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ABSTRACT
In this paper, we develop a novel microkernel-based virtual
machine, the µKVM. It is a microkernel architecture because
the size of the trusted system codebase is greatly reduced in
comparison to VM’s such as the Java Virtual Machine. The
µKVM kernel manages sensitive resources such as I/O, and
implements a minimal set of low-level system operations.
System libraries are implemented outside the kernel, and
run in user mode. All interactions between the kernel and
applications are declared on explicit interfaces, and security
policies are also enforced at these interfaces. We test our
architecture in a µKVM prototype developed for Java and
show how the microkernel architecture supports the existing
functionality of the J2SDK. The prototype is benchmarked,
and the results show that our implementation compares fa-
vorably with the J2SDK and so the architecture does not
appear to be a burden on running time.

1. INTRODUCTION
Dynamic component composition is becoming essential in
modern software construction [26], and often arises in the
form of downloaded code components. Supporting this flex-
ibility also introduces new challenges in securing language
runtime systems. The Java J2SDK [20, 12] and the Mi-
crosoft CLR [22] both define security architectures that al-
low safe execution of untrusted components. The security
mechanisms in the two language runtime systems are simi-
lar as far as our interests go [11, 10, 7, 3], and we somewhat
arbitrarily have chosen the J2SDK to focus on in this paper.

Java incorporates a code-based access control policy, based
on a set of Permissions for access to various resources, and
a policy that maps from the different codebases to permis-
sions. In the Java security architecture, all system libraries
(java.*, javax.*) are highly trusted and have privileges
that user classes usually do not have. However, this design
choice that grants full privileges to all system libraries is
potentially problematic. First of all, there is no absolute
guarantee that programmers make no mistakes in program-

ming libraries, and giving so many privileges to this large
codebase is not a good design methodology. Secondly, even
if the system libraries are correct, they have to be guarded
from being attacked or lured into a “confused deputy” [13],
in which libraries become victims of malicious applications
and misuse their privileges to do things on behalf of attack-
ers.

The runtime stack inspection algorithm [10, 28] solves the
confused deputy problem that plagued the original Java se-
curity architecture, but it is a far from perfect remedy. Per-
haps the most serious shortcoming is how the Java Security
Architecture scatters security related code snippets through-
out library code, which makes it hard to understand ex-
actly what security policy is being enforced, and hard to see
whether all gates are in fact guarded. Moreover, the prin-
ciple of least privilege [24] has not been applied to Java li-
braries: each library in fact only needs access to the relevant
resources it is operating on, e.g. java.io file libraries do
not need network access. But, to enforce this in the J2SDK
would introduce a large runtime cost because stack inspec-
tion could not collapse consecutive system stack frames any
more. Researchers have developed static, declarative ap-
proaches to stack inspection via type systems [25, 27], but
not all checks can be performed statically due to the funda-
mentally dynamic nature of components.

In this paper we design the µ-Kernel Virtual Machine (µKVM),
a novel language runtime framework with a simple and declar-
ative security architecture. The main design goals of the
µKVM are to decrease the size of the core trusted code-
base, and to put a clear, inviolable interface between the
trusted codebase and less trusted code. The kernel is the
small trusted system codebase; since it is small in contrast
with the large J2SDK system libraries, we term the archi-
tecture a microkernel VM architecture. Kernel-application
interactions and the system security policy enforcement are
defined solely on the interfaces between the kernel and the
application. Connectors and services are the two types of
kernel-application interfaces we define, representing persis-
tent heavy-weight interactions and lightweight one-time in-
vocations, respectively. The key to the interface design is to
give enough expressiveness to allow full functionality, but to
make sure there are no backdoors.

We test our ideas in a prototype implementation of the
µKVM, built by modifying the Sun sources of the J2SDK
to replace the J2SDK security architecture with our new



microkernel-based architecture. This change in architecture
is internal in the sense that existing Java applications can
run in the µKVM with almost no change, a fact that fur-
ther illustrates the power and generality of the approach. By
running standard Java benchmark suites, we show the orig-
inal Java code functionality is preserved, and some limited
performance benchmarks indicate that the µKVM compares
favorably with the J2SDK and so the microkernel does not
appear to introduce unacceptable overhead. Indeed, when
the Java Security Manager is running, the µKVM imple-
mentation is faster. The prototype at this point implements
enough of the interfaces, namely those for file, network, and
threads, to show feasibility of the approach; implementing
GUI libraries and a few other features is ongoing work.

2. DESIGN OF THE µKVM
In this section, we first give a high-level overview of the pro-
posed microkernel virtual machine model, and the intuitions
behind the design. Then, the overall design blueprint of the
µKVM is introduced.

2.1 Architecture Overview
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Figure 1: Building blocks of the µKVM

A microkernel virtual machine is analogous to a microker-
nel operating system [19, 9]: the size of the codebase with
special privileges is held to a minimum. Features that must
be in the kernel include the core language execution model,
bytecode execution, threads, garbage collection, code load-
ing, etc. Additionally, any potentially sensitive operation
needs to be in the kernel so its use can be controlled. Most of
these operations are input/output operations such as open-
ing files, network connections, window system operations,
etc. In order to minimize the size of the kernel, it is not
necessary to put the whole file I/O library in the kernel—
only the most low-level system operations need to be in the
kernel. Virtual machines such as the JVM and CLR are not
microkernel VM’s: all of the system library code is placed
in the kernel in the sense that all the system libraries have
full privileges.

Our µKVM has an additional important property beyond
the small size of the trusted codebase. The kernel-application
code boundary is clearly delineated via interfaces of interac-
tion, and these interfaces are the only means for application
code to interact with the kernel: there are no backdoors,

callbacks, shared references, etc. Operating system kernels
also have an interface since they are running in a distinct
process; but our interfaces of interaction are more absolute
than in an OS kernel: unlike operating systems there are
no “shared pages” of memory in our architecture, and so all
interactions with the kernel are via the interfaces and not by
some indirect channels. Lack of backdoors makes the design
more declarative, and less prone to errors in its definition
and use.

The central component of our virtual machine is the ker-
nel. The kernel is a special component that is created when
the virtual machine starts, and it stays resident in memory
thereafter. It manages system resources and exposes uni-
form interfaces via which user applications running on the
VM can interact with the kernel. The kernel runs in system
mode as a privileged component, while user applications run
outside the kernel in user mode.

