
Modules with Interfaces for Dynamic Linking
and Communication

Yu David Liu Scott F. Smith

Department of Computer Science
The Johns Hopkins University

{yliu, scott}@cs.jhu.edu

Abstract. Module systems are well known as a means for giving clear
interfaces for the static linking of code. This paper shows how adding ex-
plicit interfaces to modules for 1) dynamic linking and 2) cross-computation
communication can increase the declarative, encapsulated nature of mod-
ules, and build a stronger foundation for language-based security and
version control. We term these new modules Assemblages.

1 Introduction

Module systems traditionally excel in static linking. In typical module systems
such as ML functors [Mac84], mixins [BC90,DS96,HL02], Units [FF98] and Jiazzi
[MFH01], each module has a list of features (including functions, classes, types,
submodules, etc) as exports, and a list of imported features. Applications can
then be built by statically linking together a collection of modules. Definitions
of imported features are unknown when the module is written, but all names
must be resolved the moment the module is loaded and executed.

The rapid evolution of the Internet has changed the landscape of software
design, and now it is more common that encapsulated code segments contain
name references that can only be resolved at runtime. Applications of this nature
can generally be placed into two distinct categories, which we term dynamic
plugins and reactive computations, respectively.

Dynamic Plugins A dynamic plugin is our term for dynamically linked code:
a piece of code is dynamically plugged into an already running computation.
Dynamic plugins are ubiquitous in modern large-scale software designs, from
browser and operating system plugins, to incremental as-needed loading of appli-
cation features, and for dynamic update of critical software systems demanding
non-stop services. When the main application is loaded, future dynamic plugins
may be completely unknown, and name references to them must be bound at
runtime.

Reactive Computations Reactive computations are the collection of au-
tonomous coarse-grained computations that are reactive to requests in a dis-
tributed environment. A reactive computation has its own collection of objects;

so, a thread in a JVM is not a reactive computation, but a whole JVM is, as is
an application domain in the Microsoft CLR. In the grid computing paradigm,
each grid cell can be viewed as a reactive computation communicating with other
cells. The communication between a Java applet and its loading virtual machine
can also be viewed as one between two reactive computations. Compared to a dy-
namic plugin, reactive computations are much more loosely coupled since object
references cannot be shared; this is because the computations are on different
nodes or involve parties with limited trust in each other.

As with dynamic plugins, cross-computation invocation also requires name
binding at runtime: when a computation is loaded, it cannot yet know about the
existence of other computations it intends to communicate with.

Previous research on dynamic linking [Blo83,LB98,SPW03,DLE03] and soft-
ware updating [HMN01,BHSS03] also focuses on the dynamic plugin problem,
and numerous projects on remote invocation such as RPC and RMI have tar-
geted reactive computations. In this paper we develop a new module-centered
approach to these two forms of computation which offers advantages over the
existing approaches by making interfaces more explicit, and increasing under-
standing and expressiveness of the code. In particular, we develop a new module
theory that, along with a standard form of interface for static linking, also in-
corporates explicit interfaces for dynamic plugins and reactive computations.

2 Our Approach: Assemblages

In this paper, we present a type safe module calculus with a single notion of
module that supports static linking, dynamic linking, and communication be-
tween reactive computations. Our modules are called assemblages. Assemblages
are code blocks that can be statically linked with one another to form bigger
assemblages. When an assemblage is loaded into memory, it becomes an assem-
blage runtime (or runtime for short), which serves as a reactive computation
with an explicit interface for cross-computation communication and an explicit
interface for dynamically plugging other assemblages into its current runtime.
All interactions of a runtime should be through these interfaces alone, giving
complete encapsulation.

2.1 Basic Model

Fig. 1 shows the three fundamental processes our calculus addresses. We now
introduce them separately, together with concepts and terms we will use through-
out the paper.

Static Linking Our module calculus comes with a fairly standard notion of
static linking. Fig. 1 (a) shows expression A + A′, which represents the static
linking of assemblages A and A′. One somewhat unusual feature is that assem-
blages themselves are first-class values in our calculus, and static linking is also

Assemblage Assemblage
 Runtime

Static Linker Dynamic
 Linker Connector

Legend

(a)

(b)

(c)

 A A'

 Ar A'

 Ar Ar'

ν ν ν

ν ν'

ν ν'

Fig. 1. Three Fundamental Processes (a) Static Linking (b) Dynamic Linking (c) Cross-
computation Communication

a first-class expression: linking can happen anywhere in a program. Each as-
semblage is associated with a list of static linkers, each of which defines what
features it imports and what ones it exports. In the static linking process, sup-
pose A and A′ each have a static linker of the name ν. The pair of static linkers
are thus matched against each other, where imports of A are satisfied by exports
of A′ and vice versa. In the resulting assemblage, a new static linker with name
ν will be created, which bears the exported features of both static linkers. Static
linkers that are not matched will also be carried to the composed assemblage
(suppose A has a static linker named ν′ but A′ does not). Notice that A and
A′ are stateless code entities. Units, mixin module systems, and various other
calculi for the static linking of code fragments [Car97,DEW99,WV00,AZ02] all
work in a related way, so this aspect of our theory is not particularly unique.

Dynamic Linking Dynamic linking is illustrated in Fig. 1 (b); expression
pluginν 7→ν′ A′ in our calculus triggers a dynamic linking. Assemblage A′ is
loaded and linked into the current assemblage runtime Ar where the plugin
expression is defined. The interesting thing here is not only that A′ is an as-
semblage, but also Ar is an assemblage runtime. Thus, unlike some projects
[Blo83,FF98,SPW03] which recognize dynamic plugins can be modelled as mod-

ules, we also recognize dynamic linking happens between a module runtime and
a module. By equipping Ar with interfaces describing its dynamic linking be-
haviors (which we call dynamic linkers), a successful dynamic linking process
can thus be conceived as a bi-directional interface matching between the plugin
initiator’s codebase module and the module representing the dynamic plugin.
We believe this is more precise and explicit than the unidirectional notion of dy-
namic linking found in other module systems, where the initiating computation
has no explicit interface to the module being linked.

A dynamic linker is the dynamic linking interface of an assemblage. It spec-
ifies the dynamic linking behaviors after the assemblage is loaded to become an
assemblage runtime. Specifically, it defines what type of dynamic plugins the
assemblage expects. In Fig. 1 (b), the plugin initiating assemblage runtime has
a dynamic linker named ν, and when expression pluginν 7→ν′ A′ is evaluated,
dynamic linker ν of the initiating assemblage runtime is matched with the static
linker ν′ of A′. This may seem like a mismatch, linking a static linker and a
dynamic linker, but the linking is in fact occurring across sorts: a runtime is
being linked with a piece of code. The result of a plugin expression is for the
runtime to be the original runtime plus the runtime form of the newly added
plugin. Dynamic linking here does not increase the number of runtimes, because
dynamic linking is a tightly-coupled interaction. A non-example is Java applets;
they are not tightly coupled with the loading JVM, they are best not viewed
as dynamically linked code. Individual applets are better modeled as distinct
runtimes communicating with its inhabiting VM, which can be better modelled
by the cross-computation communication we introduce next.

