The Coverage of Operational
Semantics

Scott F. Smith

Department of Computer Science
The Johns Hopkins University
scott@cs.jhu.edu
http://www.cs.jhu.edu/scott/

Abstract

Techniques of operationa semantics do not apply universally to al lan-
guage varieties: techniques that work for simple functiona languages may
not apply to more realistic languages with features such as objects and mem-
ory effects. We focus mainly on the characterization of the so-called finite
elements. The presence of finite elements in a semantics allows for an ad-
ditional powerful induction mechanism. We show that in some languages a
reasonabl e notion of finite element may be defined, but for other languages
thisis problematic, and we analyse the reasons for these difficulties.

We develop a forma theory of language embeddings and establish a
number of properties of embeddings. More complex languages are given
semantics by embedding them into simpler languages. Embeddings may be
used to establish more genera results and avoid reproving some results. It
also givesusaformal metric to describe the gap between different languages.

Dimensions of the untyped programming language design space ad-
dressed here include functions, injections, pairs, objects, and memories.

1 Introduction

This paper is an exploration of a space of (untyped, deterministic) languages to
determine what fundamental operational notions may be fruitfully defined.

A full and faithful notion of equivalence may be defined over an operationa
semantics via the Morrig/Plotkin notion of operational/observationa equivalence
between program expressions, =. Operationa equivalence has also been shown
to yield good notions of equivalence for languages with memories (Mason and
Talcott 1991), explicit control operators (Talcott 1989), types and objects (Gordon
and Rees 1996), and distributed objects (Agha, Mason, Smith, and Talcott 1992).

Itisimportant to characterizewhat “ full and faithful” means: itisfull inthesense
that as many programs are equivalent asis possible, and it is faithful in the sense
that we do not go overboard and equate programs that have differing behaviors.
Operationa equivalence ¢ = b is defined to precisely capture this notion: two
program fragments are equival ent unless some useinside alarger program text can

1

2 Smith

distinguish the two. This program text can be viewed as a particular “test” of a.
Letting C' denote a program text and C'[«] the result of placing « in some “hole”
in this text, we then may define « = b as C'[a] and C[b] having the same testing
outcome. For many languages, termination suffices as the observation. Thus, to
prove operational equivalence a« = b, one supposes for arbitrary context C' that
C'la] terminates and establishes that C'[6] also terminates, by induction on the size
of C'[a]’scomputation (and, vice-versa).

It isadifficult question how operational equivalencesa = b may be established
in practice (see (Talcott 1997) inthisvolumefor moreon thistopic). Using compu-
tational induction asoutlined aboveto directly establish operational equivalencesis
infact very difficult. Even proving 1+ 1 = 2 isdifficult since acontext could make
many copiesof 1 + 1 (if for instance 1 + 1 occurred in afunction which was being
passed to another function) before evaluating it. However, proofs are possible. A
number of alternate characterizations of = have been devel oped to make proof s of
equivalence much simpler, including bismulation (Abramsky 1990), applicative
orderings (Bloom 1990), and ciu equivalence (Mason and Talcott 1991). These
alternate characterizations may be shown to be the same as & (a so-called fully
abstract alternate equivalence). Bismulation equivalences give rise to a coin-
duction principle which makes establishing equivalences easier; ciu equivaences
still often must be established by computational induction, but the inductions are
considerably ssimpler. Applicativeorderingsarevery closein spirit to bismulation
orderings; in many settings the difference between the two could be called trivial.

The focus of this paper is the search for additional proof techniques for estab-
lishing fully abstract equivalences and other properties of programs. The main
focusisthe additional inductive structure of the finite or w-algebraic elementsin a
domain. To review very briefly, the finite elements of a domain are the elements
that are the lub of no infinite C-directed set.

d isfiniteiff for al C -directed sets D withd C |_|D,d C d, forsomed, € D

Then, w-algebraicity isthe property that any domain element d can be decomposed
into itsfinite elements:

foral d,d =| |{do|do isfiniteand dy C d}

Thisequivalenceallowsaproperty of d to be proved by instead proving the property
for each dy C d (assuming continuity also holds). If the finite elements also may
be stratified into finite ranks 1,2, ... ,n, ..., this gives rise to the possibility of
proving properties of d by proving it for al dy C d by induction on the finite rank
of dy. Thisisvery important because it gives a new, and often powerful, induction
principle.

A closely related property is fixed point induction (Scott 1976). The greatest
utility of the finite elements lies in the proof principle of rank induction, as just
mentioned. For specia cases of d it is possible to consider specia forms of C-
ordered chain. One such example is fixed point induction, which is based on the

The Coverage of Operational Semantics 3

finite approximation set

’I’L

—_—~—
fia(d) = |_[{d(L),d(d(L)),... ,d(d(...d(L)...),...}

for fixed point fiz (d). Asin the case of finite elements, it isthen possible to prove
a property of the fixed point by proving a property of the finite approximants, by
induction on . S0, even if w-agebraicity cannot be established, there still may
be particular finitary decompositions that lead to useful proof principles. Another
example of the use of rank induction is found in the ideal model construction
(MacQueen, Plotkin, and Sethi 1984), whereit isused to give semanticstorecursive
types.

The obvious solution for defining finite elements is to work in a domain that
modelsthelanguage. Theinductive structureisusually presentinadomaindirectly
by its manner of definition (Scott 1976). However, it is well-known that for many
languages it is difficult to define a domain which has a notion of equivalence that
is fully abstract. In fact, none of the languages studied in this paper have such
a model extant in the literature. Our alternate approach here is to build finite
elements out of the program syntax. This approach has proved successful for a
particular smple functiona language (Mason, Smith, and Talcott 1996). Syntactic
projectionfunctions=”(¢) aredefined withinthe programming languageto project
expression ¢ to be a finite expression of level n. In this operational theory an
additional powerful induction principle is thus obtained: induction on the rank of
the finite elements.

Since memory-based languages often contain cyclical structures formed by
memory self-references (for instance a function isin a cell and the function body
contains a reference to the cell it is in), the idea of applying this technique to
memory-based languages is particularly appealing. One problem in particular it
could address is the question of a semantic definition of types in the presence of
memory, a problem that is currently open.

So, the main goal of this paper isto address how the concept of finite e ements
generalizes to a broader class of languages. We will show that in some cases an
effective finite element structure may be defined, and in other cases this cannot be
established in afully abstract manner (i.e., finiteness may only be established with
respect to an equivalence which is not operational equivalence =), showing the
semantic tools which may be brought to bear on certain varieties of language are
currently limited in thisregard.

We want to consider a range of languages rather than addressing a single pro-
gramming language. A series of (untyped) programming languages L is studied.
L;,; contains only the call-by-value A-calculus and injections. Ly, adds booleans,
numbers, and pairs. L,; has smple objects, and L,,, has a memory. We will not
explicitly address control operators, typed languages, or concurrent or distributed
computation. All languages we study follow the evaluation order most common
in programming languages today, namely function application is call-by-vaue,
pairing and injection are strict, and evaluation never takes placeinsidea .

4 Smith

Rather than presenting multiple semantic definitions, we give semantics to
languages by defining language embeddings that map high-level languages down
to low-level languages that lack many of the high-level features. In particular, all
languages are mapped down to languages with injections only, L;,;. Thisapproach
makes clear what the “difference” between languages is, and helps us focus on
the particular difficulties that arise in some languages. A theory of embeddings
is developed and a number of theorems proved to better characterize what can be
embedded in what and how well. The mappings also alow us to define some
hybrid forms of language quite easily, and in certain cases allows the “lifting”
of theorems from low-level to high-level languages. The approach of defining
language features by embeddings has along history going back to Strachey (Milne
and Strachey 1976). We obtain some interesting results about these mappings, and
the mappings themselves are an additional topic of the paper.

An outline of the paper is as follows. A language-independent framework for
operational semantics and language embeddings is defined in Section 2. Next, in
Section 3theinjection language L;,,; isstudied in detail and itsfinite element theory
developed. Then, in Sections 4 and 5 a wider space of languages is explored via
embeddings into L;,;. Section 5 presents a memory language L., in full detail.
Conclusions regarding what succeeds and what fails are found in Section 6.

2 A Framework for Operational Semantics

Before studying particular languages we define a ssimple semantic framework for
languages with an operational evaluation relation, and for embeddings between
languages. It is genera enough to encompass al languages studied herein, but is
not intended asageneral framework along the lines of (Mosses 1992). In particular
it will not fully capture nondeterministic or concurrent languages. It will allow for
a genera notion of language embedding to be defined. We will give definitions
and properties that hold over an arbitrary operational structure; these definitions
will then not have to be repeated for each language studied.

2.1 Operational Structures

We begin with an official definition of alanguage structure, called an operational
structure. Languages are taken to come with an operational evaluation relation.
Some of the language mappings need to be based on the grammatical structure of
the language, so a general notation for operators op is aso defined in the tradition
of atheory of arities (Harper, Honsell, and Plotkin 1993). All languages are defined
with respect to a single shared set of program variables X for smplicity.

DEFINITION 2.1 A Language L has structure (E, V., O, —) where

[E isthe set of expressions of the language

The Coverage of Operational Semantics 5

V C E arethe value expressions

O are the operators. Each operator op € O can be viewed as a map from
(X" x E) x...x (X" x E) toE for somevaluesof n andm;, | <:<n
associated with op.

—¢€ [E x E isthe evauation relation, mapping expressions to final computation
results. It isreflexive on values.

Our notion of operational evaluation relation maps expressions to expressions,
although this may seem restrictive, it is possible to define evaluation relations
for languages with control primitives and effects in a purely syntactic fashion
(Mason and Talcott 1991; Felleisen and Hieb 1992). We impose some informal
regularity on the notation used for languages. LL isimplicitly (E, V, O, —), Ly
taken to be <]Einj(i)7Vinj(i)7©inj(i)7 *_)inj(i)>a L’ taken to be <E/,Vl,@,, l—>/>, etc.
We let x,y,z rangeover X, v rangeover V, a,b,c,d,e rangeover E, and
op rangeover Q. For the remainder of this section we develop results for an
arbitrary fixed language L. Each definition of this section, eg. =, isapplied to a
particular language by subscripting: =, indicatesthe = relation for language LL,,, .

Theoperatorsareageneral notation which alowseach field to bind somenumber
of variables. In each product (X™ x E), the variablesbind free occurrencesin the
expression. An example operator is

sample — op(z.y.eq, €2, 2.€3)

—free x and y in e; and free z in e3 are bound, and no other free variables in
e1, €9, e3 are bound. We will use thisinformal notation of writing out an example
to define the arity of an operator.

The set of expressionsE isconstrained to be theleast superset of X closed under
the operatorsin Q. We will implicitly coerce between operators of one language
and operatorsof another language, provided the arities of the two operatorsare the
same. Furthermore, if an expression e € L; is constructed with operators which
are al in O, for some L,, then ¢ may be implicitly coerced to be in E, by the
obvious pointwise operator mapping.

A closed expression is an expression with no free variables; E? is the set of all
closed expressions. «[b/+] is the result of substituting b for the free occurrences of
x in a taking care not to trap free variables of 4. Contexts C' € C are expressions
with holes “e” punched in them, and C[e] denotes placing e in the hole(s) in C,
possibly incurring the capture of some free variablesin e.

A value substitution is a finite map from variables to values. We let o range
over value substitutions. als] is the result of ssimultaneous substitution of free
occurrences of = € Dom(c) ina by o(x), again taking care not to trap variables.

6 Smith

2.2 Operational Ordering and Equivalence

In this section we give basic definitions of orderings and equivalence that are
uniform with respect to the language studied.