The kernel defines two types of interfaces, connectors and
services, for applications to communicate with it. Con-
nectors are designed to be used for long term interactions
with objects such as files, and services are for simple query-
ing. Connectors are connection oriented in the sense that
connections are required for communication on connectors.
Services however are connection-less and therefore are one-
time invocations. Connector interfaces import plugin and
export plugout operations. Runtime connections have to be
established before connector plugins/plugouts can be used.
For instance, the kernel in Fig. 1 allows a connection to a
low-level file via connector “FileIO”, which exports three
plugouts, “read”, “write” and “seek”. Services are the in-
terfaces for standard client/server style invocations. “OS-
Version” in Fig. 1 is a service via which an application can
query the version of the native operating system. Connec-
tors do an excellent job of expressing persistent communica-
tion channels such as file operations and socket connections,
but simple service requests are not persistent and are more
elegantly implemented as services; thus we provide both con-
nectors and services. The notions of connector and service
come from our previous work on component interfaces [23,
21].

Connections are peer-to-peer persistent links constructed by
mutual agreement between the two parties involved. Once
a connection has been established, calls on a plugin are del-
egated to the corresponding plugout. For example, in order
to read/write a file, the application in Fig. 2 first needs to
request a connection with the kernel, which links a pair of
matching “FileIO” connectors as shown in the figure. After
this point, the application’s call on its “read” plugin trig-
gers the kernel’s “read” plugout, etc. For each open file there
is a different connection established, and the connection is
maintained as long as the file is open. A connection can
be disconnected by either party. We use coupled connectors
in dark shade to represent runtime connections as shown in
Fig. 2, and plain connectors as pictured in Fig. 1 to sym-
bolize static connector interfaces. We follow this convention
throughout this paper.

As mentioned above, one of the main reasons for defining
a clear application-kernel boundary is so all access control
checks can be made at this interface. To be precise, a con-
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Figure 2: A connection on connectors

nection to an application is established only if the kernel’s
security policy allows it. For services, proper permissions
are checked each time before the service is invoked by user
applications. In Fig. 2, the kernel grants the application
a connection associated with the file “data.txt” only if the
application has the permission to access the file. And, im-
portantly, the kernel does not give the direct file handle to
the application: the connection is just a channel through
which the file may be accessed. Since only the kernel holds
the file handle itself, it can revoke the application’s access
to the file at any point by disconnecting. The revocability
of connections makes it possible to put new security policies
into effect instantly without the interruption of current run-
ning applications, which is not possible in the J2SDK. For
example, if a file in the J2SDK is open with read permission,
the application can always read that file as long as it does
not close the file, even if the runtime java.security.Policy
object is changed to withhold read permissions on the file.
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Figure 3: Comparison of the Java J2SDK (a) and
the µKVM (b)

Unlike the Java J2SDK, libraries in the µKVM do not have
any special system privileges, since the privileged code is all
in the kernel, and the libraries will interact with the kernel.
Programmers also have the option of gaining more control
over system functionality by directly interacting with kernel
connectors/services. Application A in Fig. 3 communicates
with the kernel via libraries, while application B directly in-
teracts with the kernel. A simple view of how the µKVM can
be implemented is that we take Java system libraries such
as java.io and divide it into two parts, the non-privileged
library.io, and putting the core file operations in the ker-
nel. It might seem unintuitive that such a split is possible,
but in practice we found that a small interface to the very
low-level system routines could be constructed, and so this
division works in practice. The principle behind the success
is that there are always only a few, low-level channels of data
in and out of any application. Details of the implementation
are described in Sections 3 and 4.

The J2SDK security architecture protects the system do-
main from being breached by means of stack inspection.
But, there is no explicit boundary between different applica-
tion domains on the same VM. Thus, it is difficult to enforce
the fact that permissions from the more privileged domain
will not leak into the less privileged one, since the domains
can have many references between each other and so it is not
clear where one begins and the other ends. In the µKVM,
every application can be encapsulated in a distinct domain,
as shown in Fig. 3, and these domains can interact with
each other via connectors and services only. In the µKVM
implemented for this paper, we for now simplify the task,
and deal only with the case of one application domain; thus
the only inter-domain interaction here is between the kernel
domain and the (sole) application domain. A full-fledged
multi-application µKVM is future work and is discussed in
Sec. 7.

2.2 Design Overview
Fig. 4 shows an overview of the whole µKVM design. It
is an abbreviated blueprint showing all the connectors, but
leaving out some services for lack of space. There are four
types of system resources that are crucial to any language
runtime system: graphical user interface, file system, net-
work socket and runtime environment resources. A secure
system needs to protect these essential resources from unau-
thorized use. Fig. 4 illustrates how the µKVM kernel guards
system resources and at the same time exposes a set of con-
nectors/services so that applications are able to access re-
sources with proper permissions.

The interface exported by the kernel represents the bare
minimum set of connectors and services: only code that
absolutely must be part of the kernel is there. For in-
stance, a GUI component of a system at the lowest level
consists of interactions with local graphic devices and an
event system, modeled by the connectors GraphicConnector
and EventConnector in the µKVM, as shown in Fig. 4. The
graphics library outside of the kernel contains the bulk of
the GUI system code. For the file system, the two essential
connectors are newFileDescriptor and FileSystem, which
plug out essential operations for accessing a file or the local
file system, respectively. Socket operations are provided on
StreamSocketDescriptor and DatagramSocketDescriptor,
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Figure 4: µKVM design overview

for stream and datagram communication. The Runtime En-
vironment component in the diagram is the means whereby
an application may effect its own execution, via threads, low-
level Object protocols, etc. The ThreadConnector supports
threads, forming a connection for each thread.

This design also helps illustrate the difference between con-
nectors and services. A connector is used for persistent sys-
tem resources that are dynamically allocated. For instance,
a connection on newFileDescriptor at runtime is a handle
to an opened file. When an interaction with the kernel is
one-time operation, a service interface is more appropriate.
For example, a request for the currently running thread to
yield is not a request to any particular thread connection,
and is designed as a service, currentThreadYield.

