
A Formal Framework for Component Deployment

Yu David Liu Scott F. Smith
Department of Computer Science

The Johns Hopkins University
{yliu, scott}@cs.jhu.edu

Abstract
Software deployment is a complex process, and industrial-strength
frameworks such as .NET, Java, and CORBA all provide explicit
support for component deployment. However, these frameworks
are not built around fundamental principles as much as they are
engineering efforts closely tied to particulars of the respective sys-
tems. Here we aim to elucidate the fundamental principles of soft-
ware deployment, in a platform-independent manner. Issues that
need to be addressed include deployment unit design, when, where
and how to wire components together, versioning, version depen-
dencies, and hot-deployment of components. We define the appli-
cation buildbox as the place where software is developed and de-
ployed, and define a formal Labeled Transition System (LTS) on
the buildbox with transitions for deployment operations that in-
clude build, install, ship, and update. We establish formal properties
of the LTS, including the fact that if a component is shipped with a
certain version dependency, then at run time that dependency must
be satisfied with a compatible version. Our treatment of deploy-
ment is both platform- and vendor-independent, and we show how
it models the core mechanisms of the industrial-strength deploy-
ment frameworks.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.2.7 [Software Engi-
neering]: Version Control

General Terms Languages, Design, Theory

Keywords Application Buildbox, Deployment, Component, Ver-
sion

1. Introduction
In [44], Szyperski presents the three defining properties of soft-
ware components; his first property is that they serve as units of
independent deployment. This aspect has attracted far less attention
from the research community than his other two properties (that
components are units of composition and units of state encapsula-
tion). Make no mistake, component deployment is a complex pro-
cess which must be carefully thought out if correct software behav-
ior is to be achieved: an Enterprise JavaBean [17] might be tested
in one container and then deployed in a different container that is
incompatible with the bean; the same Java application might dis-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-348-4/06/0010. . . $5.00

play different run-time behaviors on sites with different settings
of CLASSPATH to locate dependency components; updating a Win-
dows DLL when installing an application might cause other ap-
plications dependent on it to exhibit erratic behaviors; and, with
dynamic plugins, components can also be deployed into a running
application.

The manner in which industry has responded to these problems
is a barometer of real-world need for elegant and rigorous mod-
els of deployment: numerous tools [18, 40, 12, 25, 10, 11, 43]
have been designed to support component deployment, and the
.NET, Java and CORBA platforms define how software compo-
nents should be deployed [32, 17, 36]. These industrial solutions
provide workable systems that users can directly use, but along
with this strength comes a weakness: to ensure correct functional-
ity on a particular platform, these solutions are highly embedded
in platform-specific details, such as file system structures, envi-
ronment variables, scripts, middleware architectures, and program-
ming language models. The specifications are also informal, and
so no properties can be rigorously guaranteed. For tool-based ap-
proaches, non-trivial issues such as dependency resolution are sub-
merged in the code. The best way to understand them in some cases
is to run the tools and see what happens! So, we believe there is a
real need for the formal study of the component deployment prob-
lem.

1.1 This Work
In this paper, we elucidate the fundamental principles of software
deployment, in a platform-independent manner. Despite its com-
plexity, software deployment is known to follow a lifecycle where
common activities are shared [22, 37]: release from the develop-
ment site (shipping), unpacking at the deployment site (installa-
tion), reconfiguring at the deployment site in response to changes
(update), and activating the application into a usable state (execu-
tion). Is there a common “core” that a good deployment system
should have regardless of the choice of the platform? Is there a fun-
damental and precise notion about what a shipment package should
contain, what it means to be a good software update, and what de-
ployments will not violate version compatibility? We answer these
questions by coming up with an abstract formalization. Our goal
is for these results to give researchers a basis to reason about de-
ployment, and guide future deployment tool developers to come up
with systems with well-defined operations that have provable cor-
rectness properties.

This paper also indirectly sheds light on component design,
from the perspective of what kind of component model is best-
suited for deployment. By focusing primarily on this property here,
this paper extends our past studies, from different perspectives,
of component dependency and linking [42, 27, 28]. Linking –
especially its theoretical foundations and type properties – has
been extensively studied and well-understood [6, 19, 20, 14, 13].
However, previous studies do not adequately take into account

the when and where of linking: Does it happen at build time,
installation time, or run time? Does it happen on the development
site or the deployment site? If the software is first linked at the
development site, and then some of its dependencies are relinked at
the deployment site, are these new dependencies compatible with
those at the development site?

1.2 Goals and Contributions
The main contributions of our framework can be grouped into four
categories, each of which addresses a principal design goal of the
framework:

• Expressiveness. The framework addresses the entire lifecycle
of application evolution, spanning both the development site
and deployment site, and covering both how applications evolve
statically as well as dynamically. A more detailed discussion on
the framework features is given in Sec. 2.

• Generality. Our treatment of component deployment is both
platform- and vendor-independent, and models the core mech-
anisms of existing deployment models found in Microsoft
products (DLLs, COM[33], CLI Assemblies[32]), Unix/Linux
(package installers[18, 12, 40]), Java (EJB[17], Classloaders)
and middleware infrastructures (CORBA CCM[36]). Sec. 5 de-
tails how our framework can be related to different platforms.
Although our framework does not capture every feature in ev-
ery existing deployment model, it offers a more principled way
to implement their core features.

• Correctness. We give the first known proof of version compat-
ibility in a software deployment context, which states that if a
component is shipped with a certain version requirement for its
dependencies, then at run time the dependency must be satis-
fied with a compatible version. Our framework also provides
a formal notion of application well-formedness, and we prove
the framework is robust enough to preserve well-formedeness
during application evolution. This topic is elaborated in Sec. 4.

• Simplicity. Our framework provides a foundational model of
the core issues of deployment such as evolution, naming and
versioning. Because it is simple, it will be possible to use it as a
basis for studying more advanced deployment features such as
security and transaction control.

2. Informal Overview
In this section, we informally explain the core ideas of our frame-
work. A few design decisions are also discussed.

2.1 Core Concepts
2.1.1 The Component Model: Assemblages
Software components in our framework are called assemblages.
Each assemblage is a named, versioned, independently shippable
and independently deployable code unit. This abstraction can be
mapped to any form of real-world deployment unit, for example an
EJB component, a Java .class file, an Eclipse plugin, or a C dy-
namic linking library. (A non-example is the typical use of the C .o
file on Unix platforms: it is not an independent unit since it relies on
linking at the development site before shipment and deployment.)
Our goal is to construct a model which elegantly captures the key
features of the widely known deployment models; after presenting
the technical details we will make a detailed comparison with these
models to show how we meet this goal.

Each assemblage may be equipped with two kinds of inter-
faces, mixers and pluggers. Both mixers and pluggers are named
interfaces which can not only export features defined inside the
assemblage implementation body to other assemblages, but also

NetLib

M
v3

Browser

Net Plugins
v2

NetLib

M
v4

Legends

Application

 Buildbox
Assemblage

Mixer Plugger
Mixing

 Wire

Net Plugins
v2

NetLib

M
v1

Browser

Net Plugins
v2

 Flash

Brw

(a)

(b)

(c)

Application

 Runtime

Assemblage

 Runtime

Plugging

 Wire

Browser

v5

Figure 1. Core Concepts (a) An Assemblage (a) A Snapshot of the
Application Buildbox (b) A Snapshot of the Application Runtime

can import features from other assemblages. Our framework does
not make assumptions on the format of the features themselves;
they may be functions, classes, or other structures. For convenience
here, we often will use functions as examples. We will explain the
difference between mixers and pluggers soon, in Sec.2.1.2. A sim-
ple assemblages example is given in Fig. 1(a), showing a browsing
tool that is wrapped up as an independent deployment unit. It has
the name Browser, and version identifier v2.

The component model introduced here is based on the module
construct of our previous Assemblages project [27]. Despite the
shared structural similarity, the goal of this work is very different
from the original calculus, where type safety was the focus. Since
we have previously addressed typing issues, we ignore them in this
paper for simplicity.

2.1.2 The Component Wires: Mixing and Plugging
Component-based applications are commonly viewed as a number
of individual components wired together [44], where wiring indi-
cates name binding. What matters in a deployment context is when
the wires are established. The watershed event in a component life-
time is load time, when the component turns from a piece of state-
less code to a potentially stateful and executable runtime form. We
call a wire established before the two wired components go through
this watershed event a mixing wire (or sometimes simply a mixing),
and for a wire established after that a plugging wire (or sometimes
simply a plugging). In Fig. 1(b), there is a mixing wire between
the networking library NetLib assemblage and the Browser as-
semblage, and its nature indicates the wire is established before the
browser is up and running1 . In Fig. 1(c), there is a plugging wire
between the Browser and the Flash dynamic plugin. Such a wire
is established after the browser has been launched.

From an assemblage writer’s perspective, declaring a mixer sig-
nifies a willingness to establish a wire before it is loaded, while
declaring a plugger signifies a desire to establish a wire after load-
ing. A mixing wire binds together a pair of mixers, one from each
wired party, so that the imports from one mixer can be satisfied by
the exports from the other. A plugging wire is the same as a mixing
wire, except it binds together a plugger of an assemblage already
loaded and a mixer of an assemblage to be loaded as a result of
plugging. The use of a mixer here may sound odd, but it indicates
the desire of the assemblage being plugged in: Flash as a plugin in
fact desires its names inside Brw interface be resolved the minute it
is loaded, not after.

2.1.3 Evolution and Application Buildbox
The study of deployment leads to the study of application evolution.
The components forming the application are first deployed one by
one, then the wires between them are formed, and then perhaps
some components will be updated independently, and eventually
the application is launched into the runtime form.

In our framework, this “application in flux”, i.e. a snapshot of
the evolution process where some components of the application
are yet to be deployed and some wires are yet to be established, is
evolving in an imaginary “box” called an application buildbox, or
simply a buildbox. The buildbox is illustrated in Fig. 1(b). Three
assemblages are currently in the buildbox, with two of them being
two different versions of the same named assemblage NetLib.
When the buildbox contains all the components the application
needs and all the wires are established, we say an application

1 Our term “mixing” is sometimes called “static linking” in the literature.
We are cautious in using that term, however, because it is overloaded in
the C context, where it refers to the linking of .o object files. Mixing is
analogous to the case in C where an a.out file is linked to its dynamic
linking library (.so files), an action – due to the technicalities of the
platforms – called “dynamic linking” in C terminology.

is formed. The buildbox naturally captures the evolving nature
of component-based software development and deployment, and
serves as a useful mechanism for modeling the process.

After the application is formed, it can be launched and be turned
into a stateful and executable application runtime. Fig. 1(c) shows a
snapshot of an application runtime, which contains a collection of
running assemblages, called assemblage runtimes. Because plug-
ging wires may be established after application runtimes are estab-
lished, application execution continues to support limited applica-
tion evolution.

2.2 The Deployment Lifecycle
A primary goal of our framework is to model all of the fundamental
actions involved in the deployment process. To demonstrate this,
we now describe how the development and deployment of a simple
browser is modeled in our framework. The focus of the framework
is decidedly on deployment, but to model deployment we must also
model fundamental actions at the development stage, since they
have a major impact on deployment. The important development
and deployment actions of our framework are illustrated in detail
in Fig. 2.