DEFINITION 2.2 (L,)

a T biffforal C € Csuchthat Cla], C[b] € E?, Cla] | implies C[b] |
a=biffaLbandbla

Note, a isdefined (writtena |) if it evaluatesto aresult: « — 6for someb. And, a T
if a | failsto hold. In thisdefinition of observational equivalence we are implicitly
taking termination as the single observable property because it is a proper notion
of observation for the languages studied herein. A more compl ete treatment would
allow for amore general notion of observation than just termination.

LEMMA 2.3 (ELEMENTARY C / = PROPERTIES) (i) L istrangitive and reflexive
(apre-order).

(if) = isan equivalencerelation.
(iii) T isapre-congruence,i.e.a T bimpliesC[a] T C[b].
(iv) = isacongruence,i.e.a = bimpliesCla] = C[b)].

Over any operational structure, it isalso possible to define an operational notion
of directed set. Thisissmply a L-directed set of expressions in place of a C-
directed set of domain elements.

DEFINITION 2.4 (L-DIRECTED SETS) A set A isdirected iff forall a,b,ifa,b € A,
then thereissomec € Awherea L cand b T .

Welet A, B rangeover directed setswith finitely many freevariables!, and V range
over directed setswith V' C V. Weallow directed sets of expressions to be used as
subexpressions with the convention C'[A] = {C[a] |a € A}. Value substitutions o
extend pointwise to sets of expressions: Afo] = {als]|a € A}.

The first hurdle encountered is the lack of an operational analogue of a lub
operator LI. Some chains may not even have an upper bound because each element
of the chain could be a function with a finite domain, but the lub could have an
infinite domain and be uncomputable. Thus, L is not complete.

A number of solutions to this problem are possible. For one, we could restrict
the directed sets A to be recursively enumerable (r.e.) sets. The lub will also be
re. since A isr.e. This approach may be effectively applied to the smply typed
A-calculus (Freyd, Mulry, Rosolini, and Scott 1990).

! For technical reasons, we only allow directed setswith finitely many free variables, otherwisea
directed set may contain all thevariables X free and problemsmay arisein obtainingfresh variables.

The Coverage of Operational Semantics 7

A variation would be to further require that the directed set A is internally
represented by afunction f in L such that f(») for natural number » producesthe
n-th element of the directed set, and to have an expression 1ub(f) inthelanguage
which internally computesthelub of f (thisargument assumes the language L. has
functions and numbers). Unfortunately, 1ub must then have the ability to dovetail
computationsin the directed set, and this will require new syntax in the language
and change the underlying equivalence. So, this approach may be of limited value.

It thus does not appear to be feasible to construct structures isomorphic to
domainsdirectly on expressions. It ishowever possible to make progress by using
L -directed sets of expressions as a space over which an ordering is defined (Smith
1992). A simplepre-ordering on directed sets of expressions, {-} T {-}, isdefined
for this purpose. This pre-ordering has the property that « T biff {a} T {b},
meaning that it fully and faithfully generalizes L.

DEFINITION 2.5 (SET RELATIONS {-} T {-}, {-} = {-}) For A, B directed, define

AC B iff foralae Aandforal C € Csuchthat C[A],C[B] C E?,
if C'la] | thenthereexistsab € B suchthat C'[b] | .
A=B iff ACBadBLC A

This ordering is not quite what one might initially expect, as the b6 € B may
be chosen depending on the particular testing context C' which exercises a € A.
Thereinliesthe power of the ordering. From the context of useit will be possibleto
disambiguate between _ and {-} C {-}. Some elementary propertiesof {-} C {-}
include the following.

LEMMA 2.6 (ELEMENTARY {-} C {-}/{-} = {-} ProOPERTIES) (i) {-} & {-} is
apre-congruence: A = B impliesC[A] C C[B].

(i) {-} = {-}isacongruence: A = B impliesC[A] = C[B].
(iii) {a} C {b}iff a C b.
(iv) AC {b}iffforalac A ,a b
(V) a € Aimplies{a} T A.
This ordering will be used to characterize the finite expressions.

DEFINITION 2.7 (FINITE EXPRESSIONS E“) The set of finite expressions E¥ is de-
fined by

E* = {b € E? |forall closed A, if {b} C Athenb T a forsomea € A}

Itisworth emphasizing that the previousdevel opment waslanguage-independent:
the ordering {-} T {-} was successfully defined over any language .. Much of
the power of thisrelation is derived from its generality. This completes the brief
genera theory of languages. We next define a theory of embeddings between
languages.

8 Smith

2.3 Language Embeddings

For the purpose of embedding one programming language in another, a general
theory of language embeddings is now defined. Other closely related notions
of language embedding have been previoudy defined (Felleisen 1991; Mitchell
1993; Riecke 1993). Our definitions combine ideas from these approaches. The
embeddings will be used to give semantics to a number of languages in Section
4, and will enable a number of properties to be proved concerning the relation
between equivalences in one language and equivalences in asimilar language.

DEFINITION 2.8 (EMBEDDING) Given high- and low-level languages L, and L;, a
sound embedding -] € L, — L,isdefinedasmaps[-] € E, — E, [-] € C, — C
and an initial context Ci,,;, € C; such that

(i) ForC € C,e € Ey, [Cle]] = [C]Ile]]
(i) Forclosed e € Ey, €|, iff Cie[[€]]

Cinie ISnot e for embeddings that require aspecid initial context; for most embed-
dings, Ciuie Will just bee. Our (i) isMitchell’s (R1) condition, and (ii) issimilar to
Felleisen’s condition 2 of his Eliminability notion (Felleisen 1991).

For brevity in this presentation, we will generally not define |, and —, for the
high-level languages. We will often leave —, undefined and take (ii) above as
a definition of |,. Since operational equivalence needs only to have termination
defined, termination alone is a sufficient operational characterization for our pur-
poses. Sound embeddings will thus only need to satisfy (i). Value set definitions
V5, will similarly not be needed. Wetake [A] to abbreviate {[a] |a € A}.

It is useful to consider the induced ordering [a] T, [6]. Since programsin L,
will be able to betested by contextsthat are not in the codomain of the trandation,
this equivalence may be more fine-grained than L, .

LEMMA 2.9 If [a] &, [6] thena T, b; and, if [A] &, [B]then AT, B.

ProoF: For arbitrary C, suppose C'[a] |,,, show C'[b] |,,, assuming [a] T, [0].
Since the embedding issound, [C[a]] = [C][[«]] and Cinic[[C][[]]] |, and thusby
assumption Cii[[CTI[0]]] |,, @lowing us to conclude C[b] |,. The proof for the
set-based ordering is similar, noting that if [A] isdirected, A alsois.]

An even more desirable property of embeddings is full abstraction, Mitchell’s
(R2). Thisisthe case when the IL; contexts cannot expose any more structure than
the L, contexts already had exposed.

DEFINITION 2.10 An embedding [-] € L, — L, is fully abstract if « L, biff
[a] &, [6]- Itisset fully abstract if AT, Biff [A] T, [B].

Set full abstraction trivially implies full abstraction by the definitions, but not the
converse. (It isan open question whether the converse holds).

The Coverage of Operational Semantics 9

Full abstraction imposes a strong global structure on the embedding, one that
many embeddings will fail to satisfy. It isalso useful to consider imposing local
structure on the embedding. The first additional constraint we imposeisthe notion
of aparametric embedding.

DEFINITION 2.11 (PARAMETRIC EMBEDDING) Givenasoundembedding[:] € L, —
LL,, it is parametric if for each op € Oy, an expression e,, with FreeVars(e,,) =
{y1,...,y,} exists such that

[op(Ti.€1,-..,Tn.€,)] = €opilerl/vi,eilenl/yn}

where a {¢/=} indicates a substitution of all free occurrences of variable = by b,
allowing the free variables of 4 to be captured in «. Furthermore, there is a L,
context C.,, such that

[] = Cural2]

Clar INterprets variables; in more complex embeddings such as state and control,
variablescannot just map to themselves. The reader may now want to look ahead to
Definitions 4.3, 4.18, and 5.3, which contain examples of parametric embeddings.
Parametric embeddings are closely related to Felleisen’s condition 3, so-called
“Macro Eliminability” (Felleisen 1991).

One other important property of an embedding isthe syntax of some high-level
operators may be preserved by the embedding.

DEFINITION 2.12 (HOMOMORPHIC EMBEDDING) Givenaparametricembedding[-] €
L, — L,, thisembedding is a homomorphic embedding with respect to operators
Oif

(1) Ginic =

(i) O C O, N Oy, and the arity of operatorsin O isthe samein O, and O,

(iii) for each op € O, the embedding is homomorphic:
[[Op(z_l'eh s 7m-en)]] = Op(z_l'[[el]]a ce 7m[[€n]])
(iv) Cyar = o

In terms of equivalence, homomorphic embeddings preserve equations that only
use operatorsin Q. This allows equationsin the low-level language to be lifted to
the higher language, avoiding the need to re-prove them.

LEMMA 2.13 (LIFTING) If « T, b and a and b only use operatorsin O, and [-] €
L — L; isahomomorphic embedding with respect to O, thena L, b. Similarly,
AL, BimpliesA L, Bwhen A and B only use operatorsin O.

10 Smith

PrROOF: [a] = a and [8] = b in this case; the result then follows from the fact
that all testing contexts C' € C;, can be mappedto [C] € C;. 0

The main advantage of homomorphic embeddingsisthe abilty to usethe Lifting
Lemma. Our notion of homomorphic embedding is closely related to Felleisen’s
eliminability definition, condition 1 (Felleisen 1991). Definitions 4.3 and 4.18
below are examples of homomaorphic embeddings.

Embeddings compose in the obvious fashion.

LEMMA 2.14 Define [-] € L; — L asthe composition of [-]; € L; — L, and
[']2 € Ly — Ls formed by defining [-] € E; — Es as[-]z 0 []:-

() [] € Ly — L isasound embedding.

(i) If [-]:» and [-] are both parametric (resp., homomorphic with respect to O,
and 0,) embeddings, then [-] is also aparametric (resp., homomorphic with
respect to O; N O,) embedding.

3 Thelnjection Languages L)

The development up to this point has been independent of a particular language.
We now study a particular family of languages in-depth, the family of injection
languages Linj(1), Linj(2), - - - - Following this section, we define a series of lan-
guages via embeddings into Li,x). Pure A-expressions plus injections provide
just enough syntax to alow a wide range of programming languages to be faith-
fully embedded. Theinjections inj;(a) serve to wrap high-level expressions a to
distinguish different sorts, Lemma 4.5 below shows why the pure A-calculus will
not suffice as an embedding target language. The injection languages consist of
the untyped call-by-value A-cal culus augmented with afinite number of injections.
The language Linj(x) hasinjections inj, (a), ... ,inj,(a).

DEFINITION 3.1 (LLinj(x)) For k € N, define
Linj(k) = (Einj (%) Vinik)» Oinj (k) —inj(k))
asfollows.
Owjr) = {app(a,b), lambda(z.a)} U U, ;< {inj;(a), outi(a), isi(a)}
Vinj(k) = X U {lambda(z.a) [@ € Einjr) } U Ui cice{indi(0) [0 € Vinjn) }

For the remainder of this section, the & in LLi,; (1) istaken to be some arbitrary fixed
value and we write L;,;, Ei,;, etc. Severa syntactic abbreviations will be made

The Coverage of Operational Semantics 11

to aid in readability of programs through the use of more conventiona notation.
These include

Az.a = lambda(z.a)
«(}) = app(a,b)
letz=ainb = (Az.b)(a)
bot = (Az.z(z))(Az.z(z))
etrue = Az.Ay.z(z)
efalse = Az A\y.y(y)
eif(a,b,¢) = a(Azx.b) (Az.c) forfreshz

fix Ay.(Az A zy(z(z)) (2))(Az zy(z(z)) (2))
aob = Ax.a(b(x))

Booleans and conditional are encoded viathe standard method. The “e” prefixing
etrue, efalse, eif indicates that these are encoded notions of these constructs
and not primitives. Observe typewriter font parentheses «(b) abbreviate function
application. £ix isacall-by-value version of the standard fixed-point combinator
for functionals.