Every dotted square in the Fig. 4 represents a module that
has an equivalent java core package. For example, the net-
work library in the diagram, with matching interfaces of the
kernel’s network component interfaces, forms a module that
has the same functionality as the java.net package of the
J2SDK.

Our implementation of the µKVM so far includes file I/O,
network and thread. Details of the implementation are dis-
cussed in Sec. 3 and Sec. 4. Amongst the remaining imple-
mentation tasks, GUI component is the most complex one
and would require more effort. So, we will discuss how to
implement it in future work (Sec. 7).

At this point we have left a few language features out of our
design, including reflection and object serialization. These

features should be realizable, but are complex enough that
we decided to leave them out until the core design is fully
implemented and performs well in practice.

3. IMPLEMENTATION OF THE KERNEL
We have implemented a prototype of the µKVM by modi-
fying the Java J2SDK source code tree1. To fit the design
into the J2SDK, the µKVM connector/service architecture
has been mapped on to Java classes. Such a mapping allows
us to test our ideas, but does not give the cleanest view of
the concept of connectors, nor the fastest implementation.
It would be more elegant and efficient to build the µKVM
ground-up, in which case domain isolation via connectors
and services is enforceable at language level, and some data
sharing among domains is possible in the implementation
to achieve efficiency. Still, as is shown in Section 6, initial
benchmarks indicate that the performance of the µKVM is
competitive with the J2SDK.

In the prototype, we constructed a java.kernel package
which implements the kernel services and connectors. We
also re-implemented some of the system libraries, such as
library.io and library.net, as non-privileged libraries
that interact with the kernel on interfaces. They are closely
based on the analogous java.io and java.net, but have no
special privileges and obtain system services from the kernel
on its interfaces like any other applications would do. The
J2SDK VM is modified to accommodate these new compo-
nents of the µKVM prototype.

1We obtained the source code of the J2SDK1.4.2 through
the Sun Community Source License



Although this implementation is specific to Java, we believe
the µKVM design can be mapped on to the Microsoft CLR
and other secure VM architectures.

In the following sections, we elaborate how the kernel is con-
structed and how kernel connectors and services are imple-
mented in Java. Building libraries in the µKVM is discussed
in Sec. 4.

The current prototype is a partial implementation of the
design, it includes network, file, and thread functionality but
the GUI libraries and some java.lang features are works in
progress at this point.

3.1 The Kernel Runtime and the java.kernel
package

library.io package
library.net package
user applications

 Kernel

Java Virtual Machine 

java.lang package
java.kernel package

Figure 5: Kernel structure

In previous sections, we loosely used the term “kernel”; there
are in fact two closely related concepts, the kernel and the
java.kernel package. The kernel is a runtime component,
and as shown in Fig. 5 the kernel itself includes a Java pack-
age named java.kernel. We call this package the kernel
package. We inject this package into the J2SDK as system
code by giving it the prefix java and placing it in the system
directory of the J2SDK.

The java.lang package is treated as part of the kernel in the
current prototype. This is simply because we have at this
point only implemented the Thread portion of this package;
all potentially unsafe features of java.lang should eventu-
ally be implemented as connectors /services, and java.lang

can then be replaced with a safe library.lang. Some ex-
amples of potentially unsafe classes in java.lang include
ClassLoader and System.

3.2 Services and the java.kernel.President class
In the prototype, the kernel has a special President class
which is the interface used by applications to request new
connections and access kernel services. The kernel exports
services via the President in the form of public methods. A
unique President object in the µKVM represents the handle
to the kernel and any application may request a reference to
it. Fig. 6 lists all kernel services currently declared in this
class.

3.3 Connectors
The kernel provides connectors for accessing persistent sys-
tem resources such as files and sockets. Since Java has no
built-in notion of connector, each type of connector must be
individually implemented in terms of Java classes.

public static President getPresident();
public static Connector connect(Connector);
public static String getProperty(String);
public static int NetworkInterfaceGetNumber();
public static void NetworkInterfaceGetByIndex

(int, NetworkInterface);
public static void NetworkInterfaceGetByName

(String, NetworkInterface);
public static void NetworkInterfaceGetByInetAddress

(byte[], NetworkInterface);
public static String getHostByAddr(boolean, byte[])
public static String getLocalHostName(boolean)
public static boolean isEqualPath(String, String);
public static boolean impliesIgnoreMask(String, String);
public static void checkPermission(String);
public static void currentThreadYield();
public static void currentThreadSleep();

Figure 6: Services exported on the President

A kernel connector is instantiated from a connector class
in the java.kernel package. These kernel connector classes
are package private because only the kernel is allowed to cre-
ate instances of them. On the other hand, a kernel connector
needs to export its operations to the application connector
that is connected with it, because each established connec-
tion is constituted at runtime by two connector objects, with
mutual references from each to the other. One of these con-
nector objects belongs to the kernel, and the other is part of
the application. Public interface classes for connectors are
introduced for this purpose.

Interface classes for connectors are used to pair up connec-
tors. Even though two matching connectors are mirrors of
each other, with reversed plugins and plugouts, a common
interface is used for both which includes all plugins and plu-
gouts. In the connector objects themselves, a plugout is
implemented as a method of the connector class with a con-
crete implementation, and a plugin is implemented simply
as a forwarder to its corresponding plugin.

Public Interface for ConnectorPrivate Connector Class

FileSystem

newFileDescriptor

FileSystemIfc

newFileDescriptorIfc

StreamSocketDescriptorIfcStreamSocketDescriptor

DatagramSocketDescriptorIfcDatagramSocketDescriptor

Connector

java.kernel

ThreadConnector ThreadConnectorIfc

Figure 7: java.kernel class diagram

java.kernel as implemented in the current prototype pro-
vides five connector types , shown in Fig. 7. The inter-
face class newFileDescriptorIfc declares basic operations
allowed on a file descriptor, such as read and write. The
FileSystemIfc defines file operations such as renaming a
file. The StreamSocketDescriptorIfc support stream net-



working, while the DatagramSocketDescriptorIfc declares
datagram communication. The ThreadConnectorIfc offers
an abstraction on a thread of execution.

User applications and libraries need to have connectors fol-
lowing declarations of those interface classes in order to in-
teract with kernel connector objects. Connector classes on
the application side are always of a standard form, they are
defined in a simple XML format and compiled down to Java
classes. More details on constructing libraries in the µKVM
can be found in Sec 4.

