Formal Methods in System Design, 9, 1-73 (1995)
© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Correct Compilation of Specifications
to Deterministic Asynchronous Circuits

SCOTT F. SMITH AND AMY E. ZWARICO {scott, amy }@cs.jhu.edu
Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218 USA

Abstract. Powerful methods have been developed by A. Martin and others whereby asynchronous
circuits may be automatically constructed by starting from high-level specifications and incremen-
tally transforming them into asynchronous circuits. In this paper we make the informal arguments
for the correctness of this compilation process mathematically rigorous. With rigorously justified
transformations, specifications may be translated into circuits that provably meet their specifica-
tion. A full proof of the correctness of the circuit compiler is given. Other results of independent
interest include: the process model takes fairness of gates into account, hazard-freeness is formally
defined, and all hazard-free circuits constructed solely of and, or, not gates and C elements are
proven to behave deterministically to any outside observer. A novel notion of equivalence is used
to justify the correctness of the compiler.

Keywords: Asynchronous circuits, speed-independent circuits, verification, concurrency, compi-
lation

1. Introduction

A large number of research projects have developed methods for the automatic syn-
thesis of asynchronous circuits from high-level specifications [17], [18], [28], [2], [20].
These methods are a significant departure from the traditional design methodologies
used in circuit development in they are automatic or semi-automatic techniques for
synthesizing asynchronous circuits from high-level specifications. All of the above
projects excepting [20] use the same basic methodology, described as follows. The
circuit is specified in a CSP-like language [13] as a set of concurrently executing
processes that can communicate via fixed channels. A specification is constructed
from simple programming language constructs that include variables z and assign-
ments z := a, conditional branching, looping, parallel execution, and sequencing.
The specification then undergoes a series of transformations that in the end results
in an asynchronous circuit.

Our work is based on the asynchronous design method of Martin et al. [17],
[18], [14], [15], [19]. Burns and Martin have described and implemented a circuit
compiler [6], [5] that uses this method to automatically translate specifications
into circuits. This paper is concerned with rigorously establishing the correctness
of asynchronous circuit compilers. There have been multiple efforts in this area,
including [25], [29], [27]. This paper is a complete presentation of preliminary work
described in [24], [25]. We first present an overview of our method, and conclude
this section by contrasting with related work.

1.1. Owur method

The results in this paper are based on a mathematical circuit model described as
follows.

Speed-Independent We work under the assumption of speed-independence. That
is, gates may delay arbitrarily but wire values propagate instantly from source
to destination, and a wire is considered to have only one value at a time. An
equivalent statement of this model is forks in wires may be assumed to be
tsochronic, namely a forked signal arrives at all destinations simultaneously.
Isochronic forks are imaginary objects, so it is up to the circuit layout and
fabrication process to guarantee isochronicity. There has been some debate
about the appropriateness of the isochronic forks assumption [26], [16].

Fairness Unlike most other formal models for circuits in the literature, we make
explicit assumptions that gate delay cannot be infinite: if a gate is continuously
enabled to switch, it will eventually switch (weak fairness assumption). Since
gates are in practice fair, this is an important assumption.

Hazards If a gate is enabled to switch and one of its input changes to disable
the gate from firing, a hazard results. Constructed circuits should be provably
hazard-free.

Weaknesses of this model include the isochronic forks assumption, and allowance
of arbitrary fan-in and fan-out. The model further assumes each wire has only one
value, and there are no values allowed between 0 and 1.

We define our specification language C-CSP (Circuit CSP) in Section 2. C-CSP
is modeled loosely on Hoare’s CSP and Occam. C-CSP is the only language we use,
it describes specifications and circuits and all intermediate forms between the two.
In this sense our approach is different from the literature. Circuits are collections
of atomic processes running in parallel performing simple boolean assignments, and
can be expressed in a sublanguage of C-CSP.

We give C-CSP meaning via an operational semantics, in Section 3. Defining the
semantics presents several challenges. First, we need to define executions so only
fair computations are allowed. Real asynchronous circuits do not contain gates that
starve, so this assumption is critical in accurately modeling asynchronous circuits.
Second, the semantics provides a mechanism for reasoning about potential mutual
exclusion problems. This differs from other researchers [29], [27] who prevent all
violations of mutual exclusion from occurring by placing syntactic restrictions on
the sharing of variables. One such restriction others impose is to disallow two pro-
cesses executing in parallel to share a variable. We believe such restrictions are too
drastic, because many programs, realizable as circuits, have specifications in which
concurrently executing processes share variables but nonetheless have no simulta-
neous assignment to the variable. For example, a CPU may contain a register that
may be written by several concurrently executing processes, but in a mutually ex-
clusive manner. This CPU is implementable if we can show that at no time during

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 3

its execution is the register simultaneously assigned. If such direct variable access
is disallowed, a slower circuit will by necessity be constructed. We indicate viola-
tions of mutual exclusion by having the executing process enter a special ERROR
state. The disadvantage of our approach is the need to prove that no ERROR
states arise during execution, for each specification.

Key to proving the correctness of the transformation process is defining a reason-
able notion of “equivalence” between processes. Many useful notions of equivalence
have been defined. Trace equivalence [27], [8], [9] and bisimulation equivalence [29]
have both been effectively used for reasoning about asynchronous circuits. Our
approach is based on a third variety, testing equivalence. Two processes are testing
equivalent if they pass the same set of infinitely many tests. Testing equivalence can
thus be viewed as a notion of passing a “complete” test suite for a device. We define
testing equivalence in Section 4, and formalize what it means for transformations
to be semantics-preserving.

One key property we prove for our language is all semantically well-formed (hazard-
free) processes are observably deterministic. This means multiple actions can occur
in parallel in an undeterminted order, but to an observer the process is determinis-
tic because the output sequence resulting from a given input sequence is always the
same. Observable determinism holds because the language has no explicit means
for nondetermisism via arbiters, and if nondeterminism could be observed it would
mean the circuit sometimes would have to exhibit hazards. From this a funda-
mental Corrolary concerning the behavior of asynchronous circuits may be derived:
hazard-free circuits constructed solely of and, or, not gates and C-elements are all
observably deterministic. The difficulty of establishing correctness is lessened in
the presence of the observable determinism property, for it suffices to consider any
particular run of the circuit rather than all possible runs.

The compilation process proceeds in five phases, as described in Section 5. Break-
ing down the process into a number of phases means the individual transformations
are smaller, and also simplifies the proof of the correctness of the compiler. Each
phase is specified by a rewriting system. The first phase breaks each construct
of the original specification into its own process; so each guard, assignment, and
sequencing for instance is now a separate (and of relatively small size) process. The
second phase replaces the atomic synchronization action with a 4-phase handshak-
ing protocol. The remaining three phases translate the remaining processes into
circuitry. Putting the five phases together we have a collection of transformations
that allow all specifications to be automatically transformed to a circuit. A sample
translation appears in Section 5.7.

Correctness of the compiler is established in Section 6. Intuitively, correctness
means the specification has “the same behavior” as the circuit. This then leads
one to believe we should prove the specification equivalent to the circuit. This is
not sensible, though, for one main reason: specifications and circuits must interact
with their environment, but the two differ in the way they interact with the en-
vironment. In particular, specifications communicate with their environments by
synchronization, and circuits communicate by 4-phase handshaking. The equiva-

lence must then take into account the change of environment. We define a notion
of transformation equivalence specifically for this purpose. Transformation equiva-
lence is a “closed-world” condition, specifications compile to correct circuits in the
sense that they will operate properly when connected to other circuits compiled
by our method. This may seem like too restrictive a notion of correctnss, but we
will argue that it in fact is the most appropriate one. From this correctness result
we can derive that the final circuit contains no hazards provided the initial spec-
ification was semantically well-formed. Lengthy definitions and proofs have been
relegated to Appendices.

1.2. Contrasts with Martin and Burns

We derive our method from that of Martin and Burns. A number of changes have
been made to make it more precise and complete and thus feasible to rigorously
prove correctness. Differences are summarized here for readers familiar with their
work.

The language We define a somewhat simpler language, with only single-bit vari-
ables and mutually exclusive guards. No data may be sent across channels.
These restrictions are solely to make correctness proofs more manageable, we
do not think it would be difficult to extend our results to a full language. We
use a more precise notion of variable scoping, important in establishing correct-
ness. We use one language for the compilation process as opposed to their three
(high-level, production rules, gates). We have no direct analogue of production
rules, as this was not needed for our purposes.

Components and mutual exclusion We have a formal notion of a semantically
well-formed component, free of mutual exclusion violations, and it is only these
components for which the compilation process will produce a correct circuit.
Martin also uses a notion of mutual exclusion, our work can be viewed as a
rigorous reformulation of his ideas. We also define a precise notion of guard
stability.

The translation process We use the same general technique for asynchronous
circuit compilation, but with significantly different particulars. We use one
language for the whole translation process. Our translation scheme has sepa-
rate phases to modularize descriptions and reshuffle handshakes. There is no
production rule phase. A somewhat different compilation method is used for
guards and synchronizations.

1.3. Related Work on Correctness of Asynchronous Circuit Compilers

Two papers address the same general problem of proving correctness of asyn-
chronous circuit compilers [29], [27]. These two papers are more closely related

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS H

to each other than either are to our work. Some comparisons are as follows. We-
ber, Bloom, and Brown define a process language Joy and show how it may be
compiled to asynchronous circuitry. Joy imposes a number of syntactic restrictions
not found in our C-CSP language, including the restriction that no processes may
share variables or passive port names. The proof of correctness of the compiler is
heavily dependent on these restrictions. The language restriction necessitates the
use of explicit handshaking to read variables, so the resulting circuits are slower
than those we generate. A benefit of their method is the transformation process
guarantees isochronic forks will be isolated in small sections of the final circuit.
They use a bisimulation ordering to establish correctness, whereas we use testing.
Bisimulation is a stronger equivalence than testing (fewer processes are related by
bisimulation). The two different equivalences give rise to two significantly differ-
ent proof techniques. It is not clear if bisimulation could be used to prove our
compilation method correct, the more liberal nature of C-CSP requires a more
“context-dependent” analysis achievable through testing but not bisimulation.

Kees van Berkel [27] gives a correctness proof for compiling the CSP-based spec-
ification language Tangram to handshake circuits. Tangram can only have single
uses of each port. The compilation process goes through an intermediate language,
handshake circuits. His book focuses on many other important issues such as ini-
tialization and optimization. The correctness proof is based on trace theory and
stops at the handshake circuit level, thus mostly avoiding the problems of hazards
and mutual exclusion violation. Neither of these works incorporates a fairness as-
sumption as we do, fairness is notoriously difficult to deal with and is generally not
taken into account for this reason.

2. The Circuit Language—C-CSP

In this section we introduce C-CSP (Circuit-CSP), a variation of the CSP lan-
guage [13] based on the version of CSP designed by Martin [17] for specifying asyn-
chronous circuits. We have removed some syntactic sugar to make the correctness
task more feasible and added refined scoping constructs needed to guarantee cor-
rectness. Unlike Martin, we use the same language as the specification language,
the intermediate language, and to express circuits. This decreases the overhead
brought about by performing explicit translations from one language to another,
and giving semantics to all the languages. In Section 2.1 we define modules, compo-
nents and closed terms, concepts that will be important in proving correctness. In
Section 2.2 we define two sublanguages of C-CSP: S-CSP represents specifications
and H-CSP represents actual hardware devices, respectively.

DerINITION 1 C-CSP boolean expressions e, commands ¢, and declarations d are
defined by the following grammar

e

t|f|lz|P?|(ene)|(eVe)|—e
c w=skip|z:=e|cc|le—c]...le—=c]]| *][c]|cl|le|P|P?]

with d do ¢ end
d o=raz,d|we, d|P,d|P? d|e

Commands will also be referred to as terms or processes. V is the set of C-CSP
variables where z,y, z ... € V range over variables, and la, !p, s %, 7a, 7p, 75,7t ... €
V range over handshaking variables. The handshaking variables are boolean vari-
ables that take on special significance in the implementation of handshaking proto-
cols. P, is the set of active port names and is ranged over by S!, P! Similarly,
Pp is the set of passive port names, and S7, P?,... range over Pp.

The boolean expressions e are the usual ones plus the probe P? [14], by which
a passive port may test to see if the corresponding active port is enabled without
causing a synchronization to occur.

The commands are similar to those of CSP. skip does nothing. Assignment,

z := e, assigns the value of e to the boolean variable z. As a shorthand we
represent z := t and z :=f by = | and z |, respectively. Sequential composition is
denoted by “”. Choice among guarded commands is designated by [| and infinite

repetition of ¢ is designated by *[c]. Parallel composition is represented by ||. As in
CSP, processes synchronize with one another through ports P! and P?. An active
port P! and its corresponding passive port P? form a channel informally named
P. We call any occurrence of a variable on the left-hand side of an assignment a
write occurrence. Any variable occurring in a guard, or the right-hand side of an
assignment is a read occurrence.

Various syntactic constraints must be placed on the above grammar. Declarations
bind the occurrences of variables and ports, and a variable or port name can be
used only within the scope of its declaration. All boolean variables may be declared
(scoped) twice: once by a declaration in which they may be read (r), and once where
they may be both read and written (w). This form of declaration is useful in proofs
of correctness. For instance, the declaration of w # in with w 2 do ¢ end allows
us to reason about ¢ knowing x is written only in ¢, but could be read elsewhere.
It should be noted that in the term with w z do with r z do ¢ end end, z
may be written in ¢: a “r z” declaration is not interpreted as “read-only”, only
as “readable.” Corresponding active and passive parts of a channel P are declared
separately as P! and P?, for the same reasons: in with P! do ¢ end it can be
assumed that P! is used only in ¢, but P? could in theory occur both in ¢ and
externally. It is also not possible to declare the same port name more than once,
nor is it possible to declare a variable either r # or w # more than once. Another
syntactic restriction required for circuits to behave properly is it is impossible to
negate a probe or use probes in assignments. These restrictions are made precise
in the following definition.

DerFINITION 2 A C-CSP term c is syntactically well-formed if and only if it can be
generated by the above grammar and

1. All probes P? occurring in guard expressions e occur positively, namely em-
bedded within an even number of negations.

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 7

2. Probes do not occur in the expression part of any assignment statement.
each send P! or receive port P7 occurring in ¢ is declared at most once in ¢;

each variable z is declared at most once w x at most once r z in ¢;

ot ®

If both w x and r # declarations occur in ¢ and « occurs within the scope of
the latter but not the former, it cannot be a write occurrence.

6. if ¢ contains a declaration P?, no occurrences of P? or P? in ¢ are outside the
scope of that declaration; if ¢ contains a declaration P!, no occurrences of P! in
¢ are outside that declaration; if ¢ contains a declaration w z, x is not written
outside this declaration; and if ¢ contains both r x and w z declarations, z does
not occur in ¢ outside both of these declarations.

Hereafter C-CSP terms are implicitly taken to be syntactically well-formed, and
the composition of smaller terms to make larger ones must be syntactically well-
formed.

Finally, we may define strip(c) to be ¢ with all declarations removed. A small
example of a C-CSP expression is

with P?, Q!, R, rz,wz, rydo
*[[P? — &= —a;
[xVy — Q!-z A~y — RI; P?]]

end,

a process that alternates synchronizations on P with synchronizations on) and R,
respectively, with y an external override in favor of Q.

2.1. Modules, Components and Closed Terms

In order to formally describe compilation, we need to define three classes of C-
CSP terms—modules, components and closed terms. The C-CSP terms that may
be separately compiled are modules. All ports used and variables written in a
module must be declared in that module. A module may interact with its external
environment via ports and variables, indicated by declaring a variable only written
or only read, or declaring only one of the active and passive ports of a channel.
Modules are useful in the same sense they are useful in programming languages:
if a large specification is divided up into modules, each part may be compiled
separately. They also will prove to be important in correctness arguments.

The terms in the language corresponding to physical silicon devices (chips and
their specifications) are components. They may communicate with the outside world
via ports, but, unlike modules, may not share boolean variables with the outside
world. Components are generally composed of a collection of modules that may be
re-used in other components. The main purpose of components for our purposes
is they may be shown to be semantically well-formed, meaning lacking in mutual

exclusion errors, a notion defined in the next section. The notions of component
and module cannot be conflated for this reason: it is not possible to define what a
semantically well-formed module is—since modules can share variables, one module
may be semantically well-formed when hooked up with some module but ill-formed
when hooked up with another. Since components share no variables, they are well-
or ill-formed in and of themselves.

Closed terms share no variables or ports with the outside world. Formally, these
three classes of terms are defined as follows.

DEFINITION 3

1. A C-CSP term m is a module exactly when if 2 := € occurs in m then this
subterm occurs inside a declaration w z, and all uses of ports P! and P? occur
inside declarations of P! and P7 respectively.

2. A C-CSP term k is a component if it is a module where any use of a non-
handshaking variable z implies declarations w z and r z are both present in
k. Additionally, for any handshaking variable !s/?s read or written, it must be
appropriately declared as r !s/r 7s or w !s/w 7s, respectively.

3. A C-CSP term c is closed if and only if it is a component, all channels P
used in ¢ have both active and passive ports P! and P? declared in ¢, and all
variables occurring in ¢ (including handshaking variables) have both read and
write declarations.

2.2. Specification and Hardware Sublanguages: S-CSP and H-CSP

C-CSP spans the expressibility gamut from high-level specifications to gate-level
circuit descriptions. Two sublanguages of C-CSP are S-CSP, a “pure” specification
part of the language, and H-CSP, used to describe hardware devices.

S-CSP forces specifications to abstract from the actual implementation of the syn-
chronization between components by prohibiting any use of handshaking variables.
All terms in S-CSP may be compiled to circuits.

DeFINITION 4 S-CSP (Specification CSP) terms are C-CSP terms with no in-
stances of handshake variables !s, 7s.

H-CSP (Hardware CSP) terms represent a collection of gates. Let ¢ range over
literals of the form z or —z for variable z.

DEFINITION 5 (GATE PROCESSES) and, or, not/wire and C-element gate processes
are defined as follows.

(and gate) [z =L AN

(or gate) [z =L V... Vi,

(not gate/wire) *[z := {1]

(C element) w[z = (£ V&) A (x V(€ Al2))], abbreviated * [z := ({1 C £3)]

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 9

DErFINITION 6 H-CSP terms are terms ¢ such that
strip(c) = AHS(!s, 7s)||c1||ea - - - ||en,

where each ¢; is a gate process and no two gate processes ¢;, ¢j, ¢ # j may assign
to the same variable.

AHS(!s,7s) (defined in section 5.3) is a single active handshaking protocol to
initiate the execution of the entire circuit. This could have been be compiled to
hardware, but since initialization methods are more technology-dependent, we have
left it abstract.

These gate processes in fact serve well as a mathematical model of gate behavior.
Each atomic execution of a gate process updates its output value z. Isochronicity
of forks is implicit in that wire states are variables, and once a variable is written,
all locations that read that variable will get the new value.

3. Operational Semantics of C-CSP

An operational semantics describes the execution of a program or process in terms
of the operations it can perform. Each operation takes the process from one con-
figuration to another, where a configuration consists of a process and some internal
state of the computation. In this way, computation is seen as a sequence of transi-
tions involving simple data manipulations. We define the operational semantics of
C-CSP, by defining a relation — that represents a single step of the computation.
Each configuration consists of a closed C-CSP term and a state o containing the
current values of ports and variables.

There are a number of challenges to giving semantics for C-CSP. Side effects are
necessary because state-holding elements are one of the fundamental structures of
modern digital circuits. Almost all of the process algebra work in the literature is
restricted to languages that have no side effects. Another challenge to overcome is
the need to enforce mutual exclusion on certain parts of circuits. In asynchronous
circuit design, there is often the need to have shared resources. However, using our
translation method, we cannot properly realize circuits which violate certain mutual
exclusion constraints. Thus we construct our C-CSP semantics so that an ERROR
is yielded if mutual exclusion is violated. The translations in turn guarantee that
well-formed processes stay well-formed, resulting in a circuit that does not have
two simultaneous requests for the same resource. So, if we begin with a well-
formed component we will end with one. Martin also emphasizes the importance of
mutual exclusion, but he argues informally about the well-formedness of a circuit
description, where here requirements for mutual exclusion are completely rigorous.

State, initial state, and configurations the computation passes through are for-
mally defined as follows.

DEFINITION 7

10

1. A state o is a finite mapping from VUP, to Bool. We denote the set of states
by States.

2. ¢ :C-CSP — States maps a term ¢ to an initial state oy such that the domain
of o is all variables # and active ports P! occurring in ¢, and for all z and P!
in the domain of o, oo(2) = f and oo(P!) ={.

3. A configuration (c, o) consists of a closed term ¢ and a state o that represents
a point in the computation.

Augmenting or changing the state function o is abbreviated o[z = b], where
be {t,f}. P, is part of the domain of ¢ and is used to define the semantics of the
probe: o(P?) = t iff P! is waiting to synchronize. We let v (a general variable)
range over V UP,. Configurations are defined to be closed because computations
are restricted to closed terms only.