3.1 Operational Semantics

The operational semantics of expressions is given by a single-step evaluation re-
lation —;y,;, using the convenient notion of areduction context (a.k.a. evaluation
context) from (Felleisen, Friedman, and Kohlbecker 1987). The redices are ex-
pressions of the form v(a), is;(v), or out;(v). Redices are either immediately
available for execution, out;(inj,;(a)), or are stuck, out,;(Az.z). Inthis presenta-
tion stuck computations are treated as divergent for smplicity. Reduction contexts
R;y; determine the subexpression that is to be reduced next.

DEFINITION 3.2 (REDUCTION CONTEXTS Riy,;) The set of reduction contexts, R &
Riy;, isthe least subset of G,; that includes

o, R(e),v(R),inj;(R),out;(R),is;(R)
foral e € Einj, (S Vinja R e Rinj, and1 < <k.

Inan expression R[a|, R denotesthe continuation for the computation «. Reduction
contexts are used in evaluation as follows. In order to perform one step of com-
putation of some non-value expression «, it is uniquely decomposed into « = R|[b]
for some R and redex b by the following Lemma. Uniqueness of decomposition
implies evaluation is deterministic.

LEMMA 3.3 (DECOMPOSITION) Either a € Vy,; 0r a can bewritten uniquely as R[b]
where b is aredex.

12 Smith

DEFINITION 3.4 (EVALUATION —,;) The evaluation relation —,; for ILmJ (k) iIsthe
transitive, reflexive closure of the single-step evaluation relation — ., which is
generated by the following clauses:

inj?

1

(beta) R[(Az.a)(v)] iy Rlal/e)

(out) R[out;(inj;(v))] r—>ilnj R[v]

(ist) Rlisi(inj;(v))] ~—i; Rletrue]

(isf) R[isi(inj;(v))] ~—i; FRlefalse]wherei # j
(is-lam) Rlis; ()\3: a)] —i; Rlefalse]

Noteit is possible to compute with open expressions using the above definition.
A few simple properties concerning computation are the following.

LEMMA 3.5 (UNIFORMITY OF EVALUATION) (i) by = by if a —{; bp and a —;
by
(i) a i, bimpliesalo] —{; blo]

(iii) a i, bimplies Rla] — s R[b]

We now define an alternative but equivalent notion of L. ., restricting the space
of contexts to be closed instances of al uses of an expression. This equivalence
isthus called ciu equivalence, =%, following (Mason and Talcott 1991). a =

nj? —inj

meansa and b behaveidentically when closed (the closed instances part) and placed
in any reduction context R (the uses part).

DEFINITION 3.6 (CIU ORDERING, Ef;‘)
a gn? biff foral R, o suchthat R[als]], R[bl-] closed, R[al]] | implies R[b-]] |

THEOREM 3.7 (CIU) a &, . biff a gf;‘ b.

For a proof, see (Mason, Smith, and Talcott 1996). For this smple language it
is even possible to characterize T via a bismulation ordering (Howe 1996).

We now list a collection of basic =;,; / L, propertles all easily provable from
Theorem 3.7.

LEMMA 3.8 (BAsiCL, . / Zinj PROPERTIES) (i) Ifa T b then for v € V?m,
alv/a 5, . blojel.
(ii) vot Einj a.
(iii) Forclosed a, a T iff a =;,; bot.
(iv) R[bot] =iy bot.

(V) =4y; respects computation, i.e. @ =y,; b if a —ip; b.

The Coverage of Operational Semantics 13

(VI) If a Finj Az.band a ginj a' then o ginj Az.b' for some ¥’ ginj b.

(VII) If a Finj anZ(b) and a ginj a’ then o’ ginj inji(b’) for some ¥’ ginj b.
(Viii) @ Zin; out;(inj,(a)).

(ix) If y & FreeVars(Az.b), then Az.b = Ay.(Ax.b)(y) .

(x) Extensionality: Az.ao .)\r apifandonlyif (Az.ag)(v) Einj (Az.ai)(v)
for al values v.

Propertiesof the above general form may be proved across awide range of lan-
guages (Mason and Tal cott 1991; Gordon and Rees 1996; Tal cott 1989). They may
intheory be proved directly by induction on computation length (Tal cott 1989), but
it is far more effective to prove them viafirst establishing an alternate characteri-
zation of T, . via Ecm or a hismulation ordering. For all of the above properties
except extensi onallty either ciu or bismulation characterizations allow for direct
proofs; extensionality is trivial to establish via a bismulation characterization but
requires some work when proved viaciu.

Aswasthe case for ginj, an alternate characterization of {-} ginj {-} isneeded
to facilitate proofs. An analogue of ciu ordering may be defined for {-} ginj {-}.
Bisimulation characterizations of {-} ginj {-} aredso possible.

DEFINITION 3.9 (ClU SET ORDERING IZCi“) A ECi“ B for I, -directed A and B if

andonly if forall « € Aandfor dl o R such that R[Al] and R[B0]] are sets of
closed expressions, if R[al-]] | then there exists b € B such that R[b[-]] |.

The main characterization theorem is
THEOREM 3.10 (SET ORDERING CIU) A Einj Biff A Ef;? B.

Thisis Theorem 4.6 of (Mason, Smith, and Tal cott 1996).

{-} C Bini {-} has the important property of allowing fixed points to be approxi-
mated. Fixed points may be shown equivalent to their set of finite unrollings. This
breaks the cycle of a fixed point and gives an induction principle for reasoning
about recursive functions. We make the following abbreviation: for a functiona
f = Az.\y.a, define f° = Az.bot and [+ = f(f").

LEMMA 3.11 (FiIXeD PoINT) For afunctional f,

(1) {£ix(/f) } =i {/" [n € N},

(i) fix(f) = f(£ix(f)),and
(i) foral a, A\z.a =iy f(Az.a) impliestix(f) Einj Az.a.

14 Smith

3.2 FiniteElements

The problemwefocusonin this paper isobtaining additional proof principlesusing
the finite algebraic structure of the language. As mentioned in the introduction,
this alows reasoning about infinite elementsin terms of their finite elements since
each infinite element is the lub of all smaller finite elements.

We show in this section how finite elements may be defined in an operationa
semantics. This materia is taken from (Mason, Smith, and Talcott 1996), where
complete proofs are aso to be found.

With the fixed point property we saw how recursive functions could be decom-
posed into finite components for inductive reasoning. Similar properties could
be proved for other particular structures, such as lists formed via iterative pair-
ing. However, what would be even more desirable would be a general principle
for decomposing all programs into finite components. The finite decomposition
of functions above still does not decompose the argument or return value of the
function, which may still beinfinite.

The finite expressions accomplish precisely this goal: any expression may be
decomposed into a set of finite approximations stratified by level £ that arefinitein
the sense that there are only finitely many distinct approximationsup to operationa
equivalence at any level k. The finite decomposition of expressions is critical to
constructions that define self-referential structures (MacQueen, Plotkin, and Sethi
1984; Pitts 1996), for it gives an inductive structure by which self-referentiality
may be avoided.

We construct finite expressions “top-down”, by syntactically projecting arbi-
trary expressions to produce finite expressions. This is the opposite of domain
construction, which starts with only finite elements. In order for projections to
be performed, the presence of recognizer operators is. .. inthe language is crit-
ical: each sort in a multi-sorted language is projected in a different manner, and
recognizers alow arun-time projection operation to be defined.

DEFINITION 3.12 (FINITE PROJECTIONS 77;;) The projection functional iy, finite
projections «”"

and infinite projection =22 are defined as follows.

inj? inj

Tinj = AY.AZ.

eif(isy "E) 1an(y(outk(r))
yoxoy)...))

7ri0nj = Az.bot

Tt = Ting(7ih)

T = £1x(7min;)

Itisinterestingto observethat for & = 0, Liy;(o) isthe purecall-by-value A-calculus,
so the above defines projection operations on the pure A-calculus. This approach

The Coverage of Operational Semantics 15

to finite expressions is not found in Barendregt (Barendregt 1984). Barendregt
Chapter 14 does review another similar approach which is worth contrasting:
Hyland and Wadsworth’s labelled A-calculus. Rather than defining a syntactic
projection 7j;.(¢) , the expression e is labelled with constant », producing the
labelled A-term e™. evaluation then projects: (Az.a™t!)(b) — (alt"/=])". Thisis
identical to how =" *!(Az.¢) projectsthe function argument and result both to be
at level n. Other researchers have also studied labeled A-reduction (Egidi, Honsell,
and dellaRocca1992). Wedo not pursuelabelled reduction because the addition of
|abel s changes the language and thus changes operational equivalence (seeLemma
4.16 below). Since the projections #7.. are definable within the language, they are

inj

guaranteed not to change the underlying equivalence.

Note that for expressions in a simply-typed A-calculus, there is no need for
run-time projection operations: given the type of an expression e, 7%(¢) can be
partially evaluated to remove all cases on the sort, asthe type itself revealsthe sort
Thisisone way to characterize Milner’s construction (Milner 1977).

The following lemma establishes elementary properties of the syntactic projec-
tions. For brevity henceforward we drop the subscript inj from the projections

7.

LEMMA 3.13 (ELEMENTARY 7" /7°° PROPERTIES)

(fIX) T ginj {ﬂ'n | n c N}
(idemp) 7" o 7™ = 7", T oW Zypyy T
(compose) 7 o " & wmin(mn)
(order) 7" L. amt Lo
(inject) #"*1(inj;(v)) Sip; inj;(7"(v)), 7*(inj;(v)) Zin inj;(7>(v))
(fun.0) 7'(Az.e) =iy Az.bot
(fun+) 7"t (Az.a) Zpy 7" o dz.aorw™, 7°(Ar.a) Ziyy 7° 0 Az.aor™
(prung) =(a) T, 0. (a) S, 0

(value) ==°(wv) | for dl closed valuesv

The Finite Approximation Theorem is a key result: any expression is equiva
lent to its set of finite projections, yielding an inductive decomposition of every
expression into its finite counterparts. This property is a close analogue of the
w-algebraicity property of domains.

THEOREM 3.14 (FINITE APPROXIMATION) {#"(a) |n € N} =y {a}.

To prove this, we show that for any particular computation, a large enough pro-
jection n will suffice. However, a direct proof of this property is a bookkeeping
nightmare as different projection values =* may percolate throughout the expres-
sionduring evaluation. A ssmpler proof isto characterizethelimit of the projection
function. 7°° may be characterized as an identity function.

LEMMA 3.15 (IDENTITY OF 7%°) 7% =; Az.x

16 Smith

To provethis, we characterize how the projectionsz > may percolate throughout
expressions during evaluation. Inductively define r(«) and 7(R) asfollows:

(z) ==z
7(op~ (ag,...,a,)) = x>(op~ (7(ao),... ,7(ax)))
(3n3,(a)) = inJ(r(@))

E)\x.a) =70 Ax.7(a) ox™

R) = 7(R[x])[s/<]

where operator op~ iseither app, out;, or is,. Thisdefinitionis carefully chosen
to have properties corresponding to how = percolates through evaluation; notice
for instance 7(v) isavalue for any value v. Theidentity of 7> may be proved by
establishing that « | implies7(a) |; thisthen establishes the Finite Approximation
Theorem. In Section 5.2 below, analogous results are established for a language
with state; more complete proofs are given there.