3.4 Syntactic Restrictions on the Kernel Inter-
face

The key to securing the µKVM is to secure the kernel. The
invariant we aim to maintain about the kernel is that all
interactions with the kernel are solely through its services
and connectors. To achieve this, we must design the archi-
tecture so that no object references from the user to the
kernel space can bypass the kernel interfaces. In the pro-
totype implementation, we achieve this through the use of
copy-only data passing between the user and kernel spaces,
and only allow for the exchange of primitive data and certain
immutable objects on these interfaces. As discussed previ-
ously, connectors and services are mapped to Java classes
in java.kernel. We now describe the syntactic restrictions
on the form of these classes that will ensure the above in-
variants on object references always hold. Currently we are
checking by hand whether our kernel library interfaces obey
the restricted type discipline, but it is nothing more than a
simple grammatical check which could be performed by an
automated tool.

PrimitiveType represents the types that can be exchanged
on the interfaces between the kernel and applications. Prim-
itive types are safe to be passed across domains because in-
tuitively they are pure data objects, without reference to
non-primitive data objects.

PrimitiveType is defined in Fig. 8, and includes Java primi-
tive types such as int, java.lang.String, arrays of Primi-
tiveType and the DataType defined subsequently. DataTypes
are simple classes that are similar to the struct of C, but
DataType contents are restricted as follows: DataType classes
can only have instance fields of PrimitiveType, and they can
have neither static fields nor methods other than accessor
methods.

Two DataType classes so far have been provided in the ker-
nel package. The DatagramPacket class represents a data-
gram packet used in connection-less packet delivery. The
NetworkInterface class represents a Network Interface made
up of a name, and a list of IP addresses assigned to this in-
terface.

Figs. 8 and 9 define the grammatical structure of java.kernel.
From this structure we may observe the following properties
of data coming in and out of java.kernel:

1. Only PrimitiveType objects are exchanged between the
kernel and a non-kernel component, thus no complex
object reference sharing is introduced. Specifically, in

Fig. 9, PublicKCMethodDeclaration defines public ker-
nel classes to take a FormalParameterList. According
to the definition of FormalParameterList in Fig. 8, ev-
ery parameter of such a public kernel class has to be a
PrimitiveType. Moreover, return types of those kernel
public classes are PrimitiveTypes as well. One spe-
cial exception is made to this policy, for the connect

method of the President. It builds a connection by
receiving a user connector and returns a kernel one,
which is the bootstrap channel for kernel-application
communication.

2. Data exchange through static fields is impossible since
the kernel package has no static fields visible to ap-
plications. The static modifier is excluded from the
FieldModifer defined in Fig. 8.

3. The interactions cross component boundaries are strictly
via connector or service interfaces because they are
the only public components that are visible to appli-
cations.

From these restrictions we may infer that callbacks from the
kernel to applications will not arise, because only primitive
data will be passed from the application to the kernel and
so there are no objects passed by the application that the
kernel can make a callback on: the PrimitiveType objects
are solely public data.

4. IMPLEMENTATION OF LIBRARIES
The existing J2SDK libraries do not fit directly into the
µKVM because the java.* libraries are privileged system
code. For example, any java.io class has the privilege to
interact with the operating system directly via Java Native
Interface (JNI) [18]. So, a new set of libraries need to be
developed especially for the µKVM.

Our library.io and library.net are such libraries. They
have nearly identical functionality as the original java.io
and java.net packages, but they do not need special system
privileges to do their job because privileged operations are
exclusively performed by the kernel. Consequently, they do
not have any doPrivileged blocks.

Native code is a back door through which an application
can bypass the language runtime. There is no guarantee
of security in the presence of native code. So libraries are
not allowed to have native methods in the µKVM as in the
current prototype implementation. Any use of native code
in µKVM should properly be viewed as a kernel extension
since it is not allowed in application space. This restriction
on native code does not mean that our model is less flexible
than the J2SDK: when a secure runtime is required, the
J2SDK also must disallow arbitrary native code with the
help of the Security Manager. Eventually, we will have our
own class loading mechanism as discussed in Sec. 7. Such
functionality will be also on connectors/services upon which
the kernel can decide if code, native or java, can be loaded.

4.1 I/O Library Implementation
In this section, we first briefly review how the J2SDK java.io

package works, then discuss the design of the library.io

package for the µKVM platform.



Definition 1 (PrimitiveType)
PrimitiveType ::= int | short | byte | long | char | float | double | boolean |

String | array of PrimitiveType | DataType;
Definition 2(DataType)

DataType ::= public final class Identifier∗
{ClassBodyDeclarationsopt}

ClassBodyDeclarations ::= ClassBodyDeclaration
ClassBodyDeclarations ClassBodyDeclaration

ClassBodyDeclaration ::= ConstructorDeclaration
FieldDeclaration
MethodDeclaration

ConstructorDeclaration ::= public Identifier∗(FormalParamterListopt)
{ConstructorBody∗}

FormalParameterList ::= FormalParameter
FormalParameterList, FormalParameter

FormalParameter ::= PrimitiveType V ariableDeclartorId∗
FieldDeclaration ::= FieldModifiers PrimitivetType V ariableDeclarators∗
FieldModifiers ::= FieldModifier

F ieldModifiers FieldModifier
FieldModifier ::= public | protected | private | final | transient | volatile
MethodDeclaration ::= PublicAccessorMethod

PrivateInternalMethod
PublicAccessorMethod ::= public PrimitiveType getIdentifier∗(FormalParamter)

{MethodBody∗}
PrivateInternalMethod ::= private ReturnType∗ Identifier∗(FormalParameterList)

{MethodBody∗}

∗ The denoted term is defined in the Java Language Specification

Figure 8: PrimitiveType and DataType definitions

Definition (kernel package)
Kernel Package ::= ClassDeclarations

InterfaceDeclarations∗
ClassDeclarations ::= ClassDeclaration

ClassDeclarations ClassDeclaration
ClassDeclaration ::= PublicClassDeclaration

PrivateClassDeclaration
PublicClassDeclaration ::= public final class Identifier∗

