
Type-Specialized Staged Programming with Process Separation

Yu David Liu
SUNY Binghamton

davidl@cs.binghamton.edu

Christian Skalka
The University of Vermont

skalka@cs.uvm.edu

Scott Smith
The Johns Hopkins University

scott@cs.jhu.edu

Abstract
Staging is a powerful language construct that allows a program
at one stage to manipulate and specialize a program at the next.
We propose 〈ML〉 as a new staged calculus designed with novel
features for staged programming in modern computing platforms
such as embedded systems. A distinguishing feature of 〈ML〉 is a
model of process separation, whereby different stages of compu-
tation are executed in different process spaces. Our language also
supports dynamic type specialization, via type abstraction, dynamic
type construction, and a limited form of type dependence. 〈ML〉 is
endowed with a largely standard metatheory, including type preser-
vation and type safety results. We discuss the utility of our language
via code examples from the domain of wireless sensor network pro-
gramming.

1. Introduction
Modern software often evolves through a lifecycle of deployment
stages [12], each of which executes within a distinct deployment
environment with distinct requirements of speed, memory usage,
and power consumption. The focus of this paper is using staged
programming techniques to better support the modern evolving
deployment context.

There has been a long history of explicit support for staging
in programming languages [24, 6, 5, 22, 2, 19, 18, 4, 23]. These
language designs all admit program code itself as a data type, and
support composition, specialization, and running of code-as-data.
Traditional staged languages are designed for partial evaluation
and optimized code generation. The new language presented here,
〈ML〉, borrows ideas from many existing systems such as MetaML
[24], but is designed with a new and different set of practical goals
in mind, as we explain now.

Staging as Deployment Steps We believe the concept of staging
is beneficial in modern software applications where deployment is
an important part of the software lifecycle. When staging is ex-
plicitly supported by a programming language, each stage can rep-
resent a distinct deployment step, and the code for preparing code
for the next stage can be viewed as writing a “deployment script”. It
would be desirable to directly use existing staged languages such as
MetaML to model deployment processes. However, MetaML sup-
ports cross-stage persistence, a feature that allows programs to use
variables bound to values at one stage to be used in “later” stages as
if it were a variable defined at a later stage, and thus allows values
to migrate freely from stage to stage. One example that justifies the
use of cross-stage persistence is the use of library functions defined
at the bootstrapping stage to be freely used at any later stage. While
cross-stage persistence was originally designed for convenience, it
conflicts with our intended view of each stage as a deployment step.
One type of software that exemplifies the modern traits of stag-
ing are those running on wireless sensor networks [10, 8, 13, 14].
These networks are composed of a vast number of sensor nodes (so-
called motes) of limited resources connected to one or more hubs

– larger computers running e.g. Linux. The typical sensor network
deployment occurs in two stages, with the first stage running on the
hub controlling the deployment of mote code at the second stage.
Cross-stage persistence is unfeasible in this setting because prob-
lems of identity and value equality across different network node
spaces are too great.
〈ML〉 provides a framework which assumes the different stages

run in different processes, unlike MetaML which is a single pro-
cess. On top of this, our 〈ML〉 supports a principled approach to
cross-stage value migration in spite of the separation of processes;
for this a simple serialization/marshalling protocol is designed.

Type Specialization for Efficiency A second benefit of applying
staging to modern software is more in line with what traditional
staging languages are good at: producing more efficient code for
the next stage. But, what sort of efficiency really matters? The vast
majority of existing meta-programming systems are motivated by
goals of how to inline/pre-compute code as much as possible at the
meta-stage, so that the code for the object stage will require fewer
computation steps.

Some modern deployment contexts operate over a different
metric of efficiency. Again taking sensor networks as an example,
resources on motes are extremely constrained, but the constraint
does not primarily come from the CPU, but from memory and
power consumption. Shortening computation time does not reduce
memory usage significantly, and may in some cases increase it.
Shortening computation time also has a limited effect on sensor
energy consumption, as it has been shown in experiments that
the energy consumed by transmitting one bit over the radio is
equivalent to executing 800 instructions [13]. Thus, given a send
function that is going to be executed on the a sensor node

send = λaddr : uint64.e
the way to significantly improve system efficiency (i.e. memory
usage and energy consumption) is not to specialize the code e
to include as fewer computation steps as possible, but instead to
attempt to specialize the type of addr so that it does not always
need to be represented using 64 bits. If we can specialize the type
of addr to uint8, we are saving 7 bytes of, say, 4K, of sensor node
memory, and more importantly saving 56 bits of each radio send,
so the net effect of energy saving is equivalent to saving 56 * 800
= 44,800 instructions for each send.

A centerpiece of 〈ML〉 is it allows the types used in the staged
code to be specialized. Note that in this situation, the type annota-
tions we ultimately want on the mote code are based on the runtime
behavior of hub code: the hub will dynamically calculate how much
memory is needed for each addr in a mote it is about to deploy. To
solve this requires types to be treated as fully first-class objects
that can be passed around freely. So, a primary contribution of this
paper is a staged type theory which allows types to be treated as
first-class entities, whilst maintaining decidability of typechecking.
It is challenging to make a type system decidable in the presence of
first-class types; we preserve decidability by greatly limiting how

1 2009/7/29

member : 〈·int·〉 → int list→ 〈·bool·〉
member x l =

if l = nil then 〈false〉 else
let h = lift (hd l) in
let tl = member x (tail l) in
〈x = h||tl〉

run(member〈sense_data〉[0, 1])

Figure 1. A 〈ML〉 Code Snippet for a member Function

the runtime types can be used to improve typechecking. 〈ML〉 is a
provably sound strongly typed staged programming language with
type abstraction, bounded subtyping, and which supports types as
first-class values. Our soundness result is strong in the sense that
the code fragments assembled and specialized by the hub will not
produce a runtime error either when being compiled to ship to the
mote or when running on the mote.

2. Motivations and Examples
In this section, we informally describe the design principles and key
language features of 〈ML〉. For the convenience of our discussion,
all examples below only consider two stages, which we call the
meta stage and the object stage, following standard terminology in
meta programming. 〈ML〉 in fact supports arbitrary stages.

2.1 The Relation with MetaML
Two primitive MetaML expressions are directly reflected in 〈ML〉,
namely the bracket expression 〈e〉, and the execution expression
run e. Indeed a canonical MetaML example, a staged list member-
ship testing function, can be written in 〈ML〉 as in Fig. 1. Rather
than testing membership directly, the execution of the function pro-
duces a piece of membership testing code, which is often more ef-
ficient.

