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1 Introduction

In the past few years, researchers have developed powerful methods to aid in the construction
of large asynchronous circuits [Mar90b, Mar90c, vBNRS88, vBKRT91, BS89, MBMS&89]. These
methods are a significant departure from the traditional design methodologies used in circuit devel-
opment in they are automatic or semi-automatic techniques for synthesizing asynchronous circuits
from high-level specifications.

All of these projects excepting [MBMS89] use the same basic methodology. The circuit is spec-
ified as a set of concurrently executing processes that can communicate via fixed channels. Each
process is constructed from simple programming language constructs that include variables z and
assignments z := @, conditional branching, looping, and sequencing. The specification language
usually is similar to Hoare’s CSP (Communicating Sequential Processes) [Hoa85]. The specification
then undergoes a series of transformations to produce a circuit.

The asynchronous design method our work is based on is that of Martin et al. [Mar90b,
Mar90c, Mar85, Mar86, MBL*89]. Burns has described and implemented a circuit compiler [ BM88,
Bur88] that uses this method to automatically translate specifications into circuits. The first
microprocessor ever constructed using this methodology has reasonable execution times [MBLT89].

While these methods have been around for the better part of a decade, there has been recent
work that makes progress toward showing the correctness of such a methodology may be rigorously
established by formal means [SZ92, WBB92, vB92]. Thus, using these methods it is possible to
design and implement provably correct asynchronous circuits. A proof of the correctness of such
a methodology should has the following components: a definition of a circuit model, a formal
syntactic and semantic definition of a high-level specification language, a definition of equivalence
between the language and circuit models, and a proof that a specification s translated to some
circuit ¢ has the property that s is equivalent in behavior to c.

As hardware verification, what we present is only one half of a verification effort. We show
that given a high-level CSP-style description, an equivalent circuit may be produced. The other
half should be a logic in which high-level properties of the CSP-style specifications can be proven.
Numerous such logics have been constructed [Hoa85, Mil89, Hen83, Hen88, BK84], so this is an
eminently feasible task. The advantage of this approach is the relative simplicity, readability and
abstractness of the high-level specification in contrast to reasoning directly about the circuit.

This paper presents a clarified presentation of the preliminary work described in [SZ92]. Con-
trasts of our approach with the others above may be found in the concluding section.
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The results in this paper rely on a circuit model that is speed-independent, fair and exhibits
hazards under certain conditions. Hazards should provably never occur in circuits produced. This
model is a standard model of asynchronous circuit behavior. The weaknesses of the model are the
zero wire-delay assumption and allowance of arbitrary fan-in and fan-out.

Speed-Independent We work under the standard assumptions of speed-independence. That is,
gates may delay arbitrarily but wire values propagate instantly from source to destination,
and a wire is considered to have only one value at a time. An equivalent statement of this
model is some forks in wires may be assumed to be isochronic, namely a forked signal arrives
at all destinations simultaneously. Isochronic forks are imaginary objects, so it is up to the
circuit layout and fabrication process to guarantee isochronicity [vB91, Mar90a].

Fairness Unlike other formal models for circuits in the literature, we make explicit assumptions
that gate delay cannot be infinite: if a gate is continuously enabled to switch, it will eventually
switch (weak fairness assumption).

Hazards A gate may ignore a spike on an input if the output of the gate does not depend on that
particular input. Any other spike will produce a hazard.

1.1 Overview

We begin by defining the process algebra C-CSP (Circuit CSP) in Section 2. C-CSP is the specifica-
tion language, the language in which each phase of the translation is carried out, and the language
in which circuits are described. This use of one language greatly simplifies the presentation, and
comes at little expense, since the definition of gates in the model can be seen from the semantics
to exactly correspond to the appropriate gate behavior.

In Section 3, we give the language meaning via an operational semantics. Defining the semantics
presents several challenges. First, we need to define executions so only fair computations are
allowed. Since we are using only one language, this means the specifications are fair, intermediate
states in the translation are fair, and the final circuits are also fair. Second, the semantics must
formalize violations of mutual exclusion.

We define equivalence in Section 4 based on ideas of testing equivalence, and formalize what
it means for the transformations to be semantics-preserving. One useful property we prove is
all semantically well-formed terms (no mutual exclusion violations) are observably deterministic,
meaning any test will always give the same result. A corollary is all circuits constructed of only and,
or, and not gates and C-elements that are free of hazards are observably deterministic, assuming
no bound is placed on gate delay.

In Section 5, we formalize compilation as a 6-phase rewrite system for translating a high-level
C-CSP specification into an asynchronous circuit implementation. Each phase of the rewrite system
performs a particular type of translation. We show that meaning as formally defined is not changed
by each phase of rewriting.

2 The Circuit Language — C-CSP

In this section we introduce C-CSP (Circuit-CSP), a variation of the CSP language [Hoa85] based
on the version of CSP designed by Martin and Burns [Bur88] for specifying asynchronous circuits.
We remove some syntactic sugar and add constructs needed to guarantee correctness. We use
the same language as the specification language, the intermediate language, and to express cir-
cuits. This decreases the overhead brought about by performing explicit language translations. In



Section 2.2 we describe two sublanguages, S-CSP and H-CSP, used to represent specifications and
actual hardware devices respectively. The full C-CSP language is defined by the following grammar

e u= true|false|z|P?|(ene)|(eVe)|-e

¢ u= skip|z:=e|cc|le—=c]...[e—=c]]| x][c]]|c|c]| P| P?]|
with d do ¢ end

d == rad|wazd|P'd|P?d|e

We will use e to range over boolean expressions, ¢ to range over commands (also referred to as terms
or processes), and d to range over declaration lists. V is the set of C-CSP variables; z,y,2... €V
range over variables, and !z,!y, 2,7y, 7y, 72... € V range over handshaking variables. The hand-
shaking variables take on special significance in the implementation of handshaking protocols. P,
is the set of active port names; S!, P!,C!, D!... range over P,. Similarly, P, is the set of passive
port names, and 57, P?,C7, D7 ... range over P,.

The boolean expressions e are the usual ones plus the probe P? [Mar85], by which a passive
port may test to see if the corresponding active port is enabled without causing a synchronization
to occur.

The commands are similar to those of CSP. skip does nothing. Assignment, z := e, assigns the
value of e to the boolean variable z. As a shorthand we represent = := true and z := false by = |
and z |, respectively. Sequential composition is denoted by “;”. Choice is written using guarded
commands and infinite repetition of ¢ is designated by *[c]. Parallel composition is represented by
|. As in CSP, processes synchronize with one another through ports P! and P?. An active port
P! and its corresponding passive port P? form a channel we informally named P. We call any
occurrence of a variable on the left-hand side of an assignment a write occurrence. Any variable
occurring in a guard, or the right-hand side of an assignment is a read occurrence.

DeriniTION 1 (BINDING) The declarations d in with d do ¢ end bind variables and port names
as follows. Declaration P! in d binds occurrences of P! in ¢. Declaration P? binds occurrences of
P an P?, w z binds all write occurrences of z and r z binds all read occurrences of x.