{PubClassBodyDeclarationsopt}
PubClassBodyDeclarations ::= PubClassBodyDeclaration

PubClassBodyDeclarations PubClassBodyDeclaration
PubClassBodyDeclaration ::= ConstructorDeclaration∗

FieldDeclaration
KCMethodDeclaration

KCMethodDeclaration ::= PrivateKCMethodDeclaration
PublicKCMethodDeclaration

PublicKCMethodDeclaration ::= public MethodModifiersopt∗ PrimitiveType Identifier∗
(FormalParameterListopt) {MethodBody∗}

PrivateKCMethodDeclaration ::= private MethodModifiersopt∗ ResultTyep∗ Identifier∗
(FormalParameterListopt∗) {MethodBody∗}

PrivateClassDeclaration ::= class Identifier∗
{ClassBodyDeclarationsopt∗}

∗ The denoted term is defined in the Java Language Specification

Figure 9: java.kernel specification



4.1.1 Review on java.io

Java Native Interface

Native Operating System

Java Virtual Machine

RandomAccessFile

FileOutputStream

FileInputStream

FileDescriptor

java.io

File

FileSystem

UnixFileSystem

FilePermission

Figure 10: java.io class diagram

Fig. 10 includes the major classes of the J2SDK java.io

package. It also illustrates dependence of these classes on
native code, drawn as thin lines between classes and the
Java Native Interface box.

Instances of java.io.FileDescriptor serve as an opaque
handle of an open file or socket. FileDescriptor itself does
not perform any I/O operations, but mainly serves as data
holder storing references to opened native file handlers. The
RandomAccessFile class supports random file access. The
FileInputStream and the FileOutStream are for raw bytes
read and write respectively. Each of the three classes has
its own set of native methods performing I/O operations
such as open/read/close. To enforce access control, the Java
Security Manager is called in to perform stack inspection,
for example, when opening a file.

java.io.FileSystem is a class for local file system abstrac-
tion. It defines machine-dependent operations such as file
canonicalization. The File class is an abstract represen-
tation of file and directory path names. It delegates file
operations to a FileSystem object. The FilePermission

represents the access to a file or directory, consisting of a
pathname and a set of actions valid for that pathname.

4.1.2 The library.io package for theµKVM
The library.io package wraps the basic I/O operations the
kernel offers and provides programmers a high-level view
of those operations via classes such as RandomAccessFile.
Fig. 11 shows the class structure of this package. Notice
that the library.io package is pure java code without any
dependence on the Java Native Interfaces, by contrast with
java.io. The bond between the kernel and the native code
is also minimum.

Almost every class in library.io has a peer class with the
same class name in java.io. The inheritance structures
among classes are almost identical in both packages. How-
ever, despite the surface similarities, the internal details of
the implementations differ greatly.

Java Native Interface

Native Operating System

Java Virtual Machine

FileSystemIfc

java.kernel library.io

Connector

UnixFileSystem

newFileDescriptor

FileSystem

newFileDescriptorIfc

FileSystem

newFileDescriptor

FilePermission

FileInputStream

FileOutputStream

RandomAccessFile

       File

Figure 11: library.io for the µKVM

In library.io, RandomAccessFile, FileInputStream and
FileOutputStream differ from their java.io counterparts
in that they no longer have their own native I/O meth-
ods. Instead, they import those operations from the kernel’s
newFileDescriptor connector. As the result, real I/O op-
erations are delegated to the kernel via connections on this
connector. Creating a library.io.newFileDescriptor in-
stance triggers the process of requesting such a connection
with the kernel. If granted, the connection is associated with
a specific file by the kernel. Thereafter, the connection may
be used as a valid channel for operating on that file.

Native Operating System

Virtual Machine

Kernel

RandomAccessFile randFile =
new RandomAccessFile(“data.txt”, “rw”);

randFile�

�

skip

write
read

seek

newFileDescriptor

data.txt

Figure 12: A RandomAccessFile example

Fig. 12 demonstrates a simple example. The statement
new RandomAccessFile ("data.txt","rw") creates a new
RandomAccessFile object. When the object is instantiated,
the RandomAccessFile constructor demands the creation of
a library.io.newFileDescriptor. The constructor for cre-
ating the library.io.newFileDescriptor object in turn
consults the kernel President to get a connection on the



kernel newFileDescriptor connector associated with the file
"data.txt". If the kernel grants the connect request, then
the application gets a valid RandomAccessFile object hold-
ing a persistent connection to the file.

The library.io.File class abstracts file and directory path-
names as it does in the standard jave.io package. But, it
has no access to privileged data. For instance, one specific
difference between library.io.File and java.io.File is
the implementation of a method named createTempFile.
The method in java.io.File uses doPrivileged to get the
security-sensitive java.io.tmpdir property and creates a
temporary file under the directory specified by this property.
In contrast, the library.io.File delegates the creation of
temporary files to the kernel via a connection to FileSystem.
It doesn’t need to query the protected "java.io.tmpdir"

property, which is good because it doesn’t have the privi-
leges to do so. Similarly, the library.io.FilePermission

relinquishes privileges the java.io.FilePermission has.

4.2 Net Library Implementation
The library.net package provides the same functionality
as the J2SDK java.net package. The important classes of
library.net are shown in Fig. 13.

java.kernel library.net

Connector

DatagramSocketDescriptor

StreamSocketDescriptor

DatagramSocketDescriptorIfc

StreamSocketDescriptorIfc

DatagramSocketDescriptor

StreamSocketDescriptor

DatagramSocket

DatagramSocketImpl

ServerSocket Socket

SocketImpl

Figure 13: ibrary.net class diagram

The kernel and library.net each define two connectors,
StreamSocketDescriptor and DatagramSocketDescriptor,
for stream-based and datagram network communication, re-
spectively. Platform-dependent network operations such as
getLocalHostName, originally performed by native methods
of java.net, are made part of the kernel public services in
the µKVM.

DataType classes, NetworkInterface and DatagramPacket

discussed in Sec. 3.4 are used by the library.net.

