & � R Z V
(iii) � 34 N$ % & � implies � � � � 34 N$ % & � � � �

We now define an alternative but equivalent notion of �̂ $ % & , restricting the space
of contexts to be closed instances of all uses of an expression. This equivalence
is thus called ciu equivalence,

�� � $ �$ % & , following (Mason and Talcott 1991). � �� � $ �$ % & �
means � and � behave identically when closed (the closed instances part) and placed
in any reduction context � (the uses part).

DEFINITION 3.6 (CIU ORDERING, �̂ � $ �$ % &)

� �̂ � $ �$ % & � iff for all � � Y such that � � � R Z V � � � � � R Z V � closed � � � � R Z V � _ implies � � � R Z V � _
THEOREM 3.7 (CIU) � �̂ $ % & � iff � �̂ � $ �$ % & � .
For a proof, see (Mason, Smith, and Talcott 1996). For this simple language it
is even possible to characterize �̂ $ % & via a bisimulation ordering (Howe 1996).
We now list a collection of basic

�� $ % & a �̂ $ % & properties, all easily provable from
Theorem 3.7.

LEMMA 3.8 (BASIC �̂ $ % & a �� $ % & PROPERTIES) (i) If � �̂ $ % & � , then for E � 1 Q$ % & ,� R � T U V �̂ $ % & � R � T U V .
(ii) j , � �̂ $ % & � .

(iii) For closed � , � ` iff � �� $ % & j , � .

(iv) � � j , � � �� $ % & j , � .

(v)
�� $ % & respects computation, i.e. � �� $ % & � if � 34 $ % & � .

The Coverage of Operational Semantics 13

(vi) If � 34 $ % & ' B � � and � �� $ % & � A then � A �� $ % & ' B � � A for some � A �� $ % & � .

(vii) If � 34 $ % & � � � < � � �
and � �� $ % & � A then � A �� $ % & � � � < � � A � for some � A �� $ % & � .

(viii) � �� $ % & , i � < � � � � < � � � �
.

(ix) If C �� t u v v w x u y � ' B � � �
, then ' B � � �� $ % & ' C � � ' B � � �

(C).

(x) Extensionality: ' B � � � �̂ $ % & ' B � � N if and only if
� ' B � � � �

(E) �̂ $ % & � ' B � � N �
(E)

for all values E .

Properties of the above general form may be proved across a wide range of lan-
guages (Mason and Talcott 1991; Gordon and Rees 1996; Talcott 1989). They may
in theory be proved directly by induction on computation length (Talcott 1989), but
it is far more effective to prove them via first establishing an alternate characteri-
zation of �̂ $ % & via �̂ � $ �$ % & or a bisimulation ordering. For all of the above properties
except extensionality, either ciu or bisimulation characterizations allow for direct
proofs; extensionality is trivial to establish via a bisimulation characterization but
requires some work when proved via ciu.

As was the case for �̂ $ % & , an alternate characterization of � k � �̂ $ % & � k � is needed
to facilitate proofs. An analogue of ciu ordering may be defined for � k � �̂ $ % & � k � .
Bisimulation characterizations of � k � �̂ $ % & � k � are also possible.

DEFINITION 3.9 (CIU SET ORDERING �̂ � $ �$ % &) b �̂ � $ �$ % & c for �̂ $ % & -directed b and c if
and only if for all � � b and for all Y � � such that � � b R Z V � and � � c R Z V � are sets of
closed expressions, if � � � R Z V � _ then there exists � � c such that � � � R Z V � _ .

The main characterization theorem is

THEOREM 3.10 (SET ORDERING CIU) b �̂ $ % & c iff b �̂ � $ �$ % & c .

This is Theorem 4.6 of (Mason, Smith, and Talcott 1996).

� k � �̂ $ % & � k �
has the important property of allowing fixed points to be approxi-

mated. Fixed points may be shown equivalent to their set of finite unrollings. This
breaks the cycle of a fixed point and gives an induction principle for reasoning
about recursive functions. We make the following abbreviation: for a functionalh � ' B � ' C � � , define h � � ' B � j , � and h � N � h (h �

).

LEMMA 3.11 (FIXED POINT) For a functional h ,

(i) � � � � (h) � �� $ % & � h � � � � � � �
(ii) � � � (h) �� $ % & h (� � � (h)), and

(iii) for all � � ' B � � �� $ % & h (' B � �) implies � � � (h) �̂ $ % & ' B � � .

14 Smith

3.2 Finite Elements

The problem we focus on in this paper is obtaining additional proof principles using
the finite algebraic structure of the language. As mentioned in the introduction,
this allows reasoning about infinite elements in terms of their finite elements since
each infinite element is the lub of all smaller finite elements.

We show in this section how finite elements may be defined in an operational
semantics. This material is taken from (Mason, Smith, and Talcott 1996), where
complete proofs are also to be found.

With the fixed point property we saw how recursive functions could be decom-
posed into finite components for inductive reasoning. Similar properties could
be proved for other particular structures, such as lists formed via iterative pair-
ing. However, what would be even more desirable would be a general principle
for decomposing all programs into finite components. The finite decomposition
of functions above still does not decompose the argument or return value of the
function, which may still be infinite.

The finite expressions accomplish precisely this goal: any expression may be
decomposed into a set of finite approximations stratified by level

�
that are finite in

the sense that there are only finitely many distinct approximations up to operational
equivalence at any level

�
. The finite decomposition of expressions is critical to

constructions that define self-referential structures (MacQueen, Plotkin, and Sethi
1984; Pitts 1996), for it gives an inductive structure by which self-referentiality
may be avoided.

We construct finite expressions “top-down”, by syntactically projecting arbi-
trary expressions to produce finite expressions. This is the opposite of domain
construction, which starts with only finite elements. In order for projections to
be performed, the presence of recognizer operators � H � � � in the language is crit-
ical: each sort in a multi-sorted language is projected in a different manner, and
recognizers allow a run-time projection operation to be defined.

DEFINITION 3.12 (FINITE PROJECTIONS ! �$ % &) The projection functional ! $ % & , finite
projections ! �$ % & , and infinite projection ! ¡$ % & are defined as follows.

! $ % & � ' C � ' B �L � � � � H N � B � � � � � N � C (, i � N � B �
)

� �L � � � � H O � B � � � � � O � C (, i � O � B �
)

� � � � � �L � � � � H � � B � � � � � � � C (, i � � � B �
)

� �C � B � C � � � � � �
! �$ % & � ' B � j , �! � N$ % & � ! $ % & (! �$ % &)! ¡$ % & � � � � (! $ % &)

It is interesting to observe that for
� � ¢ , # $ % & ? � @ is the pure call-by-value ' -calculus,

so the above defines projection operations on the pure ' -calculus. This approach

The Coverage of Operational Semantics 15

to finite expressions is not found in Barendregt (Barendregt 1984). Barendregt
Chapter 14 does review another similar approach which is worth contrasting:
Hyland and Wadsworth’s labelled ' -calculus. Rather than defining a syntactic
projection ! �$ % & ("), the expression " is labelled with constant � , producing the
labelled ' -term " �

. evaluation then projects:
� ' B � � � N �

(�) 4 � � R S : T U V � �
. This is

identical to how ! � N (' B � ") projects the function argument and result both to be
at level � . Other researchers have also studied labeled ' -reduction (Egidi, Honsell,
and della Rocca 1992). We do not pursue labelled reduction because the addition of
labels changes the language and thus changes operational equivalence (see Lemma
4.16 below). Since the projections ! �$ % & are definable within the language, they are
guaranteed not to change the underlying equivalence.

Note that for expressions in a simply-typed ' -calculus, there is no need for
run-time projection operations: given the type of an expression " , ! � (") can be
partially evaluated to remove all cases on the sort, as the type itself reveals the sort
This is one way to characterize Milner’s construction (Milner 1977).

The following lemma establishes elementary properties of the syntactic projec-
tions. For brevity henceforward we drop the subscript � � � from the projections! �

.

LEMMA 3.13 (ELEMENTARY ! � a ! ¡ PROPERTIES)

(fix) ! ¡ �� $ % & � ! � � � � � �
(idemp) ! � � ! � �� $ % & ! � � ! ¡ � ! ¡ �� $ % & ! ¡

(compose) ! 7 � ! � �� $ % & ! + $ % ? 7 } � @
(order) ! � �̂ $ % & ! � N �̂ $ % & ! ¡
(inject) ! � N (� � � < � E �

)
�� $ % & � � � < � ! �

(E)� � ! ¡ (� � � < � E �
)

�� $ % & � � � < � ! ¡ (E)�
(fun.0) ! N (' B � £) �� $ % & ' B � j , �
(fun.+) ! � N (' B � �) �� $ % & ! � � ' B � � � ! � � ! ¡ (' B � �) �� $ % & ! ¡ � ' B � � � ! ¡
(prune) ! �

(�) �̂ $ % & � � ! ¡ (�) �̂ $ % & �
(value) ! ¡ (E) _ for all closed values E

The Finite Approximation Theorem is a key result: any expression is equiva-
lent to its set of finite projections, yielding an inductive decomposition of every
expression into its finite counterparts. This property is a close analogue of the
 -algebraicity property of domains.

THEOREM 3.14 (FINITE APPROXIMATION) � ! �
(�) � � � � � �� $ % & � � �

.

To prove this, we show that for any particular computation, a large enough pro-
jection � will suffice. However, a direct proof of this property is a bookkeeping
nightmare as different projection values ! � may percolate throughout the expres-
sion during evaluation. A simpler proof is to characterize the limit of the projection
function. ! ¡ may be characterized as an identity function.