All boolean variables may be declared (scoped) twice: once by a declaration in which they may
only be read (r), and once where they may be both read and written (w). These dual declarations
are important for proving the transformation correct. Also, corresponding active and passive parts
of a channel P are declared separately as P! and P?. Outside of the declaration of P?, for instance,
P? may not be used. It is not possible to declare the same port name or use of a variable more
than once. Scoping restrictions are made explicit by the following.

DEerINITION 2 A C-CSP term c¢ is syntactically well-formed if and only if it can be generated by
the above grammar and

1. each send P! or receive port P? occurring in ¢ is declared at most once in ¢;
2. each variable z is declared at most once w x at most once r = in c;

3. if a variable z occurs inside a declaration r z but not inside a declaration w x, that variable
is not in a write occurrence; and

4. if ¢ contains a declaration P?, no occurrences of P? or P? in ¢ are outside the scope of
that declaration, if ¢ contains a declaration P!, no occurrences of P! in ¢ are outside that
declaration, if ¢ contains a declaration w z, x is not written outside this declaration, and
if ¢ contains both r =z and w = declarations, # does not occur in ¢ outside both of these
declarations.



Hereafter C-CSP terms are taken to be the syntactically well-formed terms, and the composition
of smaller terms to make larger ones must implicitly satisfy these properties. Define strip(c) to be
¢ with all declarations removed, but all else left intact.

2.1 Modules, Components and Closed Terms

The class of C-CSP terms that may be separately compiled are called modules. All ports and write
variables used in a module are declared in that module. However, a module may interact with an
external environment via ports and variables, indicated by declaring only the write variable, active
or passive half of a channel. We formally define a module as follows.

DEFINITION 3 A module m is a C-CSP term such that if z := e occurs in m then this subterm
occurs inside a declaration w z, and all uses of ports P! and P? occur inside declarations of P! and
P? respectively.

Modules here are useful in the same sense they are useful in programming languages: if a large
specification is divided up into modules, each part may be compiled separately.

The terms in the language corresponding to physical silicon devices (chips) are components.
They may communicate with the outside world via ports, but may not share boolean variables
with the outside world. A module is not a component because modules may share variables, but
variables are local to components. Components are generally composed of a collection of modules,
that may be re-used in other components. Formally,

DEFINITION 4 A component k is a module where any use of a non-handshaking variable z implies
declarations w z and r z are both present in k.

Lastly we define closed terms. Closed terms are useless as hardware because they cannot commu-
nicate with the outside world, but are necessary in proving correctness.

DEerFINITION 5 A C-CSP term ¢ is closed if and only if it is a component, all channels P used in ¢
have both active and passive halves P!, P? declared in ¢, and all variables used are both read and
write scoped.

Before presenting the semantics, we describe two sublanguages of C-CSP which will be important
in defining circuit compilation.

2.2 Specification and Hardware Sublanguages: S-CSP and H-CSP

Some of the constructs of C-CSP are only used in the final description of circuits. This arises
because we wish to keep the entire translation process in one language, but it is a very large gap for
one language to span. We need to isolate the sublanguage of C-CSP that is the “pure” specification
part of the language, S-CSP, and the sublanguage that describes silicon devices, H-CSP. Terms in
S-CSP all may be compiled to circuits.

DEFINITION 6 S-CSP (Specification CSP) modules are C-CSP modules without instances of hand-
shake variables !z, 7x.

S5-CSP forces specifications to abstract from the actual implementation of the synchronization
between components.

H-CSP (Hardware CSP) modules are a small subclass of the C-CSP modules that represent a
collection of gates. Let ¢ range over literals of the form z or —z for variable z.



DEFINITION 7 (GATE PROCESSES) and, or, not/wire and C-element gale processes are defined as
follows.
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DEeriNiTION 8 H-CSP modules are modules m such that
strip(m) = ¢1||ez . . . ||en,

where each ¢; is a gate process and no two gate processes ¢;, ¢;, ¢ # j may assign to the same
variable.

3 Operational Semantics of C-CSP

An operational semantics describes the execution of a program or process in terms of the operations
it can perform. Fach operation takes the process from one configuration to another, where a config-
uration consists of a process and some internal state of the computation. In this way, computation
is seen as a sequence of transitions involving simple data manipulations. We define the operational
semantics of C-CSP, by defining a relation — that represents a single step of the computation.
Each configuration consists of a closed C-CSP term and a state ¢ containing the current values of
ports and variables.

There are a number of challenges to giving semantics for C-CSP. Side effects are necessary
because state-holding elements are one of the fundamental structures of modern digital circuits.
Almost all of the process algebra work in the literature is restricted to languages that have no side
effects. Another challenge to overcome is the need to enforce mutual exclusion on certain parts of
circuits. In asynchronous circuit design, there is often the need to have shared resources. However,
using our translation method, we cannot properly realize circuits which violate mutual exclusion.
Thus we construct our C-CSP semantics so that an ERROR is yielded if mutual exclusion is
violated. The translations in turn guarantee that well-formed processes stay well-formed, resulting
in a circuit that does not have two simultaneous requests for the same resource. So, if we begin with
a well-formed component we will end with one. Martin also emphasizes the importance of mutual
exclusion, but he argues informally about the well-formedness of a circuit description, where here
requirements for mutual exclusion are completely rigorous.

State, initial state, and configurations the computation passes through are formally defined as
follows.

DEFINITION 9
o A stale o is a finite mapping from V U P, to Bool.

e  :C-CSP — States maps a term ¢ to an initial state oy such that the domain of og is all
variables z and active ports P! occurring in ¢, and for all z and P! in the domain of o,
o(z) = false and o( P!) = false.

e A configuration (c,o) consists of a closed term ¢ and a state o that represents a point in the
computation.



Augmenting or changing the state function o is abbreviated o[z = b], where b € {true, false}. P,
is part of the domain of ¢ and is used to define the semantics of the probe: o(P?) = true iff P! is
waiting to synchronize. We let v (a general variable) range over YV UP,. Configurations are defined
to be closed because computations are restricted to closed terms only.

One important notational convenience is the contezt, a term with a hole poked in it where
another term may be placed. We define a subclass of contexts, the reduction contexts. This notion
comes from [FFK87] (and is called there an evaluation context) to simplify the presentation of
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operational semantics. A reduction context is a syntactic means of isolating the next computation
step to be performed.

DEFINITION 10

o A context C' is a term containing numbered holes “o,”, ¢ € N. There may be multiple
occurrences of e; for some 7 and no occurrences for other values of i. C[eq]...[¢,] is the result
of syntactically replacing all occurrences of e; in C' with terms ¢; for each 1 <7 < n.

o A closing context for a term c is a context C such that C[c] is closed.

o A reduction context R is a context constrained to be of the form
R =e; 0or R;cor Rl||cor ¢[|Ror R||R or with d do R end,

where each e; for ¢ € Nat occurs at most once in R and c is a term.