5. THE SECURITY ARCHITECTURE
The µKVM prototype reuses the Java protection domain
framework since the resources being protected and the prin-
cipals are the same. A Java protection domain conceptu-
ally encloses a set of classes whose instances are granted

the same set of permissions. A security policy declares the
allowable permissions of a protection domain. The Java
application environment maintains a mapping from classes
and instances to their protection domains and then to their
permissions [10]. For policy enforcement, we gut the Java
Security Manager and replace it with our own mechanism:
Java stack inspection is disabled in our re-implementation of
checkPermission, and checkPermission is invoked solely
by the kernel at the start of connector/service invocation
and checks that the immediately invoking code has the needed
file/network/. . . permission.

We now informally justify why this architecture is a sound
replacement for the security mechanism of the J2SDK.

Object reference sharing breaks component isolation, so con-
fining references across the user-kernel boundary is espe-
cially important in the µKVM. Applications can only obtain
two types of references into the kernel space: references to
the President object, and references to kernel connectors.

In the java.kernel package, the only classes designed to
be used by applications, for instance the simple DataType
classes, are public. None of the classes for public use have
static fields. Therefore, there is no route whereby reference
to internal kernel objects can leak out, and no one outside
the kernel package has access to the kernel’s internal classes.
User applications can thus only interact with the kernel on
designed interfaces.

Every public class of the kernel has to be carefully exam-
ined to prevent undesirable object references from leaking
out of the kernel accidentally. As presented in Sec. 3, only
primitive types of data can be involved in inter-component
interactions via the syntactic restriction enforced on service
and connector class interfaces.

The kernel can also hold direct references to application
spaces, but these references are limited to the user connec-
tors and PrimitiveType objects. The connector and service
interfaces contain no other type of object references except
the two we just mentioned, so no others can be passed into
the kernel. Moreover, the java.kernel package doesn’t im-
port any application classes. This prevents the kernel from
invoking user class constructors. Therefore, we eliminate di-
rect callbacks from the kernel to applications. The callback
constraint is another fence guarding boundaries between the
kernel and user applications.

We carefully map Java security policies to the security model
of the µKVM prototype, so that protected resources in Java
are also protected in our system. All the resources originally
directly accessible to system libraries are now managed by
the kernel, and accesses to such resources have to go through
either connectors or services with proper permissions.

We reuse the standard Java exception mechanism. Excep-
tions can traverse arbitrary domains, so a kernel exception
may be propagated to user spaces. In order to protect the
integrity of the kernel interface, the kernel only throws ex-
ceptions with string messages at most so that exceptions do
not become a backdoor communication channel.



In summary, we have shown how the µKVM security model
can be faithfully implemented, and having a security mech-
anism based on a clear-cut kernel-application boundary is
powerful, as strong as the J2SDK mechanism, and is fun-
damentally more declarative in nature since the checks all
occur at a clearly declared interface. However, a system is
secure only if it can survive attacks in a real world. Our
ultimate goal is to put up the µKVM for public use once its
implementation approaches completeness, so that its secu-
rity can be tested in practice by real users.

6. µKVM EVALUATION
6.1 Functionality Evaluation
In order to verify that the user-level functionality of the
J2SDK is preserved in the µKVM, we ran a series of test
suites. We used the mauve test suite2 for Java class libraries.
No modification to the test suite programs for the µKVM
needed to be made besides changing imports of java.io

and java.net to library.io and library.net, respectively.
The mauve test suite contains around 2000 tests for io and
net packages. The following Table 1 shows the test results.

The first row in Table 1 shows numbers of failed, succeeded,
and total test cases on I/O operations in the J2SDK and
µKVM, respectively. The second row gives the test results
for network operations. The last row summarizes across all
test cases. This data shows that our implementation meets
the mauve specification as well as the J2SDK implementa-
tion does3. Based on the tests, we can conclude that our
prototype system indeed preserves the functionalities of the
Java platform.

6.2 Performance Evaluation
Microkernel operating systems historically suffer runtime
performance problems, which makes microkernel-based ar-
chitectures potentially less appealing for practical systems.
To find out whether the µKVM also has such a performance
pitfall, we evaluated its performance via a set of performance
benchmarks4. We had to design the benchmarks ourselves
because we could find no existing benchmarks to test the
speed of the I/O; on the mauve benchmarks above, the run-
ning time difference between the J2SDK and µKVM was
insignificant because the applications did not do significant
amounts of I/O. The benchmark tests of this section were
run on the Sun platform, and security was switched on only
for the cases where the security overhead was being profiled,
noted below.

Test programs are run in identical settings in both the J2SDK
and the µKVM, therefore, it is the relative performances

2http://sources.redhat.com/mauve/
3The difference in the total number of tests performed on
the J2SDK and our prototype implementation results from
how the tests were grouped: the test suite groups tests to-
gether so that one test failure may cause skipping of the rest
of tests in the same group. All the failed tests on our pack-
ages and those on peer Java packages are either the same or
simply different on exception types. For example, writing to
a closed socket in Java throws an IOException, while in our
model it throws a null pointer exception because the con-
nection associated with that socket has been disconnected
and becomes null.
4www.cs.jhu.edu/~xiaoqilu/MicrokernelVM/benchmark

really matter instead of absolute numbers. Comparisons
between the J2SDK benchmarch results and the µKVM
ones are reflected in percentages of their differences (Diff),
which are calculated with the formula: Diff = (µKVM -
J2SDK)/J2SDK * 100%. The Diff values are used in tables
throughout this section.

6.2.1 File Open Tests
The file open tests aim to measure the time and memory
consumption in file open operations. The test program sim-
ply opens 500 or 1000 files and records the total time spent
on opening operations. The memory overhead is profiled
by using the -Xrunhprof:heaps=sites option of the Java
interpreter, which outputs the detailed information of heap
usage. Opening a large amount of files is not a typical sce-
nario in real applications. But we choose to benchmark it
because it is the place that the µKVM mostly likely intro-
duces overhead.

We executed the tests on a Sun Blade 50 running Solaris 2.5
with 650MHz processor and 256Mb memory. Table 2 shows
the benchmark results.

From Table 2 we can see that for file opening the µKVM
introduces a very small overhead. For example, the µKVM
slowed down by 2.98% in opening 500 files and used 3.03%
more memory. Part of this overhead came from library load-
ing. In the µKVM, the io package is no longer system library
and is not preloaded into the runtime as it is in the J2SDK.
Therefore, the test program in the µKVM had to spend ex-
tra time in loading library classes. The memory overhead
is due to mapping connections into delegations between two
java connector objects, which causes more objects to be cre-
ated. In any case, the overhead is reasonably small that
would barely impact the performance of a real application.