LEMMA 3.15 (IDENTITY OF ! ¡) ! ¡ �� $ % & ' B � B

16 Smith

To prove this, we characterize how the projections ! ¡ may percolate throughout
expressions during evaluation. Inductively define ¤ � � �

and ¤ � � �
as follows:

¤ � B � � B¤ � , - ¥ � � � � � � � � � � � � � ! ¡ (, - ¥ � ¤ � � � � � � � � � ¤ � � � � �
)¤ � � � � < � � � � � � � � < � ¤ � � � �

¤ � ' B � � � � ! ¡ � ' B � ¤ � � � � ! ¡¤ � � � � ¤ � � � B � � R ¦ T U V
where operator , - ¥ is either I - - , , i � < , or � H < . This definition is carefully chosen
to have properties corresponding to how ! ¡ percolates through evaluation; notice
for instance ¤ � E �

is a value for any value E . The identity of ! ¡ may be proved by
establishing that � _ implies ¤ � � � _ ; this then establishes the Finite Approximation
Theorem. In Section 5.2 below, analogous results are established for a language
with state; more complete proofs are given there.

The syntactic projections may rightfully be called “finite expressions”: all
expressions that are finite in the classical sense of Definition 2.7 are equivalent to
some syntactically projected expression, and the cardinality of each level is finite.

THEOREM 3.16 (FINITENESS CHARACTERIZATION) (i) For all � � �
,

� � � � � 0 Q$ % & and � �� $ % & ! �
(�)�

contains finitely many
�� $ % & -distinct expressions.

(ii) For all � � 0 Q$ % & and � � �
, ! �

(�) is finite in the sense of Definition 2.7.

(iii) 0 l$ % & � � � § ¨ � � � � � 0 Q$ % & and � �� $ % & ! �
(�)�

Furthermore, � k � �̂ $ % & � k �
-directed sets all may be shown to have least upper

bounds, and �̂ $ % & is
 -algebraic; see (Mason, Smith, and Talcott 1996) for these
properties and a proof of the previous Theorem.

4 A Space Of Languages

In the previous section a very simple language family # $ % & ? � @ was studied. In
this section we study progressively more complex languages and consider what
results still hold from the development for # $ % & ? � @ , and what results fail. High-level
languages # m are studied by defining embeddings of # m into the injection languages# $ % & ? � @ . This allows for us to quickly present a sequence of languages, and also
helps highlight how small (or large) the gap is between different languages.

Notions of operational ordering �̂ and operational set ordering � k � �̂ � k � were
defined on arbitrary operational structures in Section 2, so there is no question of
the generality of those definitions. Our main goal here is to study how well the
finite elements may be characterized, and in particular if Theorems 3.14 and 3.16
stated above for # $ % & ? � @ may be proved for these more complex languages.

The Coverage of Operational Semantics 17

4.1 Booleans, Pairs, and Numbers

We now define a language # () % ? � @ which adds booleans, pairs, and numbers to# $ % & ? � @ . We preserve the � � � � a , i � � a � H � operators to allow this language to be
extended in turn. The case

� � ¢ yields a language with no injections, and
� � 	

yields the standard left/right injections.

DEFINITION 4.1 # () % ? � @ has structure / 0 � 1 � 2 � 34 5 where

2 � 2 $ % & ? � @ � � � � i L � � I K H L � � H j , , K � " � � ¢ � � � 	 � � � � � H i © © � " � � - � L � � " � �� H ª L � , � " � � � H � I � � " � � - � � " � " A � � � H � � " � � H � � � " � � � H - � � " � � � � � " � " A � " A A � �
We include recognizer operators � H j , , K � � H � I � � � H - � in # () % ? � @ . In Section 4.2
below we consider the alternative case when there are no recognizers. We will very
briefly outline the evaluator for # () % ? � @ (and, will not define explicit evaluators for
most of the languages that follow). For brevity we will define some notions as
extensions of the notions defined in the presentation of # $ % & ? � @ of Section 3, read-
ing those definitions with 0 () % ? � @ in place of 0 $ % & ? � @ . The values 1 () % ? � @ include
the cases as # $ % & ? � @ plus numbers, booleans, and - � � E � E �

. The reduction con-
texts

� () % ? � @ include the same cases plus � � � � � X � � " � " �
, - � L � � � � X � �

, H i © © � � � X � �
,� H ª L � , � � � X � �

, � H � � � � X � �
, H � � � � � X � �

, - � � � � X � � " �
, - � � E � � � X � �

, � H j , , K � � � X � �
, and� H � I � � � � X � �

and � H - � � � � X � �
.

DEFINITION 4.2 (34 N() % ? � @ , 34 () % ? � @) 34 () % ? � @ is the transitive, reflexive closure of34 N() % ? � @ :
� � " � 34 N() % ? � @ � � " A �

where � � " � 34 N$ % & ? � @ � � " A � is a case of Definition 3.4� � � � � � � i L � � � � � � 34 N() % ? � @ � � � � and 34 N() % ? � @ � � � � for � I K H L case� � � H � � - � � E � E A � � � 34 N() % ? � @ � � E � and 34 N � � E A � for H � �� � H i © © � E � � 34 N() % ? � @ � � E � � � for E � �
� � - � L � � E � � � � 34 N() % ? � @ � � E � for E � �

� � � H ª L � , � E � � 34 N() % ? � @ � � � �
for E � � � � a boolean, and � � � � i L iff E � ¢

� � � H � j , , K a - � a � i J � � E � � 34 N() % ? � @ � � � �
where E �� . and boolean � is � � i L iff E is a j , , K a - � a � i J

() % ? � @ is mapped to low-level language # $ % & ? � P @ by the following homomorphic
embedding.

18 Smith

DEFINITION 4.3 �� k �� � # () % ? � @ 4 # $ % & ? � P @ is defined as o $ % $ p � X and an embedding
of expressions as follows.

�� � � i L �� � � � � � P � L � � i L �
�� � I K H L �� � � � � � P � L � I K H L �

�� � � � " � " A � " A A � �� � , i � � P � �� " �� �
(' B � �� " A ��)(' B � �� " A A ��) for fresh B�� � H j , , K � � � �� � L � � � � H � P � �� � �� � � �� � � i L �� � �� � I K H L �� �

�� - � � � � � � �� � � � � � O � � ' B � ' C � ' « � « (B)(C) �
(�� � ��)(�� � ��)�

�� � H � � � � �� � , i � � O � �� � �� �
(' B � ' C � B)�� H � � � � � �� � , i � � O � �� � �� �
(' B � ' C � C)�� � H - � � � � �� � L � � � � H � O � �� � �� � � �� � � i L �� � �� � I K H L �� �

�� � �� � � � � � N � ��
�� � � - � � � � i L � � � � - � � � � i L � - � � � I K H L � � I K H L � � � � � � �� �

�� H i © © � " � �� � K L � B = , i � � N � �� " �� � � � � � � � N � �� - � � � � i L � B � �� �
�� - � L � � " � �� � K L � B = , i � � N � �� " �� � � � � � � � N � � � � � O � , i � � O � �� H � � � B � �� � � �

�� � H ª L � , � " � �� � K L � B = , i � � N � �� " �� � � �L � � � , i � � P � �� � H � � B � �� � � �� � I K H L �� � �� � � i L �� �
�� � H � I � � � � �� � L � � � � H � N � �� � �� � � �� � � i L �� � �� � I K H L �� �

�� " �� � homomorphic for all other " � 0 () % ? � @
The mapping for contexts extends the above with the case �� X �� � X . Observe how
operator � � � � P wraps booleans, � � � � O wraps pairs, and � � � � N wraps numerals,
keeping these datatypes disjoint. Boolean and pair encodings are the classic Church
encodings; we then use the booleans and pairs to encode numerals.

LEMMA 4.4 �� k �� � # () % ? � @ 4 # $ % & ? � P @ is a sound embedding homomorphic in2 $ % & ? � @ .
PROOF: Show � _ () % ? � @ iff �� � �� _ $ % & ? � P @ . We may show � 34 N() % ? � @ � implies�� � �� �� $ % & ? � P @ �� � �� by inspection of the cases of 34 N$ % & ? � P @ . Also, we may show that if� �34 N() % ? � @ , i.e., it is stuck, then �� � �� � _ $ % & ? � P @ . And, from the fact that for all valuesE � 1 () % ? � @ , �� E �� _ $ % & ? � P @ , the result follows.

The embedding can easily be seen to be homomorphic in 2 $ % & ? � @ . q
Additional abbreviations for 0 () % ? � @ include

� I � L ¬ � " � " A � � � � � � ' h � ' B � ' C � � � � � H ª L � , � B � � � H ª L � , � C � �� � � � H ª L � , � C � � � I K H L � h (- � L � � B �
)(- � L � � C �

)
� � �
(")(" A)K L � - � � B N � B O �

= " � � " A � K L � B = " � �K L � B N = � H � � B � � �K L � B O = H � � � B � � � " A , for B fresh

If the embedding did not use injections, numbers and functions would be of the
same sort, and # () % computations such as ¢ (' B � B) would terminate when they
should be stuck. This fact is expressed in the following Lemma, which shows the
pure ' -calculus is too weak to serve as an embedding target.

The Coverage of Operational Semantics 19

LEMMA 4.5 There is no sound embedding �� k �� � # () % ? � @ 4 # $ % & ? � @ homomorphic
in 2 $ % & ? � @ .
PROOF: Suppose there was. �� ¢ �� �� $ % & ? � @ ' B � " �

and �� � �� �� $ % & ? � @ ' B � " N since�� ¢ �� _ $ % & ? � @ and �� � �� _ $ % & ? � @ . Consider �� � H ª L � , � " � �� ; since �� � � i L �� and �� � I K H L �� must
be non-equivalent, and �� ¢ �� and �� � �� must be non-equivalent, this # $ % & computation
must touch expression " , so for " being �� ¢ �� it will compute to � � �� ¢ ��(' B � " A)� for
some ' B � " A (this being the first place where �� ¢ �� is touched), and go on to terminate.
Thus �� ¢ ��(' B � " A) _ $ % & ? � @ . Since the embedding is homomorphic, �� ' B � " A �� � ' B � " A ,
and so �� ¢ (' B � " A)�� _ $ % & ? � @ , a contradiction. q
LEMMA 4.6 �� k �� � # () % ? � @ 4 # $ % & ? � P @ is not fully abstract.