Often contexts with only one distinct hole are used, in which case e for the single present value
of k may be abbreviated o. Also, we sometimes wish to denote an arbitrary expression that could
either be of the form R[c] or of the form R[c][¢]. We write this as the latter, and if the hole ey
does not occur in R, R[c][¢'] = R[c]. We first define evaluation of boolean expressions, and then
define the operational semantics for closed C-CSP terms.

3.1 Semantics of Expressions
All boolean expressions are evaluated with respect to a state o by homomorphically extending the
domain of ¢ to all boolean expressions.

3.2 Semantics of Commands

The semantics of commands are defined by the single-step computation relation — mapping con-
figurations to configurations. Most of the rules are straightforward. For instance, the assignment
rule takes a configuration (R[z := €], o) to one in which the command has finished execution and
the state o has been augmented with the value of e assigned to z, (R[skip], o[z = o(e)]).



DEFINITION 11 The one-step computation relation on configurations, —, is the least relation such
that

(Assignment)
(R[z :=€],0) — (R[skip], o[z = o(e)])
(Sequencing)
(R[skip; c], 0) — (R][c], o)
(Selection)

(R[ler — 1] - . Jes — i) - - -]en — el 0) — (R[ei], 0)

where o(e;) = true and Vj # i.o(e;) = false

(Repetition)
(RL+ [e]], o) — (Rle; [e]], o)
(Parallelism)
(1) (R[P!],o[P! = false]) — (R[P!],o[P! = true])
(2) (R[P[P?],0[P! = true]) — (R[skip][skip], o[ P! = false])
(3) (Rlskip||skip], o) — (R[skip], o)

We next want to identify those configurations that violate mutual exclusion principles. Leading up
to this we define those computation steps that change some expression value and those that depend
on some expression value. A computation step changes an expression if the value of e changes as
a result of the computations. A computation depends on the value of e if e must be true in order
for the step to occur or if the step only assigns the value of e to a variable z.

DEFINITION 12
1. changes(e,(c,o) — (', 0")) iff o(e) # o'(e).
2. depends(e, (R[c1][c2], o) — (R[c}][c5], o)) iff either
(a) o(e) = true and for all o, 0", if 6"(e) = false (R[c1][c2], 0”) /£ (R[c}][ch], o); or
(b) ¢1 =z := e and o3 does not appear in R.
DEFINITION 13 £((c,0)) (the configuration is in error) iff either
1. changes(e,{c,0) — (¢',0')) and depends(e, (c,0) — (¢",0")), and ¢’ # ", or
2. changes(e,{c,0) — (', 0')) and changes(e,{c,0) — (¢",0")), and ¢’ # ", or
3. c=Rlles — c1]...Jle, — ] .. .]e, — ¢,]] and o(e;) = o(e;) = true for j # ¢
We will informally write (¢,o0) — ERROR to mean ¢({c,0)).

DEFINITION 14 = is the transitive, reflexive closure of single-step computation —.

3.3 Semantic Well-Formedness

At the level of components, we require that no mutual exclusion errors may occur for a well-formed
component. It is then an obligation that all component specifications be shown well-formed. The
translation process then guarantees that the resulting circuit is well-formed.



DEFINITION 15 A component k is semantically well-formed iff for all components &’ such that k||%’
is closed and all computations

(E||K', (K| kD)) = (kn||k.,0,) — ERROR

implies —e((k,,, 0,,)), and furthermore if —¢((k},0,)) then k, = R[C!] and k], = R[C?][C?], or
k, = R[C?] and k!, = R[C'][C"].

This means that any error may be traced to something outside the component, never internal to
the component.

DEFINITION 16 Configuration (c,o)is (semantically) well-formediff there is no computation (c, o) =
ERROR. A closed term ¢ is well-formed if (¢, ¢(c)) is well-formed.

3.4 Computations and Fairness

There are many computation paths possible, since at a given point multiple processes (or gates,
at the hardware level) may be running and the next step could be performed by any one of those
processes. Certain computation paths are unfair because processes that are able to execute are
kept from doing so forever because all the steps are taken by other active processes. For instance,
the term

[z := —z]|| * [P — Q; P?]|| P!

has an unfair infinite computation that starves out the synchronization on channel P by repeatedly
and without interruption executing z := —z.

Since circuits execute fairly (gates to not delay infinitely), our proofs of correctness will depend
on the fair behaviors of processes. Specifically, we only concern ourselves with the weakly fair
computations. That is, if a process is continuously enabled to execute, it will eventually execute.
Although the informal idea is simple, the formal definition is not. For this reason, the definition of
fairness and properties about fair computations are relegated to Appendix A.

4 Circuit Testing and Equivalence

The equivalence we define is a variation on the testing equivalence of [NH83, Hen88], extended to
include some notions from Morris/Plotkin operational equivalence [Plo77]. It is a precise formal-
ization of exhaustive testing, so if two processes are testing-equivalent, no difference will be ever be
able to be ascertained between the two by a tester. Testing is an internal or self-consistent notion
of equivalence, processes are tested by other processes only. As long as we believe that these tests
are rich enough, testing has the advantage that it is the strongest (most things equal) nontrivial
equivalence that is a congruence.

We add a new distinguished success variable, tgyccess, t0 the existing C-CSP variables V, result-
ing in an extended language C-CSP*, the language of testers. The testing process indicates success
by setting Zguccess to true. A testing context is a C-CSP* context.

DEFINITION 17 Let ¢g be a closed C-CSP* term. A fair computation (cg, t(¢cg)) — (¢1,01) — ... —
(cn,0n) — ..., s successful iff for some @, 0;(Zsuccess) = true. It is failing if it is not successful.

We prove the transformations equivalence-preserving by showing that each transformation pre-
serves the testing behavior. The technical definition is complicated by a number of issues. The first
complexity arises because a transformation may actually decrease the number of errors that may



occur. Namely, if a component has an error, it may be compiled to a circuit that has no errors. This
is no problem, but it means that the transformations are not completely equivalence-preserving. To
account for this, the definition of equality must first ensure that each transformation decreases the
possibility for error; and then, assuming no errors are present, ensure that meaning is preserved.
Two relations are defined for this purpose.

DEerINITION 18 (ERROR ORDERING) Let ¢ and ¢’ be closed C-CSP* terms. Define ¢ >.,, ¢ iff if
¢’ is semantically well-formed then c¢ is semantically well-formed;

DEFINITION 19 (OBSERVATION EQUIVALENCE) Let ¢ and ¢’ be closed semantically well-formed
C-CSP* terms. Define ¢ 22, ¢’ iff

o There exists a successful computation of ¢ iff there exists a successful computation of ¢’.

e There exists a failing computation of ¢ iff there exists a failing computation of ¢’.

The testing equivalence we use is the conjunction of these two definitions, abbreviated ¢ 2, . ¢'.
Although technically this is not an equivalence (>.,, is not symmetric), we write it as such because
it will be an equivalence over semantically well-formed components.

LemMa 20 (DeTERMINISM) For all well-formed closed C-CSP* terms c, either all fair computations
are successful or all fair computations are failing.