One important notational convenience is the contezt, a term with a hole “o” poked
in it where another term may be placed. We define a subclass of contexts, the
reduction conterts. This notion comes from [10] (and is called there an evaluation
context) to simplify the presentation of operational semantics. A reduction context
is a syntactic means of isolating the next computation step to be performed.

DEFINITION 8

1. A context C is a term containing numbered holes “e;” i € N. There may be
multiple occurrences of e; for some ¢ and no occurrences for other values of i.
Cle1] .. [en] is the result of syntactically replacing all occurrences of e; in C
with terms ¢;, for each 1 < < n.

2. A closing context for a term c is a context C such that C[c] is closed.
3. A reduction context R is a context constrained to be of the form
R =e; or R;cor R||cor ¢||Ror R||R or with d do R end,

where each e; for i € Nat occurs at most once in R and ¢ is a term.

Often contexts with only one distinct hole are used, in which case ey for the single
present value of £ may be abbreviated eo. Also, we sometimes wish to denote an
arbitrary expression that could either be of the form R[c] or of the form R[c][¢'].
We write this as the latter, and if the hole o5 does not occur in R, R[c][¢'] = R]¢].
The following subsections define the evaluation of boolean expressions, and the
operational semantics for closed C-CSP terms.

3.1. Semantics of Expressions

All boolean expressions are evaluated with respect to a state ¢ by homomorphically
extending the domain of ¢ to all boolean expressions.

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 11

DEFINITION 9 Let €, €1, e2 be expressions.

O'(t) =t
of) = f
o(P?) = o(P))
o(er Aea) = o(er) Ao(ea)
o(er Vea) = o(er)Vo(es)
o(—e) = —o(e)

3.2. Semantics of Commands

The semantics of commands are defined by the single-step computation relation —
mapping configurations to configurations. Most of the rules are straightforward.
For instance, the assignment rule takes a configuration (R[z := €], o) to one in
which the command has finished execution and the state o has been augmented
with the value of e assigned to x, (R[skip], o[z = o(e)]).

DEeFINITION 10 The one-step computation relation on configurations, —, is the
least relation such that

(Assignment)
(R[z := €], 0) — (R[skip], o[z = o(e)])
(Sequencing)
(R[skip; ¢], o) — (R]c], o)
(Selection)

(R[[ex — c1] ... Jes — el - - llen — en]], 0) — (R[es], o)

where o(e;) =t and Vj #i.0(e;) =1f

(Repetition)

(R[*[c]], o) — (R]c; *[c]], o)
(Parallelism)
(1) (R[P!],o[P! = f]) — (R[P!],o[P! = t])
(2) (R[P!][P?],o[P! = t]) — (R[skip][skip], o[P! = f])
3) (Rlskip|skip], o) — (Rlskip].)

It should be noted that except for synchronization on P!/P?, parallel execution is
approximated by interleaving. This is a standard approach taken by process algebra
researchers [13], [21]. Since the circuits we are synthesizing are asynchronous, this
approximation cannot lead to any timing errors in the final circuit.

We next define those configurations that violate mutual exclusion principles, and
thus should not arise in computing. Proper specications and circutis thus should
never under any conditions exhibit these errors.

DeFINITION 11 (ERROR CONDITIONS) £((c,0)) is defined as the union of the fol-
lowing clauses:

12

(reading while writing) &((R[z :=][y == ¢/],0)) if o(¢') # (]2 = a()])(¢).
(writing while writing) ¢((R[z = e1][z = €3], 0))

(multiple enabled active ports) e((R[P!|[P[P7],).

(multiple enabled passive ports) e((R[P!|[P?][P7], o).

(multiple true guards) e((R[[le1 — c1]...Jes — cif . . [en — cnl], o)) if
o(e;) = o(e;) =t for some j # i

(non-stable guard)
e((R[x :=€][lex — 1] ... Jes — - - Jlen — ¢n]], o)) if
o(e;) =t and (o[z = o(e)])(e;) = £ for some ¢.

(probing guard while synchronizing)
e((R[PN[P?[[ex — el ---les — el - - - len — en]], [Pl = t])) if
(o[P!=t])(e;) =t and (o[P! =1])(e;) =1 for some 3.

Note the presence of reduction contexts R mean the above errors only happen when
the particular statements are enabled to execute. An idle guarded command can
thus have multiple true guards. Guards must be stable in the sense that if one of
the boolean guards becomes true while the guard is enabled to execute, this guard
must stay true. The (non-stable guard) condition captures when this fails. We
will informally write (¢,) — ERROR to mean ¢({c, 0}).

DEFINITION 12 — is the transitive, reflexive closure of single-step computation —.

3.3. Semantic Well-Formedness

Only those specifications that lead to no mutual exclusion ERRORs,; as defined
above, can be compiled into hazard-free circuits. These are the semantically well-
formed specifications. Hazard-freeness for circuits is defined as semantic well-
formedness: semantic well-formedness means no mutual exclusion errors occur, and
for gates a hazard is a (reading while writing) mutual exclusion error: a gate
that was enabled to fire becomes disabled by a change to its inputs.

It is not possible to sensibly define well-formedness for modules since modules may
read external variables, and there is no condition on when external variables may
be written. Thus the need for the components defined earler—they are modules
with all variables declared locally. A component k is semantically well-formed if
when executed concurrently with any other component &, any error that arises is
“caused by” k', not by k.

DEFINITION 13

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 13

1. A configuration (c, o) is semantically well-formed iff there is no computation

(c,0) Z ERROR. A closed term ¢ is semantically well-formed if (c,e(c)) is
semantically well-formed.

2. A component k is semantically well-formed iff for all components &’ such that
k|| is closed, for all computations

(k||E, o(k||E) = (kn||k,, 0n) — ERROR

it is the case that —e({kn, 0,)), and furthermore if —£({k.,, 5,,)) then the error
was caused by one of (multiply enabled active ports), (multiply enabled
passive ports), or (probing guard while synchronizing) cases, and two
of the three processes producing the error were in k/,.

The last part of 2. assigns blame in the special case that three processes were
involved in an error: the component with two processes involved gets the blame.
If only two processes were involved in the error, the first part of 2. guarantees the
error was not in k, (note that by the fact that k, and k!, do not share variables,
both of the processes involved in a two-process error must be in one of k,, and &/,
and not spread between the two). This definition of semantic well-formedness is
only intended to apply to two varieties of configurations: closed configurations, and
S-CSP specifications. It turns out that there is no need to define semantic well-
formedness for other varieties of configuration, avoiding a more complex definition.

3.4. Computations and Fairness

There are many computation paths possible, since at a given point multiple pro-
cesses (or gates, at the hardware level) may be running and the next step could
be performed by any one of those processes. Certain computation paths are unfair
because processes that are able to execute are kept from doing so forever because
all the steps are taken by other active processes. For instance, the term

o = all| « [P? — QU P2)|| [P]]| « [Q7]

has an unfair infinite computation that starves out the synchronization on channel
P by repeatedly and without interruption executing z := —z.

Since circuits execute fairly (gates do not delay infinitely), we make a fairness
assumption part of our semantics. Specifically, we hereafter restrict ourselves to
the weakly fair computations. A weakly fair computation path is roughly defined
as follows: if a process is continuously enabled to execute a particular step, the
step will eventually execute later in the computation path. In the above example
it means a synchronization on channel P must eventually occur because we have
ruled out the unfair computations that starve all but the first process. The full
definition of fairness is found in Appendix A as Definition 28.

14

4. Circuit Testing and Equivalence

Having defined the operational semantics and semantic well-formedness, we can now
define notions of equivalence on C-CSP terms that will be used to prove the compiler
correct. The equivalences we define are in the spirit of the testing equivalence
of [22], [11], with some ideas taken from Morris/Plotkin operational equivalence
[23]. Testing equivalence is a precise formalization of exhaustive testing, so if two
processes are testing-equivalent, no difference will be ever be able to be ascertained
between the two by a tester. Testing is an internal or self-consistent notion of
equivalence, processes are tested by other processes only.

We begin in Section 4.1 by defining the basic framework for testing equivalence.
Next we present the Observable Determinicity Theorem, which shows all processes
in our language have no nondeterministic behavior. In Section 4.2 we review
the basics of rewriting systems and in Section 4.3 we define a notion of testing
equivalence over rewriting that is used to establish correctness of the compiler,
transformational equivalence. As discussed in the introduction, the translation
process does not preserve standard notions of equivalence because the interaction
with the environment is changed when synchronization is replaced by handshaking.

4.1. Testing

The basic idea of testing equivalence is a process c is tested by running it in parallel
with a testing process ¢, ¢||¢’. ¢/ can communicate with ¢ to test its behavior. Two
processes are equivalent if they behave the same when tested by all tests.

We define a language of testers, C-CSP*| by adding a new distinguished success
variable, Tgyccess 10 the variable set V. A testing process indicates success by setting
Zsuccess 10 t. We then define the notion of a successful and a failing computation.

DerINITION 14 Let ¢g be a closed C-CSP* term. A fair computation
(co,t(co)) = {e1,01) = ... = {cn,0n) — ...,

is successful iff for some i, 0;(@success) = t. It is failing if it is not successful.

Two processes are testing equivalent if when tested by any test (i.e., run together
with the test process) they have the same behavior. The question, then, is exactly
what this “behavior” is to be. The classical definition is that they have the same
successful or unsuccessful outcomes. That idea is captured in the following defini-
tion (¢ and ¢’ here are terms that are combinations of the processes being tested
and the tester).

DEFINITION 15 (OBSERVATION EQUIVALENCE) Let ¢ and ¢’ be closed semanti-
cally well-formed C-CSP* terms. Then, ¢ =, ¢’ iff

1. There exists a successful computation of ¢ iff there exists a successful compu-
tation of ¢'.

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 15

2. There exists a failing computation of ¢ iff there exists a failing computation
of ¢.

In our setting, we in addition need to take errors into account, and not equate an
error-free process with one that may error upon execution. But, some of the trans-
formations we define actually decrease the number of errors that occur. Namely, if
a component has an error, there is a chance that it is compiled to a circuit that has
no errors. To account for this, an error ordering ¢ >, ¢’ is defined to indicate a
decrease in the number of errors.

DEeFINITION 16 (ERROR ORDERING) Let ¢ and ¢’ be closed C-CSP* terms. Define
¢ > ¢ ¢ Iff ¢ is semantically well-formed implies ¢’ is semantically well-formed.

The desired observation that takes errors into account may now be defined.

DEFINITION 17 (OBSERVATION/ERROR EQUIVALENCE) For ¢ and ¢’ closed terms,

= ;-
~
C =obserr € iff
1. ¢>¢n ¢, and

2. if ¢ and ¢’ are semantically well-formed, then ¢ =, ¢’

An important property of C-CSP is all terms are observably deterministic, that is,
either all fair computations are successful or all fair computations are failing. There
may be significant parallelism, but none of the parallelism can be detected by an
outside observer. This property simplifies the definition of observation equivalence
above. Since we deal only with deterministic processes, it suffices to have only the
first clause of the definition of ¢ =, ¢/, simplifying the proofs of correctness.

THEOREM 1 (OBSERVATIONAL DETERMINISM) For any semantically well-formed
closed C-CSP* terms c, either all fair computations of ¢ are successful or all fair
computations are failing.

A complete proof of this theorem is found in Appendix B. We provide a sketch
here. First a local notion of determinicity, the Strong Diamond Property (Lemma
11), is proven. If two different computation steps are possible from a given con-
figuration, this Lemma shows the order the two are executed in does not matter
since the two different configurations can merge again by executing a single step.
More precisely, there are 49 possible parallel combinations of single step reductions
(there are 7 single step reductions). By symmetry, we can reduce this to 28 distinct
cases. We then show that if two different single-step reductions are enabled at the
same time, then the two steps can execute in either order and reach the same state.
Consider for instance the case of two concurrently executing assignment statements,
z :=e; and z := ey. If executing e; before e; changes the value of es, or executing
ey before e; changes the value of €1, then the term has an error condition. Thus
executing ¢ := e; does not change the value of es. Similarly, executing z := es
does not change the value of ;. Thus executing the two in either order will lead to

16

the same configuration. By chaining applications of the Strong Diamond property
(via the Bubbling Lemma, Lemma 13), any fair failing path can be turned into
a successful one provided at least one successful path exists. This is because the
succesful and failing path really must just be permutations of the “same” computa-
tion by the above Strong Diamond Property. Thus, there cannot be present both a
successful and a failing path, proving the Theorem. Note that unfair failing paths
cannot necessarily be turned into successful paths because the testing process could
starve. So, this property fails without a fairness assumption.

CoROLLARY 1 All closed, hazard-free (i.e., semantically well-formed) H-CSP cir-
cuits ¢ (constructed solely of and, or, not gates, and C-elements) are observably
deterministic.

Proof: This follows directly from the previous Theorem and the observation that

H-CSP is a sublanguage of C-CSP. []

This Corollary gives an elegant theoretical characterization of the arbiter-free
speed-independent circuits.

The practical utility of observational determinism is the definition of =, can be
considerably simplified.

COROLLARY 2 In the definition of 2,5, Definition 15, case 2. may be removed
without changing the meaning of the definition.

Proof: It suffices to show case 2. follows from case 1. Suppose there exists a failing
computation ¢ (the opposite direction follows by symmetry). Then by determinism
all computations are failing, so there exists no successful computation of ¢. Thus,
by assumption all computations of ¢’ are also failing. [|

Now that observations have been defined, we may define exactly how the tests
are performed. Define a testing contezrt to be a C-CSP* context. To test a term ¢
we place it in a closing testing context C, forming C|[c].

=

DEeFINITION 18 (TESTING EQUIVALENCE) Let ¢, ¢’ be C-CSP processes. ¢ = ¢ if
=

for all closing C-CSP* testing contexts C', C[c] Zopserr Clc'].

=
~

=
THEOREM 2 (CONGRUENCE) For any context C, ¢ = ¢ implies C[c] = C[¢'].

=
Proof: Suppose ¢ = ¢’; show C[e] = C[¢'], i.e. show for any closing context
C' that C'[C[c]] and C'[C[¢']] have the same success and failure behavior. This is
trivial by assumption, since C’'[C] is a particular context our assumption holds for.
|

This congruence principle is useful in showing the correctness of the compilation
process: it allows us to substitute equals for equals, and justifies the use of local
rewriting rules.

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 17

Unfortunately, the general notion of testing equivalence defined above is too

~

strong to use in proving the transformations correct. For instance, = is not pre-
served by the compilation step that replaces a high level synchronization with a
handshaking protocol because a process that communicates with its environment
by communication channels is not equivalent to the process with the channels re-
placed by handshaking wires. In addition, the actual circuits need to make a number
of assumptions about the environment in which they operate. Even when a par-
ticular process is idle, certain inputs cannot be changed because they may in fact
cause the circuit to execute when it should be idle. In order to adequately handle
these problems, we define a more refined notion of equivalence, called transforma-
tion equivalence, that restricts the set of tests used to make them dependent on
the translation process itself. This results in a “closed-world” notion of correctness:
modules are compiled correctly in the sense that they will work correctly when
connected to other modules compiled by our method. This may seem too weak
a notion of correctness, but a full-scale version of C-CSP would include a specific
mechanism for interfacing with other devices, and through this interface the de-
vices connected would not have to be compiled by our method. There is a strong
analogy here with programming lanaguages: modules produced by a C compiler
cannot be expected to be linkable with modules produced by a Pascal compiler. By
working under this closed-world assumption, our language can be more liberal, and
the compilation method more efficient. For this reason we believe this approach is
the best one.

Before we define transformation equivalence, a digression into the general struc-
ture of the translation process is given.

4.2. Rewriting and Equivalences

We divide the translation process into five phases and implement each phase using a
distinct term rewriting system (see [7] for background and references on rewriting).
These systems are presented in Section 5. Rewrite systems are simple rule-based
systems for replacing one subterm by another. One additional feature we use is to
rewrite with respect to a set of equations (equational rewriting). This allows simple
equivalence-preserving transformations such as commutativity and associativity to
be performed implicitly.

DEFINITION 19 A rewrite system R/E over C-CSP consists of a finite set of rules
of the form ¢y > g €1 and a finite set of equations of the form ¢y =g €1, where the ¢;
are C-CSP metametavariables, i.e. they are terms which may themselves contain
metavariables.

We use the following five relations: m =g m’ indicates that m is equivalent by one
of the equational rules to m/; =}, is its transitive reflexive closure; m=-g,pm’ when-
ever m rewrites in one step modulo the equations F to m’; :>;2/E is its transitive

reflexive closure; and m:>%/Em’ if m’ cannot be further rewritten.

18

DeriNITION 20 Given a rewrite system R/E, the 2-place relations =g, =}, = r/E,
:>}L/E, and j%/E on modules are defined as follows.

1. mg =g my (myg is equivalent by one of the equational rules to my) iff mg =
C'[eo], m1 = C'[e1], €0 =k €1 is arule in E| and the ¢; are derived from the ¢;
by uniformly substituting C-CSP terms for metavariables.

2. =% is the transitive reflexive closure of =p.

3. mo=g/EMm1 (mg rewrites in one step modulo the equations E to my) iff
my = C'[eo], m1 = C'[e1], mo =% C'[cg], C'[¢}] =% m1, €0 >Rrer, and the ¢} are
derived from the ¢; by uniformly substituting C-CSP terms for metavariables.
That is, any of the equations may be applied before and after the application
of the rewriting rule.

4. :>7~2/E is the transitive reflexive closure of =g/ p.

5. mo:>g/Em1 (Normalizing rewrite) iff mo:>}:2/Em1, and there is no ms such
that mM1=R/EM2.

In Section 5, we define five rewrite systems =31-=-5 by giving five sets of rules
>1 ... D5, and a set of scope, commutativity, and associativity equations, SCA,
that is the same for all systems. We will not explicitly mention “SCA” and notate
the five rewrite relations as =;. A specification mg is compiled to a circuit ms by
the rewriting

N N N N N
mo=, M1=>y Ma=3z M3=, M4=5 M5,

abbreviated mg=-1_sms (my compiles to ms). Modules that are the result of
translating an initial specification through ¢ levels are defined as follows.

DerFINITION 21 Fori € {1,...,5}, =;m iff me=¥m; ...=¥m and my € S-CSP,
=om holds if m € S-CSP.

The two important facts to establish about each rewrite system are normalization,
so a terminating translator can be written; and semantics preservation, so the
rewritten term has the same behavior as the original.

4.3. Transformation Equivalence

Having reviewed the basic concepts of rewriting systems, we can now identify the
set of tests that will allow us to define transformation equivalence, the equivalence
used to prove the synthesis method correct. The intuition behind transformation
equivalence is that in order to prove a transformed process is equivalent to the
original, the transformed process can only be tested by tests that are obtained by
transforming the tests used to test the original process. That is, one phase of the

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 19

translation process preserves transformation equivalence if the behavior remains the
same when both the process and its test are translated and have the same testing
outcome.

The tests take the form of testing modules m! running in parallel with the module
m to be tested, m?||m. This gives a sensible notion of how a specification is tested,
because m' serves as a complete description of the environment of the specification.

Transformation equivalence is then defined as follows.

=
DEFINITION 22 (TRANSFORMATION EQUIVALENCE) m; ;41 mit1, for 0 <i <4,
iff

1. :>£Vmi,
2. mi:>f\;1mi+1,

3. for any testing module m! such that =¥ m! and m!||m; is closed, if

=
mi=s N omi e, then (mél[me) = vserr (méy[lmiga).

= >
Note 2¢; is the transformational equivalence for rewrite phase ¢. We let mg =2, ms

abbreviate mg §1 my... §5 ms, the correctness of of a complete compilation from
specification to circuit. This definition means given a specification module mg
compiled to a digital circuit ms, the compilation process is correctness-preserving
if and only if for any tester of the original system, m}, this tester makes the same
observations on mg as its compiled counterpart m{ does on ms.

5. Compilation of C-CSP Specifications to Circuits

We now define a family of five rewrite systems for incrementally translating C-
CSP process specifications to circuit implementations. Our translation roughly
follows that of [5], though many changes were necessary to define a provably correct
translation process. To their credit we did not find any significant errors in their
work, only ambiguities.

A specification my is compiled by applying the five rewrite systems in turn, trans-
lating mg to my, to ms, ..., and finally to a circuit module ms. Each of these
rewrite systems is defined with respect to a set of equations, SCA, that equates
certain terms that differ in trivial ways.

Phase 1, process decomposition, produces a separate process for each constructor
of the original term, be it guard, loop, active or passive communication, assignment,
or parallelism. Phase 2 expands the high-level synchronization of C-CSP into a 4-
phase handshaking protocol. Phase 3 modularizes the specification by giving each
use of a port a new, distinct, name. Phase 4 reshuffles the handshake protocols
in order to make efficient circuit implementations more feasible. Finally, Phase 5
translates each of the small modules that remain into digital circuitry consisting of
and, or, not gates, C-elements, and wires.