The syntactic projections may rightfully be called “finite expressions’: all
expressions that are finitein the classical sense of Definition 2.7 are equivalent to
some syntactically projected expression, and the cardinality of each level isfinite.

THEOREM 3.16 (FINITENESS CHARACTERIZATION) (i) Fordl n € N,

{a]a e B anda =i 7"(a) }

inj

contains finitely many =;,,;-distinct expressions.

(i) Forala e E’. andn € N, #"(a) isfinitein the sense of Definition 2.7.

inj

(iii) B2, = U, enla|a € B, anda Sy 77(a) }

Furthermore, {-} C. { }-directed sets all may be shown to have least upper

bounds, and L. . is w- algebralc see (Mason, Smith, and Talcott 1996) for these
properties and a proof of the previous Theorem.

4 A Space Of Languages

In the previous section a very simple language family Liy;x) was studied. In
this section we study progressively more complex languages and consider what
results still hold from the development for Liy;x), and what resultsfail. High-level
languages L, are studied by defining embeddingsof L;, into theinjectionlanguages
Linj(x)- This alows for us to quickly present a sequence of languages, and also
helps highlight how small (or large) the gap is between different languages.

Notions of operational ordering L and operational set ordering {-} T {-} were
defined on arbitrary operational structuresin Section 2, so there is no question of
the generality of those definitions. Our main goal hereis to study how well the
finite elements may be characterized, and in particular if Theorems 3.14 and 3.16
stated above for Liy;x) may be proved for these more complex languages.

The Coverage of Operational Semantics 17

4.1 Booleans, Pairs, and Numbers

We now define a language Ly, (x) Which adds booleans, pairs, and numbers to
Linj(r)- We preserve the inj,/out,/is; operators to alow this language to be
extended in turn. The case & = 0 yields alanguage with no injections, and & = 2
yields the standard left/right injections.

DEFINITION 4.1 Ly,) has structure (E, V, O, —) where

O = Onjw U {true,false, isbool(e),0,1,2,... ,succ(e), pred(e),
iszero(e),isnat(e), pr(e, e’), fst(e), snd(e), ispr(e), if(e, €', ")}

We include recognizer operators isbool, isnat, ispr in Lygyn. 1N Section 4.2
below we consider the alternative case when there are no recognizers. We will very
briefly outline the evaluator for L,y (and, will not define explicit evaluators for
most of the languages that follow). For brevity we will define some notions as
extensions of the notions defined in the presentation of L) of Section 3, read-
ing those definitions with K, (x) in place of E;,j). The vaues Vi) include
the cases as Liyjx) plus numbers, booleans, and pr(v,v). The reduction con-
texts Ry,pn(x) include the same cases plus if(R[e], ¢, ¢), pred(R[e]), succ(L[s]),
iszero(R]e]), fst(R[e]), snd(R][e]), pr(R]e],¢),pr(v, R[e]), isbool(R[e]), and
isnat(R[e]) and ispr(R[e])

DEFINITION 4.2 (Hllopn(k), —ben(k)) bpn(k) 1S the trangitive, reflexive closure of
1

'_)bpn(k):
R by FI)
where R[e] —inix) Fle’] isacase of Definition 3.4
R[if(true, a,b)] r—%pn(k) Rla] and +—>]13pn(k) R[b] for false case
R[fst(pr(v,v"))] r—%pn(k) R[v] and —' R[v'] for snd
R[succ(v)] r—%pn(k) Rlv+ 1] forveN
Rlpred(v + 1)] r—%pn(k) R[v]forv e N
R[iszero(v)] r—%pn(k) RIb]

forv € N,baboolean, and b = trueiff v =0
Rlis{bool/pr/mum}(e)] by R
wherev ¢ X and boolean b istrue iff visabool/pr/num

Lipn(x) ismapped to low-level language Liy;(x+3) by thefollowing homomorphic
embedding.

18 Smith

DEFINITION 4.3 [-] € Lipnx) — Linj(x+3) iSdefinedas Cin;, = @ and an embedding
of expressions as follows.

[true] = 1inj,, s(etrue)
[false] inj,,s(efalse)
[1f(e, €', e")] outyis([e])(Az.[€]) (Ax.[e"]) for fresh

[isbool(a)] = eif(isgts([a]),[true],[false])
[pr(a,0)] = inj.((Az.dy.Ap.p(2) (y))([a]) ([6]))
[fst(a)] = outgpa([a])(Az Ay.2)
[ond()] = outipa(la])(Aryy)
[ispr(a)] = e5#(isss([al). [eruc], [£alse])

[r] = inj,,,([pr(true,...pr(true, pr(false,false))...)])
[succ(e)] = letx =outryi([e]) in inj, ., ([pr(true,z)])
[preae)] = 1otz = outira(le]) in injys (inyag(outess([sna(2)])))

[iszero(e)] = 1let x =outgyi([e])in
eif(outyis([fst(z)]), [false], [true])
[isnat(a)] = eif(isgy1([a]), [true],[false])
[e] = homomorphicfor all other e € Eypn

The mapping for contexts extends the above with the case [e] = . Observe how
operator inj,_ , wrapsbooleans, inj, , wrapspairs, and inj, , wrapsnumerals,
keeping these datatypesdigoint. Boolean and pair encodingsaretheclassic Church
encodings, we then use the booleans and pairs to encode numerals.

LEMMA 4.4 [-] € Lypax) — Linjr+3) 1S @ sound embedding homomorphic in
O (k) -
PROOF: ShowW a |,y iff [a] linjhss)- WE may show a l—)épn(k) b implies
[a]] Zinj(r+3) [b] by inspection of the cases of 7., ,). Also, wemay show that if
a %épn(k), i.e, itisstuck, then [a] A;y;(k4s)- And, from the fact that for all values
v € Vipn(k)s [V] linj(k4s), the result follows.
The embedding can easily be seen to be homomorphicin Gy). O
Additional abbreviationsfor E,,,) include

nateq(e,e¢’) = fFfix(Af.dz.\y.if(iszero(z), iszero(y),
if(iszero(y), false, f(pred(z)) (pred(y)))))(e) (¢)
let pr(zi,x2) =eine’ = letx=ein

let x; = fst(x) in
let x3 = snd(x) in €/, for x fresh

If the embedding did not use injections, numbers and functions would be of the
same sort, and Ly, computations such as 0(Az.z) would terminate when they
should be stuck. Thisfact is expressed in the following Lemma, which shows the
pure A-calculusis too weak to serve as an embedding target.

The Coverage of Operational Semantics 19

LEMMA 4.5 There is no sound embedding [-] € Lipno) — Linjoy homomorphic
in (O)inj(o)

PROOF: Suppose there was. [0] Zinjo) Az.eo and [1] Ziy50) Az.e; Since
[0] Linj(0) and [1] Linj0)- Consider ﬂlszero()]; since [true] and [[false]] must
be non- equwal ent, and [[0]] and [1]] must be non-equivalent, this L,,; computation
must touch expression e, so for e being [0] it will compute to R[[0](Axz.€) | for
some \z.¢’ (thisbeing thefirst place where [0] istouched), and go on to terminate.
Thus [0](Az.€") liyj0)- Since the embedding is homomorphic, [Az.e'] = Az.e’,
and so [0(Az.€)] Linj(0), @cOntradiction. O

inj(0
LEMMA 46 [[]] €]prn(k) —]Linj(k-I—S) |S not fU”y abﬁl’act

PROOF: Az.if(ispr(z), (Az.0)(£st(z)),0) Zppnr) Az.0 but the Ly
context (8)(inj,,,(Az.bot)) distinguishesthe embedded forms. 0

Still, since the embedding is homomorphic, equations from Liy;x43) can be
directly lifted to Ly, k). One concrete exampleis the fixed point lemma.

LEMMA 4.7 {fix(Az.Az.f() (2)) } Sppnr) 1Az A2 f"(2) (2) |n € N}.

PROOF: This property is proved for Li,;x) as Lemma 3.11, and since the
expressionsonly invol veoperatorshomomorphicintheembedding [-] € Lipn) —
Linjx+3) (taking f to be a variable and not a metavariable), the result follows by
Lemma2.13. a

The finite approximation theorem (3.14) can also be “lifted” from L;,;, but the
syntactic projection functions = will not project pairs or numbers and will thus be
incomplete; in particular 3.16 will not be provable. To obtain complete projection
functions, fuller forms may be directly defined in L) .

DEFINITION 4.8 (FINITE PROJECTIONS 7{))
Thpn = AY.AZ.

eif
eif

(is1(z),inj,(y(outq(z))),

(is2(x), injy(y(oute(2))), ...,
eif(isg(x), inj,(y(outk(x))),
if(isbool(z),x,

if(ispr(x), pr(y(£st(x)),y(snd(z))),
if(isnat(x),if(iszero(x),0, succ(y(pred(z)))),
yoxoy))...))

7prn = Az.bot

Wﬁ}—)}—n ﬂ-bpn(k')(7-{-{)%pn(k))

Thpn(k) = fix(mhpn)

189

These finite projections in turn alow the finite elements of Ly, to be charac-
terized.

20 Smith

THEOREM 4.9 Theorems 3.14 and 3.16 hold for Ly,,x) With projections =y, ..

Proofs of these theorems are found in (Mason, Smith, and Talcott 1996). The
principle of induction on the finite rank r is thus successfully obtained for this
language.

4.2 Booleans, pairs, and numberswithout recognizers

It isinteresting to consider ramifications of |anguages without recognizers isnat,
ispr, isbool, and is;. In such languages the case analysis programmed into the
syntactic projection functions 7y, cannot be programmed, and thus the approach
of Section 3.2 is not directly possible. We show there still is some capability of
reasoning using finite projections, but at the cost of fully abstract reasoning.

DEFINITION 4.10 (i) Linj—(x) is defined to be Liy;x) With recognizer operators
is;, 1 <2 < k, removed from Oy, and the is; cases removed from

Finj(k) -

i) Lypn_(x) 1S defined to be Ly, 1) Without recognizer operators isnat, ispr,
pn— (k) pn(k)
isbool, Or is; for any k.

(iif) [] € Lppn—x) — Linj—x+s) IS then the obvious redtriction of the above
embedding (Definition 4.3) that removes the recognizer cases. (Notice that
isy isnot used in any non-recognizer cases).

This embedding is getting closer to being fully abstract than the mapping with
recognizers, but there are some subtle cases where parametricity is observable in
]Linj—(k') but masked in H—‘bpn—(k)'

LEMMA 4.11 [-] € Lipn— (k) — Linj—(x+3) iSnot fully abstract.

PROOF:
Az.let y =fst(z) inlet z = snd(z) in x Sy,
Az.let y = fst(x) in let z = snd(x) in pr(y, 2)

but the Lin;_(x43) context outyia((e)(inj,,,(Ap.p(Az.bot))))(Az.z) (Az.x)
distinguishes the embedded forms. O
A similar problem arises with booleans, so neither pairing nor booleans and
conditional can be encoded in a full and faithful manner. Numbers however can
probably be encoded faithfully in a language with only pairs and booleans.

We now establish that removal of recognizers causes the equivalenceto change.
Thismeanswearenot completely freeto add or removerecognizersfrom languages
as tools (e.g., to use them to define the finite projections), because the underlying
equivalence will be atered and full abstraction will then fail.

LEMMA 4.12 For dl g, if iszero(g(0)) lppn_(x) and if(g(true),0,0) Lppn_x),
theng = Az.x.