Proof:  The proof hinges on the Bubbling Lemma (38), found in Appendix A. If there is both
a successful and failing computation of some ¢, the failing one can be translated (bubbled) into a
successful one, contradicting the fact that it was failing. Fairness is critical to the proof. O

A corollary of this theorem is all hazard-free circuits constructed of and, or, not, and C-elements
must be observably deterministic, since H-CSP is a sublanguage of C-CSP. We plan to present this
in full detail in a future paper, it is out of the scope of our present task. It gives an elegant
theoretical characterization of the arbiter-free speed-independent circuits. This also allows us to

~

remove the second clause from the definition of 2,;,, making it easier to show equivalence.

THEOREM 21 Let ¢ and ¢’ be closed semantically well-formed C-CSP* terms. ¢ =,;, ¢’ iff there
exists a successful computation of ¢ iff there exists a successful computation of ¢’.

Another complexity in defining equivalence for our system arises because certain of the trans-
formation rules change the way processes interact with their environment, by for instance replacing
a port P with an explicit handshaking protocol. These two processes will not be “equal” in the
standard sense. We thus define a notion of equivalence tied to the compilation process, details of
which are presented after the general structure of that process is given.

4.1 Rewriting and Equivalences

As described in detail in the next section, we divide the translation process into six phases and im-
plement each phase using a distinct term rewriting system (see [DJ90] for background and references
on rewriting).

DEFINITION 22 A rewrite system R/F over C-CSP consists of a finite set of rules of the form ¢y >g
€1 and a finite set of equations of the form ¢y =g €1, where the ¢; are C-CSP metametavariables,
i.e. they are terms which may themselves contain metavariables.



We use the following four relations. m =g m' indicates that m is equivalent by one of the
equational rules to m'. =% is its transitive reflexive closure. m= R/ gm’ whenever m rewrites in
one step modulo the equations £ to m/. :ﬁ%/E is its transitive reflexive closure and m:>g/Em’ if
m' cannot be further rewritten.

In Section 5, we define the scoping equations, and six rewrite systems =1-=¢4 by giving six
sets of rules [>7... >g and a (fixed for all systems) set of scope, commutativity, and associativity
equations SCA. Since these equations are fixed for all systems, we will not explicitly mention
“SCA” and notate the six rewrite relations =;. A specification mg is compiled to a circuit mg by
the rewriting

m0:>{\7*m1:>évm2:>évmg:>ivm4:>évm5:>évm6.

For this we use the abbreviation mg=-1_gme (mo compiles to mg). To refer to modules that are
the result of translating an initial specification through ¢ levels we write =;m, for i € {1,...,6}.

4.2 Transformation Equivalence

As noted above, the changes introduced by certain of the transformations are too great to be
equivalence preserving with respect to the above definition of testing equivalence. However, by
changing the tests in a similar fashion to the process being tested, the behavior remains the same.

This intuitive notion of equivalence is similar to that used by hardware designers: a circuit using
a four-phase handshaking protocol for synchronizing with the outside world would not be expected
to behave sensibly if tested using a tester that used a different synchronization protocol. Hence, we
should not expect our circuit implementations that synchronize using a handshaking protocol to
behave correctly if tested by a tester that uses the handshaking protocol incorrectly or expects to
synchronize using the high-level port commands. With this intuitive idea in mind, we now define
the equality we use in proving the transformations correct. We note this equality 22; for each level
t of rewriting.

DEFINITION 23 m;=py1mpyq iff :>fgvmk, nlk:>fcv+1'mk+1 and for any module m}fC in C-CSP* such
N, t ¢ : et N i ¢ ~ t
that =Ymj and my||my is closed, if mp=-1" ;m} , then (mp||mg) =, . (my,|lmey1)-

Intuitively given a specification module mg compiled to a digital circuit mg, this compilation is
correctness-preserving if and only if for any tester of the original system, mf, this tester gets the
same results on mg as its compiled counterpart mj does on mg.

5 Compilation of C-CSP Specifications to Circuits

We now define a system for incrementally translating C-CSP process specifications to circuit imple-
mentations. Our translation roughly follows that of [Bur88], though many changes were necessary
to make the translation provably correct That is not to say we found any significant errors in their
work, only ambiguities. A specification mg is compiled using the rewrite systems by applying the
six rewrite systems in turn, translating mg to my, to mg, ..., and finally to a circuit module mg.
Each of these rewrite systems is defined with respect to a set of equations, SCA, that equates
certain terms that differ only slightly in their scoping structure, the way they commute guard order
and parallel composition, and the associativity of parallel and sequential composition.

Phase 1 produces a separate process for each constructor of the original term, be it guard,
loop, active or passive communication, assignment, or parallelism. Phase 2 expands the high-
level synchronization of C-CSP into a 4-phase handshaking protocol. Phase 3 simplifies guarded
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(SCA : SCOPE 1) with di,d; do c end = with d; do with d; do c end end

(SCA : SCOPE 2) with d; do with d;, do c end end = with d; do with d; do ¢ end end
(SCA : SCOPE 3) C[with d do ¢ end] = with d do C'[¢] end
where declarations d bind nothing in context C'

(SCA : SEQ ASSOC) (C1;C3); C3 = Cq;(Cy; Cs)
(SCA : GUARD PERM) [e; — Ci]...Je, — ¢ ... Jle; —¢j]...]len — ¢,] =
ler — Cifl...]le; — ¢ ... les — ¢ .. . ]en — ¢4

Figure 1: SCA Equations

commands so each guard is evaluated in parallel. Phase 4 modularizes the specification by giving
each use of a port name a new, distinct, name. Phase 5 reshuflles the handshake protocols in order
to make eflicient circuit implementations more feasible. Finally, Phase 6 translates each of the
small modules that remain into digital circuitry consisting of and, or, not gates, C-elements, and
wires.

5.1 Scope, Commutativity and Associativity Equations

For each of the rewrite systems =;, 1 < ¢ < 6, we rewrite with respect to the same fixed set
of equations, the scope, commutativity and associativity (SCA) equations. These equations pro-
vide sound means for moving declarations and commuting and associating parallel and sequential
composition. By rewriting with respect to this set of equations, the number and complexity of
rewrite rules is reduced. The set of equivalences SCA appears in Table 1. (SCA : SCOPE 1)
equates a single list of variable and port declarations with a nested declaration of the same variables
and ports. (SCA : SCOPE 2) swaps two tightly nested scopes. (SCA : SCOPE 3) allows the
movement of scoping information in and out of parallel, sequencing, guard, and looping commands.
The commutativity and associativity equations are self-explanatory.

5.2 Phase 1: Syntax-Directed Rewriting

The first phase separates the original specification into many small processes by transforming each
node ¢ of the syntax tree into a separate process of the form *[[S — ¢;57]] In addition a single
“assignment process” is made for each boolean variable to physically isolate its storage location.
All assignments synchronize with this process to assign a new value to the variable.

S e P, and S? € P, are distinguished active and passive port names. These port names are
used to distinguish those ports added in the translation process from those that are not, ensuring
termination of the rewrite system.