20

(SCA : SCOPE 1) with dy,d> docend =
with d; do with d5 do c end end
(SCA : SCOPE 2) with d; do with d5 do cend end =
with ds do with d; do c end end
(SCA : SCOPE 3) C[with d do ¢ end] = with d do C|[c] end
where declarations d bind nothing in context C'
(SCA : PAR COM) 01”02 = 02”01
(SCA : PAR ASSOC) (Cllloz)HCg = 01”(02”03)
(SCA : SEQ ASSOC) (Cy;C3); Cs = C;(Cy; Cs)
(SCA : GD PERM) [e; — Ci]...Jles —] ... Jlej — ¢l .. .[len —] =
[

er — Cif ... lej — ¢ .. Jlei — c .. . Jen — cn]

Figure 1. SCA Equations

5.1. Scope, Commutativity and Associativity Equations

For each of the rewrite systems =;, 1 < i <5, we rewrite with respect to the same
fixed set of equations, the scope, commutativity and associativity (SCA) equations.
These equations provide a sound means for moving declarations, commuting and
associating parallel and sequential composition, and permuting guarded command
order in a choice construct. By rewriting with respect to this set of equations,
the number and complexity of rewrite rules in each phase is reduced. The set of
SCA equivalences appears in Table 1. (SCA : SCOPE 1) equates a single list of
variable and port declarations with a nested declaration of the same variables and
ports. (SCA : SCOPE 2) swaps two tightly nested scopes. (SCA : SCOPE 3)
allows the movement of scoping information in and out of parallel, sequencing,
guard, and looping commands. The commutativity, associativity and permutation
equations are self-explanatory.

LEMMA 1 The SCA equations preserve testing equivalence in both directions. That
=> =>
is, for any SCA equation p = p/, p = p/ and p’ = p.

5.2. Phase 1: Process Decomposition

The first phase separates the original specification into many small processes by
transforming each node ¢ of the syntax tree into a separate process of the form
#[[S? — ¢;S?]]. In addition, a single “assignment process” is made for each
boolean variable to physically isolate its storage location. All assignments syn-
chronize with this process to assign a new value to the variable. Before any other
transformations can be applied, a distinguished “start channel” S is added to the

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 21

term being compiled. Execution of the term begins with a synchronization on this
channel. This is a global operation, performed once on the entire module being
compiled.

We use distinguished active and passive port names S! and S7 in this phase.
These names are used to distinguish those ports added in the translation process
from those that were in the original specification. Since all the new processes are
guarded by distinguished port names, the rewriting is guaranteed to terminate.

The rewrite rules for phase 1 appear in Figure 2. Rule (1 : INIT) adds a “start-
ing” channel to the process. Rules (1 : ASSN1) and (1 : ASSNZ2) isolate all
assignments to a particular variable into a single assignment process by creating
an assignment process (1 : ASSN1) and replacing all assignment statements by
synchronizations with this new process (1 : ASSN 2). An assignment processes
consists of a choice between two a guarded commands: one for assigning t (1), and
the other for assigning £ (]). (1 : SEQ), (1 : GD), (1 : LOOP), and (1 : PAR)
rules each introduce a separate process for each part of the expression. Addition-
ally, (1 : GD) simplifies each guard into disjunctive normal form, strengthens the
disjuncts so that they are mutually exclusive, and creates a separate guarded pro-
cess for each of the strengthened disjuncts. The algorithm used to strengthen the
disjuncts is identical to that described in [5] and is presented below.

algorithm: disjoint-guards
Let F' =\, ,<, fi (where each f; is a conjunction of literals)
Let C={f;|1<i<n}
while 3¢ > 1,5 < n, ¢ # j such that f; A f; is satisfiable do
C:=C-{fik
F' .= disjunctive-normal-form(f; A —f;);
C":={f"| f' is a digjunct of F' and f’ is satisfiable};
C:=Ccuc

end

After exhaustively applying these rules to a semantically well-formed S-CSP term,
we obtain an equivalent term in phase 1 normal form.

DEFINITION 23 A C-CSP module m isin phase 1 normal formif strip(m) conforms
to the following grammar.

nf == Slnf'|...[|nf’
nf' = #[[So? — x |;S0?]S17 — = 1; S17]] |
*[[S7 — [e1, — S1557] .. Jer,,, — S11;57]...
len, — Snl;S7] .. len,,, — Snl; S]]
*[[S?7 — (S| .- - [|Sa1); ST | * [[S? — *[S"1]; 571 |
*[[S? — S11; Sol; S?] | * [S? — skip; S?]] | * [[S? — P$; S7]]

where € is any boolean expression, S!, S7, 51 S1,!...,S,! are distinguished port
names, P is a non-distinguished port name, $ € {!,7}, and for all 1 <i < n,1 <

22

(1 : INIT) ¢ >; with S!'do S! end ||with S? do * [[S? — ¢; 5S?]] end
where ¢ contains no occurrences of distinguished variables.
(1: ASSN1) withw z do *[¢c]end >;
with w z do
with 557,517 do * [[So? — = |; Sp?[S1?7 — z 1;517]] end ||
with Sp!, S1! do * [¢] end
end
(1: ASSN2) withw z do
with Sp?,81? do * [[So? — & |;S0?]S1? — « 1;5:?]] end ||
with 57, 5!, 511 do C[* [[S? — z := ¢; S7]]] end
end
B>
with w z do
with Sp?, 917 do * [[So? — & |;S0?]S1? — « 1;5:7]] end ||
with 57, 5!, 51! do
C[*[[S? — [~e — So!; S?]e — S11;57]]]] end
end
(1: SEQ) ¥[[S? — c1;¢9;57]] >y
with S;!, Sy! do * [[S? — S, S5!; S?]] end ||
with S;? do * [[S17 — ¢1;517]] end ||
with 557 do * [[S2? — c2; S97]] end
where ¢1 # ¢3;¢a, 1 # 51!, and ¢z # 95!
(1: GD) #[S? — [e1 — c1] .. . [len — ¢a]; S?] >y
with Si!,..., S, do
*[[5‘7 — [611 — Sll, S‘?H .. .|]61m1 — 51', 5‘7” .. [|
en, — Sn!; S?] .. .len,,, — Sn!;S7]]] end ||
with 51?7 do *[[S1? — ¢1;517]] end ||.. .||
with S,,? do * [[S,? — ¢5; S, 7]] end
where for 1 < ¢ < n ¢; is not a distinguished active
synchronization and €;, V...V e;, 1is the result of applying
the disjoint guards algorithm to the disjunctive normal form of e;
(1 : LOOP) «[[S? — «[c]; S?]] >4
with S'! do * [[S? — *[S"1]; S7]] end ||
with S'? do * [[S'? — ¢; 5'?]] end
where ¢ is not a distinguished active synchronization
(1: PAR) #[[S7 — (cal] - - -[len); S7]] B
with 51!, ..., Syl do = [[S7T — (S1Y|| .. .[|Sk!); S?]] end ||
with 51?7 do *[[S1? — ¢1;517]] end ||.. .||
with S,,? do * [[S,? — ¢n; S, 7]] end
where ¢, ..., ¢, are not distinguished active
synchronizations and n > 1

Figure 2. Rewrite rules for Phase 1

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 23

(2 : HS ACT) with P!do C[P!] end I>5
with w Ip,r 7p do C[AHS(!p, 7p)] end
where C' contains no occurrences of P!.

(2 : HS PAS) with P? do C[P?][P?] end 1>,
with r Ip, w 7p do C[!p][PHS(!p, ?p)] end

where C' contains no occurrences of P7 or P7.

Figure 3. Rewrite rules for Phase 2: Handshaking Expansion

J < m; each e;; is a disjunct and for all 1 < k < m; if j # k then e; and e, are
disjoint.

The normalization proof of phase 1 is found in Appendix C. A concrete example
of the translation process is found in section 5.7.

=
LEMMA 2 If mg is a S-CSP module and m0:>11Vm1 then mg &1 m;y.

The proof of this Lemma appears in Appendix D.2. Intuitively, the correctness of
(1 : ASSN1) and (1 : ASSNZ2) follow from the observation that if no mutual ex-
clusion errors arose from the assignment to z in the original, then it is not possible
for two distinct synchronizations to the assignment cell for to occur simultane-
ously in the transformed process. The correctness of the other rules follows from
the observation that although these transformations add new processes, the new
processes are activated in the same order as the subprocesses of the original.

5.3. Phase 2: Handshaking Expansion

Handshaking expansion replaces the C-CSP synchronization constructs with boolean
handshaking variables implementing a four-phase handshaking protocol. Since the
active and passive ports need not be declared in the same scope and in fact could
be external, we must introduce two rules to carry out this rewriting. Each rule
eliminates a port scope construct by simultaneously substituting a term that im-
plements the handshaking protocol for each occurrence of the port. To simplify
notation, we let AHS(!p, 7p) abbreviate the active handshaking protocol

'p 1;[7p —'p |]; [-7p — skip],
and let PHS(!p, 7p) abbreviate the passive handshaking protocol
['p —"p 1 [-lp —7p |]

The rules appear in Figure 3.
We now define the normal form produced by handshaking expansion.

24

DEerFINITION 24 A C-CSP term m is in phase 2 normal form if strip(m) conforms
to the following grammar.

nf = AHS(Is,?s)||nf']|...|Inf’
nf' = «[[lso — z |; PHS(!sq, 7s0)[!s1 — = 1; PHS(!s1, 751)]] |
*[[!s — [e1 — AHS(!s1, 7s1); PHS(!s, 7s)] . ..
len — AHS(!s,, 7s,); PHS(!s, 7s)]]] |
*[[!s — (AHS(!s1,?s1)|| .. . ||AHS(!sp,, 7s,)); PHS(!s, 7s)]] |
*[[ls — x[AHS(!s', 7s")]; PHS(!s, 75)]] |
*[[!s — AHS(Is1, 7s1); AHS(!s2, 7s2); PHS(!s, 75)]] |
*[[!s — skip; PHS(!s, 7s)]] |
*[[ls — HS(!p, 7p); PHS(!s, 75)]]

where e is any boolean expression, !s,7s,!s’ 7s’ !s;,7sy,...,1s,,7s, are distin-
guished handshaking variables, !p, 7p are non-distinguished handshaking variables,
and HS is either AHS or PHS.

=
LEMMA 3 If =1m; and my =Y my then m; =5 ms.

The proof is found in Appendix D.1. In order to prove this phase correct, we first
observe that the handshaking protocol is well behaved with respect to the high-
level synchronization constructs, that is all steps in the protocol can be correlated
to steps in the high-level synchronization. Further, we show that any error in the
protocol that arises in the transformed term will also cause an error at the high
level.

5.4. Phase 3: Modularization

The module that results from the phase 2 transformations is a collection of pro-
cesses executing in parallel. In order to transform this module into a circuit, we
next must modularize the module: each of the parallel processes is transformed into
a module, so we now have a large module consisting of a series of small modules
all running in parallel. This transformation is required because circuits can write a
variable in only one location (by the gate that has that named wire as output), so
all write scopes of variables thus must be localized; this is accomplished by making
each process a module. The only processes that are not already modules upon en-
tering this phase are those implementing atomic active and passive synchronization
on non-distinguished ports, and the individual guarded command processes. Syn-
chronization processes will fail to be modules at this point if there were multiple
occurrences of either P!or P7 in the original specification. With guarded processes,
there may be many guarded processes that wait for a start signal from the same
active handshake, and several guard processes may activate the same subprocess.
Both of these guard cases are illustrated by the sample translation in section 5.7.

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 25

(3: MOD ACT) withw Ip,r ?p do C[AHS(!p,7p)]...[AHS(!p, ?p)] end
>3
withr 7p do
withr!p,...,r!p, do
withw Ipdo *[lp:=Ip; V... Vip,] end ||
with w ?p; do * [7p; :=!p; C 7p] end ||

with w ?p, do * [?p, :=!p, C 7p] end
end ||
Clwith w !p; r 7p; do AHS(!p1, 7p1) end]

[with w !p, r ?p, do AHS(!p,, 7p,) end]
end
where n > 1, each hole e; occurs at most once in C', and
7p, 'p do not occur in C
(3 : MOD PAS) withr!p,w ?pdo
Cl'p][PHS(!p, 7p)] . .. [PHS(!p, 7p)]
end
>3
withr 7p;,...,r 7pp,w ?pdo * [?p:=7p1 V... V?p,] end ||
withr !p do
Clp]
[with w ?p; do PHS(!p, 7p;) end]

[with w ?p, do PHS(!p, 7p,) end]
end
where n > 1, each hole o; for ¢ > 1 occurs at most once in C,
and 7p, !p do not occur in C

Figure 4. Rewrite rules for Phase 3: Modularization

26

The modularization rules appear in Figure 4. (3 : MOD ACT) replaces the i-th
occurrence of an active handshake AHS(!p, 7p) with the handshake AHS(!p;, 7p;).
Then, circuitry is added to merge the resulting !p,...,!p, values into one (via
an or-gate), and to fan out the ?p value to each process. The latter requires the
addition of a C-element that remembers which active process initiated the synchro-
nization, thus preventing idle active processes from receiving the reply signal 7p (if
they did receive this signal anomalous behavior would result at the circuit level).
(3 : MOD PAS) is the analogous rule for multiply-occurring passive handshakes
PHS(!p;, 7pi). There is no need to insert C-elements here, however, because the
circuitry to be produced will be robust with respect to having !p high even when
the process is inactive.

The normal form for phase 3 extends nf’ in the definition of the normal form for
phase 2 with the following three clauses:

#[lp=lp1 V.. Vipa] | *[7pi =lpi C2p] | x[?p=7p1 V... V7py]

Phase 3 is also provably normalizing.
The important property after this phase is completed is all processes that comprise
the module are themselves modules.

LEMMA 4 If mo=Y,3ms then m3 = m/||...||m),, where each m! is a module.

We establish correctness of this phase.
=
LEmMMA 5 If =9my and m2:>évm3 then ms =3 ms.

The proof is found in Appendix D.3. The proof hinges on the fact that mod-
ularization does not alter the steps in the handshaking protocol even though the
transformed process must go through extra steps in order to set the distinct wires.
During these extra steps (executing an “or” gate or a “C” element), the other side
of the protocol cannot proceed.

5.5. Phase 4: Reshuffling

Before producing circuitry for each module resulting from modularization, we reshuf-
fle some of the handshake protocols to simplify the hardware implementation. All
of the reshufflings involve interleaving the final passive handshake with handshakes
that directly precede it. This particular form of reshuffling is used because it allows
any functional block to be conected to any other. An optimizing compiler would
use a wider array of reshuffling techniques.

Upon entering this phase, each module is of the form [ls — ¢; PHS(!s, 7s)] for
some ¢ (ignoring declarations). The hardware implementation is simpler if the ini-
tial test of !s in the passive protocol PHS(!s, 7s) is eliminated, and if some of the
response 7s [;[-ls —7s |] is interleaved with the execution of ¢. Each type of
module requires a different form of reshuffling to achieve the most efficient imple-
mentation, so the transformations of this phase are meant to set-up the translations
to circuitry in the next phase. The transformation rules appear in Figure 5.

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 27

(4 : SEQ) with
>4
with
(4 : PAR) with
end

D>4
with

end ||
with
with
(4: ACT) with

D>4

with

(4 : PASS) with
>4

with

(4 : GD) with

end
D>4
with

end

rls,r7s;,r7sy,w7s rls;,wlsy do
*[[!s — AHS(!s1, 7s1); AHS(!s2, 7s2); PHS(!s, 75)]] end

rls,r7s;,r7ss,w7s,wls;,wlss do

#[[ls — skip];!s1 1;[?s1 — skip]; ?s 1;[-!s — skip];

Is1 |;[07s1 — skip]; AHS(!s2, 7s2); 7s |] end
rls,r7sy,...,7s,,w?s,wls; ... ls, do

*[[ls — (AHS(Is1, 7s1)]| .. . [|AHS(Isp, 7s,)); PHS(!s, 7s)]]

rls,r?s,w?s,wls do
*[[ls — skip]; s’ 1;[?s’ — skip]; ?s 1;
[-ls — skip]; 1s’ |; [-7s" — skip]; 7s |]

rls’,wlsy, ... ls, do « [lsy :=1]]| .. .|| * ['sn :=!s"]end ||
r?s...,78,,w?s do *[7s :=7s1 A...A7s,]end
rls,r7a,w7s,wlado

*[[ls — AHS(la, 7a); PHS(!s, 7s)]] end

rls,r7a,w7s,wlado
*[[ls — skip];la 1;[7a — skip]; s T;
[-!s — skip]; la |; [-7a — skip]; ?s |] end
rls,rlp,w?s,w7pdo
*[[ls — PHS(!p, 7p); PHS(!s, 75)]] end

rls,rlp,w?s,w7pdo
*[[!sAlp — skip]; (7p 1 [|7s 1);
[!p A =ls — skipl; (Tp | ||7s |)] end
wlsy, ..., wls,, w?s), ... w?7s! rlsr?s,...,r7s, do
*[[ls — [e1 — AHS(!s1,7s1); PHS(!s, 7s))[.. .
en — AHS(Is,, 7s,); PHS(!s, 7s/)]]]

rlsdo
with w ?s],w ls;,r 7s; do
*[[1s A ey —7s1 T;[-ls — AHS(!s1,7s1); 78] |]]] end
T
withw 7s/ wls,, r 7s, do
*[[1s A en, —7s0 15 [-ls — AHS(1s,, 7s,); s}, |]]] end

Figure 5. Rewrite rules for Phase 4: Reshuffling

28

(4 : SEQ) reshuffles the passive handshake PHS(!s,?s) into the active hand-
shake AHS(!s1, 7s1), and eliminates the initial !s since it is redundant. (4 : ACT)
reshuffles the passive handshake PHS(!s, 7s) into the active handshake AHS(la, 7a).
(4 : PASS) causes the two passive handshakes to execute concurrently. (4 : PAR)
gets further decomposed at this point: a single start signal !s’ is sent to all processes,
and the received signals 7s1, . ..7s, are merged into a single 7s’ by an and-gate, since
the execution of the parallel statement is not complete unless all the parts are com-
plere. The reshuffling of s’ is then is identical to (4 : ACT) reshuffling. (4 : GD)
reshuffles the guard process, and in addition replaces choice with parallelism. This
is possible at this point because in phase 1 the guards were placed in disjoint dis-
junctive form, so at most one guard holds at any point. Note it is critical that !s be
low before the guard body is executed, otherwise the execution of the body could
cause some other guarded command to become true and execute. Loop, skip, and
assignment statements can be directly implemented without reshuffling.

After exhaustively applying the reshuffling rules, the term is in phase 4 normal
form.

DEFINITION 25 A C-CSP term m is in phase 4 normal form if strip(m) conforms
to the following grammar.

nf = AHS(!s,?s)||nf'|...||nf’

nf' = strip(c) where there is a phase 4 rule of the form cq >4 ¢
[*['p=p1 V... Vipa]| *[?pi =lps C7p]| *[7p=Tp1 V... V7py]
| [[ls — skip; PHS(!s, 75)]] | *[[!'s — *[AHS(!s’,7s")]; PHS(!s, 7s)]]
| *[['so — = |; PHS(!sg, 7s0)[!s1 — « 1; PHS(!s1, 7s1)]]

=
LEMMA 6 If =3m3 and m3:>flvm4, then ms =4 my.

This Lemma is proven in Appendix D.4. Key to the proof is a general prin-
ciple that allows PHS(!p,7p) to be reshuffled when all active communications
AHS(!p, ?p) on the same channel are still “pure”, i.e. have not yet had anything
reshuffled into them. Arbitrary reshuffling runs the risk of deadlock, and this prin-
ciple captures one very useful form of reshuffling that is always sound. By a proper
ordering of the rewriting process, this principle can be used to obtain correctness
of the phase.

5.6. Phase 5: Final Compilation into circuits

The final part of the translation transforms each of the individual processes repre-
senting atomic assignment, sequencing, guarded commands, active and passive com-
munication, looping, skip, and parallel execution into a circuit representation. The
rules appear in Figure 6. To better understand why each of the circuits represents
the “higher-level” construct, we describe the circuit realization of the assignment

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 29

cell. Recall the assignment cell from after handshake expansion,
*[[1so — = |; PHS(!sg, 7s0)[!s1 — « 1; PHS(!s1, 7s1)]]

In response to !sg or !s; high (both cannot occur together as concurrent writes
are disallowed), the circuit must (1) set z to the appropriate value (which may
in fact involve no change if its value is already correct), and (2) correctly execute
the passive synchronization in response. To get an idea how the right-hand side
of (5 : ASSN) implements these two parts consider a synchronization with the
cell in order to set x to t (we assume z is currently f.). We may assume that the
environment obeys the 4-phase handshaking protocol, and !sy,!sg, 7s1,7so are all
initially f. The assignment is initiated by !s; going high. The only gate action that
can now occur is that the C-element switches, setting « to t. Note that the output
of 1s; A x remains f until z is set to t. Once = has been set t, !s; A @ becomes t,
thus setting 7s; t. The active handshake will eventually respond by setting !s; to
f. The C-element will not change its value, but !s; A ¢ now goes low, completing
the passive handshake.

Note that assignment, passive handshake, and guard implementations all require
C-elements be added, the remaining forms need no additional state-holding ele-
ments.