PROOF: ' B � � � � � H - � � B � � � ' B � ¢ �
(� H � � B �

) � ¢ � �� () % ? � @ ' B � ¢ but the # $ % & ? � P @
context

� X �
(� � � � O � ' B � j , � �

) distinguishes the embedded forms. q
Still, since the embedding is homomorphic, equations from # $ % & ? � P @ can be

directly lifted to # () % ? � @ . One concrete example is the fixed point lemma.

LEMMA 4.7 � � � � (' B � ' D � h (B)(D)) � �� () % ? � @ � ' B � ' D � h �
(B)(D) � � � � � �

PROOF: This property is proved for # $ % & ? � @ as Lemma 3.11, and since the
expressions only involve operators homomorphic in the embedding �� k �� � # () % ? � @ 4# $ % & ? � P @ (taking h to be a variable and not a metavariable), the result follows by
Lemma 2.13. q

The finite approximation theorem (3.14) can also be “lifted” from # $ % & , but the
syntactic projection functions ! will not project pairs or numbers and will thus be
incomplete; in particular 3.16 will not be provable. To obtain complete projection
functions, fuller forms may be directly defined in # () % ? � @ .
DEFINITION 4.8 (FINITE PROJECTIONS ! �() %)

! () % � ' C � ' B �L � � � � H N � B � � � � � N � C (, i � N � B �
)

� �L � � � � H O � B � � � � � O � C (, i � O � B �
)

� � � � � �L � � � � H � � B � � � � � � � C (, i � � � B �
)

� �� � � � H j , , K � B � � B �� � � � H - � � B � � - � � C (� H � � B �
) � C (H � � � B �

)
� �� � � � H � I � � B � � � � � � H ª L � , � B � � ¢ � H i © © � C (- � L � � B �

)
� � �C � B � C � � � � � � �

! �() % � ' B � j , �! � N() % � ! () % ? � @(! �() % ? � @)! ¡() % ? � @ � � � � (! () %)
These finite projections in turn allow the finite elements of # () % to be charac-

terized.

20 Smith

THEOREM 4.9 Theorems 3.14 and 3.16 hold for # () % ? � @ with projections ! �() % .

Proofs of these theorems are found in (Mason, Smith, and Talcott 1996). The
principle of induction on the finite rank � is thus successfully obtained for this
language.

4.2 Booleans, pairs, and numbers without recognizers

It is interesting to consider ramifications of languages without recognizers � H � I � ,� H - � , � H j , , K , and � H � . In such languages the case analysis programmed into the
syntactic projection functions ! �() % cannot be programmed, and thus the approach
of Section 3.2 is not directly possible. We show there still is some capability of
reasoning using finite projections, but at the cost of fully abstract reasoning.

DEFINITION 4.10 (i) # $ % & ¥ ? � @ is defined to be # $ % & ? � @ with recognizer operators� H < , � = > = �
, removed from 2 $ % & ? � @ and the � H < cases removed from34 $ % & ? � @ .

(ii) # () % ¥ ? � @ is defined to be # () % ? � @ without recognizer operators � H � I � , � H - � ,� H j , , K , or � H � for any
�
.

(iii) �� k �� � # () % ¥ ? � @ 4 # $ % & ¥ ? � P @ is then the obvious restriction of the above
embedding (Definition 4.3) that removes the recognizer cases. (Notice that� H � is not used in any non-recognizer cases).

This embedding is getting closer to being fully abstract than the mapping with
recognizers, but there are some subtle cases where parametricity is observable in# $ % & ¥ ? � @ but masked in # () % ¥ ? � @ .
LEMMA 4.11 �� k �� � # () % ¥ ? � @ 4 # $ % & ¥ ? � P @ is not fully abstract.

PROOF: ' B � K L � C = � H � � B � � � K L � D = H � � � B � � � B �� () % ¥ ? � @' B � K L � C = � H � � B � � � K L � D = H � � � B � � � - � � C � D �
but the # $ % & ¥ ? � P @ context , i � � O � � X �

(� � � � O � ' « � « (' B � j , �) �
)

�
(' B � B)(' B � B)

distinguishes the embedded forms. q
A similar problem arises with booleans, so neither pairing nor booleans and

conditional can be encoded in a full and faithful manner. Numbers however can
probably be encoded faithfully in a language with only pairs and booleans.

We now establish that removal of recognizers causes the equivalence to change.
This means we are not completely free to add or remove recognizers from languages
as tools (e.g., to use them to define the finite projections), because the underlying
equivalence will be altered and full abstraction will then fail.

LEMMA 4.12 For all , if � H ª L � , � (¢) � _ () % ¥ ? � @ and � � � (� � i L) � ¢ � ¢ � _ () % ¥ ? � @ ,
then �� ' B � B .

The Coverage of Operational Semantics 21

PROOF: First observe that this requires (¢ a � � i L) _ () % ¥ ? � @ . must then never
touch its argument, for suppose it did: then must compute to � � ¢ a � � i L � for some� . Since 0 () % ¥ ? � @ contains no recognizers, this state will get stuck on at least one
of ¢ or � � i L filling the hole (note that � H ª L � , � � � i L �

is stuck), contradiction. So,
since does not touch its argument, the result of (¢ a � � i L) must be a parametric
value of the form � � ¢ a � � i L � . The only case then for which both � H ª L � , � � � ¢ � �

and� � � � � � � i L � � ¢ � ¢ �
do not get stuck is then when � � B � 34 () % ¥ ? � @ B . Thus, (E) �� E

for any E , and the result follows by extensionality. q
LEMMA 4.13 �̂ () % ? � @ ® �̂ () % ¥ ? � @ when these relations are restricted to expressions
of 0 () % ¥ ? � @ .
PROOF: Consider the # () % ¥ ? � @ context

� � ' D � � � � D (� � i L) � � � � � I � L ¬ � D (¢) � ¢ � � X � ¢ � � ¢ �
Then, � � - � � ¢ � ¢ � � �̂ () % ¥ ? � @ � � D (- � � ¢ � ¢ �

)� : if � � - � � ¢ � ¢ � �() _ () % ¥ ? � @ , then by

Lemma 4.12, �� () % ¥ ? � @ ' B � B , and so � � D (- � � ¢ � ¢ �
)�() _ () % ¥ ? � @ as well. How-

ever, the # () % ? � @ context X (' B � � � � � H - � � B � j , � � B � �
) distinguishes the two expres-

sions. q
4.2.1 Finite Projections Without Recognizers

Since # () % ¥ ? � @ contains no recognizers, the syntactic projection operations ! �() % are
not definable within the language as was possible in the presence of recognizers.
Without some other approach, no finite element structure can be developed for
such a language.

It is possible to use �̂ () % ? � @ to directly prove instances of �̂ () % ¥ ? � @ via Lemma
4.13, and in the former language the syntactic projection functions may be directly
expressed. However, ordering �̂ () % ? � @ is far too fine-grained, as Lemma 4.13
shows.

One solution is to add the projections ! �() % of # () % ? � @ to # () % ¥ ? � @ as primitive
operations - � , � �

. This means we will not allow all recognizers in testing contexts
of # () % ¥ ? � @ ; they will only be used in the restricted way the projections use them.
We define this language in abbreviated form via a mapping to # () % ? � @ .
DEFINITION 4.14 (i) 0 () % ¯ ¥ ? � @ is 0 () % ¥ ? � @ with additional 0-ary operators - � , � �

for each � � �
.

(ii) �� k �� � # () % ¯ ¥ ? � @ 4 # () % ? � @ is homomorphic in all operators , - � 2 () % ¯ ¥ ? � @
except �� - � , � � �� � ! �() %

THEOREM 4.15 Finite Approximation, Theorem 3.14, is provable for the projec-
tions - � , � � � " �

of # () % ¯ ¥ ? � @ : � - � , � � � � � � � � � � �� () % ¯ ¥ ? � @ � � �
.

22 Smith

PROOF: The results from Theorem 4.9 may directly be applied to # () % ¯ ¥ by
Lemma 2.9. q

Since # () % ¯ ¥ ? � @ in addition contains operators - � , � �
, �̂ () % ¯ ¥ ? � @ restricted to

expressions of # () % ¥ ? � @ has more testing contexts than �̂ () % ¥ ? � @ . These extra
contexts can distinguish more expressions, so adding atomic projection operations
has an undesirable effect on equivalence.

LEMMA 4.16 �̂ () % ¯ ¥ ? � @ ® �̂ () % ¥ ? � @ when the relations are restricted to 0 () % ¥ ? � @ .
PROOF: ° follows from the fact that 0 () % ¥ ? � @ 6 0 () % ¯ ¥ ? � @ . They are unequal by
the following. The proof of Lemma 4.13 defines a � such that � � - � � ¢ � ¢ � � �̂ () % ¥ ? � @� � D (- � � ¢ � ¢ �

) � . But � � - � � ¢ � ¢ � � �̂� () % ¯ ¥ ? � @ � � D (- � � ¢ � ¢ �
)� , because the context

X (- � , � N) distinguishes the two: � � - � � ¢ � ¢ � �(- � , � N) converges, and

� � D (- � � ¢ � ¢ �
)�(- � , � N

)

diverges because - � , � N (- � � ¢ � ¢ �
) diverges. q

A similar problem would likely arise if an explicit expression labeling scheme
were attempted in analogy with labeled ' -expressions (Barendregt 1984; Egidi,
Honsell, and della Rocca 1992): presence of the labels will cause operational
equivalence to change. This shows it is very difficult to characterize the finite
structure of untyped languages in a fully abstract manner if the language does not
already have recognizer operators as primitives.

4.3 Simple Objects

We briefly study a language with simple functional objects. Simple objects may
be defined via a homomorphic embedding. We conjecture here that they may be
embedded in # () % in a fully abstract manner.