The ability to specialize code is very useful for resource-
constrained platforms, such as wireless sensor networks. In this
particular usage, we imagine that the meta stage is on the hub that
creates code to deploy and run on the sensors, and the object stage
is the sensor node execution environment. For example, suppose
each sensor node needs to frequently test membership of the result
of sense_data in a fixed list of say [0, 1]. Rather than invoking
a standard membership function at each sensor node and incur-
ring the run-time overhead of stacks and if . . . then . . . else, we
only need to execute the program in Fig. 1 on the hub (a computer
with far fewer resource constraints). What will be deployed to in-
dividual sensor nodes is only the argument of the run expression,
member 〈sense_data〉 [0, 1], which will be evaluated on the hub
to:

〈sense_data = 0 || sense_data = 1 || false〉

The Principle of Cross-Stage Process Separation Philosophi-
cally, there is no justification why code on different stages has to
be working in the same memory space. In fact, we feel a main at-
traction of meta programming in practice is to treat each stage as
a distinct deployment context. One of the main goals of 〈ML〉 is to
model a clean separation of process spaces for different program
stages.

Of course, it is necessary to allow a principled migration of
values across stages, which our language does allow. A language
expression for this purpose is lift e, which “lifts” the evaluation
result of e to the next stage, and hence can be processed by the next
stage. In Fig. 1, the expression lift (hd l) lifts the value of the meta-
stage to the object-stage, which subsequently can be compared with
a value in that stage (x = h).

A Simple Model with No Escape MetaML has an escape expres-
sion ~e that can “demote” e from the object stage back to the meta
stage. For instance, rather than writing

〈x = h || tl〉

as in Fig. 1, MetaML programmers would write the equivalent

<~x = ~h || ~tl>

Intuitively, the call-by-value semantics of our language will enforce
arguments being evaluated first before they are “spliced” together
to form the object code. This is precisely what an object code with
escape expressions inside would do. The previous example shows
that the escape operator in MetaML is perhaps not as essential
as it seems in many practical programming situations: a MetaML
expression 〈C[~e]〉 can often be re-written as λx.〈C[x]〉)(e) where
C is an evaluation context.

The support of an escape-like operator in a meta language –
particularly the support of free variables occurring inside such
an expression – is known to lead to significant complexities for
static type checking, the “open code” problem [19, 4, 23]. Since
most of the programs we are interested in can be written with the
aforementioned encoding in mind, we choose not to support the
escape operator in our language; a more detailed discussion of this
topic can be seen in Sec. 7.

Note that a design with no escape operators does not undermine
support of open code per se. As the example shows, x, h, and tl are
all free variables in code 〈x = h || tl〉. Outside of the 〈·〉 they are
types of code, and inside they indicate code inserted into code.

2.2 Type Specialization
Type Abstraction and Application for Staged Code The primary
reason why 〈ML〉 has type specialization is to support specializa-
tion of types in staged code. The previous code in 〈ML〉 can be
re-written as

Λaddr_t.〈λaddr : addr_t.e〉
Type theoretically, the construct here is a standard type abstraction
mechanism as is found in System F, with the twist that in 〈ML〉
type arguments can be dynamically constructed, not just statically
declared. Type application can then be performed to produce staged
code with a concrete type, such as

(Λaddr_t.〈λaddr : addr_t.e〉)uint8

One can imagine the code above to be executed on the meta
stage, so that when this code is executed on sensor nodes, variable
addr will have uint8 type.

One might wonder why the code above does not need to be
written as:

(Λaddr_t.〈λaddr : addr_t.e〉)〈uint8〉

The answer is that unlike term values, types (such as uint8) are
merely declarative information always interpreted uniformly at
different deployment contexts. Thus it is appropriate to support
“cross-stage persistence” of types, as evinced in the above exam-
ple.

Type Bounds and Subtyping The benefit of static type checking
over staged code has been widely discussed in recent efforts in
meta programming [16, 2, 26, 4, 23]. Type checking the code
above however would be challenging. As a universal type, addr_t
can be instantiated with any concrete type. To typecheck the code
above modularly, the typechecker would have to make conservative
consumptions, so that practically any use of addr in e would need
to be assigned with a top type, and the vast majority of programs
would not type check.

2 2009/7/29

To tackle this problem, 〈ML〉 allows programmers to give a
bound on the abstracted type. For instance, the send code defined
previously can be refined as:

Λaddr_t 4 uint.〈λaddr : addr_t.e〉
With this bound, the type system can assume the type of addr

is at least uint when e is typechecked.
Our form of type abstraction is related to standard bounded

polymorphism of System F<, except that bounds are not recursive
in our system and also we allow types to be constructed dynami-
cally, as discussed below.

Types as Expressions Unlike System F< where types and terms
do not mix, and all type instantiation occurs statically, types are
first-class citizens in 〈ML〉, and can be assigned, passed around,
stored in memory, compared, etc.

The design choice here is driven by our application needs.
In systems programming, it is not uncommon to see conditional
macros used over types, such as

ifdef v typedef T {...} else typedef T{...}

The connection between macros and staged programming is widely
known [7], except that most people – including the macros users
themselves – complain they are not expressive enough. Treating
types as values in 〈ML〉 provides programmers with a flexible way
to define constructs like above (so much so that arbitrary programs
are allowed to define how the T above can be typedef-ed), at the
same time preserving static type safety. As a result of this design
choice, the static type system of our language is very different from
System F< and its descendants such as Java generics; our types are
a more general form of dependent type and we use notation Πt.τ
for them to reflect this.

As an example, the following code is an 〈ML〉 program:

rtt = tlet tcond 4 uint32 = (if e0 then uint16 else uint32) in
(Λaddr_t 4 uint32.〈λaddr : addr_t.e〉) tcond

Here the tlet . . . = . . . in expression is similar to a let . . . =
. . . in , except that it binds types. tlet serves a critical purpose in the
formalism: any type-valued expression such as the above if-then-
else cannot directly appear in another type; only its tlet-ed name
can. This keeps expressions out of the type grammar: for example,
(if e0 then uint16 else uint32) → uint32 is ill-formed and such
types never can be written. Assuming the return type of a typical
send function is an ACK of fixed result_t type, our language will
type the example above as rtt : 〈·tcond → result_t·〉, under type
constraint tcond 4 if e then uint16 else uint32. Here notation 〈·τ ·〉
represents the type for a piece of staged code which has a τ type at
its stage.

Notation type[uint] means any type less than uint; type[τ] in
general has the following meaning:

type[τ] = {τ ′ | τ ′ 4 τ}
These range types are used to type type-valued expressions; for
example, in typing the above we would need to show

if e then uint16 else uint32 : type[uint32]

Many dependent type systems are known to be undecidable
since some types will be inextricably tied to runtime behavior.
Our particular formalism however is decidable due to the limited
runtime presence of types.

Casting To “close the loop” on runtime-dependent types as de-
fined above we need to find a way to put initial members in these
types in spite of not knowing what value (type) they will be at run-
time (the upper bounds and the type parametricity provide ways
to get non-initial values in and out of the type so it is the initial

construction that is the problem). To define a member of a runtime-
decided type in the code, the runtime condition, for example the
e0 condition in the above example, is pivotal. For the above exam-
ple, the rtt function must take some value v : tcond as argument,
where tcond is a type whose value depends on the runtime value of
e0. Conditional types have been defined [1, 20] which are suited for
this purpose, but for this simple presentation we opt for a typecast
which is more general but incurs a runtime check. For this particu-
lar example we could write say

rtt((tcond)5)

which will cast 5 to tcond, which at the time the cast runs will
either be uint16 or uint32 and so will succeed.