The Coverage of Operational Semantics 21

PROOF: First observe that this requires g(0/true) |y,,_(x)- ¢ Must then never
touch itsargument, for supposeit did: then ¢ must computeto R[0/true] for some
R. Since [y, (1) contains no recognizers, this state will get stuck on at least one
of 0 or true filling the hole (note that iszero(true) is stuck), contradiction. So,
since g does not touch its argument, the result of ¢(0/true) must be a parametric
valueof theform C'[0/true]. Theonly casethen for which both iszero(C[0]) and
if(C[true], 0,0) donot get stuck isthenwhen C'z] —ppn—(x) . Thus, g(v) S v
for any v, and the result follows by extensionality. a

LEMMA 4.13 Ebp
of]Ebpn—(k)-

n(t) & Sbpn *) when these relations are restricted to expressions

ProoF: Consider the Ly, () context
C = Az.if(z(true),if(nateq(z(0),0),0,0),0)

Then’ C[Pr(070)] ’E’bpn—(k) C[Z(PI‘(0,0))] if C[PI‘(0,0)](Q) \prn—(k)’ then by
Lemma4.12, g =y, (x) Az.z, and s0 C[z(pr(0,0)) I(9) lbpn_(x) aSWell. How-
ever, the Li,pn(r) context o(Az.if(ispr(z,bot,z))) distinguishesthetwo expres-

sons. O

4.2.1 FiniteProjections Without Recognizers

Since Ly, (1) CONtaiNs o recognizers, the syntactic projection operations y; ,, are
not definable within the language as was possible in the presence of recognizers.
Without some other approach, no finite element structure can be developed for

such alanguage.

It is possible to use Ebpn(" to directly prove instances of Ebpn_ *) viaLemma
4.13, and in the former language the syntactic projection functions may be directly
expressed. However, ordering | is far too fine-grained, as Lemma 4.13
shows.

One solution is to add the projections 7y, ,, Of Ly,pq(x) t0 Lipa—(x) @s primitive
operationsproj”. Thismeanswe will not allow all recognizersin testing contexts
of Li,pn—(x); they will only be used in the restricted way the projections use them.
We define this language in abbreviated form viaamapping to Li,pnx).-

pn(k

DEFINITION 4.14 (i) Eyppnr— (k) iISEbpn— (1) With additional 0-ary operatorsproj”
foreachn € N.

(i1) [] € Libpnr—(k) — Lipn(r) IS homomorphicin all operators op € Oppnr— (k)
except

[proj*] = 7w

THEOREM 4.15 Finite Approximation, Theorem 3.14, is provable for the projec-
tionsproj”(e) Of Lipnr—(x): {proj™(a)|n € N} Sypn.—x) {a}.

22 Smith

ProoF: The results from Theorem 4.9 may directly be applied to Lipn.— by

Lemma2.9. O
Since Lypn-—x) IN addition contains operators proj”, Ebpm_ *) restricted to
expressions Of Lypn—(r) has more testing contexts than L, .. These extra

contexts can distinguish more expressions, so adding atomic projection operations
has an undesirable effect on equivalence.

LEMMA 4.16 T~ *) CRobpn *) when the relations are restricted to Fyp,— ().
Proor: C followsfromthe fact that Eypn— (1) € Eyppnr— (). They are unequa by
thefollowing. The proof of Lemma4.13 definesaC suchthat C[pr(0,0)] Ebpn_(k)
Clz(pr(0,0))]. But C[pr(0,0)] %bpm_(k) Clz(pr(0,0))], because the context
o(proj') distinguishesthe two: C[pr(0,0)](proj') converges, and

Cl2(px(0,0)) J(proj’)

diverges because proj'(pr(0,0)) diverges. |

A similar problem would likely arise if an explicit expression labeling scheme
were attempted in analogy with labeled A-expressions (Barendregt 1984; Egidi,
Honsdll, and della Rocca 1992): presence of the labels will cause operational
equivalence to change. This shows it is very difficult to characterize the finite
structure of untyped languagesin afully abstract manner if the language does not
already have recognizer operators as primitives.

4.3 Simple Objects

We briefly study a language with simple functional objects. Simple objects may
be defined via a homomorphic embedding. We conjecture here that they may be
embedded in L, in afully abstract manner.

Our simpleobjects contain methodsthat may refer tothe objectitself. Sincethey
are functional, they do not contain mutable instances, and there is aso no notion
of class or of method override. Classes (Eifrig, Smith, Trifonov, and Zwarico
1995) and method override (Abadi, Cardelli, and Viswanathan 1996) may aso be
interpreted via homomorphic embeddings; for brevity we leave them out of this
presentation.

DEFINITION 4.17 L) has structure (Eqpj k), Vobik)s Qobj(k) —obj(k)) Where

Qobik) = Oppnry U {isobj(e)} U {send,,(e) | m € M}

omplTren, o Tpen) My, my, € M

for some countable set of messages M; count(m) for m € M is a bijection from
M to N.

The Coverage of Operational Semantics 23

This notation for objects uses a different operator for each object message form to
allow objectstofit the operator arity syntax convention. Ly;(x) ismapped to lower-
level language Liypyx+1) by the following embedding homomorphicin Oy, 1) (a
composition with [-] € Lypnx) — Linjx+s) Would then yield an embedding into
Linj(r+4)).

DEFINITION 4.18 [-] € Lobj(x) — Lipn(r+1) isdefined as Cini = o and an embed-
ding of expressions as follows.

[[Objml,...,mn(xl-ela e 7xn-€n)]] = an k+1 (le(AOb)‘y

if(nateq(y, count(my)), (Az.[es])(ob) ,
if(...,
if(nateq(y, count(my,)), (Az.[e.])(0b) ,
bot)...))))

[send,.(e)] = outrti([e])(count(m))

[isobj(e)] = eif(iskti([e]),true, false)

[e] = homomorphicfor al other e
This encoding does not expose the self (x4, ... ,z,,) Since afixed point is taken

(Kamin and Reddy 1994). We conjecture this encoding is fully abstract.
CONJECTURE 4.19 [] € Lobj(k) — Lipn(r+1) is set fully abstract.

If the encoding were not fully abstract, there would be two Lp;x) expression sets
A gobj *) B but @ Lyp,x41) context could distinguish [A] and [B]. However,
Lipn(r+1) CONtexts cannot access internal details of object implementations given
the representation used. Thus the conjectureis that functional objects are not very
complex additionsto alanguage. Establishing this conjecture appears difficult.

A fixed-point principle for reasoning about objects may be easily derived by
mapping objectsinto Ly, x+1) Viathe above embedding, and lifting thefixed point
principle of that language.

DEFINITION 4.20 Given fixed object obj,, . (z1.€1,...,2,.€,), define obj’
inductively as

obj® =obj,, .. (z1.bot,... x,.bot)

obj ! =obj,., o, (Trerlobs /ml, .., Ty 003 fonl)
LEMMA 4.21 Given object objmhm’mn(;vl.el, ey Tn€),

{003, (@11, Tpeen) b Eobjr) {obj’ |j € N}.
Proor: It sufficesto show

[{053,m, (@115 -+ s 2neen)] Zipuesn) [{ob3 15 € NI,

and thisfollowsfrom Lemmas 4.7 and 2.13. O

24 Smith

The ssimple objects under study are little more than mutually recursive function
definitions, so this principle is not much of a generalization over the fixed point
property for functions. But, thislifting approach should apply to mappings of more
genera notions of object.

431 FiniteProjectionsfor Objects

Consider how the syntactic projection operations for objects might be defined, in
analogy with the syntactic projections for Liy;(x) and Lipn(x)-

Tobj = AY.AZ.
if(isbool(z),... ,
if(isobj(x),?77,...))

At the “???’ point, each method of the object «+ must be projected, but it is not
possibleinside LL;() to detect which methods an arbitrary object has at run-time,
S0 it appears the object projection operation cannot be syntactically expressed. We
could at this point fruitfully pursue an alternate theory of objectsin which message
names had enough of afirst-class status so that the projections could be defined. It
could indeed be argued that the “proper” notion of an untyped object would allow
for first-class message operations (an assertion supported by their presence in the
Smalltalk language). But, we elect instead to continue with the current object
congtructs.

4.4 Simple ObjectsWith Atomic Projections

An dternative is to proceed as we did for Ly, in Section 4.2: extend the
language with atomic projection operations projy, . a the expense of possibly
changing the operational equivalence.

DEFINITION 4.22 (i) Qubjr (k) 1S Qg (x) With additional O-ary operators pro Job;
added for each n € N.

(i) [-] € Lobjr(r) = Lipn(e+1) extends [-] € Lopjr) — Lipn(r+1) Of Definition
4.18 by adding the following clause

[[Projgbj]] = ﬂ-gpn

THEOREM 4.23 Finite Approximation, Theorem 3.14, is provable for the projec-
tionsproj™(e) of Lopjr: {proj™(a)|n € N} Zopir {a}.

PROOF: The results from Theorem 4.9 may directly be applied to Loy;. by
Lemma 2.9. O

If the embedding [-] € Lobj(x) — Libpn(r+1) 1S Set fully abstract as conjectured,
addition of these projections would fortunately not change the underlying equiva-
lence: [-] € Lobjr(x) — Lipn(r+1) Would also clearly be set fully abstract. A full

The Coverage of Operational Semantics 25

and faithful theory of finite objects could then be developed. Thus, there is some
potential for developing a full and faithful finite expression theory for objects via
thisroute.

More serious difficulties with finite expressions arise in the presence of effects.
We will consider memory effectsin the next section.

5 Global effects: Memories

In this section we study a ssimple memory-based language, L.,x). The languages
studied in the previous section all could be defined by homomorphic embed-
dings, because there were no global effects. The addition of global effects thus
represents a significant change. We first present an embedding into Lipn(k+1)-
Strachey’s memory-threading transformation is used (Milne and Strachey 1976).
After establishing some results about this embedding, we define an equivaent
direct operational semantics. proving facts via the embedding is cumbersome.
We then develop a series of results which characterize the finite elements for a
memory-based language.

For simplicity we will define LL.,x) which has k injections, but no booleans,
numbers, or pairs.

DEFINITION 5.1 Ly, () has structure (E), Vin(k), Om(r) , —m(x)), Where
O = Oy U {ref(e), set(e, '), get(e), iscell(e)}

ref(e) createsanew memory cell with e astheinitial value, set(e, ¢’) setsacell
e with new value ¢’, and get(e) gets the value from cell e. Welet «; b abbreviate
sequencing, (Az.b)(a) for z fresh.

We hereafter take & to be an arbitrary fixed value and refer to this language as
L... The previous section gives evidence that a family of injections captures the
complexity of other ssmple features such as booleans, numbers, pairs, and objects.
In our embedding of objects into LL,,,x) We preserved these features because the
embedding was homomorphic. In the memory case, no homomorphic embedding
can be defined.

LEMMA 5.2 Thereisno embedding [-] € L) — Lbpn(k+j+1) fOrany j, k that is
homomorphicin Oy x).

PROOF: The basic idea of the proof is the observation that a homomorphic
embedding would force functionsin the memory language to have no side-effects.
(Az.y(0))(y(0)) Zvpn(r+i+1) ¥(0) ,soif ahomomorphic map existed, by lifting
we would have (Az.y(0))(y(0)) = y(0) buty = Az.set(z,inj (get(z)))
causes thisto fail. O

L., isembedded into L,,nx+1) by the following parametric embedding, which
passes the memory to al computations and computes (value, memory)-pairs as

26 Smith

result. inj, , isused to label cell numbers. The memory is afunction from cell
numbersto values, memory location O holds the next free cell address.