Our simple objects contain methods that may refer to the object itself. Since they
are functional, they do not contain mutable instances, and there is also no notion
of class or of method override. Classes (Eifrig, Smith, Trifonov, and Zwarico
1995) and method override (Abadi, Cardelli, and Viswanathan 1996) may also be
interpreted via homomorphic embeddings; for brevity we leave them out of this
presentation.

DEFINITION 4.17 # * (& ? � @ has structure / 0 * (& ? � @ � 1 * (& ? � @ � 2 * (& ? � @ � 34 * (& ? � @ 5 where

2 * (& ? � @ � 2 () % ? � @ � � � H , j � � " � � � � H L � � 7 � " � � ; � ± �� � , j � 7 8 } ~ ~ ~ } 7 : � B N � " N � � � � � B � � " � � � ; N � � � � � ; � � ± �
for some countable set of messages

±
; ² ³ ´ µ ¶ � ; �

for ; � ±
is a bijection from±

to
�

.

The Coverage of Operational Semantics 23

This notation for objects uses a different operator for each object message form to
allow objects to fit the operator arity syntax convention. # * (& ? � @ is mapped to lower-
level language # () % ? � N @ by the following embedding homomorphic in 2 () % ? � @ (a
composition with �� k �� � # () % ? � @ 4 # $ % & ? � P @ would then yield an embedding into# $ % & ? � · @).
DEFINITION 4.18 �� k �� � # * (& ? � @ 4 # () % ? � N @ is defined as o $ % $ p � X and an embed-
ding of expressions as follows.

�� , j � 7 8 } ~ ~ ~ } 7 : � B N � " N � � � � � B � � " � � �� � � � � � N � � � � � ' ¸ � � ' C �� � � � I � L ¬ � C � ² ³ ´ µ ¶ � ; N � � � � ' B � �� " N �� �
(¸ �) �� � � � � � �� � � � I � L ¬ � C � ² ³ ´ µ ¶ � ; � � � � � ' B � �� " � �� �
(¸ �) �j , � � � � � � � � �

�� H L � � 7 � " � �� � , i � � N � �� " �� �
(² ³ ´ µ ¶ � ; �

)�� � H , j � � " � �� � L � � � � H � N � �� " �� � � � � i L � � I K H L �
�� " �� � homomorphic for all other "

This encoding does not expose the self (B N , � � � ,B �) since a fixed point is taken
(Kamin and Reddy 1994). We conjecture this encoding is fully abstract.

CONJECTURE 4.19 �� k �� � # * (& ? � @ 4 # () % ? � N @ is set fully abstract.

If the encoding were not fully abstract, there would be two # * (& ? � @ expression setsb �̂ * (& ? � @ c but a # () % ? � N @ context could distinguish �� b �� and �� c �� . However,# () % ? � N @ contexts cannot access internal details of object implementations given
the representation used. Thus the conjecture is that functional objects are not very
complex additions to a language. Establishing this conjecture appears difficult.

A fixed-point principle for reasoning about objects may be easily derived by
mapping objects into # () % ? � N @ via the above embedding, and lifting the fixed point
principle of that language.

DEFINITION 4.20 Given fixed object , j � 7 8 } ~ ~ ~ } 7 : � B N � " N � � � � � B � � " � �
, define , j � �

inductively as

, j � � � , j � 7 8 } ~ ~ ~ } 7 : � B N � j , � � � � � � B � � j , � �
, j � � N � , j � 7 8 } ~ ~ ~ } 7 : � B N � " N R r ¹ º » T U 8 V � � � � � B � � " � R r ¹ º » T U : V �

LEMMA 4.21 Given object , j � 7 8 } ~ ~ ~ } 7 : � B N � " N � � � � � B � � " � �
,

� , j � 7 8 } ~ ~ ~ } 7 : � B N � " N � � � � � B � � " � � � �� * (& ? � @ � , j � � � � � � � �
PROOF: It suffices to show

�� � , j � 7 8 } ~ ~ ~ } 7 : � B N � " N � � � � � B � � " � � � �� �� () % ? � N @ �� � , j � � � � � � � �� �
and this follows from Lemmas 4.7 and 2.13. q

24 Smith

The simple objects under study are little more than mutually recursive function
definitions, so this principle is not much of a generalization over the fixed point
property for functions. But, this lifting approach should apply to mappings of more
general notions of object.

4.3.1 Finite Projections for Objects

Consider how the syntactic projection operations for objects might be defined, in
analogy with the syntactic projections for # $ % & ? � @ and # () % ? � @ .

! * (& � ' C � ' B �� � � � H j , , K � B � � � � � �� � � � H , j � � B � � ¼ ¼ ¼ � � � � � �
At the “???” point, each method of the object B must be projected, but it is not

possible inside # * (& ? � @ to detect which methods an arbitrary object has at run-time,
so it appears the object projection operation cannot be syntactically expressed. We
could at this point fruitfully pursue an alternate theory of objects in which message
names had enough of a first-class status so that the projections could be defined. It
could indeed be argued that the “proper” notion of an untyped object would allow
for first-class message operations (an assertion supported by their presence in the
Smalltalk language). But, we elect instead to continue with the current object
constructs.

4.4 Simple Objects With Atomic Projections

An alternative is to proceed as we did for # () % ¥ ? � @ in Section 4.2: extend the
language with atomic projection operations - � , � �* (& at the expense of possibly
changing the operational equivalence.

DEFINITION 4.22 (i) 2 * (& ¯ ? � @ is 2 * (& ? � @ with additional 0-ary operators - � , � �* (&
added for each � � �

.

(ii) �� k �� � # * (& ¯ ? � @ 4 # () % ? � N @ extends �� k �� � # * (& ? � @ 4 # () % ? � N @ of Definition
4.18 by adding the following clause

�� - � , � �* (& �� � ! �() %
THEOREM 4.23 Finite Approximation, Theorem 3.14, is provable for the projec-
tions - � , � � � " �

of # * (& ¯ : � - � , � � � � � � � � � � �� * (& ¯ � � �
.

PROOF: The results from Theorem 4.9 may directly be applied to # * (& ¯ by
Lemma 2.9. q

If the embedding �� k �� � # * (& ? � @ 4 # () % ? � N @ is set fully abstract as conjectured,
addition of these projections would fortunately not change the underlying equiva-
lence: �� k �� � # * (& ¯ ? � @ 4 # () % ? � N @ would also clearly be set fully abstract. A full

The Coverage of Operational Semantics 25

and faithful theory of finite objects could then be developed. Thus, there is some
potential for developing a full and faithful finite expression theory for objects via
this route.

More serious difficulties with finite expressions arise in the presence of effects.
We will consider memory effects in the next section.

5 Global effects: Memories

In this section we study a simple memory-based language, # + ? � @ . The languages
studied in the previous section all could be defined by homomorphic embed-
dings, because there were no global effects. The addition of global effects thus
represents a significant change. We first present an embedding into # () % ? � N @ .
Strachey’s memory-threading transformation is used (Milne and Strachey 1976).
After establishing some results about this embedding, we define an equivalent
direct operational semantics: proving facts via the embedding is cumbersome.
We then develop a series of results which characterize the finite elements for a
memory-based language.

For simplicity we will define # + ? � @ which has
�

injections, but no booleans,
numbers, or pairs.

DEFINITION 5.1 # + ? � @ has structure / 0 + ? � @ � 1 + ? � @ � 2 + ? � @ � 34 + ? � @ 5 , where

2 � 2 $ % & ? � @ � � � L � � " � � H L � � " � " A � � ½ L � � " � � � H © L K K � " � �
� L � � " �

creates a new memory cell with " as the initial value, H L � � " � " A � sets a cell" with new value " A , and ½ L � � " �
gets the value from cell " . We let � ¾ � abbreviate

sequencing,
� ' B � � �

(�) for B fresh.

We hereafter take
�

to be an arbitrary fixed value and refer to this language as# + . The previous section gives evidence that a family of injections captures the
complexity of other simple features such as booleans, numbers, pairs, and objects.
In our embedding of objects into # () % ? � @ we preserved these features because the
embedding was homomorphic. In the memory case, no homomorphic embedding
can be defined.

LEMMA 5.2 There is no embedding �� k �� � # + ? � @ 4 # () % ? � � N @ for any � � �
that is

homomorphic in 2 $ % & ? � @ .
PROOF: The basic idea of the proof is the observation that a homomorphic
embedding would force functions in the memory language to have no side-effects.� ' B � C (¢) �

(C (¢)) �� () % ? � � N @ C (¢) � so if a homomorphic map existed, by lifting
we would have

� ' B � C (¢) �
(C (¢)) �� + C (¢) but C � ' B � H L � � D � � � � < � ½ L � � D � � �

causes this to fail. q
+ is embedded into # () % ? � N @ by the following parametric embedding, which

passes the memory to all computations and computes (value, memory)-pairs as

26 Smith

result. � � � � N is used to label cell numbers. The memory is a function from cell
numbers to values; memory location 0 holds the next free cell address.

DEFINITION 5.3 Parametric embedding �� k �� � # + 4 # () % ? � N @ is defined as o $ % $ p �
X (' B � ¢) and an embedding of expressions as follows.