State and Serialization Our ultimate goal is a sensor language
but the scope of such a language project is large: it needs to include
remote code loading, concurrent execution of the global sensors-
hub system, and messaging protocols. Those features are largely
orthogonal to the type and staging system design however and so
we leave them out of this presentation. We do extend our pure
language to include state and a method for serializing state. This
is important for sensor programming: the hub can build specialized
data structures (such as routing tables) and lift them to hub code
so they become hardwired in the ROM of the mote. Since RAM
is much more scarce than ROM on a mote this is a very useful
operation.

3. Core Language and Type System
As discussed in Sect. 2, we aim to establish foundations for staged
computation with embedded systems program specialization as an
envisioned application domain. To this end we define the 〈ML〉
language syntax, operational semantics, and type system in this
Section, focusing on the side-effect-free fragment of the language
at first for ease of discussion; in Sect. 4 we will add mutation and
state and records to obtain a more expressive language model.

3.1 〈ML〉 Syntax and Semantics

x ∈ V, t ∈ T
v ::= c | x | λx : τ.e | Λt 4 τ.e | 〈e〉 | τ
e ::= v | (τ)e | e e | tlet t 4 τ = e in e | run e | lift e
E ::= [] | Ee | vE | tlet t 4 τ = E in e | (E)e | (v)E

τ ::= t | γ | type[τ] | 〈·τ ·〉 | Πt ◦∆.τ | τ → τ

∆ ::= ∅ | ∆; t 4 τ

Γ ::= ∅ | Γ;x : τ

Figure 2. 〈ML〉 Term and Type Syntax

The 〈ML〉 language syntax is defined in Fig. 2, including values
v, expressions e, evaluation contexts E, types τ , type coercions ∆,
and type environments Γ. In addition to core functional calculus
terms and arbitrary (user-defined) program constants c, we include
a form for type abstractions Λt 4 τ.e, a “type let” tlet, and also
include types as program terms; these forms are discussed more
in Sect. 3.2. A casting form (τ)e is included, the motivations for
which were discussed in Sect. 2. We also include three forms for
staged computation. The form 〈e〉 represents the code e, which is
treated as a first class value. The form run e evaluates e to code
and then runs that code (in its own process space). The form lift e
evaluates e to a value, and turns that value into code, i.e. “lifts” it
to a later stage.

3 2009/7/29

x[e′/x] = v
y[e′/x] = y if x 6= y
c[e′/x] = c

〈e〉[〈e′〉/x] = 〈e[e′/x]〉
((τ)e)[e′/x] = ((τ)e[e′/x])
(lift e)[e′/x] = lift e[e′/x]

(run e)[e′/x] = run e[e′/x]
(e1e2)[e′/x] = (e1[e′/x])(e2[e′/x])

(λx : τ.e)[e′/x] = λx : τ.e
(λy : τ.e)[e′/x] = λy : τ.e[e′/x] if x 6= y

(Λt 4 τ.e)[e′/x] = Λt 4 τ.(e[e′/x])
(tlet t 4 τ = e1 in e2)[e′/x] = tlet t 4 τ = e1[e′/x] in e2[e′/x]

τ [e′/x] = τ

t[τ/t] = τ
t′[τ/t] = t′ if t 6= t′

γ[τ/t] = γ
type[τ ′][τ/t] = type[τ ′[τ/t]]
〈·τ ′·〉[τ/t] = 〈·τ ′[τ/t]·〉

(Πt′ ◦∆.τ ′)[τ/t] = Πt′ ◦∆[τ/t].τ ′[τ/t] if t 6= t′

(Πt ◦∆.τ ′)[τ/t] = Πt ◦∆[τ/t].τ ′[τ/t]

x[τ/t] = x
c[τ/t] = c
〈e〉[τ/t] = 〈e[τ/t]〉

((τ)e)[τ/t] = ((τ)e[τ/t])
(lift e)[τ/t] = lift e[τ/t]

(run e)[τ/t] = run e[τ/t]
(e1e2)[τ/t] = (e1[τ/t])(e2[τ/t])

(λy : τ.e)[τ/t] = λy : τ [τ/t].e[τ/t]
(Λt 4 τ ′.e)[τ/t] = Λt 4 τ ′[τ/t].(e)

(Λt′ 4 τ ′.e)[τ/t] = Λt′ 4 τ ′[τ/t].(e[τ/t]) if t 6= t′

(tlet t 4 τ ′ = e1 in e2)[τ/t] = tlet t 4 τ ′[τ/t] = e1[τ/t] in e2

(tlet t′ 4 τ ′ = e1 in e2)[τ/t] = tlet t′ 4 τ ′[τ/t] = e1[τ/t] in e2[τ/t] if t 6= t′

Figure 3. Type and Term Subsitutions in 〈ML〉

RCONST
δ(c, v) = e

c v → e

RAPP
(λx : τ.e)v → e[v/x]

RTLET
tlet t 4 τ = τ ′ in e→ e[τ ′/t]

RCAST
v : τ

(τ)v → v

RAPPΠ

(Λt 4 τ.e)τ ′ → e[τ ′/t]

RRUN
e→? v

run 〈e〉 → v

RLIFT
lift v → 〈v〉

RCONTEXT
e→ e′

E[e]→ E[e′]

Figure 4. 〈ML〉 Core Operational Semantics

As discussed in the previous section, we omit a “quote” or
“escape” form, typically denoted ~e, because we use here a much
simplified form that is adequate for our envisioned application, and
indeed adequate to express what escape is typically used for, that is
dynamic construction and splicing of code. Central to our approach
is the definition of term substitution. Our substitution should ensure
“stage conformity”, i.e. we can only substitute code into code, and
code stage levels should be coordinated in substitution, in particular
we should have that 〈e〉[〈e′〉/x] = 〈e[e′/x]〉, and 〈e〉[e′/x] is
undefined if e′ is not code. This is specified in our formal definition
of term substitution in Fig. 3.

The operational semantics of 〈ML〉 are then defined in Fig. 4 in
terms of substitutions, as a small-step reduction relation →. This
relation is defined in a mutually recursive fashion with its reflex-
ive, transitive closure denoted→?. Note that the RRUN rule mod-
els process separation by treating the running of code as a sepa-
rate and complete evaluation process; this separation will become
more clear when we consider mutation and state in Sect. 4. The
user-supplied function δ axiomatizes our interpretation of program
constants c. The semantics of casting are predicated on a notion of
typing defined in the following section.

3.2 Type Specialization and Subtying Theory
As discussed in Sect. 2, type specialization is essential for our envi-
sioned application space. This specialization has two dimensions:
first, we should be able to specialize the types of procedures, and
second, we should be able to dynamically construct types of pro-
grams based on certain conditions.

For the first purpose we posit a form of bounded type abstrac-
tion, denoted Λt 4 τ.e; the application of this form to a type value
may result in type specialization of e. We use a bound on the ab-
straction to provide a closer type approximation (hence better static
optimization of code) in the body of the abstraction.