DEFINITION 26 A C-CSP term m is in phase § normal form if strip(m) conforms
to the following grammar.

nf
nf'

AHS(!s, ?s)||nf|| . . . || nf’

strip(c) where there is a phase 5 rule of the form ¢q >3 ¢

[*[lp=p1 V... Vip]| *[7pi =lpi C7p] | *[?p=Tp1 V... V7p,]
| *['s; :=1s'] | #[78" : =781 A ... ATsy]

LEMMA T If =4my and my=Y ms, then my 25 ms.

This proof appears in Appendix D.5. The correctness of each rule hinges on the
fact that the actual execution of the gates is constrained to “fire” in the same order
as the “higher-level” construct they implement (recall the implementation of the
assignment cell). The only real difficulty in proving the correctness of each rule
is the error analysis, which requires a proof that no violations of the handshak-
ing protocol can occur in semantically well-formed circuits. Once that has been
established, the proofs proceed by a standard argument.

5.7. Example

In this section we show the translation of a simple example to give a flavor of the
translation method. Our example specification is a module to let synchronizations

30

(5: ASSN) with wz, w 7sg,w 7s1,r Isy,r s do
*[[1sy — @ T; PHS(Is1, ?s1)]'so — @ |; PHS(!sg, ?s0)]]
end
D5
with wz, w 7sg,w 7sy,r lsy,r lsg do
*[x :=ls; C —lsgl|| * [7s1 :=!s1 A &]|| * [Tsg :=!sg A —z]
end
(5: SEQ) with rls,r7s;,r 7sa, w 7s, w s, w lss do
#[[ls — skip]; sy 1;[?s1 — skip]; 7s 1;[-!s — skip];
Is1 |;[77s1 — skip]; AHS(!s2, 7s3); 7s |] end
g
with wz,rz,r!s,r 7s;,r 7s5,w 7s,w ls;, w ls5 do
*[1s1 :=1s]|| * [z :=7s1 C =7s4]||
*[7s := &V 7ss]|| * [ls2 := & A =7s1]) end
(5: GD) with r!s,w?sr7s;,wls; do
*[[Ishe —7s T;[-ls — AHS(!s1,7s1);7s |]]] end
D5
with rls,w 7s,r 7s;,wls;,rz,wa,rt;,wty,ris,wits do
*[ty =ls Ae]|| * [t2 :=7s1 Als]|| * [x i =1 C —t1]]|
*[7s := xV7s1]|| * [ls1 := & A —ls] end
(5: ACT/PAR) with r!s;r?a,w7s,w!lado
*[[!s — skip];la 1;[?a — skip]; 75 {;
[-!s — skip]; la |; [-7a — skip]; ?s |] end
D5
with r!sr?aw 7sw la do
*[la :=1s]|| * [?s :=7a] end
(5: PASS) with r!s,xr!p,w ?s,w ?p do
*[[!sAlp — skip]; (7p T [|7s 1);
[!p A =ls — skip]; (Tp | ||?s |)] end
D5
with wz,rz,r!s,rlp,w?7s,w 7pdo
*[x :=ls C lp]|| * [7s := z]|| * [7p := 2] end
(5: LOOP) with r!s,r?a,w?s,w!lado
*[[!s — skip]; x[AHS(la, 7a)]; PHS(!s, 7s)] end
D5
with r!s,r7a,w 7s,w la,r z,w z do
*[la :=!s A =7a] end
(5 : SKIP) with r!s,w 7s do *[[!s — skip]; skip; PHS(!s, 7s)] end
D5
with r!s,w 7sdo x[7s :=!s] end

Figure 6. Rewrite rules for Phase 5: Circuit Generation

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS

*[[P? — & 1= —z;
[zVy— Q!-zA -y — R!; P7]]

B U1 by (1: SEQ)
*[[}3‘7 — 51585 P
*[[Sl‘? — x = ;517
*[[S2? — [z Vy — Q]2 A~y — R!]; S27]]

J1 by (1 : ASSN1)

B 1 by (1 : ASSN2)
#[[P? — S11;.5:5 P7]]|]
*[[§17 — ["".Z‘ —>,Sf!; Sl?nﬁﬁ — St']7517]]||
#[[Sg? — & |; Se7[Se? — x 15 Se7]]|
*[[S27 — [z Vy — Q!]-2 A~y — R!]; S27]]
B J1 by (1: GD)
[P? — S11;.8:5 PY]]|]
#[[S17 — [m—x — S¢l; S17]—x — Sell; S17]]||
*[[é}? — 2 [;Se?]Se? — & 15570

B -z Ay — Tl Se 7]
#[[177 — QL T1 7]l

*

Figure 7. Example phase 1 translation

32

17— [—|—|I — Sf!; Sl?l]_'m — St!]; Sl?“”

52? — [.Z‘ — Tll, Sgr?l]y A — Tll, SQQH
B _|I/_|y—>T2',527]]]||
(117 — QL Ty 7]
A[Ty? — RETY7)

1% by (2: HS ACT)and (2 : HS PAS)
*[[lp — AHS(!s1,7s1); AHS(!s2, 7s2); PHS(Ip, 7p)]]||
*[[1sg — [7—2 — AHS(!s¢, 7s¢); PHS(!s2, 7s2)]

- — AHS(!s¢, 7s¢)]; PHS(!s2, 7s2)]]]|
#[[!lsg — = |; PHS(!sg, 7s¢)]!se — = [; PHS(!sq, 7s¢)]]|]
*[[1sy — [— AHS(t1,7¢1); PHS(!s2, 7s2)]

y A -z — AHS(t1,7t1); PHS(!s2, 7s5)]

-z A Yy — AHS('tQ, ‘7t2), PHS(!SQ, ‘?82)]]]”
*[[1t1 — AHS(1¢;7¢); PHS(t1, 7t1)]]]|
*[[lts — AHS(Ir; 7r); PHS(t2, 7t5)]]

Figure 8. Example phase 2 (handshaking) translation

on P produce an alteration of synchronizations on ¢ and R, respectively, with y
an external override in favor of Q.

with P?, Q!, R\, rz,wz, r y do
*[[P? — z:= -z,
[zVy — Q-2 A~y — RI; P
end

Since the above module is not a component (y is assigned externally) we cannot
establish its semantic well-formedness independently. In particular, if the module
was used in an environment where y was set while P! was synchronizing, this would
produce an error, and it is not possible to say precisely whose fault the error was.
This module thus should be used in an environment where y is set only when it is
known P! is not synchronizing. If the override y were removed, the specification
would be a component, and we could establish its well-formedness.

We now present the compilation through the five phases.
Syntax-directed translation We begin instead by introducing two new pro-
cesses by the sequencing transformation. The assignment steps create a separate
assignment cell for the variable z, and replaces assignments to with synchroniza-
tions with this cell. Finally, the guard step places the guards in disjoint disjunctive
form, so at most one guard is true at a time. The result is in Figure 7.
Handshaking expansion Each step of rewriting replaces one port by its hand-
shaking expansion. There are 15 ports, so 15 steps are required to change all ports
to handshakes. This appears in figure 8.

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 33

*[[!52 — [l — AHS('tl,r?tl), PHS(!SQ, ?SQ)H
Yy AN — AHS('tl, r?tl)' PHS('SQ, ‘782)”
-z A Yy — AHS(rtz, ‘7t2) PHS('52 ‘782)]]]”
s by (3: MOD ACT)
s by (3 : MOD PASS)
*[[!52 — []3 — AHS(!tla, ?tla); PHS(!52, ?52a)[|
y Az — AHS(11p, 713); PHS(!s2, 7s23)]
-z Ay — AHS(ltg, 7t2); PHS(!s2, 7s2.)]]]]|
*['tl —'tlav'tlb]”
[Tt14 :=1t14 C 711
[Pt1p :=1t1p C 7t1]]|
[782 1=752,V 7825V 752

* ¥

*

Figure 9. Example phase 3 (modularization) translation

*[[lp — AHS(!s1, 7s1); AHS(!sq, 7s2); PHS(!p, 7p)]]
4 by (4: SEQ)
*[['p — skip];!s1 1;[?s1 — skip], ?p 1; [-!p — skip];
Is1 |;[07s1 — skip]; AHS(!s2, 7s2); 7p |]
s by (5: SEQ)
*[7s1 :=Ip]|| % [z :=7s1 C =7s2]]]
*[7p = 2V7sq]|| % [1s2 := 2z A —7s1]

Figure 10. Example phase 4 and 5 translation

Modularization The occurences of multiple active or passive synchronizations
are the ones introduced by the guard translation, AHS(!¢1, 7¢;) and PHS(!s3, 7s3).
For conciseness we only show changes to the relevant portion; the remainder of the
process is unchanged. This appears in figure 9.

Reshuffling and Circuit generation For the remainder of the translation it is
merely the act of substituting lower-level modules for higher-level ones. We only
illustrate how the sequencing module is rewritten to a circuit. This appears in

figure 10.

6. Correctness of the Translation Process

We may now put together the correctness results for each phase to establish the
correctness of the compiler.

THEOREM 3 (CoMPILER CORRECTNESS) For S-CSP module myg, if mg=1_5ms

=
then mg Zg_5 ms.

34

Proof: The proof follows by transitivity from the correctness lemmas for each
phase, Lemmas 2, 3, 5, 6, and 7. []

Also, the compilation rewriting is normalizing, so the compilation process will
always terminate in a circuit.

LEmMma 8 If m € S-CSP, then m=1_sms for some ms € H-CSP.
Proof: See Appendix C. []

In addition to the correctness of the compilation process, we may also establish
that all semantically well-formed S-CSP components compile to hazard-free circuits.

COROLLARY 3 If a closed S-CSP component kg is semantically well-formed and
ko=1-5ks5 then the circuit k5 is semantically well-formed. Thus, ks will exhibit no
hazards.

Proof: The first part is direct from the definition of transformational equivalence
and the definition of semantic well-formedness for components. To prove there
are no hazards, recall a hazard is defined to occur when an input value on a gate
is changed when the gate is enabled to change its output value, and the input
change causes the gate to become disenabled. Then, this produces an ERROR . in
execution by the reading while writing case of Definition 11. Thus, since ks is
semantically well-formed, it cannot have a hazard. [|

7. Conclusions

The primary goal of this work has been to provide a rigorous proof of the correctness
of Martin’s methodology. In the process of accomplishing this task, we obtained a
number of results that are interesting in their own right.

1. We incorporate notions of separately compilable unit (module), and of a stan-
dalone unit that can be fabricated on silicon (component) into an asynchronous
circuit specification and implementation language.

2. The semantics provides a definition of fair behavior of asynchronous circuits
and asynchronous circuit specifications.

3. The semantics rigorously defines what a hazard is in a circuit, and what a mutual
exclusion violation is in a specfication, via the general concept of semantic well-
formedness.

4. We proved that all hazard-free, arbiter-free asynchronous circuits are observably
deterministic, an important mathematical characterization of these circuits.

5. We define a novel notion of equivalence to justify the correctness of the compi-
lation process, transformation equivalence.

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 35

6. We use a formal rewriting system with equational rewriting and multiple phases
to rigorously define the compilation process.

This work can be extended in several directions. First, the language used is sim-
ple, to allow for an easier proof of correctness. One important extension is the
incorporation of n-bit data paths via dual-rail encodings. Another is the imple-
mentation of non-mutually-exclusive guarded commands.

The transformation process we have presented is also minimal in that it incor-
porates no optimizations. Burns presents some simple optimizations in [5] and
we expect that these optimizations as well as others can be incorporated into our
framework. Once optimizing transformations are proven correct, the designer can
manually apply the transformations without worrying about correctness, meaning
there is a feasibility of using this framework to produce fast hand-optimized circuits
that are nonetheless verifiably correct.

As hardware verification what we present is not necessarily a “complete” verifica-
tion. We show that given a high-level CSP-style description, an equivalent circuit
may be produced. Since CSP is only a programming language, some high-level
specifications cannot be expressed concisely in this language. For a more complete
verification effort, a logic (including quantification) could be developed and used to
specify and prove high-level properties of the CSP-style specifications. Numerous
such logics have been constructed [13], [21], [12], [11], [1], so this is an eminently
feasible task. The advantage of this approach as opposed to a post-hoc verification
methodology is the high-level specification is relatively simple in comparison with
an actual circuit, making it easier to reason about.

Another important problem to solve is the development of decision procedures
to automatically test for semantic well-formedness of S-CSP components. Because
specifications may be quite large, it may be useful to use BDD’s [3] to increase
efficiency of the decision procedure. This approach has been used successfully in

[4].

References

1. J.A. Bergstraand J.W. Klop. Process Algebra for Synchronous Communication. Information
and Control, 60:109-137, 1984.

2. Erik Brunvand and Robert F'. Sproull. Translating concurrent programs into delay-insensitive
circuits. In Proceedings of ICCAD-89, pages 262-265. IEEE Computer Society Press, 1989.

3. R.E. Bryant. On the complexity of VLSI Implementations and Graph Representation of
Boolean Functions with Application to Integer Multiplication. IEEE Transactions on Com-
puters, 40(2), 1986.

4. J.R.Burch, E.M. Clarke, K.L.. McMillan, D.L. Dill, and J. Hwang. Symbolic Model Checking:
102° States and Beyond. In Proceedings of the Fifth Annual IEEE Symposium on Logic in
Computer Science, 1990.

5. Steven M. Burns. Automated compilation of concurrent programs into self-timed circuits.
Technical Report Caltech-CS-TR-88-2, California Institute of Technology, 1988.

6. Steven M. Burns and Alain J. Martin. Synthesis of self-timed circuits by program trans-
formation. In G.J. Milne, editor, The Fusion of Hardware Design and Verification, pages
99-116. Elsevier Science Publishers B.V. (North-Holland), 1988.

36

10.

11.
12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

N. Dershowitz and J.-P. Jouannaud. Rewriting systems. In Handbook of theoretical computer
sctence. MIT /Elsevier, 1990.

David L. Dill. Trace theory for automatic hierarchical verification of speed-independent
circuits. In Jonathan Allen and F. Thomson Leighton, editors, Advanced Research in VLSI:
Proceedings of the Fifth MIT Conference, pages 51-65. MIT Press, 1988.

Jo C. Ebergen. A formal approach to designing delay-insensitive circuits. Computing Science
Notes 88/10, Dept. of Math. and C.S., Eindhoven Univ. of Technology, May 1988.

M. Felleisen, D. Friedman, and E. Kohlbecker. A syntactic theory of sequential control.
Theoretical Computer Science, 52:205-237, 1987.

M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

Matthew Hennessy. Synchronous and asynchronous experiments on processes. Inform. and
Control, 59:36—83, 1983.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

Alain J. Martin. The design of a self-timed circuit for distributed mutual exclusion. In 1985
Chapel Nill Conference on VLSI, pages 245—-260, 1985.

Alain J. Martin. Compiling communicating processes into delay-insensitive VLSI circuits.
Distributed Computing, 1(4):226-234, 1986.

Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In William J.
Dally, editor, Sizth MIT Conference on Advanced Research in VLSI, pages 263-278. MIT
Press, 1990.

Alain J. Martin. Programming in VLSI: From communicating processes to delay-insensitive
circuits. In C. A. R. Hoare, editor, Developments in Concurrency and Communication.
Addison-Wesley, 1990. UT Year of Programming Institute on Concurrent Programming.
Alain J. Martin. Synthesis of asynchronous VLSI circuits. In J. Straunstrup, editor, Formal
Methods for VLSI Design, pages 237-283. North-Holland, 1990.

Alain J. Martin, Steven M. Burns, T.K. Lee, Drazen Borkovic, and Pieter J. Hazewindus. The
design of an asynchronous microprocessor. In Charles L. Seitz, editor, Advanced Research in
VLSI: Proc. of the Decenntal Caltech Conference on VLSI, pages 351-373, 1989.

Teresa H.-Y. Meng, Robert W. Brodersen, and David G. Messerschmitt. Automatic synthesis
of asynchronous circuits from high-level specifications. IEEE Trans. on CAD, 8(11):1185—
1205, November 1989.

Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

R. De Nicola and M.C.B. Hennessy. Testing Equivalences for Processes. Theoretical Com-
puter Science, 34:83-133, 1983.

G. Plotkin. LCF considered as a programming language. Theoretical Computer Science,
5:223-255,1977.

Scott F. Smith and Amy E. Zwarico. Provably correct synthesis of asynchronous circuits. In
Jgrgen Staunstrup and Robin Sharp, editors, 2nd Workshop on Designing Correct Circuits,
Lyngby, pages 237-260. Elsevier, North Holland, 1992.

Scott F. Smith and Amy E. Zwarico. Correct compilation of specifications to deterministic
asynchronous circuits. In George Milne, editor, Correct Hardware Design and Verification
Methods (CHARME), volume 683 of Lecture Notes in Computer Science. Springer Verlag,
1993.

C. H. van Berkel. Beware the isochronic fork. Nat. Lab. Unclassified Report UR 003/91,
Philips Research Lab., Eindhoven, The Netherlands, 1991.

Kees van Berkel. Handshake Circuits: an Asynchronous Architecture for VLSI Programming,
volume 5 of International Series on Parallel Computation. Cambridge University Press, 1993.
Kees van Berkel, Joep Kessels, Marly Roncken, Ronald Saeijs, and Frits Schalij. The VLSI-
programming language Tangram and its translation into handshake circuits. In Proceedings
of the European Design Automation Conference, pages 384-389, 1991.

S. Weber, B. Bloom, and G. Brown. Compiling Joy to silicon. In Advanced research in VLSI
and parallel systems : proceedings of the 1992 Brown/MIT conference. MIT Press, 1992.

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 37

Appendix A

Fairness

In this section we give a full, formal definition of when a computation is fair.

First it is useful to provide a more abstract characterization of the erroring com-
putations. We define those computation steps that change some expression value
and those that depend on some expression value. A computation step changes an
expression if the value of e changes as a result of the computations. A computation
depends on the value of e if e must be true in order for the step to occur or if the
step only assigns the value of e to a variable z.

DEFINITION 27
1. changes(e,(c,0) — (!, 0")) iff o(e) # o'(e).
2. depends(e, (R[c1][c2], o) — (R[c}][ch], o)) iff either
(A) o(e) =t and for all ¢, 0" if 6" (e) = £, then

(Rlellea], o) 7 (Rle]les], o)

or

(B) ¢ is := e and e does not appear in R.

LEMMA 9 (ERROR CHARACTERIZATION) &({c, o)) (the configuration (c, o) is in er-
ror) iff either

1. changes(e, (c,0) — (c',0')) and depends(e, (c,c) — (¢, ¢"}), and ¢’ # ¢"'; or

2. changes(e,(c,0) — (', ¢'}) and changes(e, (c,o) — (", 0"})), and ¢’ # ¢’; or

3. ¢c = R[les — c1]...les — cf .. .len — ¢,]] and o(e;) = o(e;) = t for
Jj# 1 or

4. ¢ = Rz := e1][z := ea].

Now, some notation for expressing a configuration with two distinct reductions
possible is justified.

LEMMA 10 (DUAL REDUCTION FACTORING) If (¢co, o) is semantically well-formed

and
(Co, Uo)
7N\

(c1,01) (e2,02)

then ¢o = Rlca][esllec][ca], ex = Rlc,][epllec][ca], c2 = Rlealles][cl]c]] for some
R,cq,cp,Cc,¢4q.

38

Proof: This factoring implies the two redices do not overlap, namely the two
reductions involve modification of distinct subexpressions. Consider all the cases for
the two reductions. There are two cases where overlapping redices can in principle
occur. (Parallelism)(1) can overlap with (Parallelism)(2), and (Parallelism)(2) can
overlap with itself. All the other rules cannot overlap because the outermost form of
the redices is distinct, and reductions can never occur inside redices by the definition
of a reduction context. Two different guard selections also are not possible by the
precondition on the (Selection) rule that at most one guard is true.

Consider first the case of (Parallelism)(1) overlapping with (Parallelism)(2), where
the two redices share the subterm P!. This can immediately be ruled out by the fact
that (Parallelism)(1) requires o(P!) = f, and (Parallelism)(2) requires o(P!) = t.
For (Parallelism)(2), there is a possibility of the single subterm P! synchronizing
with two separate occurrences of P? in ¢g, or P? synchronizing with two separate
occurrences of Plin ¢g. We address only the first subcase since one follows from the
other by symmetry. Observe both of these reductions will have the effect of setting
P! to £, so changes(P!,{(co,00) — (c1,01)) and changes(P!, {cg,00) — (c2,02)),
and thus by error condition 2 (¢g, o) is in error and not semantically well-formed,
contradicting our assumption. []

DEFINITION 28 (FAIRNESS) Given a semantically well-formed configuration (cg, og),

¢ A finite computation path
(co,00) — {c1,01) — ... = (cn,0n)
is fairiff (c,,0n) 4 (cn41,0nt1) for any cni1, ong1.
¢ An infinite computation path
(co,00) = (c1,01) = ... = (ci,00) — .. .,
is faur iff it is not unfair. It is unfair iff

Jeq, 5. Hews, a4, ¢y, ¢y, | € Nat}.Vi.
¢i = Rica][es][cas][eai]
A (redex cq/cp never executed:)
(Rilealles]cralleai], oi) — (Rilcalles][ehs]len], oiga)
A
Ri[o1][@2][c]lets] = Riva[o1][@2][cigian)]leaiivn)]

A (continuously enabled:)

3o, ¢4, ¢ (Rilea][es][eril[ea], oi) — (Rilea]lep]leri][ea)], o)

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 39

Appendix B

Observational Determinism

In this section we present a complete proof of Observational Determinism, Theo-
rem 1. The proof of observational determinism depends on the Strong Diamond
Property (Lemma 11). It implies that well-formed computations are locally highly
deterministic: if two different single step reductions are possible from a particular
configuration a, producing configurations b and ¢, there is a configuration d that b
and ¢ may reach in a single step. It is in the spirit of the diamond propery for the
untyped lambda calculus.