Component Build Component-based software development starts
by preparing the components themselves. There are two ways a
developer can obtain a component: either by building one from
scratch, or by using off-the-shelf components shipped by third par-
ties. The first case is modeled by an action called component build,
in Fig. 2(a). For a concrete analogy, this step can be viewed as the
creation of a Java .class file. After this build step, the Browser
component is now in the buildbox. A new browser version v2 as-
signed to the component and uniquely identifies it. The second way
in which a component can be obtained (an off-the-shelf component
like NetLib) will be explained below when component installation
is discussed.

Component Assembling In Fig. 2(a), the two components are in
the buildbox, but the namespaces have yet to be wired together. The
component assembling process achieves this, by wiring together
the two mixer interfaces, one from each component. Note that the
mixing wire is between two versions of components, not just two
components. For instance in Fig. 2(b), the framework is not just
aware that a NetLib component is wired to Browser component,
but also it is that v1 of NetLib is wired to v2 of Browser.

Component Shipping When development of the browser is fin-
ished, the Browser component needs to be packed up and shipped.
This component shipping process is modeled in Fig. 2(c). The result
of shipping is the packed form of Browser, a data structure called
packaged assemblage. When a component is shipped, the shipper
is given the option of specifying whether each version dependency
should be matched when the component is installed elsewhere. In
the example here, let us assume the Broswer shipper does indeed
care about the version of the network library, so that it will not
be installed on a machine whose NetLib component has an in-
compatible version that e.g. might crash the browser. The resulting
packaged assemblage ends up containing a dependency constraint
saying “my mixer Net at development time is wired to the M mixer
of version v1 of NetLib. I will never let myself be wired to a ver-
sion of NetLib that is not compatible with v1”. On the other hand,
if the shipper decides all that matters is that NetLib has a mixer M
containing the features it needs, but not the versions of them, he/she
could also choose to leave out this constraint.

Component Installation The browser enters the deployment site
by the action of component installation, illustrated in Fig. 2(d).
The installation unit is a packaged assemblage. Note that in the
example, the deployment site doesn’t happen to have a copy of

NetLib

M
v1

NetLib

M
v1

Browser

Net Plugins
v2

Browser

Net Plugins

NetLib

M
v1

Browser

Net Plugins
v2

Browser

Net Plugins

dependency: Net -> NetLib. v1. M

NetLib

v1

Browser

Net Plugins
v2

 Flash
Brw

dependency: Brw->Browser.any.Plugins

NetLib

M
v1

Browser

Net Plugins
v2

 Flash

Brw

(a) Componet Build

(b) Component Assembling

(f) Dynamic Component Deployment

Legends Packaged Assemblage

NetLib

M
v3

Browser

Net Plugins

NetLib

M
v3

Browser

Net Plugins
v2

dependency: Net -> NetLib. v1. M(d) Component Installation

v3 is compatible with v1 v3 is compatible with v1

M

NetLib

M
v1

Browser

Net Plugins
v2

NetLib

M
v1

Browser

Net Plugins
v2

(c) Component Shipping

NetLib

M
v3

Browser

Net Plugins
v2

NetLib

M
v4

NetLib

M
v3

Browser

Net Plugins
v2

NetLib

M
v4

(e) Component Update

v2

v2

v4 is compatible with v3
v4 is compatible with v3

v5 v5

Figure 2. Software Development and Deployment Lifecycle

version v1 of NetLib, only a compatible version. It results in a
mixing wire connecting v3 of NetLib and v2 of Browser.

Earlier when we explained component build, we raised the ques-
tion of how NetLib was put into the buildbox. The Browser devel-
oper certainly does not want to build it from scratch, and most likely
it is prepared by some other library developer. In our framework,
the way a third-party component such as NetLib is put in the build-
box is via component installation. Indeed, the development site of
a browser is in fact the deployment site of the network library. This
explains from one angle the inseparable relationship between de-
velopment and deployment, and why a deployment framework also
covers the actions in development.
Component Update At some point, there may be a new, improved
release of the NetLib, and the system administrator wishes to
update the browser to use the newer version. This updating action
is modeled in Fig. 2(e), where the wiring to the Net mixer of
Browser is now switched to the new NetLib library of version
v4. A component update is only successful if the update does not
violate version compatibility. Our framework does not explicitly
support component removal, as non-referenced components (such
as version v3 of NetLib here after the transition) can be garbage
collected easily.
Dynamic Component Deployment With the browser now in-
stalled, it will eventually be launched. And, once the browser is
launched, a user might download a dynamic plugin such as Flash.
It will be desirable for the browser to use Flash without the need to
terminate and restart. This action is modeled in Fig. 2(f). It is simi-
lar in spirit to component assembling, but is an action that happens
only at run time. Note that a Flash plugin here is also a packaged
assemblage, which should come as no surprise since it is also a
well-encapsulated, independently deployable unit. This makes the
action of enabling a dynamic plugin equivalent to deployment a
component dynamically, an action sometimes also called hot de-
ployment in the deployment community.
Formalism and Its Design Choices In our formal framework, all
actions represented in Fig. 2 except the last one are represented
as transitions in a Labeled Transition System (LTS). Only well-
defined transitions are allowed during deployment. Dangerous op-
erations such as manipulating low-level files and system registries
arbitrarily are not allowed. In the spectrum of formal models, the
LTS approach lies between purely declarative approaches and full-
fledged procedural languages. A purely declarative approach has
the strength of being more mathematically concise, but it is too
weak to model the dynamic evolution of the deployment process
as the latter is inherently dynamic. A full-fledged procedural ap-
proach is maximally expressive, but it comes with the price of com-
plexity and greater difficulty in verification. We believe an LTS
serves as a good balance between formal verification and expres-
siveness: the important operations of deployment are faithfully and
intuitively modeled, and at the same time formal properties of the
framework can be proved. In this paper we proved deployment
site well-formedness preservation and version access compatibility
properties. In fact, out of the traditional strength of LTS, stronger
framework-specific temporal properties can also be expressed and
checked, such as the fact that component update must happen be-
fore component installation.

All LTS transitions are independent of the component imple-
mentation and are completely language-neutral. As for dynamic
component deployment, since it is fundamentally an operation
after the application is executed, it is modeled as a reduction
step within a minimally defined programming language. Indeed,
since dynamic deployment fundamentally relies on dynamic link-
ing/loading, some execution model must be assumed. Modeling
it as a language expression makes it programmable, so that the

PalmClient

PalmCodeUnit

 V1

IPalm

PalmClientAssemblage
Net

Palm

PalmDriver

PalmCodeUnit

 V2

Palm

PalmDriver

symbol: Palm

symbol: PalmDriver

PalmAssemblage

 V1

Palm

PalmDriver

symbol: Palm

symbol: PalmDriver

(a)

(b)

Mn

Legends

Class Definition

Palm

Name Binding

Figure 3. The Need for Interfaces (a) The Problematic Case (b)
The Assemblage Solution

Browser developer has the freedom of trigger dynamic deploy-
ment at any point in the program.

2.3 Design Issues
This section attempts to elucidate a few design decisions we made,
and also introduces some advanced features of the framework.
Among them, an important decision any deployment framework
needs to make is the format of the deployment unit, i.e. the compo-
nent model. In Sec. 2.1, we described our component model; you
may ask, why does it look the way it is? The beginning subsections
here will answer this question from the perspective of how such a
model can facilitate deployment.

2.3.1 Why are Interfaces Needed for Deployment?
From the perspective of encapsulation, there is universal consensus
that components should be designed with explicit interfaces. We

Container

IBean

v1

Bean

IContainer

ejbCreate

ejbRemove

dataSource

searchBase

v2

ejbCreate

ejbRemove

dataSource

searchBase

Figure 4. The Container-Bean Interaction

argue that user-definable interfaces for the purpose of deployment
are also important, for several reasons.

First, an interface for a deployment unit is useful to define the
atomic unit of versioning, i.e., all dependencies in one interface
must be satisfied with the same version of the component where
the dependencies are defined. Fig. 3 demonstrates this point. It is
common that a software component, say, PalmClient, contains
two symbolic references, say, Palm and PalmDriver, defined in
a different component, say, PalmComp. A version of PalmDriver
should only operate upon a Palm of the same version. A careless
design of a deployment unit could result in the dangerous binding
of Fig. 3(a), and the application may exhibit erratic behaviors. This
problem can be avoided by equipping the component with explicit
interfaces, illustrated in Fig. 3(b). Here, dependencies are satisfied
on the level of interfaces, and not on the level of a single symbolic
reference, so that all imports in the same interface can only be
satisfied by one version of another component. Equipping a mixer
with an assemblage expresses the desire to define an atomic unit
for versioning dependencies.

Second, explicitly declaring interfaces on deployment units also
presents a cleaner solution for namespace management. This is
especially true when a component will be deployed in a different
site, and the component needs to rebind its dependencies. In Fig. 3,
the namespace of the two mixers are merged together only when
a mixing dependency is present, and there is no global binding
of names. Since the development site and deployment site will
often differ, global binding of names can easily lead to accidental
capture/clash of names, and also make deployment sensitive to
platform-specific details such as the CLASSPATH. Our approach
here is similar to Units [19] and Knit [41] (Units’ adaptation to
C-like languages).

Third, interfaces also specify a component’s capability for de-
ployment. Such a declarative construct is in fact common in ex-
isting deployment frameworks, including the package specification
used by Unix/Linux package managers[18, 40, 12], and the De-
ployment Descriptors of EJB.

2.3.2 Why are Interfaces Bidirectional?
Bidirectional dependencies between software components are a
natural result of software decomposition. For instance, the CORBA
CCM model allows users to define four types of interfaces where
two types of them can be analogously thought of as all-export mix-
ers in our framework and two as all-import mixers2. In CLI As-
semblies, although no explicit bidirectional interfaces are defined,
it is de facto equivalent to an assemblage with each defined class

2 The interfaces of concern are called ports in CORBA, and the two types
corresponding to all-export mixers are Facet and EventConsumer, and
the other two corresponding to all-import mixers are Receptacles and
EventPublisher.

representing a one-export mixer, and each class dependency as a
one-import mixer.

A more important question to answer is how bidirectional in-
terfaces help model the process of deployment. We will use the
example of EJB deployment to show the prevalence of bidirec-
tional dependency. The primary task of an EJB deployer is to es-
tablish the interaction between the to-be-deployed bean and its con-
tainer located at the deployment site. Such an interaction is funda-
mentally bidirectional: the bean depends on the container to pro-
vide container-specific environment entries to customize its behav-
ior, while the container depends on the bean to provide call-back
lifecycle-related methods 3. Currently, EJB treats these as special
cases, where environment entries are declared in an auxiliary data
structure called the deployment descriptor with special tags that
can be recognized by the container, and call-back methods are sup-
ported by adding syntactic restrictions on what a bean class has to
satisfy.