DEFINITION 5.3 Parametricembedding [-] € L, — Lipn(r+1) iSdefined as Cinie =
o(Az.0) and an embedding of expressions as follows.

[x] = Am.pr(z,m)= Cialz]
[ref(e)] = Am.let pr(v,mq)=[e](m) in
pr(inj,,,(m1(0)), A .if(iszero(c'), succ(m1(0)),
if(nateq(c, m1(0)),v,m1(c'))))
[set(e,e')] = AIm.letpr(c,mq)=[e](m) in
let pr(v,my) = [€'](m1) in
pr(v, A\c.if(nateq(c, outry1(c)), v, ma(c’)))

[get(e)] = Am.let pr(c,mq)=[e](m) in pr(mi(outrii(c)),mq)
[iscell(e)] = Am.let pr(v,mq) = [e](m) inpr(isiti(v),mq)
[Ax.e] = Am.pr(Az.[e],m)

lop(e)] = Am.let pr(v,my) = [e](m) in pr(op(v),m:)
for al other unary operatorsop € Q,
[e(e)] = Im.letpr(f,mq)=[e](m) in
Let pr(v,ms) = [¢](m1) in f(v) (m2)

This encoding is clearly not fully abstract: Lynx+1) contexts will be able to
inspect and alter the contents of arbitrary memory cells.

LEMMA 5.4 [-] € Ly — Lipn(e+1) iSnot fully abstract.

PROOF: Az.e(€) Zppart1) € for z not freein e, but if e has a cumulative effect
(suchase = set(y, inj,(get(y)))) the equation will fail to be =,,,. O

This parametric embedding is only sometimes useful for establishing equiva-
lences =,,,: since it is not homomorphic, there is no lifting of equations possible.
Theonetool it providesistheability toprovea =, b by showing [a] =ppn(x41) [0]-
This technique is useful for principles that do not require memory locality, the
source of lack of full abstraction in the trandation.

5.1 Direct Memory Semantics

Since working in memory-passing style is difficult, hereafter we will work over a
direct evaluation semanticsfor LL,,,, using notation closeto (Honsell, Mason, Smith,
and Talcott 1995; Mason and Talcott 1991). Most of the proofsin this section are
direct generalizations of the functional proofs from (Mason, Smith, and Talcott
1996) to alanguage with memories. Very little extrareasoning is needed to handle
the memory. The projection functions, defined in the following section, do require
considerable extrawork in the memory case.

A memory context I" is defined as a context

let ¢; = ref(etrue)...let ¢, = ref(etrue) in set(cy,v1)... ;set(c,,vy,); ®

The Coverage of Operational Semantics 27

fordigtinct ¢, ... , ¢,. I' may equivalently be viewed asafinitemap from variables
to values, here Dom(I') = ¢y, ... , ¢,. To distinguish variables used as cell names
from other variables, we define X .1 € X such that X . and X, = X — X are
both countably infinite. Invariably, Dom(I') C X, and A-bound variablesarein
X\. a-conversion of cell variablesis not allowed. We use shorthand I'{¢ = v} to
indicate an extension to I' mapping cell ¢ to value v.

For brevity we will define some notions as extensions of the notions defined in
the presentation of L, of Section 3, reading those definitionswith [E,,, in place of
Einj(x). The valuesV,, are the same cases as for Liy(x), and the reduction contexts
R,, include the same cases plus ref(e) U set(e,E,) U set(V,,, o) U get(e) U
iscell(e). Single-step evaluationisamap I'[R[e]] —L T'[R[e']] for R € Ry, e @
redex and ¢’ its contractum.

DEFINITION 5.5 (—1 ,) —u isthetransitive, reflexive closure —1:

(fun) Pla] =" T[0]

wherea —; ., bisacase of Definition 3.4
(ref) [R[ref()] —' T{c=v}[R[]]forfreshc € Xcan
(set) I{c=wo}[R[set(c,v)]] ' I'{c=uv}R[v]]
(@) Tfe=o}[Rlgst(e)]] — I{e=ov}[Rl]
(iscell-t) ['[R[iscell(c)]] —' T[R[etrue]]wherec € X a
(iscell-f) ['[R[iscell(v)]] —' TI'[R[efalse]] wherev ¢ X

The ciu ordering is defined for LL,,, asfollows.

DEFINITION 5.6 (CIU ORDERING, EC“‘) Foral a and b, a ECI“ b iff for dl I, o,
such that I'[R[a -] and I'[R[bl]]] are closed, if I'[R[al-]]] i then [[R[bI]] |.

THEOREM 5.7 (CIU) a L biff a T b.

For a proof, see (Honsell, Mason, Smith, and Talcott 1995). The theorem aso
follows from set ordering ciu, proved below as Theorem 5.10, by Lemma 2.6
(iii). Applicative bissmulation equivalences may be defined for languages with
memories (Ritter and Pitts 1995) and may be effectively used to directly establish
equivalences. They (to lesser degree) suffer the same problem of lack of locality
asdoes[[a] =ppn(r+1) [6], and so are not fully abstract.

An important property that holdsfor L isextensionality. It seems not to have
been stated or proved before in the literature so we give a proof.

THEOREM 5.8 (L EXTENSIONALITY) For al aq and a1, Az.ap _ Az.a; if and
only if (Az.ag)(U) L (Az.a;)(v) foral valuesv.

PROOF: = isdirect from the pre-congruenceof L. For <, assume for all v
that Az.ag(v) 5 _ Az.ai(v) andshow Az.ag & Az.a;. It sufficesto fix v to be
z; then by s-value, ag & @, and so by congruence, Az.ap T Aw.a;. a

28 Smith

It is perhaps surprising that extensionality holds, because extensionality shows
that it suffices to test a function without iterative application. If the functionisa
closure with local state it will not have the same value when executed a second
time. However, since the theorem is proved for A-values only, these cannot have
any local state. Extensionality failsfor imperative objects (closures), because they
may allocate their own local store. Consider the simple object defined asfollows.

0 = let ¢ = ref(etrue) in Az.set(c, inj,(get(c)))

o(v) =, inj,(etrue) for any v by computing, so if o was an extensional object,
0 =, Az.inj, (etrue) should hold but it clearly does not.

As wasthe case for Liy;), the Em-di rected set ordering {-
ciu characterization which is critical for proving facts about {-

aso hasa

[——;

B 1
S

——

m

DEFINITION 5.9 (Clu SET ORDERING, Ef;“) For L -directed sets of expressions A
and B, A C" Bifandonly if forall a € Aandforall I', o, B suchthat I'[R[A [-]]]
and T'[R[B|-]]] are sets of closed expressions, if T'[R[als]]] | then there exists a
b € Bsuchthat T'[R[bl-]] |.

The ciu theoremis
THEOREM 510 (S clu) AL Biff AT B,

This proof does not appear in previous papers and o is given here. The proof
hereisadirect combination of the proof of {-} T {-} ciu for afunctional call-by-
value language in (Mason, Smith, and Talcott 1996) and ciu for a memory-based
languagein (Honsell, Mason, Smith, and Talcott 1995). The proof may be factored
into three Lemmas. The (=-) direction is not difficult, since gf;“ has a smaller
collection of contexts to distinguish expressionsthan {-} £ {-} has. («) isthe
difficult direction. This proof uses the observation that it suffices to show gf;“ isa
pre-congruence. To establish this, we prove lemmasthat establish pre-congruence
for single constructors: non-\ operators Oy, (Lemma5.11) and Az (Lemma5.12)
may be placed around sets of expressions while preserving L.

LEMMA 5.11 (T OPERATOR CIU) If A £ B holds, then
op(¢, A, d) 52 op(e, B, d)
for any op € Oy, that isnot lambda.

PrROOF: We consider the case of an arbitrary binary operator op; the smpler
unary case should be uniformly apparent from thiscase. It sufficesto show thetwo
cases

I'[R]op(alel, ¢))]] | impliesthereexistsab € B such that I'[R[op(ble], ¢)]] |

The Coverage of Operational Semantics 29

and
I'[R[op(c,al0]))]] | impliesthereexistsab € B such that I'[R[op(c, ble1)]] |

We proceed by induction on the length of the computation of the assumption.
Assume the statements are true for all shorter computations. In the first case
above define Ry = R|op(e, ¢)], and in the second case when ¢ is a value, define
Ry = RJop(c,)], and the conclusion follows directly by assumption. So, we
may concentrate on the second case when ¢ is not avalue. In this case we have a
reduction context

Ro = R[op(e, al-])],

so by computing
I[Rlop(c, al])]] =" I"[R[op(c’, all)],

whichis an instance of theinduction hypothesis since this computation will termi-
nate in one fewer steps. g

LEMMA 5.12 (C°* LAMBDA clu) If A 59" B, then Az.A £ \z.B.

PrROOF: It suffices to assume expressions in A and B contain at most « free,
the conclusion then follows by definition of L ", For arbitrary £ and I, show for
fixeda € A

I'[R[Ax.a]] | impliesthereexistsab € B such that I'[R[Az.b]] | .
We may generalize this statement to
I'[e] re.a/21 | impliesthereexistsab € B such that I'[e] [Ae-b/] |,

for free variables of e coming only from Dom(I') U {z}. Theoriginal goal follows
by letting e = R[z]. Proceed by induction on the length of the computation of the
assumption. Consider whether I'[¢] isuniformin z, i.e. whether

Lle] =" T[]
for some I'[¢']. If itisuniform, then
F[G] [Az.e" /2] l—)l F/[e/] [/\z‘.e”/z]’ for al 6”7

and the result follows by the induction hypothesis.

Consider the case where I'[¢] is stuck, i.e. does not reduce. Since I'[e] [\z.a/-] |,
it does not get stuck when a A-value is substituted for z. By the evaluation rules,
replacing z with a A\-value causes a stuck computation to become un-stuck in two
cases. The first isif the redex is is;(z) or iscell(z); but these cases are il
uniform for any A-value and reasoning analogous to the previous uniform case
applies. The only other non-uniform case is where ¢ = R[z(v) | for some R, v

30 Smith

which havefreevariablesfromDom(I')U{z}. By theformof the 5-valuereduction
rule, we then have the following:

T[R[(Az.€')(v)]] =" T[R[e /<],

for al expressions ¢/, v, R. In particular, it holdsfor ¢’ beinga or any b € B. It
thus sufficesto show

thereexistsab € B such that T[R[b[v/z]]] [\z.b/2] | .
By the induction hypothesis,
thereexistsa b’ € B such that I'[(R[a [v/=]])] z-b'/2] | .

Then by the assumption A Ei“ B, a above may bereplaced by some 4’ € B (take
the substitution in the definition of Ef;“ to be [v[M=.b'/2)/2]), giving

thereexistsab” € B such that T'[(R[b" [v/<]])] \=-b'/2] | .

By thedirectedness of B, wecan findab suchthat &/, b" L b, and thismeansfirst
that
L[(R[b" [v/=]])] hab/2] | .

Now by the smple fact that T respects value substitution, b”[v'/«] T _ b1v'/«] for
v = [Az.b/z], SO
I[(R[blv/<]])] Aab/2] |

a

Iteratively applying the two previous lemmas then allows an arbitrary context
to be constructed around sets A and B one operator at atime:

LEMMA 5.13 (S5 PRE-CONGRUENCE) L isapre-congruence, A £ Bimplies
ClA]E2™ C[B].

And, from Ei“ pre-congruence, Theorem 5.10 directly follows.

LEMMA 5.14 (FIXeD PoINT) For afunctiona f, {fix(f) } & {f"|n € N}.