LEMMA 11 (STRONG DiaMoND) Given an arbitrary semantically well-formed con-
figuration (R[cq][es][cc][ca], o), if

(Rlealles][ec]cal, o)
7 N\
(Rleg]lep]lec]leal, olvor = bor]) (Rlea]les]lec][eq], olvio = bio])

then vig # vo1 and

(Rleg]lep]lec]leal, olvor = bor]) (Rlea]les][ec][eq], olvio = bio])
N\ 7

(Rlegllepllec]eq], olvor = bo1, vio = b1o])

(Note that if one of these steps does not change memory, it is the case that o[v;; =
b;;] = o, so the state is not changed by that operation.)

Proof: The proof proceeds by case analysis on the two initial reductions. There
are 7 single-step reduction rules, and all combinations must be considered, giving
28 cases to consider (reduced by symmetry from 49 cases). Since the intial configu-
ration is semantically well-formed, we know it will never produce an ERROR.. For
each of the 28 cases, we show any violation of the strong diamond property implies
the configuration can reduce to ERROR..

Case either rule is (Sequencing) or (Repetition) or (Parallelism)(3) (18
cases in all): These rules do not depend on or change the state, so their effect
is entirely local, so in all cases the diamond diagram above can be completed.
Case ¢, = 1 := €1, ¢, = &3 := €5 (two Assignments): First consider the case
where 21 = z5. By error condition 4 of 9, this will produce an error. Now consider
when #1 # z2. Executing #1 := e; does not change the value of e5, for otherwise
error condition 1 would hold. In particular,

depends(ez, (R[z1 := e1][es][x2 := ea][ecd], o) —
(Rlz1 := ex][co][skip][ca], oz = o(ea)]))

by clause (b) of the definition of depends, and

changes(ea, (R[z1 := e1][es][x2 := ea][ecd], o) —
(R[skip][es][z2 := es][ca], oz = alen)]))

40

if o(e1) # o(z1). We thus may assume o(e1) = o(21), so no change in the state
occurs. We may apply this argument by symmetry to show executing z; := e does
not change the value of ;. Thus, executing the two in either order will lead to the
same configuration, namely

(R[skip][cs][skip][cd], olz1 = o(e1), 22 = o(e2)]).

Casec,=z:=e,c.=[e1 —ci]...Jles— el len — c¢n] (Assignment
and Selection of guard i): The selection rule does not change the state, so
the value assigned to z will not be affected by execution of the guard. The only
problem is if o(e;) becomes false by execution of the assignment statement. In this
case, e; depends on the guard execution step, so since e; changes by the assignment,
error condition 1 produces an error. In more detail,

depends(e;, (R[z1 :=e1][es][[er — el .- les — el .. len — enllled], o) —

(R[z1 := er][es][ei][eal, o))

because this step will not happen for any ¢ if o/(¢;) = f.
Case (Assignment) with (Parallel)(1) or (Parallel)(2) (two cases): The
only possible dependency is if P? occurs free in the assignment body e, which is
not allowed syntactically. Therefore, there can be no dependency.
Case Two (Selection) rules: If two different guards in the same guarded
command were firing, it would violate error condition 2. So, the two guarded
commands must be different and neither reduction changes the state, so they may
be executed in any order.
Case (Selection) with (Parallel)(1) or (Parallel)(2) (two cases): The
only conflict possible is if the true guard e; contains P?, but if (Parallel)(1) or
(Parallel)(2) execution changes the value of e; to f, error condition 1 of 9 results.
Case ¢, = P!, ¢, = P»!, (Parallel)(1) with (Parallel)(1): If P! = P!, both
rules changes P! and error condition 2 results. Otherwise, the two are independent
since by Lemma 10 redices cannot overlap.
Case ¢, = Pily ¢, = Ps!, ¢g = P7, (Parallel)(1) with (Parallel)(2): If
Pyl #£ P!, they are obviously independent; if P! = Ps!, one changes P! to t, the
other changes it to f, contradicting error condition 2.
Case ¢, = P!, ¢y = P17, ¢, = Ps!, ¢q = P27, (Parallel)(2) with (Parallel)(2):
If P! = P!, both rules change P! and error condition 2 results. Otherwise, the
two are independent.

That completes the 28 possible cases. []

The most important consequence of fairness for this system is progress. That is,
once a reduction step is enabled, it will remain enabled and eventually be executed.

LEmMma 12 (PrRoGRESs) Given a semantically well-formed configuration (cq, o)
and any potentially infinite fair computation sequence

(co,00) — (e1,01) — ... = (ci,00) — ...,

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 41

if ¢co = Ro[cal[es][c10][c20] and
(Rolea]les][er0]le20], 00) — (Ro[eg]eh][ero][e20], oolv = b])
then there exists some n such that

Hewi, caiy chyy ;| i € Nat Ad < n}Vi<n.

cit1 = Ripafca][es]lcrn)]leaisn)]

A (not executed for n steps:)

(Ri[ca]les][erillea], i) — (Rilea][eo] [hil[eh], iga)
A

Ri[o1][o2][cy;]lc:] = Riga[@1][@2 lleritn)lleaiien]

A (continuously enabled:)

30', el (Relealleallenlend, o3) — (Rale]lelenllend, oilo = b])
A (executed on n + 1-st step:)

(Rnlcalleslleinllean], on) — (Ralclllci][cin]lcan], onlv = b))

Proof: This is almost a direct consequence of fairness. If R;[c,][cp] were always
enabled to reduce, the result would follow by fairness. So, we must demonstrate that
no enabled reduction is disabled. Suppose not, i.e. the enabled redex is disabled
first in step ¢. Then,

<Ri[ca][cb][cli][02i]:Ui) - <Ri[ca][cb][CI1i][CI2i]: f’i+1>

and
(Rilealles][erillea], o) — (Rileg]les][eni][eail], oF)-
and

(Rilealleollchilleh], oiga) 7+ (Ralcl]eh][chilleh], o)

However, the strong diamond property directly implies that the third reduction
above must follow from the first two, a contradiction. [|

The next Lemma uses the Strong Diamond Lemma (Lemma 11) to show any
enabled step executed sometime in the future can be bubbled up to occur as the
next step, without altering the remaining computation.

LEMMA 13 (BUBBLING) Given semantically well-formed (cg, o) and a potentially
infinite fair computation sequence

(co,00) — (e1,01) — ... = (ci,00) — .. .,
with eg = Ro[eq][es][c10][c20] and

(Rolea][es][ero][e20], o0) — (Roleg]les][ero]le0], oolv = b))

42

i.e. Rgleq][es] is enabled to reduce, and furthermore, there exists some n such that

Hewi, a4, ¢y, 05, | 1 € Nat Ad < n}.Vi< n.

cit1 = Rita[ca][collcren)]leaisn)]
A (not executed for n steps:)

(Rilea]les][erilleai], o0) — (Rilea][en][ers][ens]s oiga)
A

Ri[o1][o2)[ey;]let;] = Rigalor][@2][ergivn)lleaiisn)]
A (executed on n + 1-st step:)

<Rn [Ca][cb][cln][c2n], O'n> - <Rn[C;][C2][Cln][62n], Un['l) = b])

then, the reduction of ¢, /¢ can be bubbled up to be the first step of computation
without changing the end result, namely,

(Rolea][es][er0]le20], o0) — (Ro[eq]les][e10][e20], oo[v = b]) —
(Ra[c][esllenn][ean], oav = b]) = (Rulch]lchl[ern]ean], onlv =])

Proof: Proceed by induction on n. For the case n = 1, the desired result is
exactly the Strong Diamond Property (11). Assume the result is true for values
smaller than n, show the result holds for n. Consider the computation starting at
the second step of the original computation,

(Rolealles]lehol[eh], 01)

By the continual enabledness of redices from the Progress Lemma (12),

(Roleal[es][eholleno], 01) — (Rolealles]lehollero], o1 [v = b))

By the induction hypothesis, we then have

(1) (Roletllchllerolchol, o2lv = b)) = (Rulcillcs]leinllean], onlv = b]).

So, by the Strong Diamond Property (11), the first two steps

(Rolca][es][er0][e20], 00)
(Rolea][es][chollchol, o1)
(Roleg]lep]lchollehol, o1v = b])

—
—

may be swapped to give

(Rolea][es][e10][c20], 00) —
(Roleqlley]lero][e20], oolv = b]) —
(Roleu]ley]lchollehol, oalv = B]),

So by (1) above, the proof is complete. []

We now have all the apparatus in place to prove the observational determinism
theorem, Theorem 1.

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 43

Proof: Suppose we have successful computation path

(6070-0> - <01701> ... <Cm—1: Um—l) - <Cm70'm—1[17success = t]);

where 0;(2guccess) = f for all i < m. We show by induction on k for k < m that
any computation path that shares the first m — k steps with the above successful
path is successful.

The base case of k = 0 is immediate. Inductively assume this fact for k — 1, show
for k provided k < m. Letting | = m — k, given any failing path that shares exactly
[steps with the above,

(co,00) = (c1,01) — ... = (e1,00) = (€101, O1p1) — - -(en,0n) — ..,
we show it in fact cannot be failing. Consider the [+ 1-st step of both the successful
and failing computation: notating ¢; = Ri[cq][es][e11][c21], we have

(Rilca]les][cn][carl, o)
x/successful \faz'lmg
(Rilea]lep)lenllear], aalv =) (Rilcalleo][erany]leaqan)]s o1qs)

where (o7[v = b]) = o141. By the Progress Lemma, 12, we know the ¢,/¢p redex
stays enabled in the failing path until it is eventually executed in some step n + 1:

Hew, e, ¢l e |t ENat Al <i<nlVil<i<n=
cit1 = Rita[ca][collcrien)]leagisn)]

A (not executed for n steps:)

(Ri[ca][eel[crillea], o) — (Rilea]leo][chi][eh], oiga)

A

Ri[o1][@2][c};]lct;] = Riga[o1][@2 l[crgivny]leziivn]

A (executed on n + 1-st step:)

(Bn[callesllern]lean], o7) — (Rulci]les]l[ern]lean], o [v = b])

where o] = ¢;. This is the precondition to apply the Bubbling Lemma (13), and
this gives us

(Rulea]les][eri][ca], o) — (RI[ZZ][CZ][CU][CZIL oifv =b]) —
(Ripaleqllep]leraanllezarny] oigy [v = b)) — (Ralerllei]lein]lean], onv = 8]) — . ..

Note that since the original failing computation path did not set zgyccess to t, the
bubbled path also will not since v = b cannot be Zgyccess = t by the fact that the
first such setting occurs at step m. Other than that the states of the two paths are
identical.

Thus, we still have a failing computation, but note it has one more step in common
with the successful computation (the /-th step in particular), so by our induction
hypothesis it cannot be a failing path, contradiction.

Thus, any path that shares the first [= m — k steps with the successful path is
successful. In particular, for the case k = m, any path that shares no initial steps
with the successful path is also successful, in other words all paths are successful.

44

Thus, it cannot be the case that some paths are successful and others are failing,
so either all paths are successful or all paths are failing. [|

Appendix C

Normalization Results

In this Appendix we presents the proof of normalization for the five rewrite systems,
justifying successful termination of the rewriting compiler.

LEMMA 14 (NORMALIZATION) If m;_; is a module in phase ¢ — 1 normal form,
then there exists a module m; such that mi_1:>fvmi and strip(m;) is in phase ¢
normal form, for 1 < ¢ <5.

(Note we declare the original S-CSP specification to vacuously be in phase 0

normal form.)
Proof: Phase 1: Before proving that the rules for Phase 1 produce normal
forms, we define the depth of a term. skip, z := e, P!, P? are all of depth 1.
Let my,...,my, m' be of depth n, then my||...||mn, mi;me, *x[m’] and [e; —
mi|...Jen — my] are all of depth n + 1.

We assume that (1 : INIT) has already been applied. We then prove that for
all S-CSP terms m, S!|| * [[S? — m; S?]] can be converted to a phase 1 normal
form. The proof of the existence of normal forms is by induction on the structure
of m. In this proof, we drop all scoping to simplify the notation. For the base case
we consider m consisting of a single instruction. There are four subcases.

L. If m = skip then S!|| * [[S? — skip; S7]] is already in normal form.
2. If m = z := e then by (1 : ASSN1,2),

S *[[S? — 2 :=¢;S7]] =1 S| *[[S? — [~e — So!; S?]e — S11; 57|
*#[[So? — @ |5 507]517 — = 1;517]]

which is in phase 1 normal form.

3,4. If m = P$ where $ € {!,?}, then S!|| x [[S? — P$;57]] is already in normal
form.

Thus the base case holds. Furthermore, no additional rules from phase 1 can be
applied to any of the final forms so the form is unique up to the commutativity of
parallel composition and choice.

For the inductive hypothesis we assume that for all S-CSP terms m’ of depth
n there exists a term m,; in phase 1 normal form such that S!|| * [S? —
m'; SN =Nmy.

Suppose m is of depth n + 1. Then we must consider the operators that increase
the depth of a term: sequential composition, parallel composition, looping and
choice. In each case we assume that mq,..., m,,, m’ are of depth at most n.

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 45

L. If m = my; my and both my, my are distinguished active synchronizations, then
S| * [[S?T — my;mg; S7?]] is in phase 1 normal form. Otherwise, neither m;
nor my are distinguished synchronizations and by application of (1 : SEQ) we
obtain

#[[S17 — mq; S17]][| * [[S2? — ma; S27]]

*[[S — S1!; S5!; S?]] conforms to one of the possible nf’ terms from the def-
inition of the phase 1 normal form. Since m;, ms are of depth at most n, all
Sill] * [Si? — my; S;?]] (i = 1,2) have phase 1 normal forms, by the inductive
hypothesis. Then, by dropping each singleton process S;!, we obtain a phase 1
normal form for m.

2. If m = my||...||m, and all m; are distinguished active synchronizations, then
we are done. Otherwise, none of the m; are distinguished active synchroniza-
tions and using (1 : PAR) we obtain

SIS — (S| - NSaD); ST *[[S17 — ma; Si?| - - A[*[[Sa? — mn; Sn?]]

*[[S — (S1!]| ... ||Sn!); S]] is already one of the nf’ forms for phase 1, and since
all m; are of depth at most n, for all 1 < i < n Sj!||* [[S;? — my; S;?]] has
a normal form, by the inductive hypothesis. Again, by dropping each process
S;!, we obtain a phase 1 normal form for m.

3. If m = #[m'] and m' is a distinguished active synchronization, then S!||*[[S —
[m']; S7]] is in normal form. If not, then by (1 : LOOP) we obtain S!||[[S —
[S"1]; STNNI|[[S"? — m'; S'?]]. Since m' is of depth at most n, by the inductive
hypothesis S"!||*[[S? — m/; S'?]] has a phase 1 normal form, and by dropping
the singleton process S’!, we obtain a phase 1 normal form for m.

4. If m = [ex — my]...Jen — my], all m; are distinguished active synchro-
nizations and none of the e; can be further simplified by the disjoint guards
algorithm, then S!|| x [[S? — m;S?]] is in normal form. Otherwise, we apply
(1 : GD) to obtain

S'||*[[§7—>[€1l—>51',5‘?|]|]61k1 —>51',57|]|]
B eny — Snls S7[.. flen,, — Sk ST
*[[S17 — my; S1?|| - - | % [[Sn? — mu; Sn?]]

Since each m; is of depth at most n, by the inductive hypothesis, each S;!|| *
[[Si? — m;; S;7]] has a phase 1 normal form, and by dropping each process S;!
we obtain a phase 1 normal form for m

Phase 2: To show that each process in phase 1 normal form can be converted
to a process in phase 2 normal form, we observe that the phase 2 normal form
only differs from the phase 1 normal form in that each occurrence of an active

46

(passive) synchronization in replaced by a active (passive) handshake. The proof
then proceeds by induction on the number of synchronizations on distinct ports
in the term. For the base case, suppose m contains synchronizations on one port,
without loss of generality, P!. Writing m as C[P!], we then apply (2 : HS ACT)
once to obtain my = C[AHS(!p, 7p)]. Since m was already in phase 1 normal form,
my must be in phase 2 normal form and no other handshaking expansions can
be done. The case for a passive synchronization is identical except that we apply
(2 : HS PAS) instead.

For the inductive hypothesis we must define an intermediate normal form by
combining the phase 1 and phase 2 normal forms as follows.

nf = nf, |an2 , , ,
nfy = SUinfLl. . [nf, AHS(s, 28)l[nfLl . |nf, |
! 11 1
nf' = nfy|nfy
nf) 1= nf' from the definition of the phase 1 normal form
nfy = nf' from the definition of the phase 2 normal form

For the inductive hypothesis we then assume that if m is in the above intermediate
normal form and m contains synchronizations on n distinct ports, then there exists
an m’ in phase 2 normal form such that m=-5m'.

Suppose m contains synchronizations on n+ 1 distinct ports. There are two cases
to consider, active synchronizations and passive synchronizations.

1. If there is an active synchronization on P! we can write m as C[P!] and by
application of (2 : HS ACT), C[P!|=2C[AHS(!p,?p)]. Now C[AHS(!p, ?p)]
contains synchronizations on n distinct ports and is in the intermediate normal
form. Thus, by the inductive hypothesis, there exists an m’ in phase 2 normal
form such that CJAHS(!p, ?p)]=-3 m’. Combining these two results, we obtain
m=,C[AHS(!p, ?p)]=Y m’', where m’ is in phase 2 normal form and no other
phase 2 rules can be applied.

2. The case of a passive synchronization on P? is identical except that we apply

(2 : HS PAS).

Phase 3: The proof that phase 3 is normalizing is almost identical to that for
phase 2. The only difference is that the intermediate normal form is that of phase 2
with the addition of the terms x[lp :=!py V ... Vip,], *[?p :=7p1 V ...V7?p,] and
*[?p; :=Ip; C 7p], and we apply (3 : MOD ACT) and (3 : MOD PAS). Thus
we do not include the proof.

Phase 4: The proof that reshuffling is normalizing is by induction on the number
of occurrences of subterms that can be reshuffled. For the base case we assume that
m in phase 3 normal form contains exactly one subterm that may be reshuffled.
There are five cases corresponding to the five different reshuffling rules. Each case
requires one application of the appropriate rule to obtain a term in phase 4 normal
form.

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 47

For the inductive hypothesis we again require an intermediate normal form, much
like the one used in the proof for phase 2. This form is defined by the following
BNF grammar.

nf = AHS(!s, ?s)||nf1]|...||Inf,
r " "
nf' = nfg|nfy
nfy = nf' from the definition of the phase 3 normal form
nfYy = nf’ from the definition of the phase 4 normal form

For the inductive hypothesis we assume that if m is a term in the above intermediate
form containing at most n occurrences of subterms that can be reshuffled, then there
exists a term m/ in phase 4 normal form such that m=%Ym/.

Let m be a term in phase 3 normal form containing n+ 1 occurrences of subterms
that can be reshuffled. We write m as af!||...||nf}, 4z, k > 1. As in the base
case, we must consider five cases. Since parallel composition is associative and
commutative, we always assume that the term to be reshuffled is in nf7.

1. If the term to be reshuffled is of the form *[[!ls — AHS(la, 7a); PHS(!s, 7s)]],
we apply (4 : ACT) obtaining a term of the form m' where

m"” = *[[ls — skip];la 1;[?a — skip]; ?s |;
[ts — skip]:1a |+ [7a — skip]: 7s 1] [lnf3ll .. Inf].

m'" contains n occurrences of subterms that can be reshuffled, and by the in-

ductive hypothesis, there exists a term m’ in phase 4 normal form such that
m"=m’. Combining the two results, m=>4m"" =4 m’, and m’ cannot be fur-
ther reduced.

2,3,4,5. These cases are essentially the same except that we apply (4 : SEQ),
(4 : PAR), (4 : PASS), (4 : GD) respectively.

Phase 5: The proof for normalization of phase 5 is similar to that for phase 4,
differing in the intermediate normal form (here a combination of the normal forms
of phases 4 and 5), and the terms to be simplified. Thus we omit the proof.

Appendix D

Correctness Proofs

In this Appendix we present the proofs of correctness of the five translation phases.
We present all the relevant styles of argument at least once in detail, and give
somewhat less detail in subsequent uses. Correctness of the handshaking expansion
phase, phase 2, is short enough that a fully detailed argument for that phase may
be presented, and it appears first. The other phases are all proved using a similar

48

basic technique, so in those phases a skeleton of a proof is given, and the rest can
be reconstructed by inspection of the phase 2 proof.