6.2.2 File Read and Write Tests
Read/write tests are used to benchmach the kernel imple-
mentation because file I/O in the µKVM is managed solely
by the kernel. In this group of tests, 5M data were read/written
from/to a file.

As shown in Table 3, different block sizes were used to
read/write the 5M data. When the block size was 64 bytes,
the µKVM ran faster by 0.35% in read and 0.97% in write.
In the 128 case, the J2SDK perfromed better by 0.71% and
0.01% in read and write respectively. Block size of 256, 512
and 1024 were also tested, and all results indicate that the
difference of the µKVM and the J2SDK on file read/write
is not statistically significant.

6.2.3 Network Benchmark
A typical TCP/IP network application, consisting of a client
and a server, is used to assess network performance of the
µKVM prototype. The client and the server were set up in
a Local Area Network, running on Solaris 2.6 with 350MHz
processor and Solaris 2.8 with 650MHz processor respec-
tively, connected by a 100Mbps LAN. The client sent total
of 1M data to the server and recorded the time elapses. We
benchmarked 9 cases with different network packet sizes,
ranging from 64 to 16384 bytes.



J2SDK µKVM
Failed Succeeded Total Failed Succeeded Total

io tests 9 648 657 9 648 657
networking tests 9 365 374 8 376 384

total 18 1013 1031 17 1024 1041

Table 1: Results of mauve tests

File File Open Time (ms) Memory (byte)
Number J2SDK µKVM Dif(%) J2SDK µKVM Diff(%)

500 395 407 2.98 2,385,752 2,458,072 3.03
1000 847 875 3.33 2,408,112 2,496,888 3.69

Table 2: File Open Benchmark

Table 4 shows our µKVM implementation runs faster than
the J2SDK up to 10%, even though related code in the two
platforms is technically identical. In-depth examination of
the cpu profiles generated on the two systems revealed that
Java spent more time synchronizing the field “fdUseCount”
in its PlainSocketImpl class. This field is used for record-
ing the number of threads using the corresponding socket
and is updated synchronizely every time a write/read takes
place on the socket. To find out the impact of such synchro-
nization, we conducted another group of tests with the same
setting as ones used in Table 4 but without synchronization
on “fdUseCount”. The results show that the µKVM and
the J2SDK have comparable performance.

Memory overhead in the network benchmark was obtained
via java option -Xrunhprof:heaps=sizes. Table 4 demon-
strates that the µKVM only has slight overhead over the
J2SDK, i.e. the difference is maximally 0.58%.

6.3 Security Evaluation
The benchmarks above focused on raw performance and
therefore excluded the additional overhead incurred from
access control checks. In this section we assess the J2SDK
vs. µKVM security overhead. Note that we are only eval-
uating the performance of the checks, not other dimensions
of the security model; that topic is addressed in Section 5.

Benchmark programs used in this section are the same as
the ones in Sec. 6.2.1 but with security enabled. For Java,
test programs were run with a Java Security Manager, while
for the µKVM, a security mode was set and the kernel en-
forced access control on its interfaces. Test results then were
compared with the results of the previous section.

Table 5 shows the overhead resulting from running the secu-
rity architecture on the J2SDK and the µKVM respectively.
On the J2SDK, performance suffered greatly. The speed
for opening 500 or 1000 files slowed down by 136.45% and
77.33% respectively. Security also introduced overhead to
the µKVM, but much less severe than it did to Java, i.e.
68.5% and 39.89% in the same two test cases.

Memory comsumption increased on both the J2SDK or the
µKVM in the security overhead benchmarks, shown in Ta-
ble 6. When 500 files were opened, Java had 24.44% memory

overhead while the µKVM had 10.79%. In the 1000 case,
Java experienced 43.28% memory increase while µKVM got
35.95%.

Table 7 is the head-to-head comparison between the security
overheads of the J2SDK and the µKVM. It clearly shows the
µKVM outperformed the J2SDK in both speed and memory.
Precisely, the µKVM was 26.66% faster than Java when 500
files were opened and 18.51% faster when the file number
increased to 1000. As for memory comsumption, the µKVM
costed only 0.01% more memory in the 500 case while 1.63%
less in the 1000 case.

We have shown in this section that the µKVM not only
runs as fast as the J2SDK in file and network operations,
but also has significant effiency advantages in providing a se-
cure runtime environment. So far we have not yet done any
optimization on the prototype implementation. We believe
that our µKVM can be further toned to achieve better per-
formance, with optimizations such as implementing parts of
the kernel in native code. Based on the performance of the
µKVM in these benchmarks, we are optimistic that good
performance will be obtainable for a full implementation in-
cluding GUI libraries, etc.

7. FUTURE WORK
We are in the process of completing the µKVM design of
Fig. 4, in particular the GUI component. With a full GUI ca-
pability, we will be able to develop and test real-world appli-
cations on the µKVM. Fig. 14 shows a more detailed design
for GUI. The kernel and applications execute in their own
threads, and the system-wide event dispatch thread used in
the J2SDK is replaced with application-level threads. Every
application has its own event queue and dispatch thread.
An application registers its interests to the kernel via its
plugin Register and the kernel delivers proper events to
the application via PostEvent. All the applications inter-
ested in the same event always get their own copies of that
event. Native windows are managed by the kernel and acces-
sible to applications via connectors. Notice that the kernel
only posts events to an application event queue, the appli-
cation’s private dispatch thread is responsible for invoking
the event listeners. Similarly, applications may request to
draw on corresponding native windows via GraphicConnec-
tor, instead of operating on them directly using JNI. This



BlockSize Read (ms) Write (ms)
(byte) J2SDK µKVM Diff(%) J2SDK µKVM Diff(%)

64 877.5 874.4 -0.35 1,136.3 1,125.3 -0.97
128 466.1 469.4 0.71 688.1 688.2 0.01
256 264.8 266.0 0.45 488.8 484.5 -0.88
512 158.5 159.2 0.44 322.9 318.6 -1.33
1024 104.4 103.9 -0.48 234.0 230.7 -1.41