Cross-Computation Communication Fig. 1 (c) demonstrates how expres-
sion connectν 7→ν′ Ar′ sets up a cross-computation connection between two as-
semblage runtimes, the runtime containing the connect expression (Ar) and
the runtime Ar′. In a similar vein to dynamic linking, both the party receiving
the cross-computation invocation and the party initiating the invocation must
have explicit interfaces declaring the form of this interaction on their codebase
assemblages, which we call connectors. A successful communication process is
thus a bi-directional interface matching between the initiator module runtime
and the receiver module runtime.

A connector specifies the cross-computation communication interface of an
assemblage runtime. Specifically, it defines what type of assemblage runtimes the
assemblage expects to communicate with. In Fig. 1 (c), the connect-initiating
assemblage runtime has a connector named ν, and when its connectν 7→ν′ Ar ex-
pression is evaluated, connector ν of the initiating assemblage runtime is matched
with connector ν′ of the assemblage runtime Ar. The connect expression will
not lead to merging of runtimes, and since the runtimes must remain distinct,
all parameters passed between the two must be passed by (deep) copy. These
runtimes may also be on the same or different network nodes.

Before presenting further details of the system, we introduce a simple real-
world example.

VolcanoMain = assemblage {
static linker NetLib{
. . . statically linked some network library . . .
}
dynamic linker DetectorPlugin{

import detectMethod()
export getEnv == . . . get current environment snapshot . . .

}
connector CodeUpdate{

import getDetectCode();
export check(condition) == . . . check applicability of detect model . . .

}
...
// local feature implementation
updateDetector == λx .(let cb = connectCodeUpdate 7→Code x in

let code = cb . getDetectCode← () in
let comp = pluginDetectorPlugin7→Detect code in
comp.detectMethod())

...
}

Fig. 2. A Sensor Network Example

2.2 A Real World Example

In this section, we introduce a simplified volcano sensor network example to
demonstrate the basic ideas of assemblages. The example is in Fig. 2. For the
purpose of improved readability, we here use sugared syntax slightly different
from our calculus; type declarations are also omitted here for brevity. Initially
we define an example with core features only, and will extend it below to illustrate
more advanced features of our calculus.

In a typical sensor network [HSW+00] for a volcano sensing application, a
number of smart tiny sensor nodes are scattered in the crater of a volcano, each
of which functions as an independent computer. In addition to the parts for
regular computation, each sensor node is also equipped with sensing device to
collect environment information, such as temperature, electromagnetism, etc.
Different sensor nodes can communicate with each other; at least some sensor
node can communicate with base station situated out of the volcano to report
data or receive control information.

One critical necessity in the design of such a system is that, once sensor
nodes are physically deployed, they are not likely to be reclaimable for pur-
poses such as software upgrade. In the example shown in Fig. 2, function up-
dateDetector provides support to dynamically update the mathematical model
of volcano detection used in the sensor: in reality, it is not uncommon for sci-
entists to adjust the mathematical models after the sensors have been deployed.
Without getting into too much detail, the function works as follows: it first sets
up a connection cb with base station represented by function argument x , via
connectCodeUpdate 7→Code x . A new version of the detection model code is thus

DetectorPlugin

Semi-Parametric Model

DSModelPlugin

Gaussian
 Method

 Dynamic
 Node

 Static
 Linker

Dynamic
 Linker

Connector

Legend

Assemblage
 Runtime

lc2 temp1, loc1

Per-Connection State
 Store

Dynamic
 Linkage

Connection

(a) (b)

lc2

lc3

lc4

lc1

lc1

lc3 last1

lc1 last2

lc4 last3

lc1 lc2 last4

Poisson
Method

Parametric Model

Non-Parametric Model

Model

Model

Model

Volcano Sensing Main

temp1, loc1

temp2, loc2

temp3, loc3

temp4, loc1

TempQuery

TempQuery

TempQueryTempReport

TempReport

TempReport

lc3 lc4

lc2

lc2

Fig. 3. An Example on (a) Rebindable Dynamic Linkers (b) Generative Stateful Connectors

acquired by invoking cb . getDetectCode ← (); subsequently, it is dynamically
plugged into the current runtime via pluginDetectorPlugin 7→Detect code. The up-to-
date detection method may then be invoked via comp.detectMethod().

This example demonstrates some basic uses of dynamic linkers and connec-
tors. Observe how the dynamic linker and connector are both bi-directional inter-
faces: they import some features and export others. Interface matching is a com-
ponent of both dynamic linking and connection. The connectCodeUpdate 7→Code x
indicates the CodeUpdate connector of the current assemblage runtime is con-
nected to the Code connector of x . A connection can be successfully established
only if each party exports what the other party needs to import (extra exports
can be present and are ignored). We also show a standard static linker NetLib,
expecting some network libraries; this importer will need to be satisfied before
the sensor program is up and running.

2.3 More on Assemblages

With the basic model introduced and a simple example given, we now look at
more advanced features of our calculus.

Rebindable Dynamic Linkers In the basic model presented in Fig. 1, dy-
namic linking was presented as a one-to-one relation between the initiating as-
semblage runtime and the dynamic plugin. This is however an oversimplified
view of the calculus, and does not completely coincide with reality. Consider the
sensor example again. Scientists might prefer to run multiple detection mod-
els at the same time, and compare the results of different models. The current
VolcanoMain assemblage however only has one dynamic linker. In a one-to-one
dynamic linking model, plugging in one detection assemblage would lead to the
invalidation of previous dynamic plugins on the same dynamic linker.

For this reason, dynamic linkers in our calculus are rebindable. This implies
different assemblages may be plugged in to the same dynamic linker at the
same time, and not interfere with each other. Fig. 3 (a) shows this one-to-N
relation. Here the Volcano Sensing Main assemblage runtime is the runtime form
of assemblage VolcanoMain after its static linker is satisfied; it is here dynamically
linked to three different dynamic plugins representing three different detection
mathematical models; interestingly, since dynamic plugins themselves can have
dynamic linkers, it might plug in other assemblages as its plugins. In Fig. 3
(a), a dynamic plugin of the Volcano Sensing Main assemblage runtime, one
representing say a parametric probabilistic detection approach, further plugs in
different distribution models to its DSModelPlugin dynamic linker, such as a
Gaussian distribution or Poisson distribution method.