Our framework can model such a case more directly, by allow-
ing the bean to declare a bidirectional interface signifying how the
bean will interact with the container. Fig. 4 demonstrates such an
interaction. In the figure, the Bean can access its imports to obtain
environment entry information set by the Container, such as the
dataSource and searchBase here. The Container can access its
imports to invoke the lifecycle-related methods of the Bean such as
ejbCreate and ejbRemove.

The merit of our approach is our core model is smaller, environ-
ment entry access and call-back methods are not handled as special
cases, and the interface for a bean’s interaction with its container
is structurally similar to many other EJB business interfaces. When
the above Bean is deployed, the only thing that must be done is
to set up a mixing wire between the Bean’s IContainer mixer
and Container’s IBean mixer4. This more unified treatment gives
the deployment model a more rigorous basis, and can help deploy-
ers to focus on the core aspects of the deployment task. In addi-
tion, version control can also be naturally supported, as explained
in Sec. 2.3.1. For instance, a bean can specify that it must be de-
ployed in some particular version of container. The current EJB
model does not support version control explicitly, and so such a
task would need special handling by the programmer.

Since IContainer being defined as a distinct mixer, the de-
ployment logic and business logic, defined on other mixers, are
naturally separated. With this separation in place, an interface such
as IContainer could be written by the EJB deployment descriptor
writer role.

2.3.3 Why Put Pluggers in a Deployment Unit?
For frameworks supporting hot deployment, issues such as which
party should initiate the deployment and when it should be initiated
are often a vendor-specific decisions. For instance, WebLogic’s
implementation of EJB [4] supports hot deployment via a utility
weblogic.deploy. Indeed, since WebLogic is a container vendor,
they know all the details of their container implementation, and so
writing a tool of this flavor is possible. Our approach is to make
minimal assumptions on the underlying software architecture, and
provide a language construct which can facilitate the coding of such
hot-deployment tools.

3 Different kinds of beans need to implement different sets of call-
back methods. For an entity bean for instance, they include fixed
name/signature methods ejbCreate, ejbPostCreate, ejbActivate,
ejbPassivate, ejbStore, ejbLoad, ejbRemove, setEntityContext,
unsetEntityContext.
4 Some vendors of EJB supports hot-deploying. In that case, the example
will demonstrate a plugging wire; the argument stays the same in terms of
bi-directional dependency.

menu

start

Brw

Brw

menu

start

start

(a)

Plugins

menu

param

compute

Mn

Mn

param

compute

compute

(b)

AlgmUpdate

param

Browser

AirControl

Flash

Shockwave

AlgorithmV1

AlgorithmV2

Figure 5. Plugger Rebindability (a) Two Plugins (b) Dynamic
Software Updating

At a high level, placing a plugger on an assemblage indicates
its ability to initiate dynamic deployment. Since each component
in component-based software development is independently de-
ployable, such an interface declaration gives the deployer a better
idea what hot-deploying ability the to-be-deployed component can
have. For instance, when a Browser component is deployed, the
deployer knows the buildbox the component will enter will have
some capability for hot-deployment, and can thus prepare accord-
ingly for other orthogonal and yet important issues, such as secu-
rity. The import and export declarations of the plugger can further
aid the deployer by describing how the hot-deployed component
needs to interact with the rest of the system, and thus what con-
sequences the potential hot-deploying might have. For instance, if
the Plugins plugger of the Browser is going to export a method
called fileWrite, the deployer of Browser may have to be care-
ful about security issues. Applets are an analogous situation if we
model applet download as a hot deployment.

2.3.4 Plugger Rebindability and Dynamic Component
Update

Pluggers are rebindable in our framework: a plugger can be wired
to multiple hot-deployed components at the same time. In Fig. 2(e),
we presented an application runtime with only one plugin, Flash.
But as the application runtime evolves, it can hot-deploy another
plugin, say, ShockWave, which would result in the situation cap-
tured by Fig. 5 (a). Since there is no way to predict in advance how
many dynamic plugins a browser might hot-deploy, there is no way
one can enumerate all pluggers statically. Rebindability provides a
solution to this problem.

From the Browser’s perspective, it needs a way to interact with
these two plugins individually. Since hot deployment is modeled

by a language expression, we can distinguish different plugins by
allowing the expression to return a handle that uniquely identifies
the specific hot-deployed component. For instance, the setup of
Fig. 5 (a) can be achieved by the following code fragment:

//hot-deploy Shockwave
h1 = plugin Wshockwave with Plugins >> Brw
//hot-deploy Flash
h2 = plugin Wflash with Plugins >> Brw
//invoke a function on Shockwave
h1..start();
//invoke a function on Flash
h2..start();

The handles h1 and h2 can start the Shockwave and Flash
plugins, respectively.

The rebindability of pluggers gives our framework de facto
support for dynamic software updating. Different handles to the
same plugger could be viewed as different versions of the same
component. For instance, suppose we have an air traffic control
component enclosed in assemblage AirControl. The software
must stay running, but it is useful to allow some of the core algo-
rithms to periodically be tuned up and replaced with better versions.
For this purpose the AirControl assemblage can declare a plug-
ger AlgmUpdate that imports the main algorithmic function say
compute. Invocation recent..compute() will always refers to
the most recent algorithm if we declare a mutable field recent in
AirControl, and define the update logic as follows:

//hot-deploy a new algorithm
p = plugin WnewAlgm with AlgmUpdate >> M
// store the handle to the field
recent = p;

If a hot-deployed component can not be reached from all live
variables it can be automatically garbage collected, removing the
component from the application.

2.3.5 Singleton Mixers and Rebindable Mixers
A mixer is a singleton if there is at most one other mixer wired
to it at any point in time. Singleton mixers are the most common
form of dependency between components: for example if a Java
.class file contains a symbolic reference to a class name, this
name clearly refers to a single class definition. Most of the exam-
ples we have shown thus far use singleton mixers. The one excep-
tion is the IBean mixer in Fig. 4. In the EJB infrastructure, all beans
in an application in fact exchange information with their container.
For example, if we have a simple application involving two beans,
one Customer and one Agent, both of them will need to read en-
vironment entries. The container-bean interaction thus forms a pic-
ture illustrated in Fig. 6. Note that in this case, although the import
ejbCreate of Container is currently associated with multiple ex-
ports from different Beans, there is no confusion as to which one
a container should call at any given time. This is because they are
call-backs which are never proactively invoked by the Container.
Our framework supports this style of mixer, and we call them re-
bindable mixers. We place the aforementioned restriction on their
use: the imports are never proactively invoked by the rebindable-
mixer-owning party. A precise definition of its use will be detailed
in Sec. 3.4.

One way to help understand the difference between the two
styles of mixers is they represent different forms of dependency.

Container

IBean

v1

Agent

IContainer

v3

Customer

IContainer

ejbCreate

ejbRemove

dataSource

searchBase

v2

Legends

Rebindable Mixer Singleton Mixer

Figure 6. Rebindable Mixers: the Container-Bean Interaction Re-
visited

Singleton mixers represent the standard one-import-satisfied-by-
one-export dependency, and rebindable mixers represent paramet-
ric dependency. Indeed, parameterized modules such as ML func-
tors express parametric dependencies and they are well-known to
be useful. However, existing deployment frameworks almost ex-
clusively disregard this form of dependency. The consequence is
that parameterized modules are not independent deployment units
and thus cannot be updated independently in those frameworks.

2.3.6 On Hierarchical Code Composition
One design decision a typical component/module system needs
to answer is: should code composition be hierarchical? In other
words, does the system support operations such as A = B + C
where B and C are components, and A can also be viewed as a
component used for further composition, such as E = A + D? Hi-
erarchical composition is in fact very common in modern compo-
nent/module systems, such as the compounds in Units [19] and MJ
[9].

Do assemblages allow for hierarchical code composition? The
answer is yes and no: assemblages can be hierarchically composed,
very much in the same way as other related work, but only the com-
posed assemblage is considered an independent deployment unit.
The idea is that on the development site, if hierarchical composition
is needed, developers can freely use static linking of assemblages
(a topic we have left out of this paper for brevity—interested read-
ers can refer to [27]) to achieve this goal, and ship the compound as
one deployment unit. Assemblages on the deployment site are not
hierarchically composable.

The main reason behind this design decision is that hierarchi-
cal composition will introduce complexity if every participant is
individually versioned. Take the above example. If we allow hier-
archical composition on the deployment site, would we give both A
and E new versions if B was updated? Indeed, some solution along
these lines would probably be possible, but we feel the expressive-
ness gained is outweighed by the complexity that must be added.

It is worth pointing out that even without hierarchical code
composition on the deployment site, some typical benefits of hier-
archical composition are nonetheless preserved in our framework.
For instance, one situation hierarchical composition is useful for is

for the case that a parametric component is used more than once in
forming a full application. For instance,

MyApplication = E + F
E = A + B
F = A + C

If one insists on deploying every component of MyApplication as
an independent unit, a naive non-hierarchical treatment will have
will have to deploy two distinct versions of A, a solution which will
not be efficient or elegant. Note that this problem can be addressed
in our framework through the use of rebindable mixers, in which
case only one copy of A needs to be deployed.

2.3.7 On Sub-versioning
Our framework does not have a fixed definition of when two ver-
sions of a component are considered semantically compatible. The
only constraints our framework assumes for sub-versioning are
minimal structural compatibility, such as if a version has an inter-
face named m, then any subversion should have an interface of the
same name. We will formalize this notion in Sec. 3.3.1.

Refraining from giving sub-versioning a stronger definition is
in fact a feature of the framework: it gives our framework more
generality. In the real world, what is considered a compatible de-
pendency in the deployment context varies: in Java dynamic class
loading, it means satisfying type constraints, while in other critical
systems, it means more restrictive invariants such as pre-conditions
and post-conditions. Previous approaches to answering what con-
stitutes compatible versions include behavioral subtyping [26, 30]
and refactorability [2]. In our framework we assume compatibil-
ity of versions is declared by some means, e.g., based on analysis
results from the aforementioned systems.

3. The Formal System
In this section we make rigorous the ideas of the previous section by
presenting a formal Labeled Transition System (LTS) that captures
the key component interactions during the deployment process. In
the following section we establish correctness properties of our
formal framework.

We first define basic notations. x denotes a set {x1, . . . , xp},
with empty set ∅. |S| is the size of set S and A−B = A∩B. −−−→x 7→ y
is used to denote a mapping function Mp mapping x1 to y1, . . . ,
xp to yp where {x1, . . . xp} is the domain of the function, denoted
as dom(Mp). We also write Mp(x1) = y1, . . . Mp(xp) = (yp).
We use ∅M to denote an empty map. dom(∅M) = ∅. We write
Mp[x 7→ y] as a standard map update. Mp and Mp[x 7→ y] are
identical except that Mp[x 7→ y] maps x to y.

3.1 Definitions
Fig. 7 defines the grammatic structure of the buildbox, and Fig. 8
gives auxiliary functions that are used in the framework. We now
work through these definitions step by step.