For the second purpose we introduce types as values, and a tlet
construct for dynamically constructing types. Examples in Sect. 2
and Sect. 6 illustrate the usefulness of this. In order to obtain a
clear separation of types and expressions and promote well-typed
type construction, we introduce the tlet form.

Since type abstractions can be applied to first class type values,
a System-F≤ style approach where type instantiation arguments are
statically declared is not sufficient for our system. Rather, we assign
to type abstractions a restricted form of type dependence, hence
the Π type syntax of type abstractions. Intuitively, in a call-by-
value semantics our Λ abstractions are applied to “fully constructed

4 2009/7/29

types” at run time; statically, we have that the type of applied Λ
abstractions depends on the first-class type argument.

3.2.1 Type Forms and Type Coercions
As usual we must define a different type form for each class of
values in our language. In addition to a Π type form for type
abstractions, we have standard term function type forms τ → τ and
base types γ for user-defined constants. We also introduce a type
form type[τ], that represents the type of dynamically constructed
type values. Intuitively, type[τ] represents the set of all types that
are subtypes of τ , considered as values. Since we consider code a
value, type-of-code has a denotation 〈·τ ·〉, where τ is the type of
value that will be returned if the code is run.

The Π type form of type abstractions comprises a subtyping
coercion. In a type Πt ◦ ∆.τ the coercion ∆ expresses the type
variable bound on the type abstraction, and also expresses bounds
related to tlet-declared type variables in the body of the abstraction
(that may escape their static scope). Clearly, subtyping plays a
central role in our type system, so associated formalisms must be
specified.

∆ ` τ 4 τ
t 4 τ ∈ ∆

Γ ` t 4 τ

∆ ` τ1 4 τ2

∆ ` 〈·τ1·〉 4 〈·τ2·〉

∆ ` τ1 4 τ2 ∆ ` τ2 4 τ3

∆ ` τ1 4 τ3

∆ ` τ ′1 4 τ1 ∆ ` τ2 4 τ ′2

∆ ` τ1 → τ2 4 τ ′1 → τ ′2

∆ ` τ 4 τ ′

∆ ` type[τ] 4 type[τ ′]

∆; t 4 τ0 ` τ 4 τ ′

∆ ` (Πt 4 τ0.τ) 4 (Πt 4 τ0.τ
′)

Figure 5. Subtyping Rules

Intuitively, any coercion ∆ is a system of upper bounds on type
variables. Any coercion induces a set of subtyping relations in a
standard manner extended to comprise also types of type abstrac-
tions, code, and type values; formally we define the subtyping rela-
tion ∆ ` τ 4 τ ′ in Fig. 5. In our type system, we will also require
that only one upper bound per type variable may be defined, mean-
ing that tlet-declared variables within the same static scope must
be distinct, and also it disallows an overspecialization of type vari-
ables, as discussed more below.

DEFINITION 3.1. A coercion ∆ is canonical iff t 4 τ1 ∈ ∆ and
t 4 τ2 ∈ ∆ implies τ1 = τ2.

3.2.2 Type Validity
Type judgements in our system are of the form Γ,∆ ` e : τ .
Derivability of type judgements is defined in terms of type deriva-
tion rules in Fig. 6. This type discipline enforces disallowance of
cross-stage persistence, in particular the CODE rule ensures that
variables occurring within code are treated as code values at the
same or greater stage; here we define:

〈·∅·〉 = ∅
〈·Γ;x : τ ·〉 = 〈·Γ·〉;x : 〈·τ ·〉

Note that application of type abstraction in the APPΠ rule results
in a type substitution. Unlike term substitution, cross-stage persis-
tence of types should be allowed, since once evaluated types are
purely declarative entities and should be able to migrate across

stage levels. This is reflected in the definition of type substitutions
defined in Fig. 3. The APPΠ rule is also defined in terms of a rela-
tion between type coercions defined as follows.

DEFINITION 3.2. We write ∆1 ` ∆2[τ/t] iff for all t′ 4 τ ′ ∈ ∆2

we have ∆1 ` t′[τ/t] 4 τ ′[τ/t].

Type validity is then defined as follows:

DEFINITION 3.3. A type judgement Γ,∆ ` e : τ is valid iff it is
derivable and ∆ is canonical. We write e : τ iff ∅,∅ ` e : τ .

4. Records, State, Serialization, and Semantics
In this section we extend the core functional language with records
and mutable store, along with a notion of serialization that will al-
low mutable data to be shared between stages. We introduce new
record and state expression forms, as well as an expression se-
quence form that is a semicolon-delimited vector of expressions,
a unit value (), and a special form of let-expression helpful for rep-
resenting syntactic stores that makes subsequent definitions more
succinct; this technique follows previous work such as [11].

s ::= ∅ | s; e (sequences)
v ::= . . . | {`1 = v1; . . . ; `n = vn} | x (values)
e ::= . . . | {`1 = e1; . . . ; `n = en} | e.`

| ref e | e:= e | !e | s (expressions)
τ ::= . . . | {`1 : τ1; . . . ; `n : τn} | ref τ (types)

D ::= [] | let z = ref v in D (declaration contexts)
m ::= ∅ | m; z:= v (mutations)
h ::= D[m] (syntactic stores)

Syntactic stores may be interpreted as a mapping from variables
to values via the domain and lkp functions. We write dom(h) to
denote the domain of a store h:

dom(s) = ∅
dom(let z = ref v in h) = {z} ∪ dom(h)

We write lkp z h to denote the value associated with variable z in
a syntactic store h:

lkp z (let z′ = ref v in h) = lkp z h if z 6= z′

lkp z (let z = ref v in D[m]) = lkp′ z v m

lkp′ z v ∅ = v

lkp′ z v (m; z:= v′) = v′

lkp′ z v (m; z′:= v′) = lkp′ z v m z 6= z′

To define serialization, we will just “slice out” that part of the
store that is relevant to a particular value and “wrap” the serialized
value in that part of the store. That part is the sub-store that defines
all references reachable from that value; serialization will result in
a closed expression as demonstrated in Lemma 5.4. Formally:

serialize v h =
let D[m] = (project h (reachable v h)) in D[m; v]

5 2009/7/29

CONST
Γ,∆ ` c : κ(c)

VAR
Γ(x) = τ

Γ,∆ ` x : τ

TYPE
Γ,∆ ` τ : type[τ]

APPΠ

Γ,∆ ` e : Πt ◦∆′.τ ′ ∆ ` ∆′[τ/t]

Γ,∆ ` e τ : τ ′[τ/t]