The dynamic linking established by a plugin expression is called a dynamic
linkage, and the expression returns a value we call a dyanmic linkage handle;
programmers can use it to refer to the particular assemblage just plugged in.

Generative Connectors Our connectors are also more nuanced than as pre-
sented in Fig. 1: connectors also need to be rebound, as we just saw for dynamic
linkers. As shown in Fig. 2.3 (b), a task such as temperature measurement in a
typical volcano sensor network is achieved by the collaboration of a number of
sensors; each one of them usually communicates with its neighbors to exchange
data such as temperature information. Since the configuration of the network is
not fixed until sensors are scattered in the crater, the program developer can not
define an a priori list of connectors, each of which is assigned to one neighbor.
Instead, each sensor must only be equipped with rebindable connectors like Tem-
pQuery and TempReport given in Fig. 3 (b), where at any moment the TempQuery
connector of a sensor may be connected with multiple TempReport connectors of
its neighbors, and vice versa.

Another important issue is that each connection will need to keep its per-
connection data: sensors need to record collected temperature information from
its neighbors, together with the location information on where the temperature is
sampled. This kind of information varies from connection to connection; a global
state of assemblage for this purpose is not enough. In Fig. 3 (b), each connector is
associated with a per-connection state store, which records the private generative
states associated with each connections. The index of the store is the connection
ID generated when connection is established via a connect expression.

Our calculus supports generative connectors where per-connection states are
supported. It implicitly also supports rebindability. Each successful connect
expression creates a connection, and the expression returns a value that is a
connection handle; with the handle, programmers can refer to different con-
nections (and the private per-connection state) on the same connector in the
same program. One additional advantage of using handles is there is no problem
with programs trying to access features on a non-connected connector—there
is no name by which to refer to the features on the connector until there is a
handle. Since multiple handles can be active and each connection has a unique
state, there is an analogy of a connection definition with a class, and each ac-
tive connection with an object, with the connection handle being the reference
to the object. These “objects” are something like facades in the facade design
pattern—they are the external interface to the component.

Typed Calculus and Types as Features Our calculus is typed, and the
type system has several pleasant properties such as soundness and decidability
of type checking. There is no runtime error associated with attempting to use
a connector that is not connected to anything, because connectors are only ac-
cessed via handles which only exist because a connection was created. The only
error possible is the handle could be stale because the connection has termi-
nated. We have also explored the possibilities that types are themselves treated
as features that are imported and exported across static linkers, dynamic linkers
and connectors. In this presentation however, we do not focus on these aspects
due to limited space. Interested readers can refer to [LS04] for details.

2.4 Why Dynamic Linkers and Connectors?

Static linkers, dynamic linkers and connectors together form the interfaces of
assemblages. Before proceeding to the formalization, we address an important
question concerning the purpose of the paper: Why dynamic linkers and connec-
tors?

First, modules with fully declarative interfaces lead to a more complete pro-
gram specification. Assemblages are highly declarative; in fact, all of an assem-
blage’s potential for interaction with outside the codebase can be read off of
the interfaces. This is obviously a good thing for language design, leading to
provable type safety without obscurity. The idea also has impact on paradigms
of software development. Indeed, interfaces (static linkers, dynamic linkers and
connectors) can be defined at the design phase, reflecting designer’s intention of
the assemblage to interact with other parties. A declaration of DetectorPlugin
dynamic linker coincides with the designer’s intention that VolcanoMain module
will dynamically link to some detection model plugins; the CodeUpdate connector
coincides with the designer’s expectation that the module will communicate with
some codebase. In a large-scale software development process, software design
and software implementation are typically accomplished by different people. The
module calculus’ type system ensures the implementation will faithfully follow

the intention of the designer. For instance, a compile-time type mismatch would
occur if implementor of VolcanoMain desires to communicate with a codebase
which does not provide a getDetectCode function.

Second, these interfaces provide crucial support for extending the calculus
to other important language features. Since all of the external interactions are
declared on the static linkers, dynamic linkers, and connectors, new modes of
external interaction can easily be layered on top of these existing notions. Exam-
ples include security (on connectors), transaction management (on connectors),
and version control (on dynamic linkers). For example, for security, since ev-
ery cross-computation invocation will need to be directed through connectors,
access control on connectors is enough to secure assemblage runtimes from unau-
thorized nonlocal access. We do not directly address these topics here, but the
module theory is designed with them in mind.

Third, dynamic linkers and connectors better model the complex interactions
between different parties than is possible in systems without them. A naive im-
plementation for dynamic plugins can be achieved by direct dynamic loading,
and invocations can thus be made on exported functions of the plugins. An ob-
vious problem of this approach however is when there is a need for callback
functions. For reactive computations, distributed protocols often involve mes-
sage exchanges back and forth. If RMI or RPC is used, this interaction protocol
will be completely submerged in the code in the various methods, and no sin-
gle point in the program will indicate the protocol as a whole. In our example,
the CodeUpdate connector specifies all the possible interactions between a code
provider and a code client. The whole code updating protocol, although simple
in this example, is captured by CodeUpdate connector, giving a clear protocol
specification.

3 Syntax

The syntax of our calculus is shown in Fig. 4. It differs from the syntax used in
Sec. 2, but in a trivial manner only: in the calculus syntax we remove the key-
words (such as assemblage, import and export) used in the sugared syntax;
otherwise the two forms of syntax are identical. Notation m is used to represent
a sequence of entities m1, . . . ,mn, and we take the empty sequence as a special
value φ. The] operator denotes the concatenation of two sequences; for the
empty sequence, m] φ = φ]m = m for any m. Since in this presentation, each
mi can only take one of the three syntactical forms a 7→ b, a == b and a : b, we
also view m as a mapping and call it well-formed if it is a function, i.e. there
does not exist a1 = a2 but b1 6= b2; in this case when no confusion arises, we
also define m(a) = b. m(a) = ⊥ iff a 7→ b (or a == b, or a : b) is not present
for any b, or m is not well-formed. m{a 7→ b} denotes a mapping update; it is
a mapping the same as m, except m{a 7→ b}(a) = b while m(a) could be other
values.