PROOF: Without loss of generality assume the free variables of f are cell
variables only, for from this case the result follows for arbitrary f by Theorem
5.10. The J_ directionfollowsby induction on r; consider thenproving . First
note fix(f) =Zm u(uw) whereu = Az Az.f(z(x)) (2), so it suffices to show
{u(w) } ©_ {f* | k € N}. Expanding definitions, the desired result is to show
for al a with freevariablesfrom {z} U Dom(T"), I'[a] [«(v) /=] | impliesT'[a] [f*/2] |
for some k. Assume I'[a][u«(w) /=] |, proceed by induction on the length of this
computation to show the above statement. Consider the next step of computation
performed on I'[a] [u(w) /<]. If the step isuniformin «() , the conclusion follows

The Coverage of Operational Semantics 31

directly by induction hypothesis. Then, consider non-uniform steps; all such cases
can easily be seen to be of the form

[la] lu(w /2] = T[R[u(u))] [u(w) /2] 1 T[R[Az. f(u())(2)]] [u(w) /2],
we show ['[R[f*]]1s%/=1 | for some k. By the induction hypothesis,

LRz f(f*) ()] 10/ |

for some ko, sosince f* T ffot and Az. f(f*)(z) = [by extensionality,
L[R[f*+1]][r%0+1/21 |, and letting k be ko, + 1, the desired conclusion has been
reached. O

5.2 Memory Projections

We will hereafter informally use numbers, pairs, and lists as L., syntax, taking
numbersand pairsto be encoded as inthe embedding of Ly,,,, of Definition 4.3, and
(functional) listsand list operations, nil/cons/carcdr/isnil/mapcar, encoded
via the standard pair-based encoding. We will define member for lists of cells
below. Syntactic projections #!, may be defined as follows.

DEFINITION 5.15 (PROJECTIONS 7%

Tm = AY. Az AT,
eif(isi(x), inj;(y(2) (outi(z))),
eif(isy(z),inj,(y(2) (outy(z))),...,
eif(isk(z),inj,(y(2) (outk(z))),
eif(iscell(x), set(w, cons(z, get(w)));
eif(member(z, z), z, set(x, y(cons(x, 2)) (get(z))))),
Azg.mapcar(Az.y(nil) (), get(w));
let r =y(nil) (2z(y(nil) (xg))) in
mapcar(Az.y(nil) (z),get(w)); r)...))

member(xz,l) = fix(Af.A.eif(isnil(l), efalse,
eif(celleq(x,car(l)), etrue, f(cdr(l)))(!)
celleq(z,y) = let g = get(x) in let yo = get(y) in
set(x, efalse); set(y, etrue);
let r = get(x) in set(x, xo); set(y,yo); 7
70 = Az.bot
7t = let w = ref(nil) in mp(772) (nil)
72 = let w = ref(nil) in fix(7y) (nil)
Thedifficult questioniswhat the projection operation should do withamemory cell.
The above projectionswill project the contents of any memory cell encountered. 1f
thereiscyclic datain the memory, such asacell = containing inj,(z), wemust not

32 Smith

repeatedly project x, for this processwill loop forever. The extra z parameter here,
not found in the functional projection functions, servesthe purpose of accumulating
cells already encountered, and preventing such cells from being projected again.
Note that projection of cell x containing Ay.x causes no looping problem because
the projection operation will halt at the \. For thisreason, at this point z isreset.

The global cell listinreference w servesto close a*“ back-door” communication
channel. Note that w isfreein =, and becomesboundin z’;"* and =2 definitions.
Thecellsinthislist are cellsthat “entered” or “exited” this projection at some point
in the computation history. Subexpression

mapcar(Az.y(z) (2),get(w))

above serves to project al the cells accumulated thus far in w. Without w and
these additional projections, cellswould only be projected when they are explicitly
passed to or returned from afunction, and thus acell passed to aprojected function
could on successive calls to the function serve as a “back-door” communication
channel if the function remembers this cell name locally. We give an example to
clarify thispoint. A wrapper around afunction f of theform

z = letc=ref(inj,(Az.z)) in
Ay.eif(isi(get(c)), set(c,y), set(get(c), f(get(get(c))))

would then allow f to be computed even when z is projected: first acell could be
passed in to =z which serves as a communication channel to the context that would
not be subsequently projected. Consider

ff = drletz=72(2) in
let y = ref(Ax.bot) in z(y) ; set(y,x); z(Az.z); get(y)

—f =, f" would hold if nonlocal cell projection were not a component of the
definition of =, above.

We may prove = possesses the finite approximation property:

THEOREM 5.16 Finite Approximation, Theorem 3.14, is provable for the projec-
tionsz: {7r(a) |n € N} =, {a}.

The proof of this Theorem parallels the proof for L) of Section 3.2. More
details of proofs are provided here since the memory changes some aspects of the
proof in anontrivial way. Hereafter the m subscript on projections # isimplicit.

LEMMA 5.17 (ELEMENTARY 77 /72° PROPERTIES) The elementary =™ /x> proper-
ties of Lemma 3.13 all hold when lifted to LL,,,.

Following Li,j(x), we define 7(a) and 7(R) to characterize how the projections
percolate into expressions. The only addition is the projections may percolate into
the memory I' and so 7(I') also needs to be defined. The definitions of 7(a) and

The Coverage of Operational Semantics 33

7(R) may bedirectly lifted from L;,;(») (cellsarein fact variables, so no extracase
is needed there). 7(I') is defined as replacing each cell value v in I' with 7(v).
Observe that 7(I') is always a legal memory context since it stores only values.
Basic propertiesof 7(e) setsinclude the following.

LEMMA 5.18 (i) For « with al free variables bound by memory context T,

T(D[r(R)[x=(7(a))]|l & 7(I)[r(R)[7(a)] |
(i) 7(a) E_ a,7(R[z]) E_ R[z],and 7(T'[a]) | = T[a] |.
(i) r(B[b]) = r(R)[r(b)], and 7(a[v/=]) = 7(a) Ir(x)/=.

PrOOF: (i), = follows from Lemma 5.17, (prune). For <, first observe it
suffices to consider the case of « being a value by computing. The structure of
values in this language can be viewed as a chain of chains terminating in a A,
described asfollows: outermogt, thevalueisinj, (...inj; (v)...)wherevisai
oracell; if itisacell, the contents of the cell, 7(I')(v), inturn must have a similar
chain structure. This chain of chains must eventually terminateina A, or in a cell
aready encountered previoudy on the chain. An induction on the structure of this
chain establishes that the =°° operation here has no effect.

(ii) follows from Lemma 5.17 (prune), and (iii) is direct from the definition of
T. o

LEMMA 5.19 (IDENTITY OF 7%°) 7%° & \z.x

ProOF: TheL direction followsfrom Lemma5.17 (prune) and extensionality.
For the J_direction, we successively rephrase the statement fivetimes. It suffices
to show for al « withonly cell variablesfreethat I'[R[a]]] | = T'[R[x*(a)]]] | by
the ciu and extensionality theorems. For thisit then suffices to show I'[R[a]] | =
7(D)[7(R)[x(7(a))])] | by Lemma5.18 (ii). And, by Lemma 5.18 (i) it then
sufficestoshow I'[R[a]] | = 7(I')[7(R)[7(a)])] | So,itsufficestoshow ['[ae] | =
7(I')[7(a0)] | by Lemma 5.18 (iii). And lastly, to show this it suffices to show
Tolao]) —' T1la1] = 7(To)[r(a0)]l & 7(I'1)[7(a1)]], for the conclusion then
followsby induction on computation length and the observation that 7(v) isavalue
for any value v.

So, assume'g[ag] —*' T'y[as], show 7(Tg)[7(ao)] | < 7(T1)[7(a1)] |. Consider
this step of computation; aqg = R|a] for some redex a; proceed by cases on the
form of a.

If @ = app(Az.c,v), then a; = R|clv/=]]. By ingpection of the definitions of
7(a)and 7(R), 7(I'0)[7(ao)] must be of the form

7(To)[r(R)[7*(app(7™ o Az.7(c) o 7%, 7(v)))]].

34 Smith

Computing from this point yields

[7*°(‘app(7* o Az.7(c) o 7™, 7(v)))]]|

[7ee (7w (app(Az.7(c), 7*(7(v)))))]]|

% 7 (app(Az.7(c),7(v)))]] | by Lemmas5.17 (idemp), 5.18 (i)
[

~.]

o)| 7T

~.]

o)| 7T

(Fo)l
(Fo)l
(Fo)l
(Fo)l
(Fo)l
(Lol

~.]
\]

()Tvﬂﬂ)ﬂl
7(c) (/=] | by Lemma5.18 (i) and (iii)

c[v/x])] by Lemma 5.18 (iii).

o)| 7T

~.]

o)| 7T

teeoe

\]

T

(R)
(R)
(R)
(R)[m>
(R)
o)[7(R[

If a isany other redex except a memory operation, the proof is smilar to the
previous case. For the memory operations, the proof is somewhat similar but
requires a bit of extra reasoning; consider redex set(x,v). The memory cell «
in I'; will then have value v, whereas set(z, 7(v)) will place 7(v) as x’s value,
precisely what 7(1';) should be by its definition. O

Unfortunately these projections do not produce finite elements. The projection
operations = can forcethe domain and range of afunction to be staticaly finite, but
thereare till infinitely many different historiesthisfunction can have on successive
invocations.

LEMMA 5.20 (7, FINITENESS FAILURE) {a|a isclosed and a =, 7*() } contains
infinitely many =, -distinct expressions.

ProOF: For each n,
let @ = ref(n) in Az.if(iszero(set(x, pred(get(z)))), bot,0)

is a distinct constant function which only may be used up to » times before
diverging. O

This suggests that some aspect of history must be included in a finite charac-
terization of memory-based languages. There is one additional incompleteness.
These projected expressions are also not finite in the operational sense, namely
a computation of #"(@) could compute forever without attempting to compute
79(v) forsomew. In particular, amemory-based fixed point (defined asafunction
in a cell ¢ which in its body retrieves the function in ¢, i.e. itself, and invokes
it) could compute forever even if every subexpression is projected. Consider for
exampl e the evaluation of

Ie=np 0 dy.mp(get(mnt' ())(0)) Hrn(get(mn ())(0))].
This computation will compute infinitely aong the sequence of states
T{e=np 0 \y.mi(get(r ())(0)) Hrm(... mhl get(ri ())(0)) ...) |-

Any functional fixed point which usesthe projected fixed point combinator 7" (£ix)
will not suffer from this problem: the bound » will be the maximum number of
recursive calls of #™(£ix) (f) for any functional f.

The Coverage of Operational Semantics 35

5.3 Toward Finite Memory Projections

We now outline a potential solution to the above problems. The number of timesa
proj ected function can be successively invoked islimited to afixed number, remov-
ing the infinitude uncovered in Lemma 5.20. This is implemented by modifying
projectionsat level n to use a unique counter cell for each function that counts the
number of calls, and diverges after n calls. We conjecture that finiteness holds for
these modified projections, ;. . .

DEFINITION 5.21 (FINITE PROJECTIONS 7]})

70 = Az.\z.bot

m

w
eif(member(z, z), x, set(x, 7 _(cons(z,z)) (get(x))))),
let ¢ = ref(n) in Azo.
eif(iszero(get(c)), bot, set(c, pred(get(c))));
mapcar(Az.7_(nil) (), get(w));
let r =77 _(nil) (z(77 _(nil) (z0))) in
mapcar(Az.7? (nil) (z),get(w)); r)...))
mh, = let w=ref(nil) in 7}, _(nil)
Variable ¢ above is a counter, freshly created for each function projected, to count
the number of calls. Besides this one change, these projections are the same as the

n

T

THEOREM 5.22 Finite Approximation, Theorem 3.14, is provable for the projec-
tionsx : {7, (a) |n € N} =, {a}.