Initially, a “start channel” § is added to the term being compiled. Execution of the term begins
with a synchronization on this channel. This is a global operation, performed once on the entire
module being compiled. After the initialization operation, the phase 1 rewrite rules may be applied.
The following translation accomplishes this.

(1: INIT) m =-; with S!do S!end ||with 57 do *[[S — m; S?]] end

11



The rewrite rules for phase 1 appear in Figure 2. (1 : SEQ), (1 : GUARD), (1 : LOOP),
and (1 : PAR) rules each introduce a separate process for each part of the expression. Rules
(1 : ASSIGN 1) and (1 : ASSIGN 2) are used to isolate all assignments to a particular variable
into a single assignment process. (1 : ASSIGN 1) creates an assignment process, a guarded
command with two guards: one for assigning true (1), and the other for assigning false (]).
(1 : ASSIGN 2) replaces all assignment statements by synchronizations with this new process.
Top-down application of these rules produces a set of processes representing the whole syntax tree.

The correctness of each of the rules follows from the observation that although the transforma-
tions add new processes, these processes are activated in the same order as the subprocesses of the
original. For example, three applications of (1 : SEQ) transforms *[[S?7 — z 15y |;2 1= 2Vy; S7]]
into #[[S7 — 511921 93 97| * [917 — =z 15517 * [[927 — v [; 9270 = [[93? — =z =
z V y; 537]] Although the new process consists of four subprocesses executing in parallel, in effect
the three subprocesses guarded by §;? execute their bodies in the same sequential order as in the
original. The correctness of (1 : ASSIGN 1) and (1 : ASSIGN 2) follows from the observation
that if no errors arose from the assignment to z in the original, then it is not possible for two
distinct synchronizations to the assignment cell for z to occur simultaneously in the transformed
process. The actual proofs of all the rules consist of rather long inductive arguments.

LEMMA 24 If mg is a S-CSP module and mo:>{\7m1 then mo=;m;.

5.3 Phase 2: Handshaking Expansion

Handshaking expansion replaces the C-CSP synchronization constructs with boolean handshaking
variables implementing the four-phase handshaking protocol. Since the active and passive ports
need not be declared in the same scope, we must introduce two rules to carry out this rewriting.
Each rule eliminates a port scope construct by simultaneously substituting a term that implements
the handshaking protocol for each occurrence of the port.

To simplify notation, we let AHS(!p, ?p) abbreviate the active handshaking protocol

'p 1:[?p — skip]; !p |; [-?p — skip],

and let PHS(!p, ?p) abbreviate the passive handshaking protocol

[lp — skip]; 7p 1;[~!p —7p |]

The rules appear in Figure 3.

The handshaking expansion rules do not have the same testing behavior when tested with the
same test, because the tester is a fixed process, but to communicate with m4 it must use ports and
to communicate with mg must use handshaking. Therefore the two will look different to almost all
testers. This is one of the main motivations behind the use of transformation equivalence, which
this phase preserves.

LeMma 25 If =ymq and 'm1:>£,vm2 then mi~yms.

A sketch of the proof is as follows. Since the phase uniformly replaces all occurrences of ports
with handshaking variables, it only must be demonstrated that the observable behavior in presence
of ports (behavior of mq||m}) is the same as in the presence of handshaking (behavior of my|/m}
for mt=-,m}). Critical to this is the fact that handshaking variables are ezclusively used in the
handshaking protocols, AHS(!p, ?p) and PHS(!p, ?p). This means all uses of these variables will

12



(1: ASSIGN 1) withwazdocend ©>; withwado
with 547,5:7 do
*[[So? — @ 15 80?]517 — @ 155:7]]
end ||
with Sy!, 57! do ¢ end
end
(1 : ASSIGN 2) with wz do
with So7,517 do * [[So? — 2 |; 907]517 — 2 1;517]] end ||
with 5!, 51! do C[z := €] end
end
D>1
with w z do
with So7,517 do * [[So? — 2 |; 507]517? — 2 1;517]] end ||
with 5!, 51! do C[[-e — Sp!Je — 51!]] end
end
(1: SEQ) #[[S? — e1;¢2;87]] 1 with 51!, S9! do * [[S7 — 51155515 57]] end||
with 517 do * [[917 — ¢1;.517]] end||
with 37 do * [[S27 — ¢g; 527]] end
where ¢1 # ¢3;¢4, 1 # 51!, and ¢y # 53!
(1: GUARD)  #[[5? — [e1 — c1] .. .[en — ¢,]; 87]]
>
with S!,..., 8, do *[[S? — [e1 — S1!]...Jen — 5,!];57]] end ||
with 51?7 do * [[917 — ¢1;517]] end
ol
with 5,7 do * [[5,7 — ¢,; 5.7]] end
where ¢q,..., ¢, are not distinguished active synchronizations
(1: LOOP) #[[S? — *[c]; 87]] 1 with $'do *[[S? — x[S"]; 57]] end ||
with 57 do *[[5'7 — ¢;5"?]] end
where ¢ is not a distinguished active synchronization
(1: PAR) #[[S? — (ci!| - - -||en); S?]] 1
with S1!,..., 5, do *[[S? — (S1!]|...||Sx!); S?]] end ||
with 517 do * [[917 — ¢1;.517]] end
ol
with 5,7 do * [[5,7 — ¢,; 5,7]] end
where ¢q,..., ¢, are not distinguished active synchronizations

Figure 2: Rewrite rules for Phase 1
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(2: HS 1) with P!do C[P!] end >,
with w !p,r 7p do C[AHS(!p, ?p)] end
where C' contains no occurrences of P!.

(2 : HS 2) with P? do C[P?][P?] end >,
with r !p, w 7p do C[!p][PHS(!p, 7p)] end

where C' contains no occurrences of P? or P.

Figure 3: Rewrite rules for Phase 2: Handshaking Expansion

(3: GUARD 1) «[['s — [e; — AHS(!s1,7s1)[]...]e, — AHS(!s,,7s,)]; PHS(!s,7s)]] >3
*[[!s ANep —7s T5[-ls — AHS(!s1,7s1); 7s L]l - - -l
*[[ls A e, —7s 15 [ls — AHS(!s,,, 7s,); 7s |]]]
(3: GUARD 2) withw?srlsdo «[[!she—7s |;[-ls — AHS(!s',7¢'); 7s |]]]end >3
with w ?s r !s do
*[[ls Aep —7s 15 [=ls — AHS(s', 7"); 2s []]] - - - |
#[[1s A e, —7s T;[=ls — AHS(!s',7s'); 7s |]]Jend
where e V ...V e, is the result of applying
disjoint-guards to the disjunctive normal form of e.

Figure 4: Rewrite rules for Phase 3.

obey the protocol. From the inspection of the rules for parallelism, (1) directly corresponds to
execution of !p T, the initial step of the active protocol. (2) has the exact function as the remainder
of the protocol if executed in isolation. All that remains is to show nothing can intervene in the
middle of the handshaking protocol to cause its completion to fail. The only possibility is if some
other process assigned to the handshaking variables, but if this were the case, this would violate
the mutual exclusion on synchronization.