An assemblage (A) is composed of a well-formed sequence of static linkers (S),
dynamic linkers (D), connectors (C) and its local private code (L). Each static

A ::= 〈S ;D ;C ;L〉 assemblage

S ,D ::= ν 7→ 〈I ;E〉 static linker , dynamic linker

C ::= ν 7→ 〈I ;E ; J 〉 connector
I ::= α : τ imported feature
E ::= α == λx .e : τ exported feature
L ::= α == F : τ local feature
J ::= α == ref F : τ per − connection state
F ::= cst | A | λx .e | ref F feature

e ::= () | x | cst | thisc | thisd null value, variable, const
| A : τ | e + e first class assemblage, sum
| pluginν 7→ν′ e | connectν 7→ν′ e dynamic plugin, connect
| α@local | α@ν | e.α | e . α | e . α← e feature access
| λx .e : τ | e e first class function, app
| ref e | ! e | e :=e state

ν interface name
α feature name
τ type, defined in Fig.8
cst integer constant
x variable

Fig. 4. Assemblage Language Syntax

linker or dynamic linker has a name (ν), a well-formed sequence of imported fea-
tures (I) and a well-formed sequence of exported features (E); each connector,
in addition, is associated with a well-formed sequence of per-connection states
(J). I] E (and in the connector case I] E] J) also must be well-formed: we
disallow the case where the same feature is imported and exported on the as-
semblage. Features are chosen from constants (cst), functions (λx .e), references
(ref F) and nested assemblages (A). This particular choice is made to preserve
a balance between functional features and imperative features. With references
and functions around, primitive classes and objects can also be modelled with
widely known encoding techniques, and are left out of the calculus for simplic-
ity. α : τ denotes importing a feature named α with type τ and α == F : τ
denotes exporting a feature named α, defined to be F with type τ . Features
to be imported/exported on interfaces must be functions. This function-only
restriction however does not restrict the expressiveness of the calculus: import-
ing/exporting references can be encoded as importing/exporting a pair of getter
function and a setter function; importing/exporting assemblages can be encoded
as importing/exporting a function taking a null value and returning the assem-
blage. Per-connection state (J) is defined via feature α == ref F : τ , which
means the state is named α, ref F will be its initial value, and τ is its type.

Most of the expressions e have been explained in Sec. 2. Additionally, we
use α@local to refer to a feature α defined in locally (in L). α@ν refers to a
feature α defined in static linker ν. thisd refers to the current dynamic linkage,
and thisc refers to the current connection. The meaning of “current” depends
on the dynamic linkage handle or connection handle which invokes the function
thisd.α expression is situated in. Because of the rebindable nature of dynamic

 Dynamic
 Node

Legend

Assemblage
 Runtime

Dynamic
Linkage

Connection

lc1

Live Connection Registry

 Active
Dynamic
 Node

 Active
Assemblage
 Runtime

TempQuery

TempQuery

TempReport

TempReport

last ==

temp ==
loc ==

Volcano Sensing
 Main

Semi-Parametric
 Model

Non-Parametric
 Model

 Parametric
 Model

Gaussian
 Method

Poisson
Method

lc1

lc3

lr2

lr1

lr2

lr2

ls1 ls2 ls3

ls3
ls2

ls1

last1 temp1 loc1... ...

Heap

Runtime Global

Dynamic Linking Tree

TempQuery

TempQuery

TempQuery

TempReport

TempReport

TempReport

lc3

lc1

lc4

lc2

Connector

TempQuery

TempQuery

TempReport

TempReport

last ==

temp ==
loc ==

lr2

lr2 ls3
ls2

ls1

lr3

TempQuery

TempQuery

TempReport

TempReport

last ==

temp ==
loc ==

lr2

lr2 ls3
ls2

ls1

TempQuery TempReport last == lr2

TempQuery TempReport last == lr2

TempQuery TempReport last == lr2

TempQuery TempReport last == lr2

...

... ...

lr2

lr2

lr2

lr2

lr2

lr2

lr2

lr2

Fig. 5. The Big Picture

linking, we disallow a syntax like α@ν where ν is a dynamic linker name: it
would be ambiguous which version of the dynamic linkages is referred to if there
were more than one dynamic linkage created from the same dynamic linker, and
would be undefined if none were present. This restriction on syntax also holds
for connectors for similar reasons. e.α is used to refer to a feature α in dynamic
linkage handle e. Syntax e . α refers to a per-connection state α in connection
handle e. e . α← e denotes an invocation of a function defined in a connection
handle. This expression can potentially denote a cross-computation invocation,
and has a different semantics from regular function application; we therefore use
different syntax for the two cases. () is used to denote a null value of unit type,
as in ML. let is encoded by function application.

ιr ∈ R assemblage runtime ID
ιs ∈ S store ID
ιn ∈ N dynamic node ID
ιd ∈ D dynamic linkage ID
ιc ∈ C connection ID

G ::= R runtime global
R ::= ιr 7→ 〈T ; H; Y 〉 assemblage runtime

T ::= 〈N ;K 〉 dynamic linking tree
H ::= ιs 7→ v heap

Y ::= ιc 7→ 〈ιr; ν1; ν2; Jr〉 live connection registry

N ::= ιn 7→ 〈Sr;Dr;Cr;Lr〉 dynamic node
K ::= ιd 7→ 〈ιn1; ν1; ιn2; ν2〉 dynamic linkage
Jr ::= α 7→ ιs per − connection state
fv ::= cst | A | fun(ιr, ιn, λx .e) | ιs feature value
v ::= () | ιr | ιd | ιc | fv value
e ::= · · · | v | inR(ιr, ιn, e) expression at runtime

E ::= [] | pluginν 7→ν′ E | connectν 7→ν′ E evaluation context
| E + e | v + E
| E e | v E | ref E | !E | E :=e | v :=E
| E.α | E . α | E . α← e | v . α← E | load E

cst , A, α, J defined in Fig. 4
Sr, Dr, Cr ,Lr see Sec. 4 .2

Fig. 6. Operational Semantics Auxiliary Definitions

4 Operational Semantics

In this section we present the dynamic semantics of our calculus. We first infor-
mally explain the big picture of how a typical application appears at run-time,
and then we discuss formal details of the operational semantics.

4.1 The Big Picture

Sec. 2.3 gave an example of a temperature measurement application for sen-
sor networks; the illustrations used in that section (Fig. 3), however, are only
intended to target high-level concepts. In this section, the precise runtime snap-
shot of the same application is illustrated in Fig. 5. Here the whole network is
composed of multiple sensor nodes in the form of Fig. 3 (b) to perform tem-
perature measurement, while individual nodes are experimenting with different
computational models in the form of Fig. 3 (a).

At runtime, the entire application space, with all reactive computations of
concern, is called a runtime global; the whole temperature measurement network
is a runtime global for instance. Inside it, independently deployed assemblage
runtimes are running on potentially distributed locations. Each of them can be
created by explicit load expressions, during which a static assemblage is loaded
into memory. The first assemblage runtime in the runtime global is loaded via
a bootstrapping process. At load time, each runtime is associated with an ID. In
Fig. 5, we have three runtimes with IDs ιr1, ιr2 and ιr3. Assemblage runtimes

communicate with each other via connections over paired connectors, which also
have connection ID’s, their connection handle. In the figure, runtimes with ID’s
ιr1 and ιr2 are communicating via two connections; the connection with ID ιc1

is between the connector TempQuery of ιr1 and connector TempReport of ιr2.