APP
Γ,∆ ` e1 : τ ′ → τ Γ,∆ ` e2 : τ ′

Γ,∆ ` e1e2 : τ

ABS
Γ;x : τ,∆ ` e : τ ′

Γ,∆ ` λx : τ.e : τ → τ ′

ABSΛ

Γ,∆ ` e : τ ′ ∆ ` t 4 τ

Γ,∆′ ` Λt 4 τ.e : Πt ◦∆.τ ′

CODE
Γ,∆ ` e : τ

〈·Γ·〉,∆ ` 〈e〉 : 〈·τ ·〉

RUN
Γ,∆ ` e : 〈·τ ·〉

Γ,∆ ` run e : τ

LIFT
Γ,∆ ` e : τ

Γ,∆ ` lift e : 〈·τ ·〉

CAST
Γ,∆ ` e : τ ′

Γ,∆ ` (τ)e : τ

SUB
Γ,∆ ` e : τ ′ ∆ ` τ ′ 4 τ

Γ,∆ ` e : τ

TLET
Γ,∆ ` e : type[τ ′′] Γ,∆ ` e′ : τ ∆ ` t 4 τ ′

Γ,∆ ` tlet t 4 τ ′ = e in e′ : τ

Figure 6. Type Judgement Rules

Here, reachable v h = V iff V contains all store locations reachable
from v in h. Further, we define project as follows:

project D[m] V = project D V [project m V]

project [] V = []
project (let z = ref v in D) V = project D V if z 6∈ V
project (let z = ref v in D) V = (let x = ref v in

(project D V)) if z ∈ V

project ∅ V = ∅
project (m; z:= v) V = project m V if z 6∈ V
project (m; z:= v) V = project m V; z:= v if z ∈ V

Now, we can define the operational semantics via a small-step
relation→ on closed configurations (e, h), where (e, h) is closed
iff fv(e) ⊆ dom(h). In our metatheory we will assume that the
semantics of ref cell creation will create a globally “fresh” variable
reference every time.

RRUN
(e,∅)→? (v, h′)

(run 〈e〉, h)→ (serialize v h′, h)

RREF
z 6∈ dom(D[m])

(ref v,D[m])→ ((), D[let z = ref v in m])

RDEREF
(!z, h)→ (lkp z h, h)

RASSIGN
z ∈ dom(D[m])

(z:= v,D[m])→ ((), D[m; z:= v])

RLIFT
(lift v, h)→ (〈serialize v h〉, h)

RCONTEXT
(e, h)→ (e′, h′)

(E[e], h)→ (E[e′], h′)

Figure 7. Semantics of 〈ML〉 with Mutation and State

The interesting rules are specified in Fig. 7. Note that the se-
mantics of run establishes a distinct process space, so there will be

no cross-stage persistence. Also, observe how values are serialized
whenever we move between process spaces, in particular when val-
ues are lifted, and when results are returned by run.

We lack the space to give the type rules for records and ref-
erences, but they are standard; we utilize the standard “width and
depth” structural subtyping rules for records.

5. Properties
In this section we sketch formal properties of our metatheory. Aside
from illustrating properties of our system, we intend to emphasize
how our approach allows standard type properties to be obtained
in the metatheory. In particular we can obtain type safety (Theo-
rem 5.2) via a familiar type preservation property (Theorem 5.1).

Our argument for type safety follows a standard path. To begin,
a canonical forms Lemma specifies the correspondence of types to
their associated classes of values in valid type judgements. Here we
consider just the interesting cases.

LEMMA 5.1 (Canonical Forms). Given valid Γ,∆ ` v : τ all of
the following hold:

1. if τ = 〈·τ ′·〉 for some τ ′ then v = 〈e〉 for some e.
2. if τ = type[τ ′] for some τ ′ then v = τ ′′ for some τ ′′.
3. if τ = Πt ◦ ∆′.τ ′ for some t,∆′, τ ′ then v = Λt 4 τ ′′.e for

some e and τ ′′.

Next, a term substitution Lemma will apply to the β reduction
case of type preservation. But in type preservation we similarly
need to consider the case where type abstraction applications are
reduced, so we also obtain an analogous type substitution Lemma.
We sketch a case of the term substitution that is central to our sys-
tem design, where code is substituted into code; the type substitu-
tion Lemma follows by a similar induction on type derivations.

LEMMA 5.2 (Type Substitution). If Γ,∆; t 4 τ ′0 ` e : τ0 and
Γ,∆ ` τ1 : type[τ ′1] with ∆ ` τ ′1 4 τ ′0, then Γ,∆ ` e[τ1/t] :
τ0[τ1/t].

LEMMA 5.3 (Term Substitution). If Γ;x : τ ′0,∆ ` e : τ0 and
Γ,∆ ` v : τ1 with ∆ ` τ1 4 τ ′0, then Γ,∆ ` e[v/x] : τ0.

Proof. This result follows in a mostly standard manner by induction
on the derivation of Γ;x : τ ′0,∆ ` e : τ0 and case analysis on
the last step in the derivation. The interesting case in our system is
where the last step is an instance of CODE. In this case by inversion

6 2009/7/29

of CODE we have:

e = 〈e′〉 τ ′0 = 〈·τ ′·〉 Γ = 〈·Γ′·〉 τ0 = 〈·τ ·〉

for some e′, τ ′, τ , and Γ′, and we have also a judgement of the
form:

Γ′;x : τ ′,∆ ` e′ : τ

〈·Γ′·〉;x : 〈·τ ′·〉,∆ ` 〈e′〉 : 〈·τ ·〉
But 〈·Γ′·〉,∆ ` v : 〈·τ ′·〉 by assumption, so by Lemma 5.1 we
have that v is a code value of the form 〈e1〉 for some e1. By
inversion of the typing rules it is easy to show that Γ′,∆ ` e1 : τ ′′

where ∆ ` τ ′′ 4 τ ′, so by the induction hypothesis we have that
Γ′,∆ ` e′[e1/x] : τ . And since e[v/x] = 〈e′[e1/x]〉 in this case
by definition of term substitutions, the result follows in this case by
an application of CODE. ut

Next we extend the notion of type validity to configurations.
The definition is quite straightforward thanks to our use of syntactic
stores.

DEFINITION 5.1 (Type Valid Configurations). A configuration typ-
ing (e,D[m]) : τ ◦∆ is valid iff ∅,∆ ` D[m; e] : τ is.

An important corollary of this definition is that code values at run-
time are closed; the importance of this is that closedness ensures
that references do not “cross stages”, ensuring process separation
between stages.

COROLLARY 5.1. If (E[〈e〉], D[m]) has a valid typing then 〈e〉 is
closed.

Another important property has to do with serialization, and
ensuring that our definition of serialization is type-correct in the
sense that serialization produces a closed value of the same type as
the original, unserialized value:

LEMMA 5.4 (Serialization Typing). If (v, h) : τ ◦∆ is valid, then
so is ∅,∆ ` serialize v h : τ .

Now, before proving type safety, we observe that the single-step
RRUN reduction rule is predicated on a complete reduction in the
next-stage process space. Because of this, in type preservation we
will need to induct on the length of reduction sequences, where
length takes into account the preconditions of RRUN reduction
instances.

DEFINITION 5.2. The length of an evaluation relation (e, h) →?

(e′, h′) is the sum of all single reduction steps in the evaluation,
including the reduction steps required in the precedent of a RUN
reduction.

Now we can state type preservation, which follows by a double
induction on the length of a multi-step reduction sequence and type
derivations. Details are omitted here for brevity. The “shared upper
bound” relation between initial and final types, rather than equality,
is necessary due to subtleties of typing tlet expression forms.