Buildbox A buildbox (Abb) is represented as a graph, where the
nodes (N) are components and the edges (K) are the wires between
them. This is in sync with the general notion of component-based
software development: applications are components wired together.
Each node might contain multiple versions (V) of components of
the same name (a), and each version of the component is identified
by a version identifier (α). Instead of giving a concrete representa-
tion of a version identifier, we only require that version identifiers
are unique to a degree that accidental clash can be avoided. In real-
world systems, a version identifier could be realized as a meaning-

Abb ::= 〈N ; K〉 application buildbox

N ::=
−−−−−−−→
a 7→ 〈V ; R〉 buildbox nodes

K ::= a.α.m ^ b.β.n buildbox wires

V ::=
−−−−−−−−→
α 7→ 〈A;C〉 component versions

R ::= α ≤ β compatibility relation
A ::= 〈M ; L〉 assemblage

C ::= m ^ b.β.n dependency constraints

M ::=
−−−−−−−−−−→
m 7→ 〈kd; I;E〉 interfaces

I ::= k imports

E, L ::=
−−−−→
k 7→ B exports, locals

B code block, see Fig. 10
W ::= 〈a; α; A; R;C〉 packaged assemblage

a, b, c component name
m, n interface name
k feature name
α, β, γ version identifier
kd ∈ { smixer,

rmixer,
plugger}

interface kind

Figure 7. Definition: Buildbox

ful number appended to a verifiable signature or hash. Other con-
crete examples along the same lines are the GUID’s of COM and
the strong names of CLI Assemblies.

Assemblage Recall from earlier discussion that components in
our framework are realized as assemblages. Each assemblage is
formally represented as a list of interfaces M and local internal
definitions L. Interfaces can either be singleton mixers (smixer),
rebindable mixers (rmixer) or pluggers (plugger). Each interface
is bidirectional, with its imports (I) and exports (E) declared. Note
that for now, we abstractly represent items imported and exported
through interfaces as named “features”; the concrete definition of
a code block B is not given until Sec. 3.4. Before then, all our
discussion is independent of the actual component implementation,
so it is language-neutral and platform-neutral.

Wire A wire is represented as a.α.m ^ b.β.n (see definition of
K in Fig. 7). It means that component a version α’s interface m
is wired to component b version β’s interface n. Note the wiring
information is precise as to what version of the node is wired. We
equate a.α.m ^ b.β.n and b.β.n ^ a.α.m. On the syntactical
level, we do not distinguish mixing wires and plugging wires. This
task can be easily achieved given the kinds of interfaces of m and
n.

Packaged Assemblage A packaged assemblage (W) is the shipped
form of component that can be deployed at a deployment site, and
so it serves as the bridge between the development site and the
deployment site. It contains the name (a), version identifier (α) of
the assemblage to be shipped (A), together with its dependency
constraints (C) and compatibility information (R). We will next
explain dependency constraints and postpone the elaboration of R
until Sec. 3.3.1.

Dependency Constraint A dependency constraint m ^ b.β.n in
C indicates that the current assemblage’s m interface should be sat-
isfied by an interface named n of assemblage named b of version
β. Note that C is both part of a packaged assemblage (W) and part
of an already installed node (V). One might be tempted to think
that dependency constraints should be checked against at installa-
tion time and declared satisfied or failed, so that installed nodes do
not need to carry such information any more. But, this is not real-
istic because assemblages may be mutually dependent: solving all
constraints might end up leading to neither assemblage being in-
stalled. In fact, since the buildbox at deployment site is an evolving
system, there is nothing wrong with recording some of the unsat-
isfied constraints, the C found in the definition of V . In addition,
recording the constraints can also help with future updates, ruling
out those operations violating the dependency constraints.

3.2 Buildbox Well-formedness and Closure
One important property of our framework is that no matter how the
buildbox evolves, it stays “well-formed” (see Sec. 4). We define
the notion of well-formedness in Fig. 8. A buildbox Abb is well-
formed (wffAbb) if all versions of all nodes, wires and version com-
patibility settings are well-formed, represented by wffVer, wffWire
and wffR respectively. A component of a specific version is well-
formed if there is no conflict between its dependency constraints
and the rest of the buildbox (noconflictC), and no import in a sin-
gleton mixer is satisfied by more than one export (noconflictImp),
as explained earlier in Sec. 2.3.5. Wire well-formedness (wffWire)
depends on the correct matching of interfaces: on a per-wire ba-
sis, imports in the interface on one end of the wire must be satis-
fied by exports on the other end. A well-formed wire also should
not connect two rebindable mixers, because otherwise neither party
would initiate any invocation and is de facto futile (recall the call-
back nature of rebindable mixers, explained in Sec. 2.3.5). The last
constraint precludes two pluggers from being connected together:
pluggers only declare what plugins may be plugged into the current
runtime. We will explain wffR in Sec. 3.3.1 below.

Note that buildbox well-formedness itself does not require all
imports of installed assemblages to be satisfied at deployment time,
nor does it require all dependency constraints associated with a
node version to be satisfied, as we explained in Sec. 3.1. These
extra conditions are captured by definition closedAbb.

3.3 The Labeled Transition System
The evolution of a buildbox is defined as a series of transitions in
the LTS of Fig. 9. This LTS is the formalization of the software
development and deployment cycle, and represents the general and
formal version of Fig. 2. All rules excepting (ship) are of the form
Abb

l
−→ Abb′, denoting a buildbox transition from state Abb to

Abb′, via operation l. Each LTS rule defines a legal operation that
can be performed by a deployer (or by a role appropriate for the
operation), with values in the label being the information provided
by the role. The pre-conditions of each rule define what a “good”
operation is. Multi-step evolution Abb

l
−→∗ Abb′ is defined as the

transitive closure over the single-step transition. The (ship) rule is
slightly different because we only care about its output (packaged
assemblages).

The focus of this section is on how individual components are
developed and deployed (Sec. 3.3.1). At this point we assume for
simplicity that there is only one buildbox deployed in the whole
universe. In Sec. 3.3.4, we show how a universe with multiple
buildboxs can be modeled in terms of this simpler notion. Sec. 3.3.2
discusses the impact of our framework on distributed applications.

depends(a, α, m, 〈N ; K〉)
def
= {b.β.n | a.α.m ^ b.β.n ∈ K, interface(a, α, m,Abb) = 〈kd; I;E〉, I 6= ∅}

interface(a, α, m, 〈N ; K〉)
def
= M(m) where N(a) = 〈V ; R〉, V (α) = 〈A;C〉, A = 〈M ; L〉

interfaceKind(a, α, m,Abb)
def
= kd where interface(a, α, m, Abb) = 〈kd; I; E〉

newer(R, α)
def
= {α} ∪ {β | (α ≤ β) ∈ R}

newer(R, any)
def
= {β | (α ≤ β) ∈ R} ∪ {α | (α ≤ β) ∈ R}

newest(Θ, R, α)
def
= β, where nset = newer(R, α) ∩ Θ, β ∈ nset, ∀β ′ ∈ nset.(β′ 6= β =⇒ (β′ ≤ β) ∈ R)

newest(Θ, R, any)
def
= β, where nset = newer(R, any) ∩ Θ, β ∈ nset, ∀β ′ ∈ nset.(β′ 6= β =⇒ (β′ ≤ β) ∈ R)

newest(Θ, R, α)
def
= undefined otherwise

bestChoice(〈N ; K〉, b, β)
def
= β if N(b) = 〈V ; R〉, β ∈ dom(V)

bestChoice(〈N ; K〉, b, β)
def
= β′ if β′ = newest(dom(V), R, β), N(b) = 〈V ; R〉, β /∈ dom(V)

bestChoice(〈N ; K〉, b, β)
def
= undefined otherwise

wrap(a, α, ∆, Abb)
def
=

[

i∈[1..p]

wrapE(a, α, mi, ∆, Abb)

if Abb = 〈N ; K〉, {m1, . . . , mp} = {m | (a.α.m ^ b.β.n) ∈ K}

wrapE(a, α, m,∆, Abb)
def
= {m ^ b.β.n}
if m ∈ ∆, {b.β.n} = depends(a, α, m, Abb), interfaceKind(a, α, m, Abb) = smixer

wrapE(a, α, m,∆, Abb)
def
= {m ^ b.any.n}
if m /∈ ∆, {b.β.n} = depends(a, α, m, Abb), interfaceKind(a, α, m, Abb) = smixer

wrapE(a, α, m,∆, Abb)
def
= ∅ otherwise

〈M1; L1〉 <:A 〈M2; L2〉
def
= ∀m ∈ dom(M1).(m ∈ dom(M2) ∧ M1(m) <:M M2(m))

〈kd1; I1; E1〉 <:M 〈kd2; I2; E2〉
def
= (kd1 = kd2) ∧ (∀k ∈ dom(E1).k ∈ dom(E2)) ∧ (∀k ∈ I2.k ∈ I1)

Well-formedness and Closure Related Predicates

wffAbb(〈N ; K〉)
def
= (∀a ∈ dom(N).(N(a) = 〈V ; R〉 ∧ (∀α ∈ dom(V).wffVer(a, α, Abb))))∧

(∀a ∈ dom(N).(N(a) = 〈V ; R〉 ∧ wffR(V, R)))∧
(∀lk ∈ K.wffWire(lk, Abb))

closedAbb(〈N ; K〉)
def
= (∀a ∈ dom(N).(N(a) = 〈V ; R〉 ∧ (∀α ∈ dom(V).closedVer(a, α, Abb))))

wffVer(a, α, Abb)
def
= noconflictC(a, α, Abb) ∧ noconflictImp(a, α, Abb)

closedVer(a, α, Abb)
def
= satisfiedC(a, α, Abb) ∧ satisfiedImp(a, α, Abb)

noconflictImp(a, α, Abb)
def
= ∀m.∃I.∃E.(interface(a, α, m,Abb) = 〈smixer; I; E〉

=⇒ | depends(a, α, m, Abb) |<= 1)

satisfiedImp(a, α, Abb)
def
= ∀m.∃I.∃E.((interface(a, α, m,Abb) = 〈smixer; I; E〉) ∧ (I 6= ∅)

=⇒ | depends(a, α, m, Abb) |= 1)

noconflictC(a, α, Abb)
def
= ∀(m ^ b.β.n ∈ C)

a.α.m ^ b′.β′.n′ ∈ K =⇒ N(b′) = 〈V ′; R′〉 ∧ β′ ⊆ newer(R′, β) ∧ n = n′ ∧ b = b′

where Abb = 〈N ; K〉, N(a) = 〈V ; R〉, V (α) = 〈A; C〉

satisfiedC(a, α, Abb)
def
= noconflictC(a, α, Abb) ∧ ∀(m ^ b.β.n ∈ C).∃β′.(a.α.m ^ b.β′.n ∈ K)

where Abb = 〈N ; K〉, N(a) = 〈V ; R〉, V (α) = 〈A; C〉

wffWire(a.α.m ^ b.β.n, Abb)
def
= (I1 ∈ dom(E2)) ∧ (I2 ∈ dom(E1)) ∧

(¬ (kd1 = rmixer ∧ kd2 = rmixer)) ∧ (¬ (kd1 = plugger ∧ kd2 = plugger))
where interface(a, α, m, Abb) = 〈kd1; I1; E1〉, interface(b, β, n, Abb) = 〈kd2; I2; E2〉

wffR(V, R)
def
= partialOrder(R) ∧

∀(α ≤ β) ∈ R.((V (α) = 〈A1; C1〉) ∧ V (β) = 〈A2; C2〉) =⇒ A1 <:A A2)