Internally, each runtime contains a dynamic linking tree, a heap and a live
connection registry. The heap is standard and holds the multable data; it is de-
fined as a sequence of stores, each of which is associated with a store ID. In
Fig. 5, the heap of runtime ιr1 currently has a store ιs2 which holds a constant
value temp1. A runtime’s live connection registry holds the currently active con-
nections. It is defined as a table indexed by connection IDs; each entry contains
information such as what parties are involved in the connection (runtime IDs
and connector names), and the per-connection state store. For instance, the first
row of the live connection registry of runtime ιr1 shown in Fig. 5 indicates it cur-
rently has a connection ιc1 on its TempQuery connector, and that connection is
to TempReport of runtime ιr2. The last column indicates the per-connection field
last has a reference value ιs1: the value is a reference since per-connection states
always contain mutable data, just as object fields in object-oriented languages
are mutable. The meanings of connector-related expressions of our calculus, such
as connectν 7→ν′ e, are related to operations on live connection registries. For in-
stance, when a connection is established via a connect expression, both involved
parties of the connection have one entry added to their live connection registry.
Per-connection states are allocated and initialized at connection establishment
time.

A dynamic linking tree is used to reflect the rebindable nature of dynamic
linkers, as described informally in Sec. 2.3. Indeed, if rebindability were not
supported, a plugin expression could just merge the codebase of the current
assemblage runtime with the code of dynamic plugin, in the same manner as
static linking A1 + A2. However due to rebindability, each dynamic linker of the
current runtime can be associated with multiple independent dynamic plugins at
the same time. The data structure is in general a tree: when the main assemblage
is first loaded to memory, it creates a root node, with all application logic of the
main assemblage defined inside. Each plugin expression executed in the root
will result in the creation of a tree node representing the dynamic plugin (with
all application logic of the dynamic plugin defined inside), and the newly created
node becomes a child of the root. Since child nodes can themselves plug in code
(the plugin of a plugin), the tree can in general have depth greater than two.
The fact that the data structure is a tree other than a DAG or some random
graph can be easily proved by the way it is constructed. In Fig. 5, the dynamic
linking tree is the internal representation of the application whose high-level
requirement is shown in Fig. 3 (a). A dynamic linking tree is composed of a
series of dynamic nodes (the tree nodes) and dynamic linkages (the tree edges).
Each dynamic linkage is referenced by its dynamic linkage ID ιd, which is the
realization of the dynamic linkage handle of the previous section. The behaviors
of dynamic linker-related expressions, such as pluginν 7→ν′ e, are operations on
dynamic linking trees. For instance, when a plugin is assembled via a plugin

expression, the dynamic plugin will becomes a dynamic node that is a leaf of the
initiator runtime’s dynamic linking tree.

Since concurrency is not the focus of this paper, our calculus assumes for
simplicity that at any moment only one assemblage runtime is active, and only
one dynamic node in this active runtime is performing the reduction. This fact
is shown in Fig. 5, where distinct notation is used for active runtimes and active
dynamic nodes.

4.2 A Formal Overview of Dynamic Semantics

Fig. 6 defines the relevant data structures that play a part in defining the dy-
namic semantics. Most of them have been explained with the example in Fig. 5.
The rest is explained below.

Formal Details of the Dynamic Linking Tree Each dynamic node is associ-
ated with an ID ιn. Given a static assemblage A = 〈S ;D ;C ;L〉, its corresponding
dynamic node form N = ιn 7→ 〈Sr;Dr;C r;Lr〉 is almost identical to A, except
that it has an ID ιn, and the features defined in Sr, Dr, C r, Lr are slightly
different in form from its static counterparts due to function closure and muta-
ble states, which will be made clear when we explain feature values shortly. A
dynamic linkage is of the form ιd 7→ 〈ιn1; ν1; ιn2; ν2〉, denoting a tree edge with
an ID ιd linking dynamic linker ν1 of dynamic node ιn1 with static linker ν2

of dynamic node ιn2. We use root(T) to denote the root node of the dynamic
linking tree T .

Feature Values At the source code level, our language supports four kinds of
features; see Fig. 4. At runtime, not all of them are values; the possible feature
values fv are defined in Fig. 6. ref F features are not values, since this indicates
a heap allocation; the corresponding value is the store ID where the value is
allocated on the heap. Function values are closures fun(ιr, ιn, λx .e), where ιr
and ιn are the IDs of the runtime and the dynamic node where the function is
defined. The reason why λx .e is not a value is that the body e might refer to
other features such as α@local. At runtime, if functions as first-class values are
passed from one dynamic node to another, the meaning of α@local would not
be preserved if the defining dynamic node were not recorded; passing around
closures would make parameter passing of first-class functions have a consistent
meaning universally. Our language does not allow functions to be passed from
one runtime to another, so theoretically, the ιr information in function closures
could be removed. We keep it here to show our language could easily support
function passing across runtimes without technical difficulty, which also implies
mechanisms like RMI could also be easily supported. The reason we do not
support function passing across runtimes is that it gives an indirect access to a
runtime that is not explicit in an interface; this topic is elaborated in Sec. 5.1.

Source-code level features are converted to feature values when assemblages
are loaded either through bootstrapping process, or loaded via an explicit load
expression, or added to the current runtime via a plugin expression.

(mcnxt) R,E[e]
ιr1,ιn1−−−−−→ R

′
,E[e′] if R, e

ιr1,ιn1−−−−−→ R
′
, e′

(plugin) R,pluginν1 7→ν2
A

ιr,ιn−−−−→ R{ιr 7→ R′}, ιd
if R(ιr) = 〈T ; H; B〉, T = 〈N ;K 〉

start(A, ιr, ιn2) = (N2, H2), ιn2, ιd fresh
K2 = (ιd 7→ 〈ιn; ν1; ιn2; ν2〉)
R′ = 〈〈N]N2;K]K2〉; H]H2; B〉

(fun) R, λx .e
ιr1,ιn1−−−−−→ R, fun(ιr1, ιn1, λx .e)

(app) R, fun(ιr1, ιn2, λx .e) v
ιr1,ιn1−−−−−→ R

′
, inR(ιr2, ιn2, e{v/x})