5.4 Phase 3: Guard Simplification

Guard simplification introduces further parallelism by first separating guarded processes into par-
allel processes, and then further separating each guarded process into its own collection of mutually
exclusive guards that furthermore have guards that are conjunctions of literals only. These rules
appear in Figure 3.

Since guards are guaranteed to be mutually exclusive, each one can be evaluated by a separate
process. (3 : GUARD 1) separates the component processes of a selection into distinct parallel
processes. In order to prevent a guard e; from evaluating to true while executing the process
guarded by e; (the process triggered by !c; could theoretically change the value of some variable
and cause e; to become true), we reshuffle the passive handshake on !s,7s so that the process
activated by AHS(!s;,7s;) waits for s to become false, de-activating all guards, before actually
executing the process.

(3 : GUARD 2) simplifies each guard into disjunctive normal form, strengthens the disjuncts
so that they are mutually exclusive, and then further separates this guarded process into a set
of concurrently executing processes each guarded by one of the disjuncts. The algorithm used
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(disjoint-guards) to strengthen the disjuncts so as to make them mutually exclusive is presented in
[Bur88].
We conclude this section with the lemma showing rewriting in this phase preserves meaning.

LEMmA 26 If =9mo and m;):%vmg then mqy™~3ms.

The correctness of the two rules depends upon the fact that the guards ey, ..., e, in the original term
are mutually exclusive. (3 : GUARD 1) separates each of the guarded terms into a concurrently
executing process. The guards are prevented from changing value by preceding the execution of
the command with part of the synchronization on !s,?s. Since (3 : GUARD 2) simplifies each
guarded process into a set of mutually exclusive guarded processes, its correctness follows almost
immediately.

5.5 Phase 4: Modularization

The module that results from the phase 3 transformations is a collection of processes executing
in parallel. In order to transform this module into a circuit, each of the processes must itself be
a module. This is because circuits can write a variable in only one location (the gate that has
that named wire as output), so all write scopes of variables must be localized. In this phase,
each process that is not already a module is transformed into one. It should be noted that the
only processes that are not already modules are those implementing atomic active and passive
synchronization on non-distinguished ports, and the individual guarded command processes. The
synchronization processes may fail to be modules because several distinct processes may use the
same non-distinguished port (at this point handshaking variables). Thus the declarations of the
“write” handshaking variables cannot be made local to a single process. Similarly, with guarded
processes, there may be many guarded processes that wait for a start signal from the same active

handshake.
LEMma 27 If =3m3 and 'm3:>flvm4 then ms3=4my.

The other important result is after this phase of the translation, all processes that comprise the
module are themselves modules.

LEMMA 28 If mg=>{5,my then my = m}||...||m!, where each m! is in turn a module.

These two lemmas are proved by showing a strong correspondence exists between the computations
before and after the translation process; critical is the fact that all handshaking synchronizations
are “pure,” meaning both active and passive sides step through the protocol without intervening
activity.

5.6 Phase 5:Reshuffling

Before producing circuitry for each module that results from modularization, we reshuffle some
of the handshake protocols. The purpose of this action is to make modules that are more easily
implemented in circuitry. All of the reshufflings involve interleaving the final passive handshake
with the preceding handshake.

Upon entering this phase, each module is of the form [!s — ¢; PHS(!s, 7s)] for some ¢ (ignoring
declarations). The hardware implementation is simpler if the initial [!s — skip] of the passive
protocol is eliminated, and if some of the response ?s |;[-!s — skip]; ?s | is interleaved with the
execution of ¢. Although each type of module requires a different form of reshuffling, the general
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(4: MOD 1) with w!p,r7pdo C[AHS(!p,?p)]...[AHS(!p,?p)] end
D4
with r 7p do
withr!p,...,r!p, do
with w !pdo «[lp:=!p; v...Vip,] end ||
with w 7p; do « [?p; :=!p; C 7p] end ||

with w ?p, do «* [?p, :=!p, C 7p] end
end ||
Clwith w !p; r 7p; do AHS(!py, 7p1) end]

[with w !p,, r 7p, do AHS(!p,,, 7p,,) end]
end
where n > 1, each hole e; occurs at most once in C', and
?p, p do not occur in C'
(4: MOD 2) withr!p,w?pdo
Cl'p][PHS(!p, 7p)]. .. [PHS(!p, 7p)]
end
D4
withr ?py,....,r 7p,,w?pdo *[7p:=7p; V...V?p,] end ||
with r Ip do
Cl'p]
[with w ?p; do PHS(!p, 7p;) end]

[with w ?p,, do PHS(!p, 7p,.) end]
end
where n > 1, each hole o; for ¢ > 1 occurs at most once in C', and
?p, p do not occur in C'

Figure 5: Rewrite rules for Phase 4: Modularization
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principle is that a reshuffling may occur when the active communication AHS(!p, 7p) corresponding
to the passive communication PHS(!p, ?p) has not yet had anything reshuffled into it. The rules
appear in Figure 6.

The following lemma is the key lemma, showing a passive handshake may be reshuffled, provided
its corresponding active handshake is pure. It allows us to prove the correctness of this phase, by
applying the lemma in a bottom-up order to the tree of processes induced by apllying phase 1 rules
to the original syntax tree.

LEMMA 29 (RESHUFFLING PRINCIPLE)

C' [withr ?d, w!d do C[AHS(!d,?d)]end]
[with w ?d, 7 !d do [!d — skip]; co; ¢1; c2; PHS(!d, 7d) end]

C’ [withr?d, w!d do C[AHS(!d,?d)]end]
[with w ?d, r !d do ['d — skip]; co; ?d T;¢1; [~!d — skip];¢e;7d | end]

provided there is no occurrences of 7d or !d in C, ¢g, c1, or 3.

LeMma 30 If =4my4 and m4:>évm5, then m4=sms.

5.7 Phase 6: Final Compilation into circuits

The last part of the translation takes the individual processes representing atomic assignment, se-
quencing, guard, active and passive communication, loop, skip, and parallel execution, and trans-
forms each into a circuit representation. The rules appear in Figure 7.

Fach circuit process below executes the same handshaking sequence as the reshuffled versions
they come from, for each case that is not too difficult to establish. The problem, however, is
robustness: the reshuffled processes execute actions in a certain order, and only in that order.
Ordering is difficult to impose on circuits, and many of the circuits in fact will function differently
than the reshuffled processes if placed in an evironment that does not obey the handshake protocol.
For instance, if an active circuit, implemented as just two wires, has its passive input ?a set high
before it has set output !a high (a violation of handshake protocol), the circuit will set ?d high.
However, the reshuffled process is guarded by !d, so will ignore any value of 7a until !d is high. Thus,
important to correctness of each process is the assumption that all neighbor processes this process
interacts with also obey the handshake protocol. This is summed up in the following lemma.