Figure 8. Definition: Auxiliary Functions and Predicates

(build)
α is fresh Abb

install 〈a;α;A;∅;C〉
−−−−−−−−−−−−→ Abb′

Abb
build a,A,C
−−−−−−−−→ Abb′

(assemble)
Abb = 〈N ; K〉

Abb′ = 〈N ; K ∪ K′〉
∀(a.α.m ^ b.β.n) ∈ K ′.(wffWire(a.α.m ^ b.β.n, Abb′) ∧ wffVer(a, α, Abb′) ∧ wffVer(b, β, Abb′))

Abb
assemble K′

−−−−−−−→ Abb′

(ship)
closedVer(a, α, Abb) Abb = 〈N ; K〉 N(a) = 〈V ; R〉 V (α) = 〈A; C ′〉 C = wrap(a, α, ∆, Abb)

Abb
ship a,α,∆
−−−−−−−→S 〈a; α; A; R; C〉

(install)
Abb

addN 〈a;α;A;R;C〉
−−−−−−−−−−−→G Abb′′

Abb′′
assemble K′

−−−−−−−→ Abb′

K′ = {a.α.m ^ b.β.n | m ^ b.β′.n ∈ C, β = bestChoice(Abb′′, b, β′)}

Abb
install 〈a;α;A;R;C〉
−−−−−−−−−−−−→ Abb′

(update)
Abb = 〈N ; K〉 N(b) = 〈V ; R〉

β′ ∈ dom(V) 〈N ; K − K0〉
assemble K1−−−−−−−→ Abb′

K0 = {a.α.m ^ b.β.n | a.α.m ^ b.β.n ∈ K for some a, α, m, n}
K1 = {a.α.m ^ b.β′.n | a.α.m ^ b.β.n ∈ K for some a, α, m, n}

Abb
update b,β,β′

−−−−−−−−→ Abb′

(set-compatible)
N(b) = 〈V ; R〉 N ′ = N [b 7→ 〈V ; R ∪rm {β ≤ β′}〉] wffR(V, {β ≤ β′})

〈N ; K〉
setComp b,β,β′

−−−−−−−−−→ 〈N ′; K〉

(auxiliary - add node)
a /∈ dom(N) V = α 7→ 〈A; C〉

〈N ; K〉
addN 〈a;α;A;R;C〉
−−−−−−−−−−−→G 〈N [a 7→ 〈V ; R ∪rm ∅〉]; K〉

(auxiliary - add version)
N(a) = 〈V ; R〉 V ′ = V [α 7→ 〈A; C〉] wffR(V ′, R′ ∪rm ∅) α /∈ dom(V)

〈N ; K〉
addN 〈a;α;A;R′;C〉
−−−−−−−−−−−→G 〈N [a 7→ 〈V ′; R ∪rm R′〉]; K〉

Figure 9. Application Evolution: the LTS Rules

3.3.1 Component-Level Deployment
Building a Component Building a component from scratch is
covered by transition rule (build). It is an operation typically per-
formed by a role different from a deployer. For instance in the EJB
specification, a role named Bean Provider is defined for this respon-
sibility. It first involves specifying the component with a name (a),
and its interfaces and the implementation (A). Note that a compo-
nent almost always depends on other components, since libraries
are themselves components. Here we allow a component to spec-
ify how such dependencies should be satisfied, in dependency con-
straints C. Such a mechanism is not absolutely necessary, since
a separate rule (assemble) handles the wiring of components to-
gether, but we feel it is closer to real-world development practice
when library component dependencies are immediately resolved at
build time. A fresh version identifier α is assigned to each build.

Assembling Components To form an application, components
need to be assembled together. This process in the LTS is modeled
by (assemble). The parameter of the operation is a set of wiring
specifications (K′). The assembling process can only succeed if the
well-formedness of the buildbox is not undermined. For instance,
wiring two mixers with unmatched import-export pairs will fail
to transition. As another example, if one component contains a
constraint saying its mixer m can only be satisfied by mixer n of
component b version β or a compatible one, the transition will fail
if the attempt is to wire it with component b version β′ where β′ is
not compatible with β.

The (assemble) operation is typically performed by the appli-
cation developer: in the specification of EJB, this is mostly the re-
sponsibility of the Assembler role. Some component dependencies
can only be solved at deployment time, for example EJB environ-
ment entries; so, these operations can also be performed by the De-
ployer.

Shipping a Component Shipping a component is defined in
(ship), and involves specifying the name a and version α of the
component to be shipped. Users can also specify a set of interface
names of the component (∆), expressing the desire that the version
information of the dependency to that interface be recorded as a
dependency constraint in the packaged assemblage (the C part).
Such a mechanism gives users the freedom to selectively record
version information. For those interfaces not included in ∆ but still
dependent on other components, a special version identifier any is
recorded. Dependency constraints will affect the version checking
when the component is later deployed.

The key task of shipping is to create a packaged assemblage, in
the form as defined in Fig. 7. Preparing the dependency constraints
is the core of this process; this is modeled by the wrap function
defined Fig. 8. What makes wrap a non-trivial task is that not
every wire to an assemblage interface is necessarily a dependency;
for instance an all export mixer does not depend on assemblages
wired to it (it is the other way around). The essence of the wrap
function is to precisely identify the real dependencies. Specifically,
it only garners constraints from the wires hooked up to its singleton
mixers’ imports. No wire to a rebindable mixer will generate a
dependency constraint: rebindable mixers by nature is passive, i.e.
the assemblage with the mixer can never proactively access the
code defined in the assemblage it is wired with. (Otherwise there
would be ambiguity as to which dependency is to be used when an
import is accessed.) In terms of dependency, it is the other party
that depends on it but not vice versa.

Setting Component Version Compatibility As we have explained
in Sec. 2.3.7, our framework provides a user interface for declaring
two component versions are backward compatible. In our transition
system, this is modeled by rule (set-compatible), and operation

setComp b β β′ sets version β′ of the component named b to
be backward compatible with version β. To explain this rule, we
first need to explain how backward compatibility information is
recorded in an buildbox, the R of Fig. 7. R is a set of version
identifier pairs of the form β ≤ β′, meaning version β′ is backward
compatible with version β. Sometimes we also say β′ is newer than
β.

We now give a few formal definitions related to R, including
“merging”. R is well-formed, denoted as wffR(V, R) (see Fig. 8),
iff R is a partial order (the definition of partialOrder(R) is stan-
dard) and each pair of versions declared as compatible by R also
satisfies minimal structural compatibility (the definition of <:A), as
explained in Sec. 2.3.7. We define merging R1 ∪rm R2 as the tran-
sitive closure over relation set R1 ∪R2, and it is undefined if R1 or
R2 is not a partial order, or the result of transitive closure is not a
partial order. When R is a partial order, function newer(R, α) com-
putes the set of versions (identifiers to be precise) that are backward
compatible with α, including α itself. When α is the special value
any, the function degenerates into enumerating all version identi-
fiers that appear in R. Similarly, partial function newest(Θ, R, α)
finds out a version included in Θ that is the “newest” subversion to
α according to R.

(set-compatible) simply records the newly declared compati-
bility information. It fails if the merging results in a non-partial
order (the ∪rm part), or β′ does not meet the minimal structural
requirement to be compatible with β (the wffR part).

Installing a Component Component installation is modeled by
the (install) rule. It has two key tasks: 1) adding the component
itself to the buildbox (the addN auxiliary transition) 2) adding
wires (the assemble transitiion). The core part of the (install) rule
is to select a compatible version that resolves dependencies. This is
achieved by a partial function bestChoice, with its self-explanatory
definition found in Fig. 8.

The installation rule reflects a “best-effort” strategy: it tries
its best to wire the installed component up with the rest of the
buildbox, based on the information it has on what dependencies are
expected (C). However, due to reasons such as cyclic dependency
(see Sec. 3.1), it is not always possible to find a total order where
all dependencies have already been present when a component
is installed. What (install) can achieve, in an intuitive way, is
whenever it sets up a wire, it is guaranteed to be a “good” one, i.e.
without undermining the well-formedness of the buildbox. In the
cyclic dependency case where components a and b depend on each
other, the unresolved constraints when installing a will be satisfied
later when b is installed. This late satisfaction will not result in
dangling dependencies at run time, since every execution will start
with a check to make sure the buildbox is closed; see Sec. 3.4 for
details.

Explicitly declaring compatibility relations in the fashion of
(set-compatible) can be a labor for deployers, so our transition sys-
tem also allows packaged assemblages to carry the compatibility
relation accumulated on the development site over to the deploy-
ment site. At the deployment site, the compatibility relation car-
ried over from the development site is “merged” with the relation
recorded by the node on the deployment site, an operation real-
ized by the (auxiliary - add version) rule of Fig. 9. Note that we
do not require all version identifiers appearing in R to have their
corresponding assemblage installed in the node, and this is in fact
crucial to support compatible installation: an installation may in-
dicate it depends on a component of version α, but a deployment
site may not have the component of the same version. Now, as long
as the deployment site can recognize version identifier α and find
some compatible version of it available there, installation can still
proceed.

Updating a Component The (update) rule models the case where
a component b would like to update itself from version β to β′. This
process is modeled by first removing the existing wires and then
add new wires in. Note that such a rule depends on (assemble),
which in turn contains well-formedness checks to ensure updating
does not sacrifice environment well-formedness. The update opera-
tion does not require the updating version to be a subversion of the
updated version. Indeed, all that matters is switching from one ver-
sion to another would not violate any dependency contraint for any
involved party, which is guaranteed by (assemble). This more re-
laxed treatment is in sync with real-world scenarios: not all updates
are upgrades.

Removing a Component Components are automatically garbage
collected when a version is not wired to the rest of the buildbox.
The criterion for garbage collection is a very simple wire-counting
based on the following predicate:
collectable(a, α, 〈N ; K〉)

def
= (a.α.m ^ b.β.n) /∈ K

for all m, b, β, n

3.3.2 Distributed Deployment
Software components of a buildbox are not necessarily located
on one physical network node. Distributed deployment has been
a focus of CORBA, and in the EJB case, all beans that can be
accessed by its naming service JNDI may be distributed across
different network locations.

This framework does not attempt to solve all issues related to
distributed deployment, but we point out that the framework it-
self can serve as a basis for distributed deployment. The build-
box represented as a graph 〈N ; K〉 may have nodes in N located
in different places, and the K can represent the distributed wiring
amongst nodes. The idea is that when an application is developed
and shipped, all its components may end up being deployed in dif-
ferent locations, and their version compatibility is still preserved
in a distributed manner. For instance, when one component is up-
dated via (update), the wires being updated could very well link to
some component in a different location, so that when components
in other locations later have access to the updated component, the
new (and compatible) version will be used.