(sum) R,A1 + A2
ιr,ιn−−−−→ R, 〈S1 � S2;D1]D2;C 1] C 2;L1] L2〉

if Ai = 〈S i;Di;C i;Li〉, i = {1, 2}

(coninv) R, ιc . α← v
ιr1,ιn1−−−−−→

R{ιr2 7→ R2}, inR(ιr2, ιn2,E2(α){ιc/thisc} v′)
R, inR(ιr1, ιn1,E1(α){ιc/thisc} v)

if R(ιri) = 〈Ti; Hi; Yi〉
root(Ti) = (ιni 7→ 〈Sri;Dri;Cri;Lri〉)
Cri(νi) = 〈I i;E i; J i〉 for i ∈ {1, 2}
Y1(ιc) = 〈ιr2, ν1, ν2, Jr1〉
dcopy(v, H1) = (v′, H′), R2 = 〈T2; H2]H′; Y2〉

(cons) R, ιc . α
ιr1,ιn1−−−−−→ R, Jr1(α)

if R(ιr1) = 〈T1; H1; Y1〉, Y1(ιc) = 〈ιr2, ν1, ν2, Jr1〉

(conn) R, connectν1 7→ν2 ιr2
ιr1,ιn1−−−−−→ R{ιr1 7→ R′1}{ιr2 7→ R′2}, ιc

if ιc fresh , R(ιri) = 〈Ti; Hi; Yi〉
initS(Ti, νi, ιri, ιc) = (Jri, H

′
i), for i ∈ {1, 2}

R′1 = 〈T1; H1]H′
1; Y1] {ιc 7→ 〈ιr2; ν1; ν2; Jr1〉}〉

R′2 = 〈T2; H2]H′
2; Y2] {ιc 7→ 〈ιr1; ν2; ν1; Jr2〉}〉

(load) R, load A
ιr1,ιn1−−−−−→ 〈R] (ιr2 7→ 〈〈N2; φ〉; H2; φ〉), ιr2

if ιn2, ιr2 fresh, start(A, ιr2, ιn2) = (N2, H2)

(inre) R, inR(ιr2, ιn2, e)
ιr1,ιn1−−−−−→ R

′
, inR(ιr2, ιn2, e′) if R, e

ιr2,ιn2−−−−−→ R
′
, e′

(inrv) R, inR(ιr2, ιn2, v)
ιr1,ιn1−−−−−→ R{ιr1 7→ R1}, v′

if R(ιr1) = 〈T1; H1; Y1〉,R(ιr2) = 〈T2; H2; Y2〉
dcopy(v, H2) = (v′, H′), R1 = 〈T1; H1]H′; Y1〉

Fig. 7. Selected Reduction Rules

Values and Expressions at Runtime Values in our calculus can be feature
values; assemblage runtime IDs ιr (which serve as handles to assemblage run-
times, returned from load expressions); dynamic linkage IDs ιd (which serve as
handles to dynamic linkages, returned from plugin expressions); or, connection
IDs ιc (which serve as handles to connections, returned from connect expres-
sions).

We extend the expressions given in Fig. 4 with new syntax in Fig. 6 (see e
definition) to aid in implementing the operational semantics. inR(ιr, ιn, e) is an
auxillary expression defining a code context switch, meaning e is evaluated in
runtime with ID ιr and dynamic node with ID ιn; the expression is particularly
useful to model function invocations, during which the current execution point
is switched.

4.3 A Guided Tour to Reduction Rules

Operational semantics of our language is given in Fig. 7. G, e
ιr,ιn−−−→ G′, e′

indicates a reduction of expression e in the presence of global runtime G, where
the current active runtime has ID ιr, and the current active dynamic node in ιr
has ID ιn. Evaluation contexts are defined in Fig. 6. Here we omit the rules for
expressions ref e, e :=e′, !e, α@ν, α@local and e.α; these rules are relatively
straightforward. Also note that some of the rules might get stuck on certain
combinations of G and e. We largely omit the specifications of the faulty cases
here, but claim that the static type system introduced in Sec. 5 will ensure these
faulty cases never appear when real reductions happen at dynamic time. Details
on omitted reduction rules, specifications of these faulty expressions, and proof
to back up the forementioned claim can be found in [LS04].

We use e{e′/x} to denote capture-free substitution. If e is an assemblage, the
substitution does nothing: assemblages do not contain free variables, and even
all import feature names need to be explicitly declared on their static linkers,
dynamic linkers or connectors.

Assemblage Loading and Bootstrapping We now first explain how an as-
semblage runtime loads in another assemblage, and proceed to discuss the process
of bootstrapping, where the first assemblage in runtime global is loaded.

The (load) rule in Fig. 7 shows how loading is simply the creation of a new
assemblage runtime, and the result returned is a runtime handle, the ID of the
new runtime. Function start(A, ιr, ιn) = (N,H) prepares the initial dynamic
node (N) out of a static assemblage (A), together with the initial heap (H).
This function, whose formal definition is skipped here, is fairly straightforward
according to the following rules:

– For every function feature in α == λx .e form defined in A, its corresponding
place in N is substituted with α == fun(ιr, ιn, λx .e).

– For every reference feature in α == ref F form defined in A, its correspond-
ing place in N is substituted with α == ιs, where ιs is a fresh store ID,
and at the same time ιs 7→ fv is in H. Here fv is the feature value form of
F . Since reference feature could be in the form like ref ref 0, this process
could lead to multiple stores defined in H.

– A and N are otherwise identical.

The (load) rule doesn’t perform any initialization, because an initializing
load can easy be defined using this primitive one; for example, one method
could be

loadinit A def= let x1 = load A in
let x2 = connectInitIn 7→InitOut x1 in
x2 . Main← ()

which assumes connectors InitIn/InitOut are present on loaders/loadees re-
spectively, importing/exporting function Main(). Bootstrapping the first assem-
blage Aboot = 〈S ;D ;C ;L〉 is accomplished by initiating execution in the state

〈ιr 7→ 〈〈N ;φ〉;H;φ〉, ιr〉, C (InitOut)(Main)()

where ιr, ιn are fresh, start(Aboot, ιr, ιn) = (N,H).

Static Linking The (sum) rule shows how static linking of two first-class
assemblages happens. It merges their dynamic linkers, connectors and local def-
initions, with preconditions that these parts do not clash by name. The fact
that clash of local feature names would lead to stuck computations might be
counter-intuitive: in reality, local features are supposed to be invisible from the
outside, and therefore static linking of two assemblages with some shared local
feature names should be a valid operation. To avoid this dilemma, we stipulate
assemblages are freely α-convertible with regard to local feature names.

Static linkers are matched by name, according to the � operator. Given two
sequences of static linkers S 1 and S 2, S 1 � S 2 is the shortest sequence satisfying
all of the following conditions:

– If S 1 has a static linker S by name ν but S 2 does not, or vice versa., S is a
static linker in S 1 � S 2.