LEMMA 31 Given =¢m and =gm’, the handshake protocol is never violated in m||/m®. In partic-
ular, for any pair of handshake variables !d, ?7d occurring in m and m?, it is not the case that, in
some computation sequence (m||m?’, (m|m?)),

1. !d is set to false when 7d = false,
2. !d is set to true when 7d — true,
3. 7d is set to false when !d = true,
4. 7 is set to true when !d = false,

Proof: The proof proceeds by counterexample, suppose there in fact was a violation of protocol,
then there must have been an earliest step number in the computation at which a violation of
protocol occurred. But, by case analysis on each of the circuit processes, none of them could have
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(5 : SEQ)

(5 : PAR)

(5: ACT)

(5 : PASS)

with
end
with
end
with
end

>5
with

end||
with
with
with
end
with
end
with

end

with

end

rls,r7s;,vr7sy, wls,rls;, wlsy do
«[[!ls — AHS(!s1, 7s1); AHS(!sg, 7s2); PHS(!s, 7s)]]

rls,r7s;,vr7sy,wls,rls;,wlsy do
*[[ls — skip];!s1 1;[?7s1 — skip], ?s 1; [-!s — skip];
sy [5[=7s1 — skip];!s2 1;[7s2 — skip];!sg |;[=7sy — skip]; 7sg |]

rls,r7s,....,78,,wils,wls; ..., !s, do
«[[!s — (AHS(!s1,7s1)|| ... [|[AHS(!s,, 7s,,)); PHS(!s, 7s)]]

rls,r?s’,w?s,wl!s do
«[[ls — skip|;!s’ 1;[?7s’ — skip]; ?s ;
[-!s — skip]|; !’ |;[-7s" — skip]; 7s |]

rls',wlsy, ... s, do * [lsy :=ls]|| .. .|| * [!s,, :=!s"]end||
r?s;....,7s,,w?s’do?s’ :=7s; A...7s,end
rls,r7a,w ?s,w la do

«[[!s — AHS(la,?a); PHS(!s, 7s)]]

rls,r7a,w ?s,w la do
*[[!s — skip];la ;[?a — skip]; ?s |;
[-!s — skip];la |;[-7a — skip]; 7s |]

rls,rlp,w?s,w ?p do
«[[!ls — PHS(!p, 7p); PHS(!s, 7s)]]

rls,rlp,w?s,w 7p do
*[[!sAlp — skip]; (7p 1 (|75 1);
[=Ip A =ls — skipl; (7p | [|7s |)]

Figure 6: Rewrite rules for Phase 5: Reshuffling
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initiated the first violation. All cases are straightforward except the case of the active circuit. If

there are multiple active processes, one of them may be synchronizing with a passive process while

the other active processes are idle. This means the idle active processes could in theory receive

?a signals from the passive process, as alluded to in the example above. However, the C-element

inserted by modularization guarantees this will never be the case. The only active process that

receives 7a is the one that initiated the synchronization. |
With this lemma we may prove correctness of this phase of translation.

LEMma 32 If =5m5 and m5:>évm6, then ms=gme.

5.8 Summarizing the Translation Process

We have presented six rewriting systems for compiling S-CSP circuit specifications into H-CSP
circuit realizations. We now justify that compilation of a specification always produces a circuit,
and meaning is preserved. First, we state without proof that the compilation process is total.

LeMMA 33 If m € S-CSP, then m=_gmg for some mg € H-CSP.

The correctness of the entire transformation process follows immediately from the correctness of
each of the phases.

THEOREM 34 (CoRRECTNESs) For all m € S-CSP, if m=-1_gme then for any closing testing mod-
ule m* € S-CSP* such that m'=-_gmf, (m||m*) =, . (mg||mf).

Proof: The proof follows immediately from Lemmas 24, 25, 26, 27, 30, and 32. a

6 Conclusions

We have shown that Martin et al.’s methodology can be made more rigorous. In order to accomplish
this the new concepts of partial declarations, module and component, mutual exclusion violations,
fairness, handshaking variables, distinguished ports, equational rewriting, separate compilation and
observable determinism were introduced.

6.1 Related Work

Two recent papers address the same general problem of proving correctness of asynchronous circuit
compilation [WBB92, vB92]. These two systems are more closely related to each other than either
are to our work.

In a prelimary report [WBB92], Weber, Bloom, and Brown define a process language Joy and
its compilation to asynchronous circuitry. In contrast to C-CSP, Joy has a number of additional
syntactic restrictions including the restriction that no processes may share variables or passive port
names. This restriction is critical to the proof of correctness of the compilation of Joy specifica-
tions into circuits. Additionally, because handshaking is required to read variables, the resulting
circuits are slower than those we generate. Another minor difference is that they make no fairness
assumption. A benefit of their method over ours is that the transformation process guarantees
isochronic forks to be isolated in small parts of the circuit. The primary difference, though, is their
use of a bisimulation ordering rather than the testing ordering we use. Bisimulation is a stronger
equivalence than testing (fewer things are related by bisimulation). Our choice to use testing rather
than bisimulation was based on our beliefl that bisimulation is too strong a relation to use if we
want to incorporate (and prove correct) optimizations into our translation.

19



(6 : ASSIGN)

(6 : SEQ)

(6 : GUARD)

(6 : ACT/PAR)

(6 : PASS)

(6 : LOOP)

(6 : SKIP)

with

with

with

with

with

with

with

with

with

D6

with

with

L6
with

with
L6
with

wz, wlsg,w Isy,rls;,rlsgdo
«[[!s1 — @ 1; PHS(s1)[!so — = |; PHS(s)]] end

wx, W 789, w 7s1,r ls1,r lsg do

«[z :=lsy C =lsg]|| * [Ts1 :=!s1 A z]|| % [7s0 :=!so A —z] end
rls,r?s;,r7sy, w 7s,w ls;, w lsy do

*[[ls — skip];!s1 1;[?7s1 — skip], ?s ; [-!s — skip];
Isy |;[=7s1 — skip]; AHS(!s3,7s2);7s |] end

wa,rz,r'!s,r?s;,r sy, w?ls,wls;,w!lsy do

«[7s1 1= s]|| * [z :=7s1 C =lsg]|| * [7s := aVIsa]|| % [lsg := @ A =7s1]) end
rls,w?ls,r?s;,wls; do

«[[!she —7s 1;[7ls — AHS(!s1,7s1);7s |]]] end

rls,wils,r?s;,wls;,ra,wa,rt;,wiy,riy,wiy do
*[ty := s Ae]|| * [t :=7s1 A 2ls]|| * [z :=t; C L]
«[7s 1= aV7s1]|| * [!s1 := & A =!d] end

rls,r7a,w ?s,w la do

*[[!s — skip];la 1;[?a — skip]; ?s ;

[-!s — skip];'a |;[-?7a — skip]; ?s |] end

rlsr?aw ?swlado

«[la :=!s]|| % [?s :=7a] end
rls,rlp,w?s,w7pdo

#[[!sAlp — skip]; (?p 1 [|7s 1);