3.3.3 Deployment in Batch Mode
Up to now our discussion has focused on how deployment can be
performed at the component level. This is because software com-
ponents by definition are the deployment units, and atomic opera-
tions should be defined at this level. In addition, some operations
such as update are fundamentally component-level operations. In
the real world, some operations might be more commonly used on
the application level, such as shipping and installation. They do not
introduce extra difficulty however: when shipping an application,
it is equivalent to shipping its components one by one by repeat-
edly applying the (ship) rule, and when installing an application, it
is equivalent to installing its components one by one by (install).
Note that because our framework does not require all dependencies
are satisfied all at once at installation time, the ordering of which
assemblage should be installed first is not important.

3.3.4 Multiple BuildBoxes
The LTS rules address how an assemblage operates in a single
buildbox scenario. A software environment composed of multiple
buildboxes can easily be built up on top of this. Let us consider
component installation, for example. In a multiple buildbox sce-
nario, when an assemblage private to a buildbox is to be installed,
the LTS install operation specific to that buildbox will be triggered
and only this buildbox will evolve. When an assemblage function-
ing like a library is to be installed, it can be conceptually viewed as

installing the same assemblage in all buildboxes. Since the majority
of the transitions for the multiple buildbox scenario is to delegate
them to a single buildbox scenario, we do not present these rules
in this presentation. Interested readers can refer to the long version
for details [29]. The principle behind this treatment is a conceptual
level of buildbox isolation, which simplifies our formal framework
without loss of generality.

3.4 Execution
Thus far we have made no assumptions about the code inside an
assemblage, but the aim of deployment is to eventually run the
application. In this section, we construct a very simple assemblage
realization, by taking code blocks to be functions, illustrated in
Fig. 10.

Since we are only interested in how names are linked and how
hot deployment is accomplished, the expressions e in Fig. 10 are
very simple. Besides the plugin expression explained earlier, it
supports m :: k(e) to invoke a function k defined in singleton
mixer m, k(e) to invoke a callback function k defined in the current
rebindable mixer, :: k(e) to invoke a local function, and e..m(e)
to invoke a function defined in the plugger. Values v are either
constants, or plugin handles: a.α.m � b.α.n is a first-class value
denoting the plugging from plugger m of node a’s version α, to
the mixer n of node b’s version β. We leave out features unrelated
to deployment from the expressions, for instance, mutable state.
Readers interested in a more complete language specification can
refer to [27].

Execution starts by applying rule (execute). It simply looks for
a mixer called Main, and invokes an export function called main.
Predicate closedApp disallows dangling imports and makes sure all
dependency constraints are satisfied. Fig. 10 defines the small-step
reduction relation App, Stk, e → App′, Stk′, e′, which executes
the expressions inside an assemblage. Stk keeps track of the func-
tion invocations, based on where the current function is defined.
A top element 〈a; α; m〉 means the current expression is defined
in a function inside mixer/plugger m of assemblage named a, ver-
sion α. m can also be given a special value local, in which case
the function is defined as a local function: here we are only inter-
ested in the scope up to the level of mixer/plugger (or whether it
is a local function), but not which function is defined. The def-
initions of expressions, values and stacks are given in Fig. 10.
top(Stk) returns the top element of the stack. Multi-step reduction
App, Stk, e →∗ App′, Stk′, e′ is defined as the transitive closure
over the small-step reduction.

3.4.1 Dynamic Plugins and Hot Deploying
The process of hot deploying is illustrated by (plugin). Note that
a dynamic plugin in a deployment framework represents an inde-
pendent deployment unit, and hence it is represented as a packaged
assemblage (W), with its dependency information packed up. In
our framework, built-in version control for dynamic plugins is pro-
vided, and it is unified with version control for non-hot deployment:
notice the structural form of a dynamic plugin is no difference from
regular packaged assemblages used for non-hot deployment.

A plugging wire is established between the initiating assem-
blage runtime’s plugger and the mixer of the plugee (see the as-
semble part of the rule). The assemble rule will also make sure
all imports from one party are satisfied by exports from the other
party: no dangling import is possible. The expression returns a plug
handle which exactly records the information of the plugging wire.

As the rule suggests, hot deploying needs to install the dy-
namic plugin (see the install part of the rule). This is obvious;
hot-deploying is installation at runtime. The not-so-obvious issue
is that depending on the plugger to export to the dynamic plugin
all functionalities is unrealistic in the real world. Take EJB for in-

App ::= Abb application runtime
B ::= λx.e code block
e ::= i | m :: k(e) | k(e) |:: k(e) | e..m(e) | e; e expression

| plugin W with m >> n | return e

v ::= i | a.α.m � b.β.n value
E ::= [] | m :: k(E) |:: k(E) | k(E) | E..k(e) | v..k(E) evaluation context

| E; e | v; E | return E
Stk ::= s � Stk | s stack
s ::= 〈a; α; m〉 | 〈a; α; local〉 stack frame
i integer

(execute)
closedAbb(Abb) interface(a, α, Main, Abb) = 〈rmixer; ∅M ; main 7→ λx.e〉 App = Abb

Abb, execute a, α
exe
−−→ App, 〈a; α; main〉, e

(plugin)
top(Stk) = 〈a;α; m′〉 W = 〈b; β; 〈M ; L〉; R; C〉

App
install W
−−−−−→ App′

App′ assemble {a.α.m^b.β.n}
−−−−−−−−−−−−−−−→ App′′

interfaceKind(a, α, m, App) = plugger closedVer(b, β, App′′)

App, Stk, plugin W with m >> n → App′′, Stk, a.α.m � b.β.n

(handle invoke - 1)
interface(a, α, m,App) = 〈plugger; I; E〉 k /∈ I E(k) = λx.e

App, Stk, (a.α.m � b.β.n)..k(v) → App, 〈a;α; m〉 � Stk, e[v/x]

(handle invoke - 2)
interface(a, α, m, App) = 〈plugger; I; E〉

k ∈ I interface(b, β, n, App) = 〈smixer; I ′; E′〉 or 〈rmixer; I ′; E′〉
E′(k) = λx.e

App,Stk, (a.α.m � b.β.n)..k(v) → App, 〈b; β; n〉 � Stk, e[v/x]

(local invoke)
top(Stk) = 〈a; α; m〉 App = 〈N ; K〉 N(a) = 〈V ; R〉 V (α) = 〈A;C〉 A = 〈M ; L〉 L(k) = λx.e

App,Stk, :: k(v) → App, 〈a;α; local〉 � Stk, e[v/x]

(import invoke)
top(Stk) = 〈a; α; m′〉 interface(a, α, m, App) = 〈smixer; I; E〉 k ∈ I

depends(a, α, m, App) = {b.β.n} interface(b, β, n, App) = 〈smixer; I ′; E′〉 or 〈rmixer; I ′; E′〉 E′(k) = λx.e

App, Stk, m :: k(v) → App, 〈b; β; n〉 � Stk, e[v/x]

(export invoke)
top(Stk) = 〈a; α; m′〉 interface(a, α, m, App) = 〈smixer; I;E〉 k /∈ I E(k) = λx.e

App, Stk, m :: k(v) → App, 〈a; α; m〉 � Stk, e[v/x]

(rmixer import invoke)
interface(a, α, m,App) = 〈rmixer; I;E〉

k ∈ I interface(b, β, n, App) = 〈smixer; I ′; E′〉 or 〈plugger; I ′; E′〉 E′(k) = λx.e

App, 〈a; α; m〉 � 〈b; β; n〉 � Stk, k(v) → App, 〈b;β; n〉 � 〈a; α; m〉 � 〈b; β; n〉 � Stk, e[v/x]

(return)
App, 〈a; α; m〉 � Stk, return v → App, Stk, v

Figure 10. Application Execution: Definitions and Reduction Rules

stance,a hot-deployed bean might not only need to interact with its
container, but also interact with other beans, and also system li-
braries, to make it work. This is supported by the install part of the
rule, since all dependency requirements C that W contains will be
solved by install. Some elements in C can certainly specify how
some of the mixers of the dynamic plugin can be satisfied by other
assemblages in the application App.

3.4.2 Name Binding Rules
All the other rules handle some form of name binding; studying
linking in the context of component deployment is a goal of this
paper. Readers should pay attention to the (import invoke) rule,
where it needs to read from the application graph to find the cor-
rect function to invoke. Due to the structural choice of our formal-
ism, this lookup process might look inefficient, but in reality all the
functions in the rule can be precalculated: the assemblage of con-
cern can be associated with a symbol table and the function entry
can be obtained without indirect lookup.

4. Formal Properties
One important evaluation of any formal framework is what proper-
ties may be proven rigorously. In this section, we state three impor-
tant formal properties. Informally, they are that any buildbox cre-
ated, deployed and any application runtime executed in our frame-
work will stay well-formed, and any well-formed application run-
time will access features without violating version compatibility.
The proofs of these theorems are detailed in the long version [29].

THEOREM 1 (Well-Formed Evolution over LTS). If wffAbb(Abb)

and Abb
l
−→∗ Abb′, then wffAbb(Abb′).

THEOREM 2 (Well-Formed Run-time Evolution). If wffAbb(App)
and App, Stk, e →∗ App′, Stk′, e′, then wffAbb(App′).

Thm. 1 states that all operations defined by the LTS – including
component building, assembling, installation, update – do not turn
a well-formed buildbox into an ill-formed one. Note that since each
labeled transition can be analogously thought of as a command
issued by component deployers, providers and assemblers, such a
theorem ensures that our framework is robust enought to fend off
misuses of the commands (such as providing special parameters) to
undermine buildbox well-formedness.

Thm. 2 states that running an application also does not affect
application well-formedness; for instance, hot-deploying will not
change a well-formed application into an ill-formed one.

Together with the trivial fact that the bootstrapping process (see
the (execute) rule in Sec. 3.4) does not affect well-formedness
and 〈∅M ; ∅〉 is trivially well-formed, we know that the buildbox
created and deployed, and the application runtime launched from it
in our framework are always well-formed at any given point of its
evolution.

We now study version compatibility. Before we state the main
theorem, we first define a relation ↪→ to capture where a feature
implementation will be looked for at run time.

DEFINITION 1 (Run-time Feature Access). App, a, α, m, k ↪→
App′, b, β, n holds iff
• wffAbb(App).
• App = 〈N ; K〉, N(a) = 〈V ; R〉, α ∈ dom(V) for some N ,

K, V , R.
• App, execute a0, α0

exe
−−→ App0, Stk0, e0 for some a0, α0,

App0, Stk0, e0.
• App0, Stk0, e0 →∗ App′′, 〈a; α; p〉 � Stk′′, E[m :: k(v)] for

some App′′, Stk′′, p, v, E.

• App′′, 〈a; α; p〉 � Stk′′, E[m :: k(v)] → App′, 〈b; β; n〉 �
Stk′, e for some e.

THEOREM 3 (Compatible Code Access). Given

A1: App0
ship a,α,∆
−−−−−−→S W

A2: m ∈ ∆

A3: 〈∅M ; ∅〉
l1−→ . . .

install W
−−−−−→ . . .

lp
−→ App′

0

A4: App0, a, α, m, k ↪→ App1, b, β, n
A5: App′

0, a, α, m, k ↪→ App′
1, b

′, β′, n′

A6: App′
1 = 〈N ′; K′〉, N ′(β′) = 〈V ′; R′〉

then b = b′, n = n′ and β′ ∈ newer(R′, β)

This is the main theorem addressing the correctness of our
framework in terms of version compatibility. It is not trivial because
it spans the lifecycle of the component, from component develop-
ment time (shipping) to its deployment (installation) to the run-time
access to its features. It states that if a component is shipped from
the development site (A1), and its mixer m is specified by the ship-
per to consider version compatibility (A2), then no matter where
the packaged component is installed (A3) and then executed, any
access to the features inside m (either as an import or an export) at
run time will always locate a version of the component (A5) com-
patible with the version located at the development site if the same
application is test-run (A4).