THEOREM 5.1 (Type Preservation). If (e0, h0) : τ0 ◦ ∆ is valid
and (e0, h0) →? (en, hn), then (e0, h0) : τn ◦ ∆ is valid where
∆ ` τ0 4 τ ∆ ` τn 4 τ for some τn and τ .

Type safety follows in a straightforward manner from type
preservation, and the additional property that expressions which
are irreducible but are not values have no type.

THEOREM 5.2 (Type Safety). If (e0, h0) : τ0 ◦ ∆ is valid then
it is not the case that (e0, h0) →? (e0, h0) where (e0, h0) is
irreducible and e0 is not a value.

send = Λ addr_t 4 uint.

Λ message_header_t 4

src : addr_t
dest : addr_t

ff
Λ msg_t 4 {header : message_header_t}.
λ psend :< .msg_t→ result_t. > .
λ self :< .addr_t. >
< λ addr : addr_t.

λ msg : msg_t.
msg.header.src := self;
msg.header.dest := addr;
psend msg

>
radio = Λ msg_t 4 Type. < λ msg : msg_t. · · · >

Figure 8. Code Snippet for send

6. A Programming Example
In this section, we use sensor network programming as a case study
to demonstrate how 〈ML〉 can be helpful in real-world program-
ming. The specific issue we address is to allow mote addresses to
be of variant length depending on the deployment context, rather
than a fixed type such as the uint64 used in the send example of
Sec. 1. If in a particular network deployment we know there is no
need for a sensor node to talk to more than 16 neighbors, we can as-
sign a 4-bit integer as the type for network packet addresses, rather
than uint64, and save radio power. This example does not show the
full scope of runtime type specialization since it changes no types
in the packet other than the size of integers, but it would be easy
to also change the packet type by adding additional information in
some particular specializations.

6.1 A Specializable “Send” Snippet
In the standard TinyOS sensor network platform [10], the message
type message_t has the following format:

typedef struct message_t {
uint8 header[sizeof(message_header_t)];
uint8 data[TOSH_DATA_LENGTH];
uint8 footer[sizeof(message_footer_t)];
uint8 metadata[sizeof(message_metadata_t)];

} message_t;

It contains a payload field data – the underlying data – to-
gether with network control information, including the header,
the footer, and the metadata. The header in turn has the
following type, where the flag field contains control information,
and dest and src are destination and source addresses respec-
tively.

typedef struct message_header_t {
uint8 flag;
uint64 dest;
uint64 src;

} message_header_t;

It is evident that any send function that is written with type
message_t being the type for messages will not be efficient: 64-
bit addresses are hardcoded inside this data structure. This situation
can be avoided in our language, using our implementation of the
send function as is illustrated in Fig. 8. Here observe that send is a
piece of code, defining the logic of message sending at the object
stage (i.e. on motes). The first argument of the send function is
addr, denoting the destination address where the packet is going to
be sent.

7 2009/7/29

moteCode = Λ addr_t 4 uint.
Λ msg_t 4 {header : {src : addr_t; dest : addr_t}; data : uint8[]}.
λsendf : (< .addr_t→ msg_t→ result_t. >)
λneighbor_num :< .uint16. > .
λneighbors :< .addr_t[]. > .
< msg_t m;

m.data = ”hello”;
for(uint16 i = 0; i < neighbor_num; i+ +){
sendf neighbors[i] m
}

>

Figure 9. Code for Motes

Note the use of 〈ML〉 type specialization here: the message
type msg_t is abstracted, and eventually will be instantiated at
the meta-stage with the most efficient concrete type. It is given a
type bound of a record type with at least a header field of type
message_header_t. The latter in turn is also abstracted and can be
specialized with any concrete type, as long as it contains a field
dest whose type is addr_t. This last type is closely related to power
consumption in sensor networks: when the send function is defined,
it is abstracted to work on any type that is a subtype of uint.
Depending on how send as a type abstraction is applied, the code
eventually being deployed on motes will be sending messages with
short addresses (such as of uint4) or long ones (such as of uint64).

Note that the send function eventually invokes some function
on the physical layer to send the actual message out. The par-
ticular physical-layer send can be customized, and is passed in
as argument psend. The signature of that argument suggests that
it is another piece of staged code which contains a function that
takes a message of msg_t type and returns a TinyOS ACK (of type
result_t, which is for all practical purposes equivalent to uint8).
The examples of psend illustrates the case of how library functions
can be used in this context. Note that the send definition above is
likely to be applied at the meta-stage to produce the staged send
code for the motes; the physical-layer function on the hub is prob-
ably not the same as the physical-layer function on the mote. By
requiring such a function to be applied explicitly, rather than re-
sorting to cross-stage persistence of MetaML to implicitly use the
psend function defined in a previous stage, our calculus implicitly
avoids the issue of accidental library version incompatibility that is
common in modern software deployment.

With this function defined, it is obvious that one way to produce
a send function with all addresses being 4-bits would be

let self = (uint4)〈0xF〉 in
tlet ht1 = {flag : uint8; src : uint4; dest : uint4} in
tlet mt1 = {header : ht1; data : uint8[DATA_LEN]} in

send uint4 ht1 mt1 (radio mt1) self)

The concrete physical-layer sending function is radio, which is
defined in Fig. 8. To simplify the presentation, we have assumed
it can be of any type (with top bound Type). This can certainly be
refined in a realistic context. Note that to make this program type
check, we have assumed inthalf is a subtype of uint. This base
subtyping rule can be easily augmented to the core calculus. The
typecast is needed in the first line as we have explained in Sec. 2.2.

6.2 A Specializable Toy Program on Motes
The send code we have described in Fig. 8 is one function that
would be deployed to the motes by the hub. We now define a
complete toy application to run on motes, in Fig. 9. All this example
does is to send a "hello" message to its “neighbors”, other motes

that can be reached in a 1-hop range. To make this example not too
contrived, we have used several language constructs beyond the
〈ML〉 formal core, including for loops, and arrays. Adding these
features should not be difficult given we already have side effects.
For the purpose of this presentation, array-out-of-bound access can
happen, and is not considered a type error.

The type of the message that eventually will be sent to neigh-
bors, msg_t, is abstracted and can be specialized. It can be of any
record type, except that it must contain a header field and a data
field which is a uint8 array. The header at least contains two fields
src and dest, both of which are of some addr_t type that can be
specialized. In addition, it also allows the neighbor information
of a mote to be specialized, including the entire neighbors array,
and the number of neighbors neighbors_num. What this implies is
the definition allows the neighbor information to be “hardcoded”.
At first glance, supporting hardcoding of neighbor information is
unintuitive, especially in a dynamic environment like sensor net-
works, where neighbor information is previously not known before
physical deployment. The rationale here is to promote the potential
for memory savings for the case where the number of neighbors is
known when moteCode is specialized. As a result, rather than al-
locating the array neighbors in (scarce) mote memory, a particular
implementation of 〈ML〉 may choose to unroll the loop before the
code is deployed. Our current foundational calculus does not per-
form such an unrolling, but this is one possible optimization in the
context of embedded systems.