Table 3: File Read/Write Benchmark

Message Memory (byte) Transfer Time (ms)
Size*Num J2SDK µKVM Diff(%) J2SDK µKVM Diff(%)
64*16384 10,777,328 10,789,736 0.12 3.33 3.10 -6.83
128*8192 9,723,656 9,735,328 0.12 5.60 5.01 -10.48
256*4096 9,213,296 9,220,456 0.08 10.73 9.59 -10.62
512*2048 8,957,792 8,980,544 0.25 22.48 20.18 -10.24
1024*1024 8,803,504 8,853,080 0.56 43.41 39.77 -8.39
2048*512 8,741,040 8,792,040 0.58 86.60 80.43 -7.12
4096*256 8,714,416 8,763,912 0.57 170.82 166.53 -2.51
8192*128 8,722,704 8,753,064 0.35 345.10 316.57 -8.27
16384*64 8,742,816 8,754,976 0.14 631.86 648.39 2.62

Table 4: Network Benchmark

File J2SDK File Open Time (ms) µKVM File Open Time (ms)
Number -Security +Security Diff(%) -Security +Security Diff(%)

500 395 934 136.45 407 686 68.55
1000 847 1,502 77.33 875 1,224 39.89

Table 5: Security Overhead on File Open

File J2SDK Memory (byte) µKVM Memory (byte)
Number -Security +Security Diff(%) -Security +Security Diff(%)

500 2,385,752 2,968,824 24.44 2,458,072 2,969,224 20.79
1000 2,408,112 3,450,360 43.28 2,496,888 3,394,200 35.94

Table 6: Security Overhead on Memory

File File Open Time (ms) Memory (byte)
Number J2SDK µKVM Diff(%) J2SDK µKVM Diff(%)

500 934 686 -26.66 2,968,825 2,969,224 0.01
1000 1,502 1,224 -18.51 3,450,360 3,394,200 -1.63

Table 7: Security Overhead Comparison



architecture effectively removes privileges from the original
Java AWT/Swing libraries and puts the kernel in full control
of GUI resources.

As to efficiency, a major concern of any GUI implementa-
tion, we are confident that our model is able to achieve per-
formance comparable with Java, based on the benchmarks
of the file and network components in Section 6.
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Figure 14: GUI Implementation Design

A full-fledged µKVM with the capability of running multi-
ple user applications is one of our major future tasks. In the
multi-application µKVM, every application is an isolated
computation, and they interact with each other via inter-
faces as shown in Fig. 15, the same way as an application
communicates with the kernel. Unlike the single user ap-
plication model, resources are shared among applications in
the multi-application µKVM. Multiplexing system resources
properly is a key issue we have to address in order to guar-
antee application isolation.

Native Operating System

Virtual Machine

Kernel

Application

�

�

Application

�

�

�

Figure 15: Multiple applications

To run multiple applications, a class loading mechanism

must enforce application isolation. Classes shared by mul-
tiple applications need to be loaded in a way that they do
not become a backdoor channel for inter-domain communi-
cation. Meanwhile, sharing code safely cross applications is
essential to achieve efficiency and a smaller memory foot-
print. We would need to design and implement such class
loading model because the Java Virtual Machine is essen-
tially a single application platform whose class loaders do
not have built-in capability for isolating multiple applica-
tions.

Isolated VM component domains have also been pursued in
several other projects, so this is not as novel a topic as is the
application-kernel dimension, and that is why this paper fo-
cuses on application-kernel and not application-application
interaction. The Application Domains of the Microsoft CLR
[22] guarantee isolation of multiple applications running in
the CLR. Java Isolates [17] and related research [15, 2, 4,
8] are proposals to extend the JDK with an application iso-
lation mechanism. Java Isolates concentrates on removing
the potential for sharing via class static fields. The J-kernel
[14] implements application isolation on top of an existing
JVM and it focuses on using stub objects as capabilities
for cross-domain communication. All of these systems use
a copy-only communication mechanism for inter-component
communication. Other approaches include the Multitasking
Virtual Machine (MVM) [5, 6] and KaffeOS[1], which sup-
port primitive inter-application communication via sockets
or a shared heap. The big difference between the µKVM
and these other projects is how it also includes a specific
domain for the key system services, the kernel.

8. CONCLUSION
In this paper, we proposed a novel microkernel-based lan-
guage VM, the µKVM. In our architecture, the kernel man-
ages system resources and implements a core set of low-level
system functionalities. System libraries such as I/O library
are implemented as a layer on top of the kernel, and run in
user mode. All interactions between the kernel and applica-
tions are declared on explicit interfaces, the connectors and
services.

The µKVM has a small trusted codebase which includes
only the kernel and the underlying virtual machine. It is
well-known that the smaller the trusted codebase is, the
lesser the impact of making programming mistakes. The
µKVM does not need stack inspection to protect system
libraries because those libraries have no more privileges than
user applications. Because of this, programmers are free to
replace system libraries with specialized libraries that better
suit their needs, allowing for open extensions that will not
introduce additional risk into the system.

The security architecture of the µKVM is simple and declar-
ative. Accesses to all sensitive resources are through pub-
licly declared interfaces, the connectors and services. Per-
mission checks are explicitly placed on those interfaces, and
are controlled by the kernel. The simple, declarative nature
of the µKVM security framework has obvious benefits: pro-
grammers can easily understand the security architecture
and hence build their secure applications confidently, and
implementing or modifying such a security model is not as
demanding as the J2SDK security architecture.



The Principle of Least Privilege can be easily deployed in the
µKVM via imposing fine-grained security schemas on inter-
faces. It is easy to see the permissions an application needs
to execute successfully by checking the connectors/services
it declares, and hence avoid granting extra permissions to it.
At runtime, the kernel has the ability to revoke an already
granted access to a system resource instantly, by disconnect-
ing the connection associated with the resource. The J2SDK
security model lacks such a revocation feature—an appli-
cation can hold on to a previously obtained file descriptor
even after such access is no longer allowed in a dynamically
changed security policy.

Benchmarks of the µKVM prototype show that our model
can provide a secure runtime environment with less over-
head penalty than the Java standard platform, avoiding the
runtime performance pitfall commonly found in microkernel-
based operating systems.
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