5. Discussion
An important aspect of any formal framework is how well it mod-
els the problem domain. This section is aimed at elucidating how
our platform-independent framework can be mapped onto differ-
ent platforms, how it relates to existing real-world deployment ap-
proaches, and/or what insights it can provide for their improvement.
It serves both as a validation of our framework and as a summary
of related work.

5.1 Deployment on Microsoft Platforms
Over the years several different software component models have
been defined on Microsoft platforms, and each of them addresses
the issue of deployment.

5.1.1 Dynamic Link Libraries (DLLs)
An application on earlier Windows platforms is deployed as a set
of files in .exe and .dll formats. The .dll files are commonly
shared by multiple applications, and many of them are provided
by the operating system itself. The notorious problem [39] related
to DLL deployment is updating without version control: when the
installation of one application involves installing a new version of
an existing .dll file, the new copy will overwrite the old copy
and affect all other applications that depend on the library. If the
new copy happens to be backward incompatible, the affected ap-
plications might behave erratically. This can happen weeks after
the damage was done and, and is thus very hard to track down the
cause. The DLL model is a very weak model of deployment that
we do not feel a need to contrast with.

5.1.2 COM
COM [33] as a component model strongly promotes the use of in-
terfaces, a feature also shared by assemblages. COM components
are typically deployed in an environment, called context in which
they run. A COM component developer can specify how a particu-
lar component should behave by modifying specific attributes that
define the component’s behavior within a context, a feature com-
monly known as “attribute-based programming”. Such a feature
can be modeled in our framework by using bidirectional interfaces,

in the same way as modeling EJB environment entries, elaborated
in Sec.2.3.2.

COM addresses versioning by using immutable interfaces: after
one publishes an interface in a COM component with a universal
ID, it should never be changed. Newer versions of the same com-
ponent should create additional interfaces to the component. Such
a solution can easily solve the problem of version backward com-
patibility, but in reality is prone to interface proliferation [21].

COM also inherited some older problems of the Windows plat-
form, such as the requirement that all component metadata infor-
mation be stored in a centralized repository, the Windows Registry.
The principle of application isolation is not supported.

5.1.3 CLI Assemblies
CLI Assemblies [16] define a vendor-independent component stan-
dard, which also had as a major goal the solution of the deployment
problem with DLLs on the Windows platform. The best known im-
plementation of it is .NET CLR Assemblies [32] by Microsoft.

Each assembly as a deployment unit contains version-aware de-
pendency information in a manifest file, which is precisely matched
against at deployment time. Since solving the DLL problem was a
primary aim, only shared libraries are versioned, and they are al-
ways referred to by strong names, which contain rich version in-
formation to avoid accidental name matches. Since different ver-
sions of the same assembly do not have the same strong name, they
can co-exist (so-called side-by-side deployment). Updating a de-
pendency to a newer version is allowed by adding a version policy
file to an assembly, which claims to redirect the dependency to the
new version. We share these features with Assemblies.

Since application-specific assemblies are not accessed by glob-
ally unique strong names, the correctness of locating the correct
assembly is still subject to the lookup path setting, an issue very
similar to the CLASSPATH issue of Java. Assembly lookup paths
happen to be the least stable part of CLI specification, and different
vendors have chosen different strategies (for instance .NET CLR
and Mono [34] have different priorities on which path should be
looked at first). In our framework, all assemblages are consistently
accessed via its version identifier, so no name confusion can arise.

Assemblies are known to have difficulty in handling cyclic ver-
sion dependencies. This does not look that bad in the specific do-
main Assemblies aim to have an impact on: Assemblies historically
have a strong focus on solving DLL-related problems, so compo-
nents within an application are not versioned and their dependen-
cies – where cyclic dependencies are most likely to happen – are
not considered. In general component-based software development,
however, each individual component might be subject to version
control. In fact, even on the CLI platform, two core library DLLs
are still known to be cyclically dependent: there is a cyclic depen-
dence between System.dll and System.Xml.dll that requires
special handling. Interested readers can refer to the source code of
an open source CLI implementation, Rotor [35].

The Assemblies framework does not consider the deployment
site as a running evolvable system, and does not precisely specify
the deployment action as a process.

5.1.4 Installers
On the Windows platform, many programs exist to address appli-
cation shipping and installation. These tools are typically not more
than a compression tool with a friendly user interface (the “wiz-
ard”), and they heavily depend on platform-dependent environment
variables and scripts to configure packages inside. A better installer
in this category is InstallShield. Its recent releases have conformed
to the CLI Assemblies standard.

5.2 Deployment on the Java Platform
Java’s component model is JavaBeans. The deployment model on
the Java platform is mostly specified for a variant of the model,
EJB. In this section, we will also consider how .class files are
deployed.

5.2.1 EJB
The J2EE solution for component deployment is detailed in the
specification for Enterprise JavaBeans (EJB) [17]. It revolves
around a data structure called the Deployment Descriptor 5 as-
sociated with each to-be-deployed bean, which describes the inter-
actions the bean may engage in at the deployment site. The primary
task of a deployer is to establish the interaction between the to-be-
deployed bean and its container. The way in which this interaction
can be modeled in our framework was explained in Sec. 2.3.2. In
addition, a bean can rarely achieve a task without collaborating with
other beans, and it supports inter-bean dependency by introducing
extra syntax (<ejb-ref>). In our framework, this is analogous to
declaring a bidirectional mixer. EJB does not explicitly model ver-
sioning, and also does not define the build evolution process that
the application buildbox models.

5.2.2 Deploying Java Programs
In a Java context, each .class file can serve as an independent
deployment unit. It is common that a Java program is tested on the
development site with one version of the class as the dependency,
and then is installed on the deployment site with another version
of the class. This is because CLASSPATH settings may be different
between the development site and the deployment site, and so
program behavior is vulnerable to the settings of the CLASSPATH.
This problem does not arise in our framework, since components
are referred to by their unique ID, not just by their name.

This issue also affects the way type safety is ensured. Consider a
simple Java program where class A refers to class B. Suppose class
B at the deployment site is different from the version used when
A was compiled. Type safety would be jeopardized if the B with
an incompatible type was loaded at run time. Java addresses the
issue by performing load-time re-typechecking as part of bytecode
verification. In our framework, if we make sure the B referred to by
A is the same version (or a compatible version) of the one used by
A, such a re-typechecking process will be unnecessary.

5.3 Deployment in CORBA
OMG has released a Deployment & Configuration (D & C) spec-
ification [36] for the CORBA Component Model (CCM). In
Sec. 2.3.2, we have demonstrated how to model its bidirectional
interfaces, and its deployment time attribute-rebinding is similar
to EJB environment entries. D & C allows components to be as-
sembled together to form an assembly. This can be modeled in our
framework by the (assemble) rule.

One focus of this paper, versioning, is left out of D & C. Since a
CCM component does depend on other CCM components (attested
by its <dependsOn> tag), it is unclear what will happen when
different versions of the same components are deployed. This will
especially affect component update, which is left out in the current
specification. The CORBA naming mechanism is also challenged
in [44].

Since it is aligned with the general rationale of CORBA, the D
& C framework focuses on distributed deployment, where different
CCM components in one assembly can be deployed on different

5 In EJB 3.0 (the latest version), metadata annotations are used to record
deployment information, but its difference from deployment descriptors is
only syntactic.

network nodes. Our framework as an abstract study does not ex-
plicitly model distribution, but it can be soundly re-interpreted if
different components of the application lie on different nodes. This
topic was discussed in Sec. 3.3.2. CORBA relies on its underly-
ing bus to look up distributed components. We do not have such
a mechanism, but note that the globally unique version ID ensures
name confusion will not be an issue in the distributed context.

5.4 Deployment on Unix/Linux Platforms
5.4.1 Package Managers
Modern operating systems come with package managers and in-
stallers to assist in installing and upgrading software. On the Linux
platform, well-known examples include RedHat’s RPM [18], De-
bian ’s Dpkg [12] and Gentoo ’s Portage [40]. Despite differences
in usability, the underlying goal of the three systems is the same:
to install packages with the correct dependencies satisfied. How de-
pendencies are created, checked and resolved is too specific in these
systems. For instance, RPM is known to be complicated and weak
in its support for dependency resolution. For cyclic dependencies, a
tool like Dpkg will rely on a special specification from the package
developer to break the cycle (declaring one of the dependencies to
be a post-depends). In Portage, cyclic dependencies induce fail-
ure, and the resulting packages will not be installed. Broadly, pack-
age managers do not take into account the execution phase of the
deployment lifecycle: the content in packages might not be exe-
cutable code at all. The resulting model is weak to treat the deploy-
ment of code components: the declared package dependencies can
be arbitrary, and not necessarily reflect inherent code dependencies;
satisfying all package dependencies does not guarantee any correct
behavior when code is executed. The popular archive distribution
systems CPAN [10] (for Perl programs) and CTAN [11] (for TeX
documents) can also be included in this category; these systems
have a strength on how to locate packages on the Internet. There
are also package managers for specific language environments, in-
cluding RubyGems [43] and Scala Bazaar [3].

5.4.2 Deploying C Programs
C compilers on modern platforms almost always use dynamic link-
ing for library access. A direct consequence is when a binary appli-
cation is created (the one with default name a.out), it rarely forms
a closure in terms of name binding. When shipping a C application
using function strlen, the implementation of strlen is only defined
by the library at the deployment site.

If applied to our framework, a deployment unit for C programs
can either be the non-closed application code (with default name
a.out) or the shared library code (the one defining strlen, com-
monly represented as files with suffix .so on Unix-compatible plat-
forms). What our framework can help avoid is to create an applica-
tion depending on one version of the library with strlen, and then
being deployed at a deployment site with a different (and incom-
patible) version of the library. Our framework can also make sure
multiple versions of the same library can be installed, with some
applications use one, and other applications use the other.

5.5 Hot Deployment
A number of research projects address the ability to dynamically
load/link/update software components, which in various degrees
overlap with our discussion on dynamic component deployment.

Dynamic linking/loading of code fragments provides a foun-
dational layer of this problem. Existing approaches comparable
to our plugin expression are those programmable dynamic link-
ing/loading mechanisms. Well-known examples include Java’s
ClassLoader, Assemblies’ Assembly.Load, and Unit’s invoke
[19] expression. From a language construct perspective, our plugin

expression differs from these approaches as it respects the bidirec-
tional contract of the interactions between the link/load initiating
component and the linked/loaded component, where both of the
parties provide an interface (a plugger or mixer) to specify what it
needs and what it requires. Declaring the plugger on the link/load
imitating component gives the component a more declarative speci-
fication on its ability to perform dynamic linking, and in the context
of component deployment, it provides an explicit declaration of the
fact that a form of dynamic deployment is supported. MagicBeans
[7] provides a library to help develop dynamic plugins with the use
of the Observer pattern, and our plugin covers that model. Typing
issues of dynamic linking have been well studied, such as linking
of assembly code [20] and C# and Java’s dynamic linking [13]. In
our previous work [27] a deployment unit must be type-safe, and
so for simplicity we have left out typing issues here.