�� B �� � ' ; � - � � B � ; � � � � � � � B �
�� � L � � " � �� � ' ; � K L � - � � E � ; N �

= �� " ��(;) � �- � � � � � � N � ; N (¢) � � ' F A � � � � � H ª L � , � F A � � H i © © � ; N � ¢ � � �� � � � I � L ¬ � F A � ; N � ¢ � � � E � ; N � F A � � � �
�� H L � � " � " A � �� � ' ; � K L � - � � F � ; N �

= �� " ��(;) � �K L � - � � E � ; O �
= �� " A ��(; N) � �- � � E � ' F A � � � � � I � L ¬ � F A � , i � � N � F � � � E � ; O � F A � � �

�� ½ L � � " � �� � ' ; � K L � - � � F � ; N �
= �� " ��(;) � � - � � ; N � , i � � N � F � � � ; N �

�� � H © L K K � " � �� � ' ; � K L � - � � E � ; N �
= �� " ��(;) � � - � � � H � N � E � � ; N �

�� ' B � " �� � ' ; � - � � ' B � �� " �� � ; �
�� , - � " � �� � ' ; � K L � - � � E � ; N �

= �� " ��(;) � � - � � , - � E � � ; N �
for all other unary operators , - � 2 +�� " (" A)�� � ' ; � K L � - � � h � ; N �

= �� " ��(;) � �K L � - � � E � ; O �
= �� " A ��(; N) � � h (E)(; O)

This encoding is clearly not fully abstract: # () % ? � N @ contexts will be able to
inspect and alter the contents of arbitrary memory cells.

LEMMA 5.4 �� k �� � # + 4 # () % ? � N @ is not fully abstract.

PROOF: ' B � " (") �� () % ? � N @ " for B not free in " , but if " has a cumulative effect
(such as " � H L � � C � � � � < � ½ L � � C � � �

) the equation will fail to be
�� + . q

This parametric embedding is only sometimes useful for establishing equiva-
lences

�� + : since it is not homomorphic, there is no lifting of equations possible.
The one tool it provides is the ability to prove � �� + � by showing �� � �� �� () % ? � N @ �� � �� .
This technique is useful for principles that do not require memory locality, the
source of lack of full abstraction in the translation.

5.1 Direct Memory Semantics

Since working in memory-passing style is difficult, hereafter we will work over a
direct evaluation semantics for # + , using notation close to (Honsell, Mason, Smith,
and Talcott 1995; Mason and Talcott 1991). Most of the proofs in this section are
direct generalizations of the functional proofs from (Mason, Smith, and Talcott
1996) to a language with memories. Very little extra reasoning is needed to handle
the memory. The projection functions, defined in the following section, do require
considerable extra work in the memory case.

A memory context ¿ is defined as a context

K L � F N = � L � � L � � i L � � � � K L � F � = � L � � L � � i L � � � H L � � F N � E N � � � � ¾ H L � � F � � E � � ¾ X

The Coverage of Operational Semantics 27

for distinct F N � � � � � F � . ¿ may equivalently be viewed as a finite map from variables
to values; here

[\] � ¿ � � F N � � � � � F � . To distinguish variables used as cell names
from other variables, we define . � À Á Á 6 . such that . � À Á Á and . Â � . M . � À Á Á are
both countably infinite. Invariably,

[\] � ¿ � 6 . � À Á Á , and ' -bound variables are in. Â . Ã -conversion of cell variables is not allowed. We use shorthand ¿ � F = E �
to

indicate an extension to ¿ mapping cell F to value E .

For brevity we will define some notions as extensions of the notions defined in
the presentation of # $ % & ? � @ of Section 3, reading those definitions with 0 + in place of0 $ % & ? � @ . The values 1 + are the same cases as for # $ % & ? � @ , and the reduction contexts� + include the same cases plus � L � � X � � H L � � X � 0 + � � H L � � 1 + � X � � ½ L � � X � �
� H © L K K � X �

. Single-step evaluation is a map ¿ � � � " � � 34 N+ ¿ A � � � " A � � for � � � + , " a
redex and " A its contractum.

DEFINITION 5.5 (34 N+ , 34 +) 34 + is the transitive, reflexive closure 34 N :

(fun) ¿ � � � 34 N ¿ � � �
where � 34 N$ % & ? � @ � is a case of Definition 3.4

(ref) ¿ � � � � L � � E � � � 34 N ¿ � F = E � � � � F � � for fresh F � . � À Á Á
(set) ¿ � F = E � � � � � H L � � F � E � � � 34 N ¿ � F = E � � � � E � �
(get) ¿ � F = E � � � � ½ L � � F � � � 34 N ¿ � F = E � � � � E � �
(iscell-t) ¿ � � � � H © L K K � F � � � 34 N ¿ � � � L � � i L � � where F � . � À Á Á
(iscell-f) ¿ � � � � H © L K K � E � � � 34 N ¿ � � � L � I K H L � � where E �� .
The ciu ordering is defined for # + as follows.

DEFINITION 5.6 (CIU ORDERING, �̂ � $ �+) For all � and � , � �̂ � $ �+ � iff for all ¿ � Y � �
such that ¿ � � � � R Z V � � and ¿ � � � � R Z V � � are closed, if ¿ � � � � R Z V � � _ then ¿ � � � � R Z V � � _ .

THEOREM 5.7 (CIU) � �̂ + � iff � �̂ � $ �+ � .

For a proof, see (Honsell, Mason, Smith, and Talcott 1995). The theorem also
follows from set ordering ciu, proved below as Theorem 5.10, by Lemma 2.6
(iii). Applicative bisimulation equivalences may be defined for languages with
memories (Ritter and Pitts 1995) and may be effectively used to directly establish
equivalences. They (to lesser degree) suffer the same problem of lack of locality
as does �� � �� �� () % ? � N @ �� � �� , and so are not fully abstract.

An important property that holds for �̂ + is extensionality. It seems not to have
been stated or proved before in the literature so we give a proof.

THEOREM 5.8 (�̂ + EXTENSIONALITY) For all � �
and � N , ' B � � � �̂ + ' B � � N if and

only if
� ' B � � � �

(E) �̂ + � ' B � � N �
(E) for all values E .

PROOF: Ä is direct from the pre-congruence of �̂ + . For Å , assume for all E
that ' B � � �

(E) �̂ + ' B � � N (E) and show ' B � � � �̂ + ' B � � N . It suffices to fix E to beB ; then by Æ -value, � � �̂ + � N and so by congruence, ' B � � � �̂ + ' B � � N . q

28 Smith

It is perhaps surprising that extensionality holds, because extensionality shows
that it suffices to test a function without iterative application. If the function is a
closure with local state it will not have the same value when executed a second
time. However, since the theorem is proved for ' -values only, these cannot have
any local state. Extensionality fails for imperative objects (closures), because they
may allocate their own local store. Consider the simple object defined as follows.

¸ � K L � F = � L � � L � � i L � � � ' D � H L � � F � � � � N � ½ L � � F � � �
¸ (E) �� + � � � N � L � � i L �

for any E by computing, so if ¸ was an extensional object,¸ �� + ' D � � � � N � L � � i L �
should hold but it clearly does not.

As was the case for # $ % & ? � @ , the �̂ + -directed set ordering � k � �̂ + � k �
also has a

ciu characterization which is critical for proving facts about � k � �̂ + � k �
.

DEFINITION 5.9 (CIU SET ORDERING, �̂ � $ �+) For �̂ + -directed sets of expressions b
and c , b �̂ � $ �+ c if and only if for all � � b and for all ¿ � Y � � such that ¿ � � � b R Z V � �
and ¿ � � � c R Z V � � are sets of closed expressions, if ¿ � � � � R Z V � � _ then there exists a� � c such that ¿ � � � � R Z V � � _ .

The ciu theorem is

THEOREM 5.10 (�̂ � $ �+ CIU) b �̂ + c iff b �̂ � $ �+ c .

This proof does not appear in previous papers and so is given here. The proof
here is a direct combination of the proof of � k � �̂ � k � ciu for a functional call-by-
value language in (Mason, Smith, and Talcott 1996) and ciu for a memory-based
language in (Honsell, Mason, Smith, and Talcott 1995). The proof may be factored
into three Lemmas. The (Ä) direction is not difficult, since �̂ � $ �+ has a smaller
collection of contexts to distinguish expressions than � k � �̂ + � k �

has. (Å) is the

difficult direction. This proof uses the observation that it suffices to show �̂ � $ �+ is a
pre-congruence. To establish this, we prove lemmas that establish pre-congruence
for single constructors: non-' operators 2 + (Lemma 5.11) and ' B (Lemma 5.12)
may be placed around sets of expressions while preserving �̂ � $ �+ .

LEMMA 5.11 (�̂ � $ �+ OPERATOR CIU) If b �̂ � $ �+ c holds, then

, - � ÇF � b � Ç� � �̂ � $ �+ , - � ÇF � c � Ç� �
for any , - � 2 + that is not K I J j � I .

PROOF: We consider the case of an arbitrary binary operator , - ; the simpler
unary case should be uniformly apparent from this case. It suffices to show the two
cases

¿ � � � , - � � R Z V � F � � � � _ implies there exists a � � c such that ¿ � � � , - � � R Z V � F � � � _

The Coverage of Operational Semantics 29

and

¿ � � � , - � F � � R Z V � � � � _ implies there exists a � � c such that ¿ � � � , - � F � � R Z V � � � _
We proceed by induction on the length of the computation of the assumption.
Assume the statements are true for all shorter computations. In the first case
above define � � � � � , - � X � F � � , and in the second case when F is a value, define� � � � � , - � F � X � � , and the conclusion follows directly by assumption. So, we
may concentrate on the second case when F is not a value. In this case we have a
reduction context � � � � � , - � X � � R Z V � � �
so by computing

¿ � � � , - � F � � R Z V � � � 34 N ¿ A � � � , - � F A � � R Z V � � � �
which is an instance of the induction hypothesis since this computation will termi-
nate in one fewer steps. q
LEMMA 5.12 (�̂ � $ �+ LAMBDA CIU) If b �̂ � $ �+ c , then ' B � b �̂ � $ �+ ' B � c .