There is one common proof technique that the proofs for each phase use. We
define a series of bisimulation relations & that correlate the steps of computation of
the lhs of a rewrite rule with the steps of computation of the rhs of the rule. These
relations are the core of the correctness proofs, they show how as a computation
using the lhs proceeds, the rhs computation may proceed in similar fashion, with
the s relation defining precisely what “similar” is. In particular, we first prove two
computational lemmas by induction on the = relation: the first establishes that if
we start with related lhs and rhs, for any single step of computation performed by
the left-hand side, there is a sequence of computation steps that may be performed
by the right-hand side that return the two to related states. The second lemma is
a converse to this that from an rhs step constructs lhs steps, and additionaly must
take ERROR states into account. This establishes that & is a bisimulation.

Next we prove two Lemmas that verify we are in fact relating terms by & that
should be related. First, ~-related terms must have identical values for Zguccess
(Success Lemma) and an ERROR in the right-hand side must imply an error in
the left-hand side (Error Lemma).

Combining these four lemmas, for each phase we then prove that the lhs and
rhs have the same observations for all computations, and this leads to a proof of
correctness of the phase.

D.1. Handshake Expansion Correctness

For the purpose of proofs, it is very useful to have a “mixed” notion of context M,
containing some holes known to be at reduction points as in a reduction context R,
and other holes occurring possibly multiply and at arbitrary points, as in normal
contexts C'. In order to distinguish the two classes of holes, substitution into re-
duction context holes will be indicate as before, and substitution into normal holes
will be subscripted.

DEFINITION 29 M denotes a mized context with m holes, where holes o1, .. .9, are
reduction context holes, and holes o, 41, ...e,, are arbitrary holes. We denote the
substitution of each ¢; into e; for 0 < i < m by M[c il e][cl] o en]

Theorem 4, the main theorem used to establish handshake correctness, shows
one channel may be replaced by its handshake expansion in a closed expression.
The proof is postponed until later in this section. In order to reduce notation,
declarations will be taken to be implicit, and the development proceeds for fixed
Pl P? 1p, 7p, so AHS(!p, 7p) and PHS(!p, 7p) will be abbreviated AHS and PHS.

THEOREM 4 For closed term C[P!][P?][P?] for C containing no instances of P! or
P? or P?,

CIP[P|[P?] Z,peerr CIAHS][PHS][!2]

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS

Relations asps and ~eps4 are defined to relate intermediate computation states of
channel-based synchronizations with their handshake expansions. =, is used to
get from computations involving channels to computations involving handshakes,
and meps4 1s used to go from handshakes to channels. We then show below, in
Lemmas 15 and 16, that computing preserves these relations. These facts are then

used to establish the main Theorem above.

DEFINITION 30 = is the least relation with the following properties, for arbitrary

M, C containing no occcurrences of P!, P?, P? 'p, 7p:

1.

(CIPLP?]P?), o P! = £]) o,
C[AHS][PHS][!p],olp=£,7p=1])

(
<M[P!][P?][P?] [PY],o[P! = t]) ~ps
(

M| s us][pus][] [AHS1] ollp = t,7p = £])

~Rops+ 18 the least relation extending =asps that satifies in addition the following:

<M[P!][P?][P?] [PN[P?], o[P!= t]) ~ns
Yp] [AHSl][PHsl], U['p =t, ‘7p = f])

(M s 5] [pras]] AHSU[PHS:], olp = £, 7p = t))
,JIAHS:|[PHS:], ollp = ¢, 7p = t])
[AHS][PHS:], o[lp = £,7p = t])
(M s 5] [pras]] [AHSsI[PHSs], olp = £, 7p = t))
o] [AHSs][skip], ol'p = £, 7p = £])

[AHSy]...[AHS:],o[lp=t,7p = f])

where we abbreviate the intermediate stages in handshake protocols as follows

[?p —!p l]; [=7p — skip]
'p |;[=7p — skip]

[-7p — skip]

1l —"p]

[-lp —7p |]

> M[AHS][PHS][
4 <M[P!][P?][P?][P!][P?]’U[P!: t]) ~ns
o (Mg [IPIIP), 1P = €]) o
. [aus][pHS][!
o Moo () PIP), 1P = €)) o
. M[AHS][PHS][!p]
- Mo (popeg [PUIPT], oLP! =) s
o Moo () IPUIP), 1P = €]) o
. [aus][pHS]|
o Mipgipo(p [P [P o[PL= t])
. M[AHS][PHS][!p]

AHS, =

AHS, =

AHS; =

PHS, =

PHS, =

PHS; =

p |

50

We now prove two lemmas that show the s, relation is preserved by computa-
tion.

LEMmMa 15 If given semantically well-formed configurations (cg, oo) and (¢, op) we
have
(co,00) — (c1,01)
Uhs
(ch o)

then we may find ¢, 0,0 < i < m, such that

(co,00) — (c1,01)
Uns Uns

(b, 06) = (¢, 0hn)
Proof: First, observe that any step uniform in the holes (namely the result is the
same whatever is placed in the holes of C' or M) trivially preserves a5, when both
¢ and ¢, make this single step. Second, observe that any ~p,-related configurations
always produce the same values for boolean subterms—all occurences of P? on the
left are replaced by !p on the right, and for each case of ~;, P? and !p can be seen
by inspection to have the same boolean value. Thus, any step that depends on a
boolean expression involving P and !p proceeds uniformly and ~, is preserved.
We may then focus on cases that depend on the non-boolean values in the holes.
Proceed by cases on the assumption (co, 00) ~ps (¢p, o).
Case 1.: Consider the next step of (co,00) = (C[P!][P?][P?],o[P! = f]). By
inspection of the rules, the only rule involving P! or P? that could apply is (Paral-
lelism)(1). In that case, for some M[P!] [p7][P?] [P!] = C[P][P?][P?] a single step
places us in the configuration (M[P!] [p7][77] [P!], o[P! = t]), precisely the left-hand-

side of case 2. of ~ps. We may complete the square by the computation

<06a 06> = <M[AHS][PHS][!p] [AHS]: O'[!p =f7%p= f]> -
M[AHS][PHS][!p] [AHSl], O'[!p = t, ?p = f]>
Case 2.: From (M[P!] [p7][P?] [P!], o[P! = t]), the only rule that involves P! or
P? at this point is synchronization via (Parallelism)(2):
P Yy

(M['P!] [p7][P] [PI[P?],c[P! =t]) — (M[’P!] [p7][P] [skip][skip], o[P! = {])

Now, we may complete the square by completing the handshake protocol via the
computation

p][AHsl][PHS], olp=tI7p=1]) >

<MfAHS][PHS][!
(] [skipl[skip], oflp = £, 7p = £]),

<M[AHS] [PHS][!

and the two resulting states are clearly related by condition (1.) of ~sp.]

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 51

LEMmMA 16 If given configurations (cg, og) and (cp, o() we have

<CO;UO>
Uhs+
(co,00) — (cf,01)

then either
1. {co,00) = ERROR, or

2. we may find ¢;, 04,0 < i < n, such that

<CO;0-0> L (Cnao'n>
Uns+ Uhs+
(co,00) — (c1,01)

Proof: This proof parallels the proof of the previous Lemma. As in that Lemma,
there are two cases that may first be factored out of the proof. If the hole in C
or M is not touched, the relation is clearly preserved. If a boolean expression is
evaluated, inspection of all the cases of ~&tps4 shows o(P?) = o(!p) except in cases
6-8, so the only potential differences are in those cases. For the case of a guard,
for some guard expression e containing !p to be true requires !p to occur negatively
in the guard since o(lp) = f, but by syntactic restriction 1 of Definition 2, probes
cannot occur negatively in guard expressions, so !p will also not occur negatively,
so a true guard of this form in fact could never arise. Thus, evaluation of a boolean
expression will either lead to ERROR . or will proceed uniformly in the two cases.

Then, proceed by cases on the assumption (cg, 00) Rps+ (ch, 00)-
Case 1.: Consider the next step of (c{, of)) = (C[AHS][PHS][!p],o[lp=1,7p=
f]). The only step involving AHS or PHS that could apply is the first step of
AHS: PHS cannot execute even if it is enabled because the initial condition
requires o(lp) = t.

Thus, for M[AHS][PHS][!p] [AHS] = C[AHS][PHS][!p] a single step places us in
the configuration <M[AHS][PHS][!p] [AHS,],o[lp = t,7p = f]), precisely the right-

hand-side of case 2. of &ps4. We may complete the square by the computation
<CO’ UO) = <M[Py][P?][157] [P, 0[Pl = f]> - (M[py][piz][p?] [P, 0[Pl = t])

Case 2.: From the state <M[AHS][PHS][!p] [AHS;],o[lp = t,7p = {]}, the only

steps that involve AHS; or AHS or PHS at this point are (1) some passive
protocol PHS could be enabled and the guard !p true, causing it to step to PHS;
or (2) another AHS could be enabled and it could step to AHS;. For case (1), the

configuration MfAHS][PHS][!p] [AHS,][PHS] = M[AHS][PHS][!p][AHsl] steps to
(M[’AHS][PHS][!p] [AHS,|[PHS;],o[lp = t,7p = {]), and this is related to the same

left-hand side by case 3. For case (2), this execution places us in state 9.

52

Case 3.: From the state <*M[AHS][PHS][!p][AHsl][PHsl]’U[!p =t,7p = f]),
the only steps involving AHS; or PHS; or AHS or PHS are (1) the passive
protocol PHS; stepping to PHS, and setting ?p = t or (2) another AHS setting
'p = t or (3) another PHS stepping to PHS;. Cases (2) and (3) may be shown
to lead to an error in the high-level synchronization, satifying case (1.) of what

we are trying to prove. We consider (2) only, (3) is similar. For this case, the
term must initially be of the form M[AHS][PHS][!p][AHsl][AHS][PHsl]’ thus it

is Reps4-related to term M[P!] [p7][P?] [PN[PY[P7?], and that configuration is in error

since there are two different synchronizations possible, each changing the value of
P! (see Definition 11). Thus, only case (1) remains, and this step clearly gets us to
state 4. of ~ps4.

Case 4.—7.: These states closely parallel state 3.: from state 4. we move to 5.,
5. to 6., and 6. to 7., all the while performing no steps on the left-hand-side terms.
Case 8.: From the state <M[AHS][PHS][!p][AHSS][Skip]’ ollp=1,7p = £]) we
clearly step to <M[AHS][PHS][!p] [skip][skip],o['p = f,?p = f]), and we may com-
plete the square by

<M[P!] [P?][P?] [P'][PV], U'[P' = t]) — <M[P!] [P?][P?] [Skip][skip], O'[P' = f])

Case 9.: There are two possibilities here: if a PHS is enabled and executes to
PHS,, it means, as in the case 3. argument above, the high-level synchronization
would ERROR. If another AHS is enabled and executes to AHS;, we stay in
state 9. Note there are no possibilities of a synchronization completing successfully
from this state, the best we can do is to hang forever. []

LEMMA 17 If (¢, 0) mpsy (¢/,0'), then o(@success) = 0" (Tsuccess)-

Proof: By inspection of each of the cases of the definition of asps4, related states
are identical on all variables excepting P!, !p, 7p. [|

LEMMA 18 If (¢, o) mpsy (¢/,0'), then e({c/, ¢’)) implies ({c, o)).

Proof: Assume g({¢’, o'}). If the cause of error is independent of !p/7p, the above
property is uniformly true. Thus, the error must involve !p and/or ?p in some way.
The possible errors may be seen to be as follows: (1) one of Ip or 7p is concurrently
written, or (2) one of Ip or 7p is concurrently read and changed (the “read” action
is either in a guard or an assignment). For case (1), since all writes of !p/7p occur
in AHS and PHS, it must be that two active or passive synchronizations are
simultaneously executing, and this will also introduce an error in the high-level
synchronization (¢/,¢’). Case (2) can occur in two possible manners. One is as in
case (1), where the outcome is the same. The other is when a probe, here of the
form !p, is read in a guard at the same time !p’s value is changed. Two subcases
arise depending on whether !p was set high or low. If it is set high, we must be in
state 1. of ~ps4, and P!is also set high so the same error will result. If Ip is set
low we are in state 5 of mpsy, and similarly, P! may be set low by completing the

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 53

synchronization at this point, so the same error will again result at the high level.
|

We may now prove the main result which allows one channel to be replaced by
its handshake expansion, Theorem 4.

=
Proof: From the definition of 2 4., it suffices to prove three things.

1. Assuming C[P!][P?][P?] and C[AHS][PHS][!p] are semantically well-formed,
if
(CIPN[P2[P?),) = (c, o[Tsuccess = t])

then
(CIAHS][PHS][!p], ¢) = (¢, 0’ [®success = t]).

2. Assuming C[P!][P?][P?] and C[AHS][PHS][!p] are semantically well-formed,
if
(C[AHS][PHS]['p], 1) = (¢, o[@success = t])
then
(CIPIP?I[P?],¢) = (¢!, 0" [Zsuccess = t]).

3. If (C[AHS][PHS][!p], <) - ERROR, then (C[P!][P?][P7],:) > ERROR.

We establish these in turn.
For (1.), by Lemma 17 it suffices to show (¢, o[Zsuccess = t]) Rns (¢/, 0/ [Tguccess =
t]) for some ¢/, ¢’ such that

(CIAHS][PHS][!p],0) > (¢, 0’ [#asccess = t])

This in turn follows by immediate induction from Lemma 15.

For (2.), the proof parallels the previous case, only lemma 16 is used, and note
under the assumption that (C[P!][P?][P?],¢) is semantically well-formed, so case
(1.) of that Lemma will never hold.

For (3.), proceed by induction on the length of the computation

(C[AHS][PHS][!7],) = ERROR

By Lemma 16, either case (1.) of that Lemma holds, in which case the conclusion

is vacuous, or (2.) holds, in which case the conclusion follows directly from Lemma
18. []

=
This then suggests a general scheme for establishing =2 ,j.: if we can define a

relation & and establish properties as expressed in Lemmas 15 through 18, éobsew
follows.

We now may esablish the correctness of the handshake expansion phase, Lemma
3. Before giving the main proof we present a few auxiliary Lemmas.

54

LEMMA 19 =5 has the strong diamond property, namely if m=-9m’ and m=-sm’,

then m/=-9m/"" and m''=om'" for some m'"’.

Proof: By inspection of the rules, the rewritings to m’ and m'’ must either involve
different variables or one must involve an active port and the other the passive port.
These are then obviously interchangable since there can be no syntactic overlap of
the two. []

COROLLARY 4 (UNIQUENESS OF PHASE 2 NORMAL FORMS) If m=>Ym/ and m=>Ym"
then m’ = m".

Proof: By direct induction from Lemma 19. []

Now for the proof of Lemma 3.
=
Proof: Given =1m; and my :>]2Vm2, we wish to show m; =5 my. By the definition
=
of =5, this means we are given m{ such that m;|/m! is closed, =1m?, and m{ =3 m},

we wish to show my||m} gobsew ma||mb.

First, observe that my||mi=-Yms|lmb: my||mi=3ms||m}=4my||m} since the
same rewrite sequence as before may be applied in an expanded context.

Next, by uniqueness of phase 2 normal forms, Corollary 4, the reduction steps
of my||m} can be ordered as we please and the same normal form will always be
reached. We thus choose the following particular reduction sequence to normal
form:

my|lm} = myg||mio=3mu1||mi, =3 .. =Fman||my, = ma|lmb

where my;||m}; differs from m1i+1||mtu+1 for i < n in that exactly one channel P
has been replaced by its handshake expansion. This requires one application of
each of the phase 2 rules, so each step from my;||m?, to m1i+1||mt1i+1 requires two
steps.

=
Now, for each i < n, my;||mt; =,pserr m1i+1||mt1i+1 by Theorem 4 since exactly
one channel is replaced with its handshake expansion. Thus, by transitivity over

=
the above rewrite sequence we have m1||mt1 X bserr m2||m§. |

D.2. Correctness of Phase 1

We present outlines of the proofs of correctness of the phase 1 transformation rules.
The proof of (1 : ASSN1) is immediate since the scoping rules prevent any context
from using Sp!, S1! and Sp!, 57,511,517 do not occur in e.

THEOREM 5 ((1 : INIT) CoRRECT)

=

¢ = with S! do S! end ||with S? do * [[S — ¢; S?]] end

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 55

Proof: S!,S7 are new ports used nowhere in ¢ nor in the enclosing context because
of the scoping restrictions, so the right-hand side always computes to c. [|

=
THEOREM 6 ((1 : ASSN1) CORRECT) p = p’ where

p = withw 2 do *[c] end
p' = withw z do
with 537,517 do
*[[So? — x |;S0?[517 — 2 1;517]]
end ||
with Sp!, S1! do * [¢] end

end

Proof: Immediate. |

We now turn our attention to establishing the correctness of the remaining phase 1
rules:
(1: ASSN2), (1: SEQ), (1: GD), (1 : LOOP) and (1 : PAR). The proofs
of each of these rules are similar in form, and are thus condensed. The general
technique for proving the rules correct is given in detail in the correctness proof of
handshaking expansion, section D.1. We begin by defining the necessary relations
for each rule: Rgs2, Rseq, Rguard, Rloop; Rpar- Except for ~,,2 each of these
relations is defined with respect to two other relations a¢;; and =, that abstract
the computation involved in starting and completing the initial synchronization
between S!,S7. Note that left- and right-hand sides of the transformations have
been embedded into the same closing testing context.

DEFINITION 31 =s4,9 is the least relation with the following properties for arbitrary
c,c.

Ri[S1],o[S! = £, So! = £, 511 = f]

1 < >%a32

(R[S, 0[S =1, Sl =1, 51! =1])
9 (Ra[pa], o[S! = t,S0! =1, 51! =1]) =452

C(Ry[py] oS! = ¢, Sol =1, St =f1])
3 (R3[z :=€], 0[St =1t,S0! = 1,5 =1]) =as2

" (RE[[me — Sol; S?e — 511,87, 0[S = ¢, Sel =1, 511 =1])
4 (R3[z := €], 0[St =t,S0! =1, 51! =1]) =as2

’ ("4[52'!],0'[5!:13,52'!:t,SZ'_llIf])
5 (R3[z := €], 0[St =t,S0! = 1,51 =1]) =as2

CARS[SH[Se! — = | [Si! — 2 1], o[ST = ¢, S;t = ¢, S;-1! = £])
6 (R3[z := €], 0[St =t,S0! =1, 51! =1]) =as2

" (Ri[x =1, 0[S =1t,5! =t,5,_11 =1])

56

(R4[S7],0lx = o(e),S! = ¢, So! =1, 51! = 1]) ~qs2

T RSS?), ole = 4, S = 6,51 = ¢, S;_1! = £])
8 (R4[S7],0lx = o(e),S! = ¢, So! =1, 51! = 1]) ~gs2
(RY[S) olz =i, S = £, 81 = £, S;_y! = £])
where
Ry[S] = C'[cellh]|Cp1]]
Ra[p2] = C'[eelly||C[pz2; p1]]
Rs[z :=¢] = C'[celly||C[z := €;57;p1]]
R4[S7] = C'[eelly]|C[S?;p1]]
B [S] = C'[eelli||C[pi]]
R [ps] = C'[eelli||Clpy; p']]
t[[-e — Sol; S?e — 5115 57]]
= C'[eelly]|C[[~e — Sot; S?]e — S11; 57]; pil]
alSit] = C'eelh]|C[S;1; ST;pil]
RL[SMN[[Se? — x |; So?]S1 — 2 1;.517]]
= C'[cellz]|C[SiY; S?; p4]]
Ri[z :=1i] = C'[cells||C[S;:}; S7;p1]]
7[S][S:7] = C'[eella]|C[S;!1; ST;pi]]
s[57] = C'eelli]|C[S7; p1]]
and

celly = *HSO? — oz |; So?iﬂgff —z 1;57]

celly = [So? — 2 |;S07]S17 — = 1; 517); celly
cells = x:=1;5;7;celly

celly, = S;7;celly

p1 = *[[S? — z:=¢; 57

p2 = [S?7 — z:=¢;57]

Py = *[[S? — [e — Sl S?[e — S11557]]]
Py = [S?7 — [-e — Sl S?[e — 511557

The relations for the other rules depend on two additional relations, /s and =,
that relate beginning synchronization on S!, S7 and completing synchronization on
S, S7 respectively.

DEFINITION 32 (START SYNCHRONIZATION) =, is the least relation with the fol-
lowing properties for arbitrary C'.

1 (R1[S"], oS! = £]) =5
C (R[S, o'[ST=1])
(Ro[[S? — ¢; 87]], oS! = t]) ~vss

zuwmﬁammw:m

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 57

(Rs[c], o[S! = t]) mss5

S (mle], '[! =)

where
R [S] = Clp1] R[S = O]
Ro[[S?T — ¢; S7]] = Clpa] RL[[ST — ;57]] = Clps]
Rg|c] = Clps] R3] = Clps]

and

p1 = *HS?—>C;S?H B

p2 = [S7 — ¢; S7]; *[[S? — ¢; S7]]

ps = ¢; ST H[[ST — ¢; S7]]

! #[[S7 — op(Sil, ..., Sul); SN * [[S1? — e; S| - - # [[Sn? — €n; Sa?]]
[S?T — op(S1!, ..., Su1); ST #[[ST — op(Si!, ..., Su1); ST
#[[S17 — c1; S17NI| - - * [[Sn? — ¢n; Sn?]]
! op(Stl, .., Sul); ST [[ST — op(Si!, ..., Suh); ST
*[[S17 — c1; S17)| - - * [[Sn? — ¢n; S]]

3
S
(1l

3
o3
[l

where op(S1!,...,Sp!) is shorthand for a composition of n active synchronizations
using one of sequencing, choice, looping or parallel composition.