PrOOF: By Lemma5.16, it suffices to show
{mmi(a) [n € N} =y {7 (a) [n € N}.

Since}, . only addsadditional possibilitiesfor divergenceto r};,, theL directionis
not difficult. For -, suppose C'[x"(a) ||, in m steps; we show C[z™*t"+1(a)] |:
inthe C'[” () | computation there can be no more than m application steps, so
no single function is applied morethan m times, so if the countersfor all projected
functions are initially set to be larger than m, no counter will ever reach 0. And,
™+ indeed will assure every counter isinitially larger than m: sincetermination
of C[r"(a)] guarantees the minimum projection must be more than =7+, O

We conjecturethat thesefinite projectionsdo indeed * project enough” to produce
only finitely many programsat each rank.

36 Smith

CONJECTURE 5.23 (FINITENESS) The set
{a|aisclosedand a =,, 7} (a) }
contains finitely many =, -distinct expressions for eachn € N.

In the functional case, extensionality is critical to prove this property: there are
finitely many functions at a certain level because by induction, the functions have
a finite domain and finite range of elements of the next lowest level, and thus by
extensionality there can be only finitely many such functions. In the memory case,
thefailureof extensionality for closures causesthis proof techniquetofail. A proof
of the conjecture thus appears difficult.

We can at |east conclude that there is some hope of devel oping finite projections
in the memory case.

Itisalso possibleto devel op atheory of projectionsfor L, by adding new, atomic
projection operators, following theideaof the LLi,n—(x) and Loy (1) constructions.
Theatomic projectionscan beinterpreted asthe Ly, projectionsviathe embedding
of Definition 5.3. These atomic projections will have the effect of projecting local
memory cells, thus destroying full abstraction.

6 Conclusions

We have studied afairly broad family of languages, and return with mixed results
on whether fully abstract finite element theories may be developed. For functional
languages with recognizer operators (LLi,;x) Of Section 3 and Ly) Of Section
4.1), the prospects are excellent. Without recognizers present (L, —(x) Of Section
4.2), prospects do not look as promising. Simple objects (IL,p;(x) of Section 4.3)
apparently have no elegant projection operations =™ definable. For memories, we
conjecture that the projection functions 7} yield finitely many expressions at each
rank, so the problem is open but thereis some possibility of asolution.

We showed it isalwayspossibleto devel op atheory of projectionsby adding new,
atomic projection operators (L, »—(x) Of Section4.2.1, and Ly; . () Of Section4.4).
This however may expose internal details and thus lose full abstraction. Lemma
4.16 showsin some casesit is provablethat addition of atomic projections changes
the equivalence. Many explicit A-labelling methodswill also suffer from the same
problem. For some applications, on the other hand, projections of this form may
be adequate.

On apositive note, an inductive characterization of fixed pointswas possiblefor
al languages studied, so for the particular ranked sequence of successively larger
approximations to a fixed point, an additiona induction principle was gained.
For L,p;, an inductive characterization of the self-reference found in objects was
also possible. One of the reasons why this characterization was possible across
such a wide range of languages is the set ordering {-} C {-} applies across the

The Coverage of Operational Semantics 37

whole spectrum of languages. This generdity is one of the major benefits of
using this ordering. Its main weaknessisthat it does not directly generalizeto the
nondeterministic case.

Does full abstraction matter? It depends on the problem. In some cases it does
not matter, and other times it might be critical. Negative uses of L are the mgjor
source of problems when an equivalence that is too fine-grained, =,o—fine &=, IS
used. For instance, extensionality (Theorem 5.8) is one such property. For this
reason, extensionality of amorefine-grained equivalencewill not imply extension-
ality of . Thenotion of afaithful ideal (Abadi, Pierce, and Plotkin 1991) also has
anegativeinstance of =: “if « € I and a« = b, then b € I”. The secondary source
of problemsis that a more fine-grained equivalence will mean some operational
equivalences will not be provable viathe too-fine-grained characterization.

Language embeddings also are of interest in their own right. The embeddings
studied here give precise lemmas which characterize concepts that informally are
well-known, but were without rigorous characterization. The fact that a language
withinjectionsaoneallowed many other language featuresto be homomorphically
embedded in them gives a case for studying untyped languages of that form. The
inability of the pure A-calculus to serve as the target of any homomorphic embed-
ding defining Ly, (Lemma 4.5) justifies why it is often inadequate to study the
pure A-calculus aone as a model of functional programming. The largest divide
in language semantics lies between languages which can be homomorphically em-
bedded into simplelanguages Li,x), and those which have only non-homomorphic
embeddings into Li,;). This gap serves as one means to formally separate the
functiona from non-functional languages. Global effects such as memories lack
a homomorphic embedding and are semantically difficult to deal with. Functional
objects are homomorphic and justifiably semantically simpler than memories, and
in fact the addition of objects may not modify operational equivalence (Conjecture
4.19).

6.1 Other language features

Itis at least worth a brief mention of how other language features not discussed
may be handled; greater exploration of this topic is a subject for future work.
Objectswereonly partially addressed here. Imperative objectswill pose additional
difficulties beyond the problems exposed here.

Two features not touched on here are control effects and types. Control effects
such as exceptions and call/cc are probably manageable, but values that escape
to the top will cause complications because values that are not finite may escape:
7*(abort(1000)) would abort the projection operation and return 1000. If these
values are “ observable’, values of any rank could escape.

Simply-typed higher order functional languages such as PCF are not particularly
difficult because type membership may be inductively defined, and given the type
of an expression e, its finite projection may be defined statically. More complex

38 Smith

types such as polymorphic, recursive, and parameterized types greatly complicate
matters by removing this possibility. In this case, recognizers must exist in the
language, but recognizersaredifficult totype. So, atypecase construct isprobably
required to preserve full abstraction.

The real question we seek an answer to is whether finite element characteriza
tionsare possible for real languages such as Standard ML that combine all of these
features, and whether the characterizations may be used to prove deep properties
of programs. We are still not quite able to answer that question. One particular
challenge iswhether it is possible to give asemantics to Standard ML that defines
types “semantically,” without recourse to type proof systems.

Acknowledgements

The original research on finite projections (Mason, Smith, and Talcott 1996) was
done in collaboration with lan Mason and Carolyn Talcott. The author would like
to aso thank Carolyn Talcott for a careful reading of an early version of this paper
that caught a number of errors, Lemma5.20 ishers. Laurent Daimi and Andy Pitts
also gave careful readings of the paper which the author isthankful for. The author
would like to acknowledge support for this work from NSF grants CCR-9301340
and CCR-9312433.

References

Abadi, M., L. Cardelli, and R. Viswanathan (1996). An interpretation of objects
and object types. In Conference Record of the Twenty-Third Annual ACM
Symposium on Principles of Programming Languages. ACM.

Abadi, M., B. Pierce, and G. Plotkin (1991). Faithful ideal models for recur-
sive polymorphic types. International Journal of Foundations of Computer
Science 2(1), 1-21.

Abramsky, S. (1990). The lazy lambda calculus. In Research Topics in Func-
tional Programming, pp. 65-116. Addison-\Wesley.

Agha, G, I. Mason, S. F. Smith, and C. Talcott (1992). Towards a theory of
actor computation. In CONCUR, Volume 630 of Lecture notesin Computer
Science, pp. 565-579. Springer-Verlag.

Barendregt, H. P. (1984). The Lambda Calculus: Its Syntax and Semantics
(Revised ed.), Volume 103 of Studies in Logic and the Foundations of
Mathematics. Amsterdam: North-Holland.

Bloom, B. (1990). Can LCF be topped? Information and Computation 87,
264-301.

The Coverage of Operational Semantics 39

Egidi, L., F. Honsdll, and S. R. della Rocca (1992). Operational, denotational
and logical descriptions: a case study. Fundamenta Informaticae 16(2),
149-170.

Eifrig, J,, S. Smith, V. Trifonov, and A. Zwarico (1995). An interpretation of
typed OOP in a language with state. Lisp and Symbolic Computation 8(4),
357-397.

Felleisen, M. (1991). On the expressive power of programming languages.
Science of Computer Programming 17, 35-75.

Felleisen, M., D. Friedman, and E. Kohlbecker (1987). A syntactic theory of
sequentia control. Theoretical Computer Science 52, 205-237.

Felleisen, M. and R. Hieb (1992). The revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science 103, 235-271.

Freyd, P, P. Mulry, G. Rosolini, and D. Scott (1990). Extensiona PERs. In
Proceedings of the Fifth Annual Symposium on Logic in Computer Science,
pp. 346-354.

Gordon, A. D. and G. D. Rees (1996). Bismularity for afirst-order calculus of
objects with subtyping. In Conference Record of the Twenty-Third Annual
ACM Symposium on Principles of Programming Languages.

Harper, R., F. Honsell, and G. Plotkin (1993). A framework for defining logics.
Journal of the Association of Computing Machinery, 143-184.

Honsdl, F., I. A. Mason, S. F. Smith, and C. L. Talcott (1995). A variabletyped
logic of effects. Information and Computation 119(1), 55-90.

Howe, D. J. (1996, February). Proving congruence of bisimulation in functional
programming languages. Information and Computation 124(2), 103-112.

Kamin, S. N. and U. S. Reddy (1994). Two semantic models of object-oriented
languages. In C. A. Gunter and J. C. Mitchell (Eds.), Theoretical Aspects of
Object-Oriented Programming, Chapter 13, pp. 464—495. MIT Press.

MacQueen, D. B., G. Plotkin, and R. Sethi (1984). An ideal model of types. In
Conference Record of the Eleventh Annual ACM Symposium on Principles
of Programming Languages.

Mason, I. A., S. F. Smith, and C. L. Talcott (1996). From operational semantics
to domain theory. Information and Computation 128(1).

Mason, |. A. and C. L. Talcott (1991). Equivalence in functional languages with
effects. Journal of Functional Programming 1, 287-327.

Milne, R. E. and C. Strachey (1976). A theory of programming language se-
mantics. Chapman and Hall, London, and Wiley, New York.

Milner, R. (1977). Fully abstract models of typed A-calculi. Theoretical Com-
puter Science 4, 1-22.

40 Smith

Mitchell, J. (1993). On abstraction and the expressive power of programming
languages. Science of Computer Programming 21.

Mosses, P. D. (1992). Action Semantics. Cambridge.

Pitts, A. M. (1996, 15 June). Relational properties of domains. Information and
Computation 127(2), 66—90.

Riecke, J. G. (1993). Fully abstract trand ations between functional languages.
Mathematical Structuresin Computer Science 3, 387-415.

Ritter, E.and A. M. Pitts(1995). A fully abstract trand ation between a A-calculus
with reference types and standard ml. In 2nd Int. Conf. on Typed Lambda
Calculus and Applications, Edinburgh, 1995, Volume 902 of Lecture Notes
in Computer Science, pp. 397-413. Springer-Verlag, Berlin.

Scott, D. (1976). Datatypes as lattices. SAM J. Computing 5, 522-587.

Smith, S. F. (1992). From operational to denotational semantics. In MFPS 1991,
Volume 598 of Lecture notes in Computer Science, pp. 54—76. Springer-
Verlag.

Talcott, C. L. (1989). Programming and proving with function and control ab-
stractions. Technical Report STAN-CS-89-1288, Stanford University, Stan-
ford, CA 94305.

Talcott, C. L. (1997). Reasoning about functions with effects. In A. D. Gordon
and A. M. Pitts (Eds.), Higher Order Operational Techniquesin Semantics.
Cambridge University Press. This volume.