PROOF: It suffices to assume expressions in b and c contain at most B free,
the conclusion then follows by definition of �̂ � $ �+ . For arbitrary � and ¿ , show for
fixed � � b

¿ � � � ' B � � � � _ implies there exists a � � c such that ¿ � � � ' B � � � � _ �
We may generalize this statement to

¿ � " � R Â U ~ È T É V _ implies there exists a � � c such that ¿ � " � R Â U ~ S T É V _ �
for free variables of " coming only from

[\] � ¿ � � � D �
. The original goal follows

by letting " � � � D � . Proceed by induction on the length of the computation of the
assumption. Consider whether ¿ � " � is uniform in D , i.e. whether

¿ � " � 34 N ¿ A � " A �
for some ¿ A � " A � . If it is uniform, then

¿ � " � R Â U ~ { Ê Ê T É V 34 N ¿ A � " A � R Â U ~ { Ê Ê T É V � for all " A A �
and the result follows by the induction hypothesis.

Consider the case where ¿ � " � is stuck, i.e. does not reduce. Since ¿ � " � R Â U ~ È T É V _ ,
it does not get stuck when a ' -value is substituted for D . By the evaluation rules,
replacing D with a ' -value causes a stuck computation to become un-stuck in two
cases. The first is if the redex is � H < � D �

or � H © L K K � D �
; but these cases are still

uniform for any ' -value and reasoning analogous to the previous uniform case
applies. The only other non-uniform case is where " � � � D (E)� for some � � E

30 Smith

which have free variables from
[\] � ¿ � � � D �

. By the form of the Æ -value reduction
rule, we then have the following:

¿ � � � � ' B � " A �(E)� � 34 N ¿ � � � " A R � T U V � � �
for all expressions " A � E � � . In particular, it holds for " A being � or any � � c . It
thus suffices to show

there exists a � � c such that ¿ � � � � R � T U V � � R Â U ~ S T É V _ �
By the induction hypothesis,

there exists a � A � c such that ¿ � � � � � R � T U V � � � R Â U ~ S Ê T É V _ �
Then by the assumption b �̂ � $ �+ c , � above may be replaced by some � A A � c (take

the substitution in the definition of �̂ � $ �+ to be R � R Â U ~ S Ê T É V T U V), giving

there exists a � A A � c such that ¿ � � � � � A A R � T U V � � � R Â U ~ S Ê T É V _ �
By the directedness of c , we can find a � such that � A � � A A �̂ + � , and this means first
that ¿ � � � � � A A R � T U V � � � R Â U ~ S T É V _ �
Now by the simple fact that �̂ + respects value substitution, � A A R � Ê T U V �̂ + � R � Ê T U V forE A � E R Â U ~ S T É V , so ¿ � � � � � R � T U V � � � R Â U ~ S T É V _ �

q
Iteratively applying the two previous lemmas then allows an arbitrary context

to be constructed around sets b and c one operator at a time:

LEMMA 5.13 (�̂ � $ �+ PRE-CONGRUENCE) �̂ � $ �+ is a pre-congruence, b �̂ � $ �+ c implies
� � b � �̂ � $ �+ � � c � .

And, from �̂ � $ �+ pre-congruence, Theorem 5.10 directly follows.

LEMMA 5.14 (FIXED POINT) For a functional h , � � � � (h) � �� + � h � � � � � � �
PROOF: Without loss of generality assume the free variables of h are cell
variables only, for from this case the result follows for arbitrary h by Theorem
5.10. The Ë� + direction follows by induction on � ; consider then proving �̂ + . First
note � � � (h) �� + Ì (Ì) where Ì � ' B � ' D � h (B (B))(D), so it suffices to show� Ì (Ì) � �̂ + � h � � � � � �

. Expanding definitions, the desired result is to show
for all � with free variables from � B � � [\] � ¿ �

, ¿ � � � R Í (Í)T U V _ implies ¿ � � � R Î Ï T U V _
for some

�
. Assume ¿ � � � R Í (Í)T U V _ , proceed by induction on the length of this

computation to show the above statement. Consider the next step of computation
performed on ¿ � � � R Í (Í)T U V . If the step is uniform in Ì (Ì), the conclusion follows

The Coverage of Operational Semantics 31

directly by induction hypothesis. Then, consider non-uniform steps; all such cases
can easily be seen to be of the form

¿ � � � R Í (Í)T U V � ¿ � � � Ì (Ì)� � R Í (Í)T U V 34 N ¿ � � � ' D � h � Ì (Ì) � � D � � � R Í (Í)T U V �
we show ¿ � � � h � � � R Î Ï T U V _ for some

�
. By the induction hypothesis,

¿ � � � ' D � h � h � Ð � � D � � � R Î Ï Ð T U V _
for some

� �
, so since h � Ð �̂ + h � Ð N and ' D � h � h � Ð � � D � �� + h � Ð N by extensionality,¿ � � � h � Ð N � � R Î Ï Ð Ñ 8 T U V _ , and letting

�
be

� � � � , the desired conclusion has been
reached. q
5.2 Memory Projections

We will hereafter informally use numbers, pairs, and lists as # + syntax, taking
numbers and pairs to be encoded as in the embedding of # () % of Definition 4.3, and
(functional) lists and list operations, � � K a © , � H a © I � © � � a � H � � K a J I - © I � , encoded
via the standard pair-based encoding. We will define J L J j L � for lists of cells
below. Syntactic projections ! �+ may be defined as follows.

DEFINITION 5.15 (PROJECTIONS ! �+)

! + � ' C � ' D � ' B �L � � � � H N � B � � � � � N � C (D)(, i � N � B �
)

� �L � � � � H O � B � � � � � O � C (D)(, i � O � B �
)

� � � � � �L � � � � H � � B � � � � � � � C (D)(, i � � � B �
)

� �L � � � � H © L K K � B � � H L � � Ò � © , � H � B � ½ L � � Ò � � � ¾
L � � � J L J j L � � B � D � � B � H L � � B � C (© , � H � B � D �

)(½ L � � B �
)

� � � �' B � � J I - © I � � ' B � C (� � K)(B) � ½ L � � Ò � � ¾
K L � Ó = C (� � K)(B (C (� � K)(B �

))) � �J I - © I � � ' B � C (� � K)(B) � ½ L � � Ò � � ¾ Ó � � � � � �
J L J j L � � B � Ô � � � � � � ' h � ' Ô � L � � � � H � � K � Ô � � L � I K H L �L � � � © L K K L ¬ � B � © I � � Ô � � � L � � i L � h (© � � � Ô �

)
�
(Ô)© L K K L ¬ � B � C � � K L � B �

= ½ L � � B � � � K L � C �
= ½ L � � C � � �H L � � B � L � I K H L � ¾ H L � � C � L � � i L � ¾

K L � Ó = ½ L � � B � � � H L � � B � B � � ¾ H L � � C � C � � ¾ Ó! �+ � ' B � j , �! � N+ � K L � Ò
= � L � � � � K � � � ! + (! �+)(� � K)! ¡+ � K L � Ò

= � L � � � � K � � � � � � (! +)(� � K)
The difficult question is what the projection operation should do with a memory cell.
The above projections will project the contents of any memory cell encountered. If
there is cyclic data in the memory, such as a cell B containing � � � O � B �

, we must not

32 Smith

repeatedly project B , for this process will loop forever. The extra D parameter here,
not found in the functional projection functions, serves the purpose of accumulating
cells already encountered, and preventing such cells from being projected again.
Note that projection of cell B containing ' C � B causes no looping problem because
the projection operation will halt at the ' . For this reason, at this point D is reset.

The global cell list in reference
Ò

serves to close a “back-door” communication
channel. Note that

Ò
is free in ! + and becomes bound in ! � N+ and ! ¡+ definitions.

The cells in this list are cells that “entered” or “exited” this projection at some point
in the computation history. Subexpression

J I - © I � � ' B � C (B)(D) � ½ L � � Ò � �
above serves to project all the cells accumulated thus far in

Ò
. Without

Ò
and

these additional projections, cells would only be projected when they are explicitly
passed to or returned from a function, and thus a cell passed to a projected function
could on successive calls to the function serve as a “back-door” communication
channel if the function remembers this cell name locally. We give an example to
clarify this point. A wrapper around a function h of the form

D � K L � F = � L � � � � � N � ' B � B � � � �' C � L � � � � H N � ½ L � � F � � � H L � � F � C � � H L � � ½ L � � F � � h (½ L � � ½ L � � F � � � �
would then allow h to be computed even when D is projected: first a cell could be
passed in to D which serves as a communication channel to the context that would
not be subsequently projected. Consider

h A � ' B � K L � D = ! P+ (D) � �K L � C = � L � � ' B � j , � � � � D (C) ¾ H L � � C � B � ¾ D (' B � B) ¾ ½ L � � C �
—h �� + h A would hold if nonlocal cell projection were not a component of the
definition of ! + above.

We may prove ! �+ possesses the finite approximation property:

THEOREM 5.16 Finite Approximation, Theorem 3.14, is provable for the projec-
tions ! �+ : � ! �+ (�) � � � � � �� + � � �

.

The proof of this Theorem parallels the proof for # $ % & ? � @ of Section 3.2. More
details of proofs are provided here since the memory changes some aspects of the
proof in a nontrivial way. Hereafter the

]
subscript on projections ! is implicit.

LEMMA 5.17 (ELEMENTARY ! �+ a ! ¡+ PROPERTIES) The elementary ! � a ! ¡ proper-
ties of Lemma 3.13 all hold when lifted to # + .

Following # $ % & ? � @ , we define ¤ � � �
and ¤ � � �

to characterize how the projections
percolate into expressions. The only addition is the projections may percolate into
the memory ¿ and so ¤ � ¿ �

also needs to be defined. The definitions of ¤ � � �
and

The Coverage of Operational Semantics 33

¤ � � �
may be directly lifted from # $ % & ? � @ (cells are in fact variables, so no extra case

is needed there). ¤ � ¿ �
is defined as replacing each cell value E in ¿ with ¤ � E �

.
Observe that ¤ � ¿ �

is always a legal memory context since it stores only values.
Basic properties of ¤ � " �

sets include the following.

LEMMA 5.18 (i) For � with all free variables bound by memory context ¿ ,¤ � ¿ � � ¤ � � � � ! ¡ (¤ � � �
)� � _ Õ ¤ � ¿ � � ¤ � � � � ¤ � � � � � _ .