DEFINITION 33 (COMPLETE SYNCHRONIZATION) =, is the least relation with the
property
(R[SN[S?], oS! = t]) ~es (R'[SN[S?], 0[St = t])

for arbitrary C', where

R[SN[S?] = C[S7;%[[S? — ¢; S]]
R[SN[S?] = C[S?;#[[S?7 — op(Sil,.. ., Sal); S7I
*[[S17 — c1;S17l] - - * [[Sn? — ¢n; Sn7]]]

We now define the four relations /.4, Rguard, Rioop and Rp4, that correlate the
execution of the original body ¢ to the transformed body in which S7 guards a
set of synchronizations. The four relations correspond to sequential composition,
(guarded) choice, looping and parallelism.

DEFINITION 34 =,., is the least relation with properties =2, ~.; in addition to
the following properties for arbitrary C.

1 (Rl[cl],U[S! :t]) Riseq
C(RY[S1Y, 0[St =t, 51! = £, 55! = £])
2 <R1[cl]’0-[5' :t]> Riseq
C(RY[[S17 — e1; S17]], oS! = ¢, Sl = ¢, Sal = £])
3 (Rl[cl],U[S! :t]) Riseq
. (RIS[Cl],U[S':t’Sl':t’SZI:f]>

58
Ryles], 0[St = t]) meseq
R,[S1Y][S17], 0[S' = t, 51! = t, 5! =1])

Ryles], 0[St = t]) meseq
Rg[Sg'],U’[S' = t,51! = f,Sg! =]>

Rales], o[S! = t]) ~seq
Rg[[527 — CQ;SQ‘.?]], O'[S' = t, 51' = f,SQ! =]>

(
(
(
(
(
6. (
(Ralea], o[S! = t]) ~seq
(
(
(

T (Riea], 0[S = £, 5! = £, 5! = t])
g R3[skip], o[S! = t]) seq
T (RE[S21[S27], 0[S =t, 51 =1, S = ¢])

where
Ri[e] = C[SN[e1; e2; S?;ik[[g'.’ — e1;¢9;57]]]
Rs[eo] = C[SY[ca; S7; %[[S7 — c1;¢2; S7]]]
R3[skip] = C[59"[skip; S7; *[[S‘?ﬁ c1;e9; S
R[S11] = C[S'][S1}; Sot; S7; %[[S? — 5115521 57|

_ *#[[S17 — e1; S17]][| ¢ [[S27 — c2; S27]]]
R’Z[[Sl‘7 — 01;51?]] B
= C[SY[S1} Sal; ST #[[S? — S1l; Sa!5 ST)

[S17 — 15 S17]; #[[S17 — c1; S17]]|]* [[S2? — c2; S27]]]
C[S"[S1]; S2!; 875 #[[S? — Si; Sal; ST

c1; 8175 #[[S17 — c1; S| * [[S27 — ca; S27]]]
C[S'][S1!; S2!; 87 %[[S? — S11; 525 571

S17#[[S17 — e1; S17]|[* [[S27 — ca; Sa27]]]
C[S'][Sa2!; ST #[[S7 — S1l; Saly ST + [S17 — e1; S17]]||

*[[52‘? — 02,52‘?]]]

R[ed]

Ry[S11[517]

R5[S,]]

Rg[[SQ‘? — C3a, 52‘?]] B
= C[S1[Sa!; 573 #[[S7 — S11; Sa!; S7]]]| i
*[[517 —>§1; 517]]”[527 — C3a; Sgrﬂ, *[[52‘? — Ca; 527]]]
CSN[S2!; S7; #[[S? — Si1; Sal; S| [* [S1? — e155:7]]]]
¢2; 8275 %[[S2?7 — ¢2; 527]]] B
Ry[521][S2?] = C[SN[Sa!; S7; #[[S57 — S11; Sal; S?)]|| # [[S1?7 — e1; S 2]]]|
52?; *[[Sg? — C3; 52‘?]]]

R [es]

DEFINITION 35 Rjuqra is the least relation with properties /2, R¢s in addition to
the following properties for arbitrary C'.

1 (Ri[choice], o[S! = t]) ®guard
" (Ri[choice'],o[SI=t,S51! = ... = S, =1])
RQ[Ci], O'[S' = t]> %guard

(
9. |
(RL[S:1], o[S! = t, Sl = £])

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 59

3 <R2[ci]a U[Sr = t]) R guard
© (R[S — ¢i; Si7]], oS! = ¢, Si! = t])
4 <R2[ci]a U[S' = t]) Rlguard
' (RQ[CZ‘],U[S!:t,Sﬂ:tD
5 <R2[Sk1p]a U[S' = t]) Rguard
C(RE[SiN[Si7], oSt = ¢, Sit = ¢])
where

Ri[choice] = C[S!][choice; S?;*[[S? — choice; S7]]]

Rsles] = C[S"][es; S7; %[[S? — choice; S7]]]
Rs[skip] = C[9[skip; S7; *[[S? — choice; S?]]]
R{[choice'] = C[SY[choice’;x[[S? — choice']]||
1512 — e SNl (1507 — €03 Sa7T]
RL[S;!] = C[SN[S:!; S7; %[[S? — choice']]|| * [[SiT — ¢;; Si?]]||rest]

RL[[S:? — ¢i5.5:7]]
= C[9[Si!; S?; *[[S? — choice']]||
[Si? — ¢; Si7); #[[Si? — ¢i; S:7]]||rest]
Rl [es] = C[SN[S:}; S7; %[[S? — choice']]||ci; Si?; *[[Si? — ci; Si7]]||rest]
RL[S:[S:7] C[SN[S:!1S?; *[[S? — choice']]||S:7; *[[Si? — ci; Si?]]||rest]

choice [es — c1] ... Jen — en)
choice’ = [e1, — S15;97] .. . Jex,,, — S:1557] ...
len, — SalS7].. [|en — S, 1, 87]
rest = *[[S17 — ¢1; 517]]|| *[[i-17 — ci=1; Si- 1 7

Al |
#[[Siy1? — cipr; Sipa 7| -] % [[Sn? — a5 Sn7]]

Note that in the state for the right-hand side of the relation we only include the
port S;! that will be changed. This improves the readibility.

DEFINITION 36 =o0p is the least relation with properties =/, ~.; in addition to
the following properties for arbitrary C'.

1. <R1[* [C]], U[S' = t]) Riloop

(Ri[*[SV]], 0[St = ¢, SV =1])
9 (Ra[c], o[S! = t]) =i00p
©(RY[SM], o[St=¢, 5" =1])
3 (Ra[c], o[S! = t]) ~io0p
" RE[[ST?T — ¢; S'7], 0[S = t, ST = t])
4 (Ralc], o[S! = t]) =i00p
" (Ry[e], 0[S =t,5=t])
5 <R3[Sk1p], O'[S' = t]) %loop
©O(RE[SN[S'], 0[St =¢, S = t])

60

where

Ral*[c]] = C[S[*[e]; ST #[[S? — *[c]; S7]]]

R[] = C[SN[c; *[c]; S7; #[[S7 — *[c]; S7]]

Ra[skip] = C[S!]|[skip; *[c]; S7; #[[ST — *[c]; S7]]]

Ri[*[S"]] = C[SN[*[S"]; 57 #[[S7 — =[S"]; S7I]|| * [[S"? — ¢; S"7]]]
RL[S] = C[SN[S'Y; #[S"N; S7; *[[S? — +[S"]; S7N|| * [[S'? — ¢; S'7]]]

RA[[S"? — ¢ 5'7)]

Ryle]

RL[S"[S'7]

= C[SN[S"; *[S"; S7; #[[S? — *[S"!]; S?]]||

[S'? — ¢; S"7]; #[[S"? — ¢; S'7]]]

C[SN[S"!; *[S"]; S7; %[[S? — *[S"1]; S?N]|¢; S2; *[[S"? — ¢; 5"7]]]
C[SN[S"!; *[S"]; S7; %[[S? — *[S"1]; S?1]||S5"7; *[[S"? — ¢; 5"7]]]

Note that we do not ever need to consider &, since the loop never terminates.

DEFINITION 37 ®pq, is the least relation with properties ~,,,~.; in addition to
the following properties for arbitrary C.

(Ralei], o[S! = t]) ~par

L RS olSi = ¢, 8 = ... = i1 =f])
(Rl[cz] oS! = t]) Xpar
2. (Ry[[Si? — ¢i;8:7],
[S‘:t,Si!:t,Sllz...:Si_lleiH!:...:Sn!:f])
5. (Ralel,olS! =€) mpur
(Ré[ci],U[S!:t,Sﬂ:t,Sﬂ:...:SZ'_1!:SH_1!:...:Sn!:fD
4 (Ra[skip], o[S! = t]) =par
' (RQ[SZ'][SZ‘?],U'[S' = t,SZ'! = t,51! = ...= Sz'_ll = Si+1! = ...= Sn' = f]>
where
Bafei] = CISNI(- - leioi el - -Hlen); S73#[[S7 — (enll .- -[len); ST
Rofskip] = CISISTA(S? — (el llen); S7]]
R{[S:] = C[@!][(Sﬂ”...||Sn!);S?;*[[S?—>(51!||...||Sn!);57]]||

*[[S;7 — ¢i; Si7]]||rest]

RY[[Si? — ci5 87|

= C[SNSMI - [1921); 575 #[[S7 — (S| - [1Sa1); S7]|
[Si? — ¢ Si?l; *[[57 — ¢;; Si7]||rest]

Rzlei] = CISN[(S1!]] - --[1Sn1); S75 #[[S? — (Sl - [1Sa1); S|

Ry[S;

rest

ci; ST, *[[Sﬁ — ¢ Sﬁ]]”rest]

0017 = CISTUS] - 1521 57 +[157 — (a1l 1150: 771
Si 75 *[[Si? — ¢i; Si7]||rest]
= 5 H[[917 — e ST Ml #[[Sio1? — cim1; Sica 7]
s ¥ [Si1? — cigrs Siga NI - NIl #[[Sn? — € Sn7]]

With these relations defined, we can proceed with the proofs of the five rules.

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 61

LEMMA 20 (=) If given semantically well-formed configurations (cq, o0), (¢, o)
we have (cg,00) — (e1,01) and (co,00) = (cf, () then there exist ¢, o] (0 <
r e

i < m) such that (c},af) = (c/,,0%) and (ch,0h) Rasz (chy,), where

{as2, seq, guard, loop, par}.

LEMMA 21 («=,) If given configurations (cq, o0), (¢}, o4} we have {(cg, 00) = {cf, op)
and (cp, of) — (¢}, o) then either

1. {(co,00) — ERROR; or
2. we can find ¢}, 0} (0 < ¢ < n) such that (co, og) 5 (en,on) and (cn,0n) =
(ch,01).

for r € {as2, seq, guard, loop, par}.

LEMMA 22 (Succiss LEMMA) If (¢, 0) =, (¢/, 0"} then o(Zsuccess) = 0/ (Tsuccess),
for r € {as2, seq, guard, loop, par}.

LEMMA 23 (ERROR LEMMA) If (c,0) =, (¢/, o) then €({c, o)) implies €({¢', ¢')),
for r € {as2, seq, guard, loop, par}.

THEOREM 7 (1 : ASSN2),(1: SEQ),(1: GD),(1: LOOP), (1 : PAR) are

=
correct. That is, p; = p, for p; and p, a left- and right-hand side of one of these
rules.

Proof: In order to prove that the left- and right-hand sides of each of these rules
=
are testing equivalent, p; = p,, we must show that for every closing testing context

=
C, Clpi] Zobserr Clpr]. Using Corollary 2, we can simplify the proof into showing
three properties.

1. If C[pi] has a successful computation then so does C[p,]. Suppose C[p;] has a
successful computation, written

<C[Pl], L) = (C: O'[xsuccess = t])
Then by induction using Lemma =, we can find a computation
<C[p7‘]a L) = <Cl: Ul[xsuccess = t])

such that
(C: U[xsuccess = t]) oy <Cla U/[xsuccess = t])

The result then follows from the Success Lemma.

2. If C[p,] has a successful computation then so does C[p;]. Suppose C[p,] has a
successful computation, written

<C[pr]a L) _*> <C; U[ajsuccess - t])

62

Then by induction using Lemma <, , we can find a computation
<C[pl]: L> i} <C/; Ul[msuccess — t])
such that
<C, U[xsuccess = t]) Ry <c/’ UI[Isuccess = t])
The result then follows from the Success Lemma.

3. If C|[p,] has a failing computation then so does C[p;]. Suppose C[p,] has a
successful computation, written

(Clpr], 1) —~ ERROR
Then by induction using Lemma <, case 1, we can find a computation
(Clpl,) = (')

and either Case 1 of Lemma <, holds, in which case the conclusion is immediate,
or Case 2 holds in which case the conclusion follows directly from the Error
Lemma.

We now may prove the correctness of this phase, Lemma 2.
Proof: We have mo=¥m; and mi=-m!, show mg||m} gobsew my|/m}. By
transitivity on Theorems phasel-init, 6 and 7 we have mg ; my and mf) gobsew m’1
Thus, by congruence of g, mo||mj, =z my||mj) =z my||m, and then picking the
=

context in the definition of = to be e, we have mg||mf = pserr m1||m}, completing
the proof. [|

D.3. Modularization Correctness

In this section we present the correctness proofs for modularization. The proof
technique used is similar to that used for the Phase 1 transformations and hand-
shaking expansion, see those proofs for more details. We only present here the
proof for (3 : MOD ACT), the passive modularization rule (3 : MOD PAS) is

similar (but simpler), so for space considerations will be skipped.

DEFINITION 38 =s,,, is the least relation with the following properties for arbitrary
C,Cy, C.

1. <R1['p T]a U['p = fa ?p = f]) Rma

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS

2.

10.

11.

12.

where

<R1['p T]: J['p = fa 7p = f]) Tma
(Ry['lp =lpi V.. . Vip,ollp=1,7p=1,1p; = t,7p; = £])

(Ra[[lp —?p 1]], ollp = ¢, 7p = £]) ~oma
<Ré[[!}7 —7p T]], U[!p =t,7p="1, !Pz' =t,7p = f])

<R3[7p T]a U[rP - t, 7p = f]> Rma
(Ry[7p1],0llp=t,7p=£,1p; = t,7p; = £])

(Ra[[?7p —'p l]], ollp = t,7p = t]) ®ma
(RE[?pi :=!ps C ?pl,ollp=1t,7p=1t,!pi=t,7p; = f])

(Ra[[?p —'p L], ollp = ¢,7p = t]) Mma

<R5['p l]a O'['p = ta r?p = t]) Rma

<R5['p l]a U['p = ta r?p = t]) ma
(Rg[lp :=p1 V.. .Vipl,ollp=t,7p=t,Ip; =1, 7p; = t])

(Re[[=!p —7p []], ollp = £, 7p = t]) ®ma

<R7[7p l]70-[']) = f, 7p = t]) Rma
(Rig[?p L] ollp=1£,7p=1t,Ip; =1, 7p; = t])

(Rs[[-7p — skip]], o[lp = £, 7p = £]) ~ma
(R, [7pi =!pi C7p),ollp=1£,7p=1,Ipi=1 7p; =t])

(Rs[[~7p — skip]], o{lp = £, 7p = £]) ~ma
(Rial[~7ps — skip]l, o[lp = £,%p = £, Ip; = £, 7p; = £])

63

64

Ril'p 1] C'[Co[PHS][p:1]]

Rs[['p —7p 1] C'[Coll'p —7p 11; [=lp —7p |][p2]]
R3[?p 1] C'[Col?p 15 [='p —7p 11[p2]]
Ry[[?p —'p l]] C'[Co[[='p —7p |1][p2]]

Rs['p|] C'[Co[[=tp —7p |][pal]

Rs[[=!p —7p |]] C'[Col[='p —7p]][ps]]

Re[?p |] C'[Col?p | 1ps]]

Rg[[~7p — skip]] C'[Co[skip][ps]]

Ril'pi 1] C'[Co[PHS][p!]]

Ri['p :=!p; V... Vip,] C'[Co[PHS][p5]]

C'[Co[l'p —7p 1]; [='p —7p 11[P5]]
C'Col?p 15 [='p —7p 11151
C'[Col[='p —7p |]1[P4]]

Ry[['p —7p 1]]
Ry[?p 1]
Ri[?pi :=!p; C 7p]

Ri[[?p: —'pi 1]] C'[Col[='p —7p |]][p5]]
Ri['pi] C'[Col[~'p —7p |]1[ps]]
Ry[lp :='pr V.. . Vipa] = C'[Col[=lp —7p |]][p5]]
Ry[[-'p —7p 1] C'[Col[~'p —7p 1]1[p4]]
Riol’p |] C'[Co[?p | 1[pH]]
Ry, [?pi -="pi C 7p] C'[Co[skip][ps]]
RY,[[~7ps — skip]] C'[Co[skip][ps]]

C[AHS(!p,?p)]...[AHS(p, 7p)]

C[AHS(!p, ?p)]...[[7p —!p |]; [-7p — skip]] . . .[AHS(!p, 7p)]
C[AHS(!p,?p)]...[!p |;[-7p — skip]] .. .[AHS(!p, 7p)]
C[AHS(!p,?p)]...[[-7p — skip]] ... [AHS(!p, 7p)]

*[Ip :=lp1 V.. VI * [Pp1 :=1p1 C 7p]|| .. .|| * [?pn :=Ipn C 7P|
C[AHS(!p1,7p1)] ... [AHS(!pn, 7pn)]

Ip:=lpr V.. Vipy;*[lp =lp1 V... Vip,]||

*[7p1 :=!p1 C 7p]||.. .|| * [Tpn :=!pn C 7p]||
ClAHS(!p1,7p1)] ... [[?pi —!pil; [0lpe — 70 1]] - . [AHS(Ipy, 7pn)]
*[Ip :=lp1 V.. VIp| * [Pp1 :=Ip1 C 7p]|| .. .|| * [?pn :=Ipn C 7P|

*lp=lp1 V. VIpa][| * [7py :=lpy C 7p]f| ..]

?p; =!p; C p;*[Tp; :=lp; C ?p]|| .. .|| * [?pn :=Ipn C 7p]||

*[Ip :=lp1 V.. VIp| * [Pp1 :=1p1 C 7p]|| .. .|| * [?pn :=Ipn C 7P|
C[AHS(!p1,7p1)] ... ['pi |;[=7p; — skip]]...[AHS(!p,, 7pn)]
p=lpr V.. . Vip s #[lp:=lp1 V... Vip]|]

*[7p1 :=!p1 C ?p]||.. .|| * [?pn :=!pn C ?p]||
CIAHS(!p1,7p1)] .. .[[-7p;i — skip]] .. .[AHS('p,, 7pn)]
*[Ip :=lp1 V.. VI * [Pp1 :=Ip1 C 7p]|| .. .|| * [?pn :=Ipn C 7P|

CIAHS(!p1,7p1)] .. .[[-7p;i — skip]] .. .[AHS(!p,, 7pn)]
*[Ip :=lp1 V.. . VIpJ|l * [7p1 :=Ip1 C 7P| .. .||

?p; =!p; C 7p;*[7p; :=Ip; C 7p]||. || * [?pn, :=Ipn C 7p]||
ClAHS(!p1,7p1)] ... [[-7p; — skip]] .. .[AHS(!p,, 7pn)]
*[Ip :=lp1 V.. VIp| * [Pp1 :=1p1 C 7p]|| .. .|| * [?pn :=Ipn C 7P|

C[AHS(!p1,7p1)] .. .[[-7p; — skip]] ... [AHS(!p,, 7pn)]

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 65

LEMMA 24 (=,,) If given semantically well-formed configurations (cq, o0), (¢, 04)
we have (¢g, 09) — (e1,01) and (eg, 0g) R, (¢, 0() then there exist ¢}, 0] (0 <@ <

m) such that (c), b)) = (¢!, o0.) and (¢h, 0b) Rasa (¢, 0L,), Where m € {ma, mp}.

m?

LEMMA 25 (<) If given configurations {(cg, o¢), (¢j, of) we have (co, o0) ~m {(cf, o6)
and (cp, of) — (¢}, o) then either

1. {(co,00) —~ ERROR; or

2. we can find ¢, 0! (0 < i < n) such that (co, 70) = (cn,0,) and (c,, 0,) ~m
(e, o1).

for m € {ma, mp}.

LEMMA 26 (Succiss LEMMA) If (¢, 0) =, (¢, o) then 0(Zsuccess) = 0 (Zsuccess)s
for m € {ma, mp}.