[!p A =ls — skip]; (7p | [|7s |)] end

wz,rz,r!s,rlp,w?s,wipdo

«[z :=ls Cp]|| * [?s := z]|| * [7p := =] end
rls,r7a,w?s,w la do

«[[!s — skip[; x[AHS(!a, ?7a)]; PHS(!s, ?s)] end

rls,r?a,w7s,wla,rz,wz do
«[z :=!s C ls]|| % [le := z A =7¢| end

rls,w?sdo *[[!s — skip|; skip; PHS(!s,?s)] end

rls,w?sdo *[?s:=!s] end

Figure 7: Rewrite rules for Phase 6: Circuit Generation

20



van Berkel gives a correctness proof for compiling the CSP-based specification language Tangram

to circuits. Tangram can only have single uses of each port, and disallows concurrent reads, but

in principle allows concurrent read/write via an arbiter, something we disallow. The compilation

process goes through an intermediate language, handshake circuils. He uses trace equivalence, a

weaker equivalence than testing, but has no notion of fairness. His presentation is very thorough,

and addresses many other important issues such as initialization and optimization. Unfortunately,

the correctness proof stops at the handshake circuit level and does not exist for the circuit level.
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A Fairness and Determinicity

In this appendix we present details of the definition of fairness and the Lemmas leading up to the
proof of determinicity, Lemma 20.

DEFINITION 35

e A finite computation path

(co,00) — (c1,01) = ... — (Cp,0n)

is fair iff (c,,0n) £ (€nt1,0n41) fOr any 41, 0,41.
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e An infinite computation path
(co,00) — (€1,01) — ... = (ci,00) — ...,
is faur iff it is not unfair. It is unfair iff

Jeq, ep. Heri, a4, 645, ¢, | @ € Nat}.Vi.
¢i = Rifca][ep][eri][cai]

A

(Ri[ea]les]lerilleail, 0:) — (Rilcalles][ch;][ch;], oit1) (never executed)

A

Ri[ o1 ][ o2 ][c}i]lch] = Riya[ 1] o2 ][Cl(i-l—l)][CQ(i-I—l)]

A

Jo’, ¢, ¢, (Rilca][en][erilleai], o3) — (Ri[el][e;][cail[czi], o) (continuously enabled)

The most important consequence of fairness for this system is progress. That is, once a reduction
step is enabled, it will remain enabled and eventually be executed.

LeMMA 36 (PrOGREss) Given semantically well-formed (cg,00) and any potentially infinite fair
computation sequence
(co,00) = (€1,01) — ... — (¢ci,00) — ...,

if cg = Roleq][es][c10][c20] and
(Rolea][es][er0][e20], o0) — (Roler]les][er0][e20], o1)
then there exists some n such that

IH{e1i, cai, ¢l ¢ | 1 € Nat At < n}.Vi < n.
civ1 = Riyi[ea][en][erivnllezivn)]

A

(Ri[ca]lev][cri]leail, oi) — (Rileallen)[€);][ch;], 0i41) (not executed for n steps)

A

Riloa1Lo2 1ihlch] = RisaLor 1o Jlexgianlleaion)]

A

Jo’, ¢, ¢, (Rilca][en][erdd [e2i], 00) — (Ri[el][e;][eail[ezi], 0') (continuously enabled)
A

(Ry[ca]les]lern)lezn], 0n) — (Rulch]ler][c1n]lcan], 0nt1) (executed on n + 1-st step)

Proof: This is almost a direct consequence of fairness. If R;[¢,][cs] were always enabled to
reduce, the result would follow by fairness. So, we must demonstrate that no enabled reduction
is disabled. For the rules (Assignment), (Sequencing), (Repetition) and (Parallelism)(3), enabled
redices can easily be shown to stay enabled by inspection of the other rules. For the other cases,
(Selection), and (Parallelism)(1)&(2), the only possibility of a redex becoming disabled is the fact
that some other intervening step changes the value of a critical boolean expression e, but this is
disallowed by error rule 1. O

LeMMA 37 (STRONG DiaMoND) Given well-formed (R[c,][es][cc][ed], o), a strong diamond prop-
erty holds. Namely, if

(Rlcalleslleclleal, o) — (Rleg][cplee][eals olvor = €ol)
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and
(Rlea][es][eclled], o) — (Rlea][en][el][eq]s o[vio = ero])

then vy19 # vp; and

(Rlc ]ler]lecl[eal, olvor = ea]) — (R[e][eb][ec][eq], o[vor = o1, v10 = €10])

and

(R[ea][en] [e2][eq], olvio = ero]) — (Rei][ey][ec][eals olvor = €or, vi0 = €io]),
where to admit the possibility that o was in fact not changed by one or both steps, vg1, and/or v
may not be in the domain of ¢, in which case no modification of ¢ takes place.

Proof:  The proof proceeds by analysis of the 28 different cases the two initial rules could have
been (there are 7 single-step rules, both steps may have been a different use of the same rule). O

The next Lemma uses the Strong Diamond Lemma (Lemma 37) to show any enabled step
executed sometime in the future can be bubbled up to occur as the next step, without altering the
remaining computation.

LemMA 38 (BUuBBLING) Given semantically well-formed (cg, o) and a potentially infinite fair com-
putation sequence
(co,00) = (€1,01) — ... — (¢ciy00) — ...,

with ¢g = Ro[cq][es][c10][c20] and
(Rolcalles][ero][e20], o0) — (Rolcqlleh][er0][e20], 01)
i.e. Ro[cq][cs] is enabled to reduce, and furthermore, there exists some n such that

I{eri, i, ¢y ch; | 1 € Nat A i < n}.Vi < n.
civ1 = Ripalea][en][eripnlleziizn]

A

(Ri[ealles][cril[eail, o1) — (Rilealles][€);][ch;], oit1) (not executed for n steps)
A

Ri[ o1 ][ 2 ][c}][c5] = Riza[e1][ o2 ][Cl(i+1)][02(i+1)]

A

(Rylcalles][einllean], 0n) — (Ry[c][c)][cin][c2n], Ont1)(executed on n 4 1-st step)

then, the reduction of ¢, /c, can be bubbled up to be the first step of computation without changing
the end result, namely,

(Ro[calles][ero][c20], 00) — (Rolcy]lct][erollcaol, 01) = (Rnlci]lc]cin]lean], 0ng)-

Proof:  Proceed by induction on n. For the case n = 1, the desired result is exactly the Strong
Diamond Property (37). Assume the result is true for values smaller than n, show the result holds
for n. Consider the computation starting at the second step of the original computation,

(Rolca][es][c10][ckol 1)

By the continual enabledness of redices from the Progress Lemma (36),

(Rolcalleel[cho][¢hol, o1) — (Rolcq]lei][cho][¢ho], o2)

24



By the induction hypothesis, we then have

(1) (Rolei]lc]leiollehols o) = (Ralei]ei]lern]lean], ontr)-

So, by the Strong Diamond Property (37), the first two steps

(Rolca][es][er0][c20]; o0) = (Rolea] [es][cho][¢hols 01) — (Ro[ca][et][chol [ch0], 03)

may be swapped to give

(Rolca][es][e10][e20); 00) — (Rolcy][et][e10][e20], 01) — (Roleq]leb][€10]lea0]; 03),

So by (1) above, the proof is complete.

25