(ii) ¤ � � � �̂ + � , ¤ � � � B � � �̂ + � � B � , and ¤ � ¿ � � � � _ Ä ¿ � � � _ .

(iii) ¤ � � � � � � � ¤ � � � � ¤ � � � � , and ¤ � � R � T U V � � ¤ � � � R Ö ? � @ T U V.
PROOF: (i), Ä follows from Lemma 5.17, (prune). For Å , first observe it
suffices to consider the case of � being a value by computing. The structure of
values in this language can be viewed as a chain of chains terminating in a ' ,
described as follows: outermost, the value is � � � < 8 � � � � � � � < : � E � � � � �

where E is a '
or a cell; if it is a cell, the contents of the cell, ¤ � ¿ � � E �

, in turn must have a similar
chain structure. This chain of chains must eventually terminate in a ' , or in a cell
already encountered previously on the chain. An induction on the structure of this
chain establishes that the ! ¡ operation here has no effect.

(ii) follows from Lemma 5.17 (prune), and (iii) is direct from the definition of¤ . q
LEMMA 5.19 (IDENTITY OF ! ¡+) ! ¡ �� + ' B � B
PROOF: The �̂ + direction follows from Lemma 5.17 (prune) and extensionality.
For the Ë� + direction, we successively rephrase the statement five times. It suffices
to show for all � with only cell variables free that ¿ � � � � � � � _ Ä ¿ � � � ! ¡ (�)� � � _ by
the ciu and extensionality theorems. For this it then suffices to show ¿ � � � � � � _ Ä¤ � ¿ � � ¤ � � � � ! ¡ (¤ � � �

)� � � _ by Lemma 5.18 (ii). And, by Lemma 5.18 (i) it then
suffices to show ¿ � � � � � � _ Ä ¤ � ¿ � � ¤ � � � � ¤ � � � � � � _ So, it suffices to show ¿ � � � � _ Ä¤ � ¿ � � ¤ � � � � � _ by Lemma 5.18 (iii). And lastly, to show this it suffices to show¿ � � � � � 34 N ¿ N � � N � Ä ¤ � ¿ � � � ¤ � � � � � _ Õ ¤ � ¿ N � � ¤ � � N � � _ , for the conclusion then
follows by induction on computation length and the observation that ¤ � E �

is a value
for any value E .

So, assume ¿ � � � � � 34 N ¿ N � � N � , show ¤ � ¿ � � � ¤ � � � � � _ Õ ¤ � ¿ N � � ¤ � � N � � _ . Consider
this step of computation; � � � � � � � for some redex � ; proceed by cases on the
form of � .

If � � I - - � ' B � F � E �
, then � N � � � F R � T U V � . By inspection of the definitions of¤ � � �

and ¤ � � �
, ¤ � ¿ � � � ¤ � � � � � must be of the form

¤ � ¿ � � � ¤ � � � � ! ¡ (I - - � ! ¡ � ' B � ¤ � F � � ! ¡ � ¤ � E � �
)� � �

34 Smith

Computing from this point yields

¤ � ¿ � � � ¤ � � � � ! ¡ (I - - � ! ¡ � ' B � ¤ � F � � ! ¡ � ¤ � E � �
)� � _Õ ¤ � ¿ � � � ¤ � � � � ! ¡ (! ¡ (I - - � ' B � ¤ � F � � ! ¡ (¤ � E �

)
�
))� � _Õ ¤ � ¿ � � � ¤ � � � � ! ¡ (I - - � ' B � ¤ � F � � ¤ � E � �

)� � _ by Lemmas 5.17 (idemp), 5.18 (i)Õ ¤ � ¿ � � � ¤ � � � � ! ¡ (¤ � F � R Ö ? � @ T U V)� � _Õ ¤ � ¿ � � � ¤ � � � � ¤ � F � R Ö ? � @ T U V � � _ by Lemma 5.18 (i) and (iii)Õ ¤ � ¿ � � � ¤ � � � F R � T U V � � � _ by Lemma 5.18 (iii).

If � is any other redex except a memory operation, the proof is similar to the
previous case. For the memory operations, the proof is somewhat similar but
requires a bit of extra reasoning; consider redex H L � � B � E �

. The memory cell B
in ¿ N will then have value E , whereas H L � � B � ¤ � E � �

will place ¤ � E �
as B ’s value,

precisely what ¤ � ¿ N �
should be by its definition. q

Unfortunately these projections do not produce finite elements. The projection
operations ! can force the domain and range of a function to be statically finite, but
there are still infinitely many different histories this function can have on successive
invocations.

LEMMA 5.20 (! + FINITENESS FAILURE) � � � � is closed and � �� + ! P (�)�
contains

infinitely many
�� + -distinct expressions.

PROOF: For each � ,

K L � B = � L � � � � � � ' B � � � � � H ª L � , � H L � � B � - � L � � ½ L � � B � � � � � j , � � ¢ �
is a distinct constant function which only may be used up to � times before
diverging. q

This suggests that some aspect of history must be included in a finite charac-
terization of memory-based languages. There is one additional incompleteness.
These projected expressions are also not finite in the operational sense, namely
a computation of ! �

(�) could compute forever without attempting to compute! �
(E) for some E . In particular, a memory-based fixed point (defined as a function

in a cell F which in its body retrieves the function in F , i.e. itself, and invokes
it) could compute forever even if every subexpression is projected. Consider for
example the evaluation of

¿ � F = ! �+ � ' C � ! �+ (½ L � � ! � N+ (F) �
(¢)) � � ! �+ (½ L � � ! � N+ (F) �

(¢))� �
This computation will compute infinitely along the sequence of states

¿ � F = ! �+ � ' C � ! �+ (½ L � � ! � N+ (F) �
(¢))� � ! �+ (� � � ! �+ (½ L � � ! � N+ (F)�

(¢)) � � �)� �
Any functional fixed point which uses the projected fixed point combinator ! �

(� � �)
will not suffer from this problem: the bound � will be the maximum number of
recursive calls of ! �

(� � �)(h) for any functional h .

The Coverage of Operational Semantics 35

5.3 Toward Finite Memory Projections

We now outline a potential solution to the above problems. The number of times a
projected function can be successively invoked is limited to a fixed number, remov-
ing the infinitude uncovered in Lemma 5.20. This is implemented by modifying
projections at level � to use a unique counter cell for each function that counts the
number of calls, and diverges after � calls. We conjecture that finiteness holds for
these modified projections, ! �+ .

DEFINITION 5.21 (FINITE PROJECTIONS ! �+)

! �+ ¥ � ' D � ' B � j , �! � N+ ¥ � ' D � ' B �L � � � � H N � B � � � � � N � ! �+ ¥ (D)(, i � N � B �
)

� �L � � � � H O � B � � � � � O � ! �+ ¥ (D)(, i � O � B �
)

� � � � � �L � � � � H � � B � � � � � � � ! �+ ¥ (D)(, i � � � B �
)

� �L � � � � H © L K K � B � � H L � � Ò � © , � H � B � ½ L � � Ò � � � ¾
L � � � J L J j L � � B � D � � B � H L � � B � ! �+ ¥ (© , � H � B � D �

)(½ L � � B �
)

� � � �K L � F � � L � � � � � � ' B � �L � � � � H ª L � , � ½ L � � F � � � j , � � H L � � F � - � L � � ½ L � � F � � � � ¾J I - © I � � ' B � ! �+ ¥ (� � K)(B) � ½ L � � Ò � � ¾
K L � Ó = ! �+ ¥ (� � K)(B (! �+ ¥ (� � K)(B �

))) � �J I - © I � � ' B � ! �+ ¥ (� � K)(B) � ½ L � � Ò � � ¾ Ó � � � � � �
! �+ � K L � Ò

= � L � � � � K � � � ! �+ ¥ (� � K)
Variable F above is a counter, freshly created for each function projected, to count
the number of calls. Besides this one change, these projections are the same as the! �+ .

THEOREM 5.22 Finite Approximation, Theorem 3.14, is provable for the projec-
tions ! �+ : � ! �+ (�) � � � � � �� + � � �

.

PROOF: By Lemma 5.16, it suffices to show

� ! �+ (�) � � � � � �� + � ! �+ (�) � � � � � �
Since ! �+ only adds additional possibilities for divergence to ! �+ , the �̂ direction is
not difficult. For Ë� , suppose � � ! �+ (�)� _ , in ; steps; we show � � ! 7 � N+ (�)� _ :
in the � � ! �+ (�)� computation there can be no more than ; application steps, so
no single function is applied more than ; times, so if the counters for all projected
functions are initially set to be larger than ; , no counter will ever reach ¢ . And,! 7 � N+ indeed will assure every counter is initially larger than ; since termination
of � � ! �+ (�)� guarantees the minimum projection must be more than ! 7 N+ . q

We conjecture that these finite projections do indeed “project enough” to produce
only finitely many programs at each rank.

36 Smith

CONJECTURE 5.23 (FINITENESS) The set

� � � � is closed and � �� + ! � (�)�
contains finitely many

�� + -distinct expressions for each � � �
.

In the functional case, extensionality is critical to prove this property: there are
finitely many functions at a certain level because by induction, the functions have
a finite domain and finite range of elements of the next lowest level, and thus by
extensionality there can be only finitely many such functions. In the memory case,
the failure of extensionality for closures causes this proof technique to fail. A proof
of the conjecture thus appears difficult.

We can at least conclude that there is some hope of developing finite projections
in the memory case.

It is also possible to develop a theory of projections for # + by adding new, atomic
projection operators, following the idea of the # () % ¯ ¥ ? � @ and # * (& ¯ ? � @ constructions.
The atomic projections can be interpreted as the # () % projections via the embedding
of Definition 5.3. These atomic projections will have the effect of projecting local
memory cells, thus destroying full abstraction.