EJB hot-deployment is not defined the EJB specification, and
it is supported only in a vendor specific manner. For example,
Weblogic [4] supports hot deployment via several custom tools.

A well-known example of plugin-based software is Eclipse [15].
The recent release (3.0) has also included the ability to add plugins
at run time, i.e. dynamic plugins, based on the Open Services Gate-
way Initiative (OSGi) [37] specification. OSGi only provides lim-
ited support for handling dependencies. Their consistency checking
is optional and not rigorously defined, especially for the versions of
dependencies.

Some projects have addressed issues related to dynamic updat-
ing and reconfiguration of software. The Dynamic Software Updat-
ing system [23] focuses on correctness, usability and type safety. It
does not focus on software deployment, and does not consider ver-
sion control. OpenRec [24] is a software architecture effort focus-
ing on how to design dynamically reconfigurable systems. In [8],
a few more practical issues related to dynamic reconfiguration of
distributed systems are considered, such as the handling of stubs.
Our abstract framework does not address this issue.

5.6 Deployment-Related Formalisms
Formal frameworks that address component deployment in a
vendor-independent manner are rare. CLI Assemblies’ name bind-
ing mechanism was recently formalized by Buckley [5]. The focus
of that work was to demonstrate the use of strong and simple names
in the framework. No formal property was proved, and the frame-
work does not address application evolution in the deployment
lifecycle. The linking of DLLs was formalized in [14], where the
focus was on type safety.

A conceptual framework for component-based software deploy-
ment was proposed in [38]. As a result of a highly conceptual treat-
ment, inter-component dependency – arguably the central issue in
modeling complex process of deployment – was not modeled. No
formal rules were given to describe the deployment process or ap-
plication execution.

5.7 Complementing Module/Component Systems
Assemblages, the abstract component construct used by our de-
ployment framework, was first described in [27]. This previous
work had a different goal: equipping mixin-like modules with inter-
faces to directly support Internet-era concepts, such as distributed
communication and dynamic linking. Deployment and versioning
were not considered in that paper. In this work, we have reused
the assemblage construct itself, but almost every structural choice
was rejustified in a deployment context, such as why we need bidi-
rectional interfaces and why we need pluggers for hot-deployment.
Put together, they paint a complete picture to justify the need for
an assemblage-like construct in component design: 1) it is fit for
model modern programming concepts such as distributed commu-

nication and dynamic linking (the thesis of [27]); and 2) it is fit for
component deployment (this work).

Most of the structural assumptions we have made about our de-
ployment units are common to many modern module/component
systems. The generality makes our deployment framework use-
ful for studying deployment in a variety of next-generation mod-
ule/component systems. Module systems with bidirectional inter-
faces include Units [19] and Jiazzi [31]. In MJ [9], the Java class-
loader is replaced with a compile-time notion of module, in which
module dependencies are separated into two categories: static
dependencies (import and export) and dynamic dependencies
(dynamic export). These two notions can be modeled as mixing
and plugging in our framework, respectively. In Fortress [1], pro-
gram fragments are organized into components with interfaces of
explicit import and export declarations, and are organized into
a persistent store called a fortress, where a few pre-defined library
operations (called targets) are defined such as link, upgrade, and
execute. A fortress can analogously be thought of as a deploy-
ment site in our framework, where the targets can mapped to our
LTS operations. The Fortress specification only specifies signa-
tures for the targets and allows different vendors to provide their
own implementations. Our framework can be thought of as pro-
viding a guideline for what a “well-formed” fortress should be, and
how different implementations should abide so that good properties
of a fortress will not be undermined. In Fortress, because there is
no support for multiple interfaces, clashing of names are common
at link time, and Fortress has to resort to special rules to handle
them.

6. Conclusion
In this paper we showed how the complex, ad hoc software de-
ployment cycle could be reduced to a calculus with a small set of
platform-independent, vendor-independent operations that define
how the deployment site should evolve. It elucidates the subtle rela-
tionships between pre-runtime application buildbox evolution and
run-time application evolution, and proves formal properties about
application well-formededness and version compatibility through-
out the evolution process. It also serves as a study of component de-
sign from the perspective of the deployment unit, where component
dependency in terms of timing and location is studied. Expressive
forms of dependency such as parametric and cyclic dependency be-
tween components are also addressed.

With this foundational framework defined, we would like next
to investigate how more advanced features important in component
deployment can be expressed on top of it, for instance security, dis-
tribution, and transaction control. A formal treatment of these is-
sues within the deployment lifecycle should give us deeper insights
into these hard problems.

References
[1] ALLEN, E., CHASE, D., LUCHANGCO, V., RYU, J. W. M. S.,

STEELE, G., AND TOBIN-HOCHSTADT, S. The Fortress Language
Specification (Version 0.618), April 2005.

[2] BALABAN, I., TIP, F., AND FUHRER, R. Refactoring Support for
Class Library Migration. In OOPSLA ’05 (2005), pp. 265–279.

[3] The Scala Bazaar System,
http://scala.epfl.ch/downloads/sbaz.html.

[4] BEA. BEA WebLogic Server Enterprise JavaBeans 1.1,
http://www.weblogic.com/docs51/classdocs/API ejb/.

[5] BUCKLEY, A. A model of dynamic binding in .NET. In Proceedings
of 3rd International Working Conference on Component Deployment
(2005), pp. 149–163.

[6] CARDELLI, L. Program fragments, linking, and modularization. In
POPL’97 (1997), pp. 266–277.

[7] CHATLEY, R., EISENBACH, S., AND MAGEE, J. Magicbeans: a
platform for deploying plugin components. In Second International
Working Conference on Component Deployment (2004), vol. 3083,
pp. 97–112.

[8] CHEN, X., AND SIMONS, M. A component framework for dynamic
reconfiguration of distributed systems. In Lecture Notes in Computer
Science, Volume 2370 (Jan 2002), vol. 2370.

[9] CORWIN, J., BACON, D. F., GROVE, D., AND MURTHY, C. MJ: a
rational module system for java and its applications. In OOPSLA’03
(2003), pp. 241–254.

[10] Comprehensive perl archive network, http://www.cpan.org.
[11] Comprehensive tex archive network, http://www.ctan.org.
[12] Debian package management, http://www.debian.org.
[13] DROSSOPOULOU, S., LAGORIO, G., AND EISENBACH, S. Flexible

models for dynamic linking. In Proceedings of the 12th European
Symposium on Programming (2003).

[14] DUGGAN, D. Type-safe linking with recursive DLLs and shared
libraries. ACM Transactions on Programming Languages and
Systems 24, 6 (2002), 711–804.

[15] Eclipse, http://www.eclipse.org.
[16] ECMA. Standard ECMA-335: Common Language Infrastructure,

2002.
[17] EJB 3.0 EXPERT GROUP. JSR 220: Enterprise JavaBeans Version

3.0, June 2005.
[18] EWING, M., AND TROAN, E. The RPM packaging system. In

Proceedings of the 1st Conference on Freely Redistributable Software
(1996).

[19] FLATT, M., AND FELLEISEN, M. Units: Cool modules for HOT
languages. In PLDI’98 (1998), pp. 236–248.

[20] GLEW, N., AND MORRISETT, G. Type-safe linking and modular
assembly language. In POPL’99 (1999), pp. 250–261.

[21] GORDON, A. The .NET and COM Interoperability Handbook.
Pearson Education, Inc., Upper Saddle River, NJ, USA, 2003.

[22] HALL, R. S., HEIMBIGNER, D. M., AND WOLF, A. L. Evaluating
software deployment languages and schema. In ICSM ’98: Pro-
ceedings of the International Conference on Software Maintenance
(Washington, DC, USA, 1998), IEEE Computer Society, p. 177.

[23] HICKS, M. W., MOORE, J. T., AND NETTLES, S. Dynamic software
updating. In PLDI’01 (2001), pp. 13–23.

[24] HILLMAN, J., AND WARREN, I. An Open Framework for Dynamic
Reconfiguration. In ICSE’04 (2004), pp. 594–603.

[25] Installshield, http://www.installshield.com.
[26] LISKOV, B., AND WING, J. A behavioral notion of subtyping. ACM

Transactions on Programming Languages and Systems 16, 6 (Nov.
1994), 1811–1841.

[27] LIU, Y. D., AND SMITH, S. F. Modules With Interfaces for Dynamic
Linking and Communication. In ECOOP’04 (2004), pp. 414–439.

[28] LIU, Y. D., AND SMITH, S. F. Interaction-based Programming with
Classages. In OOPSLA ’05 (2005), pp. 191–209.

[29] LIU, Y. D., AND SMITH, S. F. A Formal Framework for Component
Deployment (Long Version),
http://www.cs.jhu.edu/~yliu/deploy/. Tech. rep., The Johns
Hopkins University, Baltimore, Maryland, March 2006.

[30] MCCAMANT, S., AND ERNST, M. D. Early identification of
incompatibilities in multi-component upgrades. In Proceedings of
the 18th ECOOP (2004), pp. 440–464.

[31] MCDIRMID, S., FLATT, M., AND HSIEH, W. Jiazzi: New-Age
Components for Old-Fashioned Java. In OOPSLA’01 (2001),
pp. 211–222.

[32] MEIJER, E., AND GOUGH, J. Technical Overview of the Common
Language Runtime, 2000.

[33] MICROSOFT. Component Object Model Technologies,
http://www.microsoft.com/com/.

[34] Mono, http://www.mono-project.com.
[35] MSDN. Shared Source Common Language Infrastructure 1.0

Release, http://msdn.microsoft.com/net/sscli/.
[36] OBJECT MANAGEMENT GROUP. Deployment and Configuration of

Component-based Distributed Applications Specification, July 2003.
[37] OSGI. Open services gateway initiative service platform, release 4

core, available at http://www.osgi.org, 2005.
[38] PARRISH, A., DIXON, B., AND CORDES, D. A conceptual

foundation for component-based software deployment. Journal of
Systems and Software 57, 3 (2001), 193–200.

[39] PIETREK, M. Avoiding DLL hell: Introducing application metadata
in the microsoft .NET framework. MSDN Magazine, available at
http://msdn.microsoft.com (2000).

[40] Portage, http://www.gentoo.org.
[41] REID, A., FLATT, M., STOLLER, L., LEPREAU, J., AND EIDE, E.

Knit: Component composition for systems software. In Proc. of the
4th Operating Systems Design and Implementation (OSDI) (October
2000), pp. 347–360.

[42] RINAT, R., AND SMITH, S. F. Modular internet programming with
cells. In Proceedings of the 16th ECOOP (2002), pp. 257–280.

[43] Rubygems, http://rubyforge.org/projects/rubygems/.
[44] SZYPERSKI, C. Component Software: Beyond Object-Oriented

Programming. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