– If S 1 and S 2 both have a static linker by name ν whose bodies are 〈I 1;E 1〉
and 〈I 2;E 2〉 respectively, then S 1 �S 2 also has a static linker named ν and a
body 〈I ;E 1] E 2〉, where I exactly include imported features whose names
are listed in I 1 but not E 2, or listed in I 2 but not E 1.

Dynamic Linking The (plugin) rule dynamically links a new assemblage to
the initiating runtime. A new dynamic node (N2) is created out of the assemblage
to be plugged in, via the start() function, and it is then added to the initiating
assemblage runtime by adding the node and an edge with ID ιd to the runtime’s
dynamic linking tree. Note that in dynamic linking, no new runtime is created;
the plugin will eventually become part of the initiating assemblage runtime.
This can be illustrated by the way the start() function is used: the initiating
runtime’s ID is passed to create the new dynamic node, not a fresh runtime ID.
The return value of the plugin expression is the ID of the newly created edge;
this is the dynamic linkage handle to the plugin, and conceptually represents
the link created out of the dynamic linking process. With this, features exported
from the plugin or from the initiating party can thus be accessed via an e.α
expression.

Cross-Computation Communication Connections are established by the
(conn) rule, which adds an entry to the live connection registry (Y) of both
connected parties. Per-connection states are also initialized at this point through
a simple function initS(); since all per-connection states are mutable, this func-
tion predictably deals with initialization of reference features, which is detailed
when we explained the start() function. Function features defined in connectors
are invoked by expression e . α ← v, and its semantics is defined by (coninv).
Per-connection state can be referred to via expression e.α; the related reduction
rule is (cons).

τ ::= unit | int | τ → τ | τ ref primitive types

| Asm(S,D, C,L) assemblage type

| Rtm(C) runtime type

| Dlnk(E) dynamic linkage type

| Cnt(E,J) connection type

S,D ::= ν 7→ 〈I; E〉 static linker/dynamic linker type

C ::= ν 7→ 〈I; E;J 〉 connector type
I, E,J ,L ::= α : τ feature type declaration

Fig. 8. Type Syntax

In the (coninv) rule, ιc . α← v invokes a function named α on a previously
established connection ιc, with v as the parameter. Since α could be defined
by either of the two parties connection ιc connects, there are two possibilities:
1) α is exported in the assemblage runtime containing the expression; in this
case, the invocation is an intra-runtime one. 2) α is imported in the assemblage
runtime containing the expression; the invocation is thus an inter-runtime one.
A deep copy of parameter v should be passed to the target runtime; specifically,
when v is a store ID, the heap cells associated with v will be passed around,
with store IDs refreshed. The underlying design principle for the copy semantics
is object confinement: each assemblage runtime should have its own political
boundaries and direct references across boundaries would cause many problems
such as security. Function dcopy(v,H) = (v′,H ′) defines the value (v′) and the
heap cells (H ′) that need to be transferred if v under heap H needs to be passed
across computations. v′ is not always the same as v because stores are refreshed
if v is a store ID. In both case 1) and case 2), substitution of ιc for thisc is
needed to determine what the “current connection” means.

5 The Type System

In this section, we informally explain the type system of our calculus. We start
with an overview which covers the major ideas behind the type system, then
we explain the type-checking process in detail. Some properties of the type sys-
tem are stated at the end. The complete formal type system with proofs of its
properties can be found in a technical report [LS04].

5.1 Overview

The Types The types are defined in Fig. 8. The assemblage type Asm(S,D, C,L)
contains type declarations of static linkers, dynamic linkers, connectors, and lo-
cal features. It is used in two situations: top-level typechecking and typechecking
of first-class assemblages. At the top level, each assemblage is a separate com-
pilation unit in our type system and is given an assemblage type. In the second
situation, first-class assemblages can appear anywhere as expressions, be passed
as arguments, etc.

The runtime type Rtm(C) is the type of assemblage runtimes. When an
assemblage runtime is viewed by other assemblage runtimes, the only thing other
runtimes care about is how to communicate with the runtime. Thus, a runtime
type only contains the list of connector types. The dynamic linkage type Dlnk(E)
structurally is a sequence of type declarations for functions either exported from
dynamic linking initiator’s dynamic linker or the dynamic plugin’s corresponding
static linker. The connection type Cnt(E ,J) is structurally a sequence of type
declarations for functions either exported from connection initiator’s connector
or connection receiver’s connector, and J is type declaration of per-connection
states.

Interface Matching As introduced in Sec. 2, static linking, dynamic linking
and connection establishment share one common trait: all three fundamental pro-
cesses involve bi-directional interface matchings. This commonality is reflected
in the typecheckings of three related expressions: A1 + A2, pluginν1 7→ν2

e and
connectν1 7→ν2 e; an interface match check is performed for all three typecheck-
ings, between two static linkers in the first case, one dynamic linker and one static
linker in the second case, and two connectors in the third case. By definition,
each interface type, be it static linker type, dynamic linker type or connector
type, is composed of a list of type declarations for imported features and a list
for exported features. Two interface types, say i1 and i2 , are considered a match
iff

1. If i1 exports a feature α of type τ , and if i2 imports a feature α of type τ ′,
then τ must be a subtype of τ ′. The same should also hold if i2 exports and
i1 imports.

2. i1 and i2 do not export features by the same name.
3. If i1 and i2 are both static linker types, they do not import features of the

same name. If one of them is not a static linker type, then every imported
feature in i1 (or i2) must match an exported feature of the same name in i2
(or i1).

Condition 1 is the most important one: features matched by name also match
by type. The flexible part is that our type system does not demand exact match-
ing of types; instead, it is acceptable if the export feature has a more precise
type than what is expected from the import counterpart. Our subtyping relation
is standard for primitive types; for types Asm(S,D, C,L), Rtm(C), Dlnk(E),
and Cnt(E ,J), subtyping is given the natural structural definition.

Condition 2 is used to avoid a feature name clash. For instance, if ιd is the
result of pluginν 7→ν′ e, the meaning of expression ιd.α would be ambiguous if
both dynamic linker ν of the initiator and static linker ν′ of the dynamic plugin
exported the feature α. The restriction here might not correspond to reality: in
real life, dynamic plugins might be developed independently, and such a name
clash does have a chance to happen. However, such a clash can easily be avoided
if the language supports either feature name renaming, or casting to remove
some exported features. Our calculus currently does not include these operators,
but they can easily be added without affecting the calculus core.

Condition 3 states that for dynamic linking and connection case, no dangling
imports are allowed if interface match succeeds; for static linking, our calculus
does allow some imports to not be satisfied, since the result (say A) of A1 + A2

can still be statically linked in the future, e.g., by A + A3.