The moteCode expression takes anther piece of staged code,
sendf, as one of its arguments. Thus, on the hub, running the
following code piece will deploy a specialized version of moteCode
on the motes as follows:

let self = (uint4)〈0xF〉 in
tlet ht1 = {flag : uint8; src : uint4; dest : uint4} in
tlet mt1 = {header : ht1; data : uint8[DATA_LEN]} in
let scode = send uint4 ht1 mt1 (radio mt1) self)
let contacts_info = lift [(uint4)0x0] in

run (moteCode uint4 mt1 scode contact_info 〈1〉)

The first four lines above are identical to the previous instanti-
ation above. At the fifth line, a one-neighbor array is created and
lifted to the mote stage as contacts_info. The last line specializes
the code and executes it. Note that we do not support location in-
formation in the calculus, so strictly speaking the code above only
means “specialize moteCode and run it in some deployment context
(mote)".

6.3 A Meta Program on the Hub
Fig. 10 gives the bootstrapping code to be executed on the hub.
(Notation: if the upper bound type of a tlet expression is not given
it can be assumed to be the same as the tletted type.) The code has

8 2009/7/29

also assumed that uint4 is a subtype of uint8, uint8 is a subtype
of uint16, and so on. In general, subtyping relations defined as
such may lead to memory layout conversions when a subtype
value assigned to a supertype value, but for the purpose of type
specialization, this is not a problem – the specialized code and the
parameter used for specialization does not live in the same memory
space.

The general idea here is the hub will first execute function

getTopology :: ()→ topology_t

to get the entire global connectivity information of the entire sensor
network, and store the result in a hub data structure (the topo
variable in the example). This data structure may be huge, but
note that it is kept on the hub only – a resource-rich computer. We
omit the definition of this function here. The only implementation
detail that is related to the discussion here is the computed graph
is undirected, i.e., if {n1 : 3;n2 : 2} is an edge in the graph, then
{n1 : 2;n2 : 3} is not redundantly put in the same graph.

The hub then invokes function

minColors :: topology_t→ uint32

to compute the minimal numbers to color this topology graph. The
idea here is that sensors only talks to their neighbors, so the unique
addresses that are needed are basically the number of colors in the
classic coloring problem. Function

coloring :: topology_t→ uint32→ topology_t

is an immutable function that takes a topo data structure and returns
a new one with all colors filled, in the color field of each entry of
that data structure. When the second argument of the coloring func-
tion is colors, the colors being used to fill the fields are represented
by integers [0..colors-1].

The rest of the function is largely copied from the code fragment
deploying the motes, explained in Sec. 6.1 and Sec. 6.2. Note
that send is specialized twice, as is moteCode. At a high level,
the two send deployments reflect two different send protocols,
before specialization and after specialization. At the beginning,
before the hub has computed the optimized solution for addressing,
it consistently uses uint64 to set up the network (the first run
expression). Later, when the entire topology is known, the hub
can compute the optimized size for addresses, eventually stored
in addrt. The neighbor information is also computed at the meta
level based on the topology information topo. This is achieved by
function getNeighbors, which is purely a hub execution. As we
explained above, the current language does not support locations,
concurrency or messaging, so the code above is not complete; still
it fully shows the types and how they can be specialized and code
deployed.

7. Related and Future Work
The centerpiece of this paper – type-safe runtime type specializa-
tion for staged programming – does not appear to overlap signifi-
cantly with existing work. The closest work we know of is [17]. In
that work, type abstraction as a language construct is supported in a
staged program calculus following a standard standard System F<

route; types are not treated as expressions.
Type-safe code specialization has been the focus of MetaML

[24, 16] and its more recent and robust implementation, MetaO-
Caml [6]. On a foundational level, the problem of how to repre-
sent code of one stage in another stage has been studied in vari-
ous formalisms, such as modal logic [5], higher-order abstract syn-
tax [26], and first-order abstract syntax with deBruijn indices [4].
One particular technical issue that has triggered many recent de-
velopments in this area is known as the “open code” problem. As
we described in Sec. 2.1, Our calculus does not support arbitrary

escape expressions, and so the open code problem does not ap-
pear, simplifying our formal development. The advantage of sup-
porting open code is it allows programmers to escape code under
a variable binding which manipulates that variable, for example as
in the MetaML example <function x -> ~ (member <x> [1..100])>;
we miss this opportunity in 〈ML〉. The added expressiveness of
MetaML here comes at the price of having to deal with significant
additional type system complexities [19, 4, 2, 23]. We have thus far
not found this added expressiveness useful for our sensor program-
ming examples and so we have left it out.

Parametric customization of type annotations is not new; widely
used examples include C++ templates and Java generics. The for-
mal foundations for Java generics are the parametric type systems
System F and F< [3], and our parameterized type syntax is sim-
ilar. All of these systems however do not treat types as first-class
values like we do, and this significantly limits their usefulness in
the application domain we focus on here. Runtime type informa-
tion has been successfully used for the special case of a decidable
type system for specializing types of polymorphic functions [9],
and while we are performing a different kind of type specializa-
tion this work shares with our work the desire to push the frontiers
of decidable type systems using runtime type information. Many
staging frameworks allow types to be customized, but the output of
the customization needs to be re-type-checked from scratch and so
does not have the level of type safety that we have; two examples
of this are the C++ template expansion and Flask, the latter which
we now cover.

The potential of applying meta-programming to sensor net-
works was recently explored by Flask [14]. The main motivation
of designing Flask is to allow FRP-based [25] stream combinators
to be pre-computed before sensor networks are deployed. The key
construct of Flask is quasi-quoting, which in essence is MetaML’s
stage operator <e> combined with an escape operator ~e. Since
pre-computing stream combinators is the main goal of Flask, the
focus of our language – computing precise type annotations inside
the object-stage code at meta-stage – is not a topic they address.
In particular, cross-stage static type-checking of Flask is relatively
weak; it is possible to generate ill-typed Flask object code.

The standard method TinyOS sensor programmers use to cus-
tomize messages is a tool called mig [15]. Before the program is
deployed, several experiments out of the scope of the programming
system are conducted, so that calibration parameters can be ob-
tained, and are used as the input parameters of mig to customize
the code. The drawback of such an approach is the entire calibra-
tion process is manually conducted. Sensor programmers in our
language can embed the entire calibration and code customization
process as part of the main hub program.

In the future, we plan to explore the use of conditional types
[1, 20] or conditionally tagged type unions [21] to avoid some of
our need for typecasts and thus to gain more static type safety.

Even though the design of 〈ML〉 was greatly influenced by sen-
sor network programming needs, the presentation here is a general-
purpose staged calculus that can be independently used for meta
programming in cases where runtime type specialization and (re-
)deployment are important. For this reason, the calculus leaves out
language abstractions that are needed for sensor network program-
ming specifically. For instance, 〈ML〉 does not contain distributed
communication primitives, locality, concurrency, or mechanisms to
marshall data to bit strings. These features will be important when
we build a domain-specific language upon the foundation of 〈ML〉.