6 Conclusions

We have studied a fairly broad family of languages, and return with mixed results
on whether fully abstract finite element theories may be developed. For functional
languages with recognizer operators (# $ % & ? � @ of Section 3 and # () % ? � @ of Section
4.1), the prospects are excellent. Without recognizers present (# () % ¥ ? � @ of Section
4.2), prospects do not look as promising. Simple objects (# * (& ? � @ of Section 4.3)
apparently have no elegant projection operations ! �

definable. For memories, we
conjecture that the projection functions ! � yield finitely many expressions at each
rank, so the problem is open but there is some possibility of a solution.

We showed it is always possible to develop a theory of projections by adding new,
atomic projection operators (# () % ¯ ¥ ? � @ of Section 4.2.1, and # * (& ¯ ? � @ of Section 4.4).
This however may expose internal details and thus lose full abstraction. Lemma
4.16 shows in some cases it is provable that addition of atomic projections changes
the equivalence. Many explicit ' -labelling methods will also suffer from the same
problem. For some applications, on the other hand, projections of this form may
be adequate.

On a positive note, an inductive characterization of fixed points was possible for
all languages studied, so for the particular ranked sequence of successively larger
approximations to a fixed point, an additional induction principle was gained.
For # * (& , an inductive characterization of the self-reference found in objects was
also possible. One of the reasons why this characterization was possible across
such a wide range of languages is the set ordering � k � �̂ � k � applies across the

The Coverage of Operational Semantics 37

whole spectrum of languages. This generality is one of the major benefits of
using this ordering. Its main weakness is that it does not directly generalize to the
nondeterministic case.

Does full abstraction matter? It depends on the problem. In some cases it does
not matter, and other times it might be critical. Negative uses of �̂ are the major
source of problems when an equivalence that is too fine-grained,

�� p * * ¥ × % À ® �� , is
used. For instance, extensionality (Theorem 5.8) is one such property. For this
reason, extensionality of a more fine-grained equivalence will not imply extension-
ality of

�� . The notion of a faithful ideal (Abadi, Pierce, and Plotkin 1991) also has
a negative instance of

�� : “if � � Ø
and � �� � , then � � Ø

”. The secondary source
of problems is that a more fine-grained equivalence will mean some operational
equivalences will not be provable via the too-fine-grained characterization.

Language embeddings also are of interest in their own right. The embeddings
studied here give precise lemmas which characterize concepts that informally are
well-known, but were without rigorous characterization. The fact that a language
with injections alone allowed many other language features to be homomorphically
embedded in them gives a case for studying untyped languages of that form. The
inability of the pure ' -calculus to serve as the target of any homomorphic embed-
ding defining # () % (Lemma 4.5) justifies why it is often inadequate to study the
pure ' -calculus alone as a model of functional programming. The largest divide
in language semantics lies between languages which can be homomorphically em-
bedded into simple languages # $ % & ? � @ , and those which have only non-homomorphic
embeddings into # $ % & ? � @ . This gap serves as one means to formally separate the
functional from non-functional languages. Global effects such as memories lack
a homomorphic embedding and are semantically difficult to deal with. Functional
objects are homomorphic and justifiably semantically simpler than memories, and
in fact the addition of objects may not modify operational equivalence (Conjecture
4.19).

6.1 Other language features

It is at least worth a brief mention of how other language features not discussed
may be handled; greater exploration of this topic is a subject for future work.
Objects were only partially addressed here. Imperative objects will pose additional
difficulties beyond the problems exposed here.

Two features not touched on here are control effects and types. Control effects
such as exceptions and © I K K a © © are probably manageable, but values that escape
to the top will cause complications because values that are not finite may escape:! ·
(I j , � � � � ¢ ¢ ¢ �

) would abort the projection operation and return � ¢ ¢ ¢ . If these
values are “observable”, values of any rank could escape.

Simply-typed higher order functional languages such as PCF are not particularly
difficult because type membership may be inductively defined, and given the type
of an expression " , its finite projection may be defined statically. More complex

38 Smith

types such as polymorphic, recursive, and parameterized types greatly complicate
matters by removing this possibility. In this case, recognizers must exist in the
language, but recognizers are difficult to type. So, a � Ù - L © I H L construct is probably
required to preserve full abstraction.

The real question we seek an answer to is whether finite element characteriza-
tions are possible for real languages such as Standard ML that combine all of these
features, and whether the characterizations may be used to prove deep properties
of programs. We are still not quite able to answer that question. One particular
challenge is whether it is possible to give a semantics to Standard ML that defines
types “semantically,” without recourse to type proof systems.

Acknowledgements

The original research on finite projections (Mason, Smith, and Talcott 1996) was
done in collaboration with Ian Mason and Carolyn Talcott. The author would like
to also thank Carolyn Talcott for a careful reading of an early version of this paper
that caught a number of errors; Lemma 5.20 is hers. Laurent Daimi and Andy Pitts
also gave careful readings of the paper which the author is thankful for. The author
would like to acknowledge support for this work from NSF grants CCR-9301340
and CCR-9312433.

References

Abadi, M., L. Cardelli, and R. Viswanathan (1996). An interpretation of objects
and object types. In Conference Record of the Twenty-Third Annual ACM
Symposium on Principles of Programming Languages. ACM.

Abadi, M., B. Pierce, and G. Plotkin (1991). Faithful ideal models for recur-
sive polymorphic types. International Journal of Foundations of Computer
Science 2(1), 1–21.

Abramsky, S. (1990). The lazy lambda calculus. In Research Topics in Func-
tional Programming, pp. 65–116. Addison-Wesley.

Agha, G., I. Mason, S. F. Smith, and C. Talcott (1992). Towards a theory of
actor computation. In CONCUR, Volume 630 of Lecture notes in Computer
Science, pp. 565–579. Springer-Verlag.

Barendregt, H. P. (1984). The Lambda Calculus: Its Syntax and Semantics
(Revised ed.), Volume 103 of Studies in Logic and the Foundations of
Mathematics. Amsterdam: North-Holland.

Bloom, B. (1990). Can LCF be topped? Information and Computation 87,
264–301.

The Coverage of Operational Semantics 39

Egidi, L., F. Honsell, and S. R. della Rocca (1992). Operational, denotational
and logical descriptions: a case study. Fundamenta Informaticae 16(2),
149–170.

Eifrig, J., S. Smith, V. Trifonov, and A. Zwarico (1995). An interpretation of
typed OOP in a language with state. Lisp and Symbolic Computation 8(4),
357–397.

Felleisen, M. (1991). On the expressive power of programming languages.
Science of Computer Programming 17, 35–75.

Felleisen, M., D. Friedman, and E. Kohlbecker (1987). A syntactic theory of
sequential control. Theoretical Computer Science 52, 205–237.

Felleisen, M. and R. Hieb (1992). The revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science 103, 235–271.

Freyd, P., P. Mulry, G. Rosolini, and D. Scott (1990). Extensional PERs. In
Proceedings of the Fifth Annual Symposium on Logic in Computer Science,
pp. 346–354.

Gordon, A. D. and G. D. Rees (1996). Bisimularity for a first-order calculus of
objects with subtyping. In Conference Record of the Twenty-Third Annual
ACM Symposium on Principles of Programming Languages.

Harper, R., F. Honsell, and G. Plotkin (1993). A framework for defining logics.
Journal of the Association of Computing Machinery, 143–184.

Honsell, F., I. A. Mason, S. F. Smith, and C. L. Talcott (1995). A variable typed
logic of effects. Information and Computation 119(1), 55–90.

Howe, D. J. (1996, February). Proving congruence of bisimulation in functional
programming languages. Information and Computation 124(2), 103–112.

Kamin, S. N. and U. S. Reddy (1994). Two semantic models of object-oriented
languages. In C. A. Gunter and J. C. Mitchell (Eds.), Theoretical Aspects of
Object-Oriented Programming, Chapter 13, pp. 464–495. MIT Press.

MacQueen, D. B., G. Plotkin, and R. Sethi (1984). An ideal model of types. In
Conference Record of the Eleventh Annual ACM Symposium on Principles
of Programming Languages.

Mason, I. A., S. F. Smith, and C. L. Talcott (1996). From operational semantics
to domain theory. Information and Computation 128(1).

Mason, I. A. and C. L. Talcott (1991). Equivalence in functional languages with
effects. Journal of Functional Programming 1, 287–327.

Milne, R. E. and C. Strachey (1976). A theory of programming language se-
mantics. Chapman and Hall, London, and Wiley, New York.

Milner, R. (1977). Fully abstract models of typed ' -calculi. Theoretical Com-
puter Science 4, 1–22.

40 Smith

Mitchell, J. (1993). On abstraction and the expressive power of programming
languages. Science of Computer Programming 21.

Mosses, P. D. (1992). Action Semantics. Cambridge.

Pitts, A. M. (1996, 15 June). Relational properties of domains. Information and
Computation 127(2), 66–90.

Riecke, J. G. (1993). Fully abstract translations between functional languages.
Mathematical Structures in Computer Science 3, 387–415.

Ritter, E. and A. M. Pitts (1995). A fully abstract translation between a ' -calculus
with reference types and standard ml. In 2nd Int. Conf. on Typed Lambda
Calculus and Applications, Edinburgh, 1995, Volume 902 of Lecture Notes
in Computer Science, pp. 397–413. Springer-Verlag, Berlin.

Scott, D. (1976). Data types as lattices. SIAM J. Computing 5, 522–587.

Smith, S. F. (1992). From operational to denotational semantics. In MFPS 1991,
Volume 598 of Lecture notes in Computer Science, pp. 54–76. Springer-
Verlag.

Talcott, C. L. (1989). Programming and proving with function and control ab-
stractions. Technical Report STAN-CS-89-1288, Stanford University, Stan-
ford, CA 94305.

Talcott, C. L. (1997). Reasoning about functions with effects. In A. D. Gordon
and A. M. Pitts (Eds.), Higher Order Operational Techniques in Semantics.
Cambridge University Press. This volume.