LEMMA 27 (ERROR LEMMA) If (¢, 0) ~p, (¢!, o) then €({c, o)) implies e({¢/, o'}),
for m € {ma, mp}.
=
THEOREM 8 (3 : MOD ACT) and (1 : MOD PAS) preserve =
With this theorem, we may prove the correctness of the entire phase of com-
pilation, Lemma 5. See the end of section D.2 for the general structure of this
proof.

D.4. Reshuffling Correctness

The Reshuffling Lemma is key in the correctness proofs for this phase. It states that
a passive handshake may be reshuffled, provided its corresponding active handshake
has not been reshuffled (we call this a pure handshake). This Lemma suffices to
prove correctness, because by performing reshuffling steps in a certain order it is
always possible to reshuffle passive commications in the presence of a non-reshuffled
active communication.

Before stating the Lemma we introduce the abbreviations AHS and PHS for
AHS(!p, ?p) and PHS(!p, 7p). Also, RPHS(!p,?p), abbreviated RPHS, is the
reshuffled passive handshake

['p — skip]; co; ?p T; c1; [lp — skip]; e2; 7p |
LEMMA 28 (RESHUFFLING PRINCIPLE) .

C' [withr 7p w !p do C[AHS]end]

[with w 7p r !p do ['p — skip]; co; ¢1; c2; PHS end]
=
= obserr

C'" [withr 7p w !p do C[AHS]end]
[with w 7pr !p do RPHS end]

66

provided there are no occurrences of 7p or Ip in C| ¢g, ¢1, or ¢s.

Relation /2,7 is defined to relate intermediate computation states of non-reshuffled
terms with their reshufled counterparts. Many cases are required because the active
handshake runs in parallel with the ¢; computations, and all interleavings must be
considered. The proofs in this section leave out some details, see section D.1 for a
complete description of the technique for the case of handshake expansion.

DEFINITION 39 =7 is the least relation with the following properties, for arbi-
trary M, C, ¢g, ¢1, ¢ containing no occcurrences of Ip, 7p:

1. (C[AHS][['p — skip]; co; c1;¢2; PHS], o[lp = £, 7p = f]) =renp
(C[AHS][RPHS], o[lp = £, 7p = £])

2. <]\J[AHS] [[!P——'Skip]Eo;Cl;C2§PHS] [Aﬂsl]’ O'[!p =t7p= f]> Rrshfi
<M[AHS][RPHS] [AHS,], o[lp=t,7p =1])

- <]M[AHS] [[p——skip]ico;c1;c2;PHS] [AHS:][co; e15 e2; PHS], o[lp = ¢, 7p = £]) ~ronpt
(M[us][rpus] [AHS1][co; ?p T e1; [=lp — skiplie2; 7p | |, o[lp = ¢, 7p = £])

4 <M[AHS] [[’p——>skip];00;cl;Cz;PHS][AHsl][cl; c2; PHS], oflp = ¢, 7p = f]) ~yann
(M uis][rpus] [AHS1[7P 15 15 [=lp — skip]; e, 7p |], o[lp = ¢, 7p = 1])

5. <M[AHS] [[!p——»skip];cO;m;cz;PHS][AHsl][cl; ¢2; PHS], ollp = ¢, 7p = £]) ®ranp
M[AHS][RPHS] [AHSl][Ch [_"p I Sklp], C2; ?p l]: O'['p = ta ?p = t])
6. <M[AHS] [[!p——»skip];cu;cl;cQ;PHS] [AHSl][CQ; PHS], U[!p =t, ?p = f]> R rshfl

<M[AH5][RPH5][AH51][[_'!]9 I Skip]; C2; ?p l]’ O'[!p =t, ?p = t]>

v <M[AHS] [[!p——»skip];co;m;CQ;PHS][Aﬂsl][cl; c2; PHS], ollp = t,7p = £]) ®ranp
M[AHS][RPHS] [AHSZ] [cl; [_"p I Sklp], C2; ?p l]: U['p = ta 7}7 = t])
8. <M[AHS] [[!p——»skip];co;cl;cQ;PHS] [AHSl][CQ; PHS], U[!p =t, ?p = f]> R rshfl

<M[AH5][RPH5][AHSZ][[_'!p I Skip]; C2; ?P l]a O'[!p =t, ?p = t]>

9. <M[AHS] [[!p——»skip];co;m;02;PHS][AHsl][cl; c2; PHS], ollp = £,7p = t]) ®ranp
M[AHS] [RPHS] [AHS3] [cl; [_"p I Sklp]; C2; ‘7p l]= U['p = f; er = t])
10. <M[AHS] [lp——skip];co;e1;c2; PHS] [AHS,][c2; PHS], o[!p = ¢, 7p = £]) ~rona

(M[s uis][rpus][AHSs][-lp — skip]; e2;?p | |, o[lp = £, 7p = ¢])

11. <M[AHS] [tp——skipl;co;e1;c2; PHS) [AHS:][c2; PHS], o[!p = ¢, 7p = £]) ~rann
M s ps][rpus] [AHSs][e2; 7p L], ollp = £,7p = £])

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 67

12. (M| 5 58] [ip——skiplicoicrsc0;pus] [AHSU[PHS], o[lp = ¢, 7p = f]) ~rna
<M[AHs][RPHs][AHS3] Ppl]lollp=1f"Tp= t]>

13- (M| 5 5] [irp——skiplicoicrsc0 prs] [AHSU[PHS:] olp = ¢, 7p = £]) ~rnp
<M[AHS][RPHS] [AHS;][?p | |, ollp =1, 7p = t])

4. (M| 5 8] [ip——skiplicosersca;prs] [AHSUPHS:], ollp = ¢, 7p = t]) ~ronp
<M[AHS][RPHS] [AHSB] [7]9 l]a U[!p = f, 7]9 = t]>
s][AHS:][PHS;], o[lp = t,7p = t]) ~ranp

15. <M[AHS][[!P——*SkiPLCD;Cl;C%PH]
<M[AHS][RPHS] [AHSS] [r?p l]a O'[!p = f; 7P = t]>

16 (M| 5 5] [{rp——skiplicoscr 100 prs] [AHSs| [PHS:2], olp = £, 7p = t]) ~ronp
<M[AHS][RPHS] [AHSS] [7]) l]a U[!p = f, 7]9 = t]>

17. <M[AHS] [[tp——skipico;e1;co; PHS) [AHS;][PHS;], o[lp = £, 7p = t]) ~ronn
<M[AHS][RPHS] [AHSS] [7]9 l]: U[!p = f, 7]9 = t]>

18. <M[AHS] [[tp——skiplico;e1;c2; PHS) [AHS;][skip], o['p = £, 7p = t]) ~ronp
<M[AHS][RPHS] [AHSS] [Skip], O’[!p =f,7p= t]>

where AHS;, PHS; are as defined in section D.1, and RPHS; .. . RPHS; are

RPHS;, = ¢o;7p T;c1;[~!p — skip];cq2;7p | RPHS, = [-!p — skip];eq; 7p |
RPHS:; = 7p |;c¢1;[~'p — skip];eo;7p | RPHS; = ¢o;7p |
RPHS; = c¢p;[~!p — skip];ce;7p | RPHS; = 7p |

Cases 5.—10. describe all the possible interleavings of the active handshake tran-
sitioning to AHS» and AHS3 with execution of ¢; in the reshuffled form, since the
two may occur in parallel. Cases 13.-17. describe how the non-reshuffled synchro-
nization is completed.

We now prove two lemmas that show the 2,7 relation is preserved by compu-
tation.

LEMMA 29 If given semantically well-formed configurations (cg, o¢) and (¢, of) we
have

(Co,00> - (61,01>

Rrshﬂ

(co, o)

then we may find ¢}, 0,0 < i < m, such that

(co,00) — (e1,01)
Urshﬂ nrshﬂ

{ch,00) = {chr o)

68

LEmMma 30 If given configurations (cg, o) and (cg, o() we have

<CO;UO>
Rrshﬂ
{co,00) — ({1, 01)

then either
1. {(co,00) —~ ERROR, or

2. we may find ¢;, 04,0 < i < n, such that

<COJ UO) i} (Cn: Un)
nrshﬂ nrshﬂ
{co,00) — (c1,0%)

LEMMA 31 If (¢, 0) mpenp (¢, 0'), then 0(Zsuccess) = 0/ (Zsuccess)-

LEMMA 32 If (¢, 0) mpnp (¢, 0'), then e((c¢/, o)) implies e({c, o)).

We may now prove the result which allows one channel to be replaced by its
handshake expansion, Lemma 28. The proof is similar to the proof of Lemma 4 at
the end of Section D.1.

Two related results are needed to allow reshufflings of handshake protocols that
have already been modularized. This is an annoying problem that must be faced
at some point. The other possible solution is to reshuffle before modularizing, but
then the modularization phase must take into account all the reshuffling. Proofs
of these principles are similar to the previous reshuffling principle and will not be
given here. For readibility, declarations have been removed from the Lemma.

LEMMA 33 (MODULARIZED RESHUFFLING PRINCIPLES)

*[Ip:=lp1 V... Vipy] || % [?p1 :=!p1 C 7p] || .. .|| * [Tpn :=!pn C 7p] ||
C[AHS(!p1,7p1)] .. .[AHS(!pn, 7pn)][['p — skip]; co; ¢1; ¢2; PHS]
=

L. gobserr

*[Ip:=Ip1 V.. . Vipy] || % [?p1 :=!p1 C 7p] || .. .|| * [Tpn :=!pn C 7p] ||

C[AHS(!p1,7p1)] ... [AHS(!pp, 7pn)][RPHS]

*[7p :=Tp1 V... V7p,] ||C'[AHS(!p,:Zp)][[!p — skip]; ¢o; ¢1; c2; PHS(Ip, 7p;)]

2. gobsew‘

#[7p :=Tp1 V... V7p,] [[C[AHS(!p, 7p)|[RPHS(!p, 7p;)]
provided there are no occurrences of 7p or !p or 7p; or !p;, for any ¢, in C, ¢g, €1,
or ¢s.

There is in fact a third such principle, where both active and passive handshakes
have been modularized, but it is not needed in our particular compilation method.

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 69

There is one additional matter that must be addressed. The guard reshuffling rule
also parallelizes the guards, so we must prove a Lemma that states the reshuffled
guard is equivalent to the parallelized reshuffled guard, and that together with the
reshuffling principle will allow this rule to be proved correct.

LEMMmA 34

*[[ls — [e1 — [ls — 78] 1];[-!'s — AHS(!s1,7s1); 781][- -
—ls — AHS(!s,, 7s,); 7s), 1]

—

en — [ls — 75/, 1];

RV

*[[1s Aey —78) T5[-ls — AHS(!s1,7s1); 7s) L] - - -1l
*[[1s A en, —7s0, 15 [-ls — AHS(Isp,, 7sn); 7sp, 1]

This principle may be proved by the usual method of defining a relation . It
is informally justified because all guards must be mutually exclusive, and thus
evaluating guards in parallel should not change meaning. One subtle issue is when
one guard e; becomes true, the execution of its body must not inadvertantly make
some other guard e; true and cause that guard to execute. For this reason, the
reshuffling is critical, because the guard body will not execute until !s is already
low, so the precondition !s A e; will be false for all j.

We now can prove correctness of the reshuffling ghase, Lemma 6.

=
Proof: Assume =-3mg3 and m3:>flvm4, show ms =4 my4. By the definition of =24,

: : ¢ ¢ ¢ t Nt
this means we are given m} such that ms||m} is closed, =gm}, and mi=, m},

and we wish to show mg||m} =,pserr mal|lm}. By locality of rewriting we have
ma||mi=-2 ma||m’, so we may assume each rewrite step is a closed expression.
Furthermore, since =Y has the strong diamond property, any rewrite ordering
suffices since all will produce the same normal form. We thus pick a particular
ordering below to suit our purposes.

By inspection of the reshuffling rules in table 5, all of the transformations of those
rules may be expressed in the form of a transformation from

['p — skip]; co; ¢1;¢2; PHS

to RPHS for some ¢g, ¢y, ca, except for two rules. (4 : PASS) is of a slightly
different form, placing some of the operations in parallel. This style of reshuf-
fling is just as easily justified as the form presented in Lemma 28, by a nearly
identical argument, so details will not be presented here. (4 : GD) is reshuf-
fled and then parallelized, so we will consider this case separately. For all other
rules, Each step in a derivation ms||m§=-4 m4||m} amounts to one replacement of
['p — skip]; co;c1;¢2; PHS by RPHS, so each rewriting step in this derivation
=

preserves = p . by Lemma 28, provided the reshuffling takes place in the presence
of a pure active synchronization AHS, namely the active synchronization has yet

=
to be reshuffled. For the guard case, rewriting preserves = j. by the combination
of Lemma 28 and Lemma 34, again provided the active handshake is pure.

70

We must thus establish that there is some derivation mg||mi=4 m4||m} such
that each reshuffling of PHS takes place in the context of a non-reshuffled (“pure”)
AHS, and the proof will be complete. Since =gms and =-zm}, ms||m} is of
a very particular form: there must be a mo,m6 such that my=1=2=3m3 and
mb=1=>2=>3m}. Thus, we may use this fact to observe properties about the ports
in ms||mj.

Define a directed graph G based on the syntax of mz and m}. There is a node
in this graph for every process in mg and m}. There is an edge from each process
containing an active handshake to each process containing its corresponding passive
handshake (or modularization thereof). Inspection of the rules of phases 1-3 should
convince the reader that these graphs have a structure based on the syntax tree
of the original specifications mg and m}: there are edges from each construct to
its component arguments. Further, each active synchronization in the original
specification has edges to all the corresponding passive synchronizations from the
original specification. Passive synchronizations in the original specification are leaf
processes with two in-edges, one for the corrresponding active process, and one to
enable the passive process. This graph is thus a dag, a tree with cross-edges. We
thus may apply reshuffling rules in a bottom-up order on the dag. First, leaves are
reshuffled by (4 : PASS). Then, we iteratively reshuffle any node for which all its
immediate children needing reshuffling have been reshuffled already.

With this ordering, a parent is always reshuffled after all of its children, thus
active handshake protocols of the parent will not be altered at the time the child
process is reshuffled.

Thus, this ordering defines a rewriting of ms||m4=-} ma||m} such that, by Lemmas

28 and 33, each step preserves =,;.rr. Thus, ma||/m} = pserr ma|lm} and the
correctness of this phase is established. [|

D.5. Circuit Correctness

The proof of correctness of the last phase is similar to the phase 1 proof in that
each rule may be shown to preserve correctness through use of a simulation relation
~. However, the ERROR case is more complicated. In phases 2-4 it was obvious
that the handshaking protocols were performed correctly since the protocols are
represented by code AHS or PHS. In the circuits this is not clear, so we must
prove that no violations of the protocol occur in any of the semantically well-formed
circuit modules.

In the proofs below it is useful to have a precise characterization of all the possible
well-formedness violations that may occur at this point.

LEMMA 35 For closed m such that =4ma=im, m = ERROR iff if (m,:) =
(m', ¢’y — (m”,o") and one of the following conditions hold for ¢’ and ¢':

1. There is an active modularization process (see (3 : MOD ACT)) with 7p =
t,ie. o'(7p) = o’(7p) = t and Ip; 1 in this step, i.e. ¢'(Ip;) = f and o'’ (Ip;) = t.

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 71

2. There is an active modularization process with 'p; =!p; =t, ¢ # j, and 7p 1.

3. There is a passive modularization process with 7p; 1, and 7p; = t, for some
i 7.

4. in an ASSN cell, !s; =t and = f and !sg].

5. in an ASSN cell, s =t and z = t and !s; T.

6. in a GD cell, !s = t while e |.

DEFINITION 40 For closed m s.t. =4ma=Eim, m strongly violates handshake proto-
cols iff there is a computation (m,) = (m’, ') — (m”, ") and one of the following
conditions holds for the step from ¢’ to ¢, for some !p, 7p:

1. 7p =t while !p 1.
2. 7p=f while !p |.
3. Ip=1 while 7p 1.
4. 'p =+t while 7p |.

DEFINITION 41 For closed m s.t. =4ma=Em, m violates handshake protocols iff
m strongly violates handshake protocols, and not by certain innocuous means: in a
passive process process, !p’s value may change arbitrarily provided !s is low, and in
a guard process, !s may change arbitrarily while e has a f value.

LeMMA 36 If for closed m such that =4my=Em, if m violates handshaking pro-
tocols then m is semantically ill-formed.

Proof: We prove the converse: suppose m is well-formed but violates hand-
shake protocols, establish a contradiction. Suppose the first such instance was
from variables !p/7p in step k of the computation. Then, the violation must have
been by one of the four cases and there was an assignment to !p or 7p respon-
sible for the problem. Since all assignments have been localized at this point in
the compilation process, there is a single process where !p/7p is assigned. Pro-
ceed by cases on which process this is. In each case, it may be shown that
such a violation leads to contradiction, we leave out the lengthy case analysis.
|

We now define a famﬂy of relations Rlassnckt; seqckt %guardckta Rlactckts Spassckt
Réloopekt, and Rskipeks (notated collectively as relations mzekt) relating intermediate
points in computation for each phase 5 rule. The proof of correctness of this phase is
thus similar to the phase 1 proof. The definition of these relations is straightforward:
the circuit process does not change because there are no events to be sequenced in a
circuit. The left-hand side processes execute the appropriate actions step-by-step.
We give the assignment rule as illustration and leave the others for the reader to
fill in.

72

DEFINITION 42 We define Ragencks as the least relation with the following proper-
ties, for arbitrary m and oyg:

<m||ASSNth7 U) Rlassnckt <m||ASSthSa U)
where 0 = gg[ls; = 1,751 =f,1sg = £, 7s0 = {]

(m||(x T; PHS(!s1,7s1); ASSNips), 0) Rassnckt (m||ASSNps, o)

2. where 0 = og[ls;y = t,7s; = f,lsg = £, 7sg = {]

3 (m||(PHS(!s1, 7s1); ASSNins), 0) Rassnckt {m||ASSNyps, o)
’ where 0 = ag[ls;1 = t,7s; = f,lsg = £, 7so =1, 2 =]

4 <m||([_"51 —>?51 l]; ASSNth), U) Rlassnckt <m||ASSthS; U>
’ where 0 = og[ls;1 = t,7s1 = t,lso = £, 7sg = £, 2 =]

5 <m||(‘?31 l: ASSNlhs); J) Rlassnckt <m||ASSths; U)

where 0 = gg[ls;1 = 1,781 = t,lso = £, 7so =1, 2 =]

Cases 6.—9. are the symmetrical ones to the above when !sy 7. Note ASSNy,s and
ASSN,ys are the left- and right-hand sides of rule (6 : ASSN).

We then have two main computational correspondence Lemmas for each of the
.t relations.

LEMMA 37 If given semantically well-formed configurations (cg, og) and (¢, o),
for each st relation, if
(co,00) — (c1,01)
Uekt
(co,)

then we may find ¢}, 07,0 < i < m, such that

(co,00) — (c1,00)
ekt Uekt
{cho0) = {choh)
Proof: The proof proceeds by case analysis on how the initial configurations are
related by ”sckt, as in previous proofs. The one important difference in this proof is
there is prima facie no reason to expect the environment (in this case m) to obey
the handshaking protocols. It must then be argued that for each possible violation
of handshake protocols by the environment (e.g. from state 2. of Ragencke, !s1 18
set low), Lemma 36 then shows the computation of m to be ill-formed, violating
the assumption of well-formedness. By this line of reasoning, in every case we
may assume there are no errors in the handshaking protocols performed by the
environment.
The remainder of the proof consists in showing steps of left-hand side modules
such as ASSN)ps may be mimicked by their corresponding right-hand sides, a task
we leave to the reader. []

CORRECT COMPILATION OF SPECIFICATIONS TO ASYNCHRONOUS CIRCUITS 73

LEmMaA 38 If given configurations (cg, 0g) and (cf, of) for each ~sg; relation, if

(C0,0'())
Uekt
(co,00) — (ch,01)

then either
1. {co,00) = ERROR, or
2. we may find ¢;, 04,0 < i < n, such that
<COJUO> i} (cn10n>

ekt ekt
(co,00) — (1, 01)

Proof: As in the previous Lemma, it may be assumed that the environment
causes no handshake errors, because if so, by Lemma 36 the computation of m
is ill-formed, so case 1. may be established here. The rest of the argumentation
involves showing all possible executions of the circuit correspond to some execution
of the left-hand side specifications. A simple but lengthy case analysis allows these
conditions to be established. []

LEMMA 39 If (¢, 0) Rkt (¢, 0'), then o(Zsuccess) = 0 (Zsuccess)-

LEMMA 40 If (¢, 0) mekt (¢!, 0'), then e({¢, 0'}) implies e({c, 7}).

Proof: This is proved using Lemma 35 above: if the rhs errors, one of the cases
of Lemma 35 must hold, in which case the lhs has the same ill-formed case since
all nonlocal variables have same values in related states. []

We may thus establish that every single-step rewriting preserves meaning.

=
LEMMA 41 If for closed m, =ama=im=5m’, then m = p5er m’.
Proof: Direct from the previous four Lemmas, by case analysis on which rule was

applied. [|

The correctness of this phase, Lemma 7, may now be established.
Proof: By Lemma 41 and transitivity. [|