References
[1] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with

conditional types. In Conference Record of the Twenty-First Annual
ACM Symposium on Principles of Programming Languages, pages

9 2009/7/29

NODE_NUM = 0xFFFF;
EDGE_NUM = 0xFFFFFFFF;
DATA_LEN = 110;
HEAD_NIC = 0xFFFFFFFFFFFFFFFF;

uint64 contacts[NODE_NUM];
node_t = {nic : uint64; color : uint64}
edge_t = {n1 : uint16;n2 : uint16};

topology_t = {nodes : node_t[NODE_NUM]; edges : edge_t[EDGE_NUM]};
main = tlet ht1 = {flag : uint8; src : uint64; dest : uint64} in

tlet mt1 = {header : ht1; data : uint8[DATA_LEN]} in
let topo = getTopology() in
for(uint16 i = 0; i < NODE_NUM; i+ +){

let self = (uint64)lift topo[i].nic in
let contacts_info = lift [(uint64)HEAD_NIC] in
let scode = send uint64 ht1 mt1 (radio mt1) self) in
run (moteCode uint64 mt1 scode contact_info < 1 >)
};
let colors = minColors topo in
tlet addrt 4 uint8 = if (colors <= 16) then uint4 else uint8 in
let psize = if (colors <= 16) then DATA_LEN

else DATA_LEN + 6 in
let topo = coloring topo colors in
tlet ht2 = {flag : uint8; src : addrt; dest : addrt} in
tlet mt2 = {header : ht2; data : uint8[psize]} in
for(uint16 i = 0; i < NODE_NUM; i+ +){

let lift self = (addrt)topo[i].color in
let contact_info = lift (addrt[colors])(getNeigbhors topo i) in
let contact_num_info = lift colors in
let scode = send addrt ht2 mt2 (radio mt2) self) in
run (moteCode addrt mt2 scode contact_info contact_num_info)
}

getNeighbors = λgraph : topology_t.λnodei : uint16.
k := 0;
for(uint32 i = 0; i < EDGE_NUM; i+ +){

if (graph.edges[i].n1 == nodei) then contacts[k + +] := edges[i].n2
if (graph.edges[i].n2 == nodei) then contacts[k + +] := edges[i].n1
}

Figure 10. Bootstrapping Code for Sensor Head Node

163–173, 1994.

[2] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. Closed types
as a simple approach to safe imperative multi-stage programming.
In ICALP ’00: Proceedings of the 27th International Colloquium on
Automata, Languages and Programming, pages 25–36, London, UK,
2000. Springer-Verlag.

[3] Luca Cardelli and Peter Wegner. On understanding types, data
abstraction, and polymorphism. ACM Comput. Surv., 17(4):471–523,
1985.

[4] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ICFP’03, 2003.

[5] Rowan Davies and Frank Pfenning. A modal analysis of staged
computation. J. ACM, 48(3):555–604, 2001.

[6] Waid Taha et. al. MetaOCaml: A compiled, type-safe multi-stage
programming language. http://www.metaocaml.org/.

[7] Steven E. Ganz, Amr Sabry, and Walid Taha. Macros as multi-stage
computations: type-safe, generative, binding macros in macroml. In
ICFP ’01: Proceedings of the sixth ACM SIGPLAN international
conference on Functional programming, pages 74–85, New York, NY,
USA, 2001. ACM.

[8] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric
Brewer, and David Culler. The nesc language: A holistic approach

to networked embedded systems. In PLDI ’03: Proceedings of the
ACM SIGPLAN 2003 conference on Programming language design
and implementation, pages 1–11, New York, NY, USA, 2003. ACM.

[9] Robert Harper and Greg Morrisett. Compiling polymorphism using
intensional type analysis. In In Twenty-Second ACM Symposium on
Principles of Programming Languages, pages 130–141. ACM Press,
1995.

[10] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler,
and Kristofer S. J. Pister. System architecture directions for networked
sensors. In Architectural Support for Programming Languages and
Operating Systems, pages 93–104, 2000.

[11] Furio Honsell, Ian A. Mason, Scott Smith, and Carolyn Talcott. A
variable typed logic of effects. Information and Computation, 119:55–
90, 1993.

[12] Yu David Liu and Scott F. Smith. A formal framework for component
deployment. In OOPSLA ’06: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-oriented programming systems,
languages, and applications, pages 325–344, New York, NY, USA,
2006. ACM.

[13] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei
Hong. Tag: a tiny aggregation service for ad-hoc sensor networks.
SIGOPS Oper. Syst. Rev., 36(SI):131–146, 2002.

[14] Geoffrey Mainland, Greg Morrisett, and Matt Welsh. Flask: Staged

10 2009/7/29

functional programming for sensor networks. In 13th ACM SIGPLAN
International Conference on Functional Programming (ICFP 2008),
September 2008.

[15] mig: message interface generator for nesc, available online at
http://www.tinyos.net/tinyos-1.x/doc/nesc/mig.html.

[16] Eugenio Moggi, Walid Taha, Zine El abidine Benaissa, and Tim
Sheard. An idealized metaml: Simpler, and more expressive. In
In European Symposium on Programming (ESOP, pages 193–207.
Springer-Verlag, 1999.

[17] Stefan Monnier and Zhong Shao. Inlining as staged computation. J.
Funct. Program., 13(3):647–676, 2003.

[18] Tom Murphy VII, Karl Crary, Robert Harper, and Frank Pfenning.
A symmetric modal lambda calculus for distributed computing. In
LICS ’04: Proceedings of the 19th Annual IEEE Symposium on Logic
in Computer Science, pages 286–295, Washington, DC, USA, 2004.
IEEE Computer Society.

[19] Aleksandar Nanevski. Meta-programming with names and necessity.
In ICFP ’02: Proceedings of the seventh ACM SIGPLAN international
conference on Functional programming, pages 206–217, New York,
NY, USA, 2002. ACM.

[20] François Pottier. A versatile constraint-based type inference system.
Nordic Journal of Computing, 7(4):312–347, November 2000.

[21] Jonathan Shapiro and Swaroop Sridhar. The bitc programming
language. http://www.bitc-lang.org/.

[22] Rui Shi, Chiyan Chen, and Hongwei Xi. Distributed meta-
programming. In GPCE ’06: Proceedings of the 5th international
conference on Generative programming and component engineering,
pages 243–248, 2006.

[23] Walid Taha and Michael Florentin Nielsen. Environment classifiers.
In POPL’03, 2003.

[24] Walid Taha and Tim Sheard. Multi-stage programming with explicit
annotations. In PEPM ’97: Proceedings of the 1997 ACM SIGPLAN
symposium on Partial evaluation and semantics-based program
manipulation, pages 203–217, 1997.

[25] Zhanyong Wan and Paul Hudak. Functional reactive programming
from first principles. In PLDI ’00: Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and
implementation, pages 242–252, New York, NY, USA, 2000. ACM.

[26] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive
datatype constructors. In POPL ’03: Proceedings of the 30th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 224–235, New York, NY, USA, 2003. ACM.

11 2009/7/29