Principle of Computation Encapsulation and Parameter Passing Across
Computations One of the design principles of our calculus is computation en-
capsulation: reactive computations should only communicate with each other via
explicit interfaces, in our context, connectors. Parameter passing across reactive
computations, if not handled properly, could however violate this principle. The
three types of parameters that cause troubles are function closures, dynamic
linkage handles, and connection handles; our type system disallows the passing
of these three types of values.

We first consider the problematic case of passing connection handles. Suppose
assemblage runtime with ID ιr1 contains a connectν 7→ν′ ιr2 expression which
returns a connection handle ιc. Had we allowed ιc to be passed as a parameter,
runtime ιr1 could pass it to some runtime ιr3 via some previously existing con-
nection. Now although runtime ιr3 does not have a connector ν (or ν′), it would
still be able to use features associated with connection ιc via ιc . α← e expres-
sions, meaning it is accessing a feature not through an explicit interface on its
runtime, ιr3. Similarly, passing dynamic linkage handles could allow assemblage
runtimes to gain direct access to dynamic plugins they do not have interfaces to
plug in to.

The case for passing function closures across assemblage runtimes suffers from
a similar problem, but it is less obvious. In Sec. 4, we have already mentioned
how there is no technical difficulty in passing function closures across assemblage
runtimes; indeed we could just pass function closures in a manner similar to how
Java RMI passes object references. Now let us consider why a mechanism like this
would violate our encapsulation principle. Suppose assemblage runtime with ID
ιr1 has a function closure fun(ιr1, ιn1, λx .e) and e contains an expression α@ν
to use a feature α exported from static linker ν of ιr1. Had we allow this closure
to be passed to another runtime, it could, by several indirections (ιr1 to ιr2, and
ιr2 to ιr3 for instance), eventually be received by some runtime ιr3 that has no
direct communication with ιr1. But, by applying the function, this assemblage
runtime ιr3 would be able to access to feature α of static linker ν of ιr1, through
a channel not explicit in ιr3’s interface.

The legal parameters that can be passed across computations are primitive
values such as integers, runtime handles, references and first-class assemblages.
Passing runtime handles is an important means for a runtime to “advertise” itself
to other runtimes. References are passed by deep copy (recall the reduction rule
(coninv) in Sec. 4). The exclusion of function closures from passable parameters
across computations might appear to disallow the possibility of any code passing
in our calculus, but in fact not. If passing code is needed, users can encapsulate
the code as an assemblage and pass the assemblage; assemblages are completely

self-contained, without need for a closure, and so are nothing more than a kind
of data.

To enforce the principle of computation encapsulation, our type system checks
that for every imported function feature given in a connector type, its parameter
and return value can not have the aforementioned types. This well-formedness
property must hold for all connector types.

5.2 Details of Typechecking

We now explain how top-level typechecking is achieved, and how some important
expressions are typechecked, in our type system.

Assemblage Typechecking At top level, assemblage 〈S ;D ;C ;L〉 as a separate
compilation unit is well typed if all exported features defined in its static linkers
S , dynamic linkers D and connectors C , and all locally defined features L, are
well-typed. Well-typed assemblages have an assemblage type Asm(S,D, C,L),
which structurally corresponds to 〈S ;D ;C ;L〉 in an intuitive way.

To typecheck an assemblage appearing inside a program as a first-class value
is the same as top-level typechecking, with the only exception that if the assem-
blage is annotated with assemblage type Asm(S,D, C,L) and typechecks, the
type we give to this assemblage expression is Asm(S,D, C, φ). Assemblages are
encapsulated entities and on the outside local features should be invisible, just
as with private fields of objects.

Static Linking To typecheck expression A1 +A2, the following conditions have
to be satisfied:

– A1 and A2 both need to be well-typed, with type Asm(S1,D1, C1, φ), and
Asm(S2,D2, C2, φ) respectively.

– If S1 includes a static linker named ν and S2 includes a static linker with
the same name, the two linkers must match according to Sec. 5.1.

– No dynamic linkers in D1 and D2 can share the same name.
– No connectors in C1 and C2 can share the same name.

Expression A1 + A2 has type Asm(S1 �t S2,D1] D2, C1] C2, φ) if the above
conditions are met. Here the �t operator is the same as that of the � operator
explained in Sec. 4.3, but changing S , I , E to S, I, E . Also notice that since
first-class assemblages are given a type in which local feature types are set to φ,
there can be no name clash checking on local features of A1 and A2. This is not
a problem, however, since assemblages are α-convertible with respect to local
feature names (see Sec. 4).

Dynamic Linking Expression pluginν1 7→ν2
e, when well-typed in our type

system, has a dynamic linkage type Dlnk(E); this corresponds to the fact that
the return value of a plugin expression is a dynamic linkage handle. It typechecks
iff

– It appears in an assemblage whose type is Asm(S1,D1, C1,L1).
– Expression e, which will evaluate to an assemblage, has a type Asm(S2,D2, C2, φ).
– D1 includes a dynamic linker type ν1 7→ 〈I1; E1〉, and S2 includes a static

linker type ν2 7→ 〈I2; E2〉, and the two types match according to Sec. 5.1.
– E = E1] E2.
– C2 must be φ.
– Static linker ν2 is the only static linker in S2 which has imported features.

The last two conditions merit some further explanation. C2 must be φ because
if dynamic plugins had extra connectors, the assemblage runtime, after being
plugged in with dynamic plugins of this kind, would be faced with a dilemma: it
either needs to dynamically change its type to reflect some connectors that are
dynamically added, or these new connectors are not exposed to outsiders and are
de facto useless. Our calculus does not tackle this dilemma to preserve simplicity.
The last condition is necessary because otherwise, the imported features not
satisfied by dynamic linking would become dangling unresolved name references.

Cross-Computation Communication Expression connectν1 7→ν2 e, when
well-typed in our type system, has a connection type Cnt(E ,J 1); this corre-
sponds to the fact that the return value of a connect expression is a connection
handle. It typechecks iff:

– It appears in an assemblage whose type is Asm(S1,D1, C1,L1).
– Expression e, which evaluates to an assemblage runtime handle, has a type

Rtm(C2).
– C1 includes a connector type ν1 7→ 〈I1; E1;J 1〉, and C2 includes a connector

type ν2 7→ 〈I2; E2;J 2〉, and the two connector types match according to Sec.
5.1.

– E = E1] E2.

5.3 Properties of the Type System

We have proved soundness of our type system [LS04], in which we have shown
the bootstrapping process preserves type, and the subject reduction property
holds, i.e., the G, e

ιr,ιn−−−→ G′, e′ reduction always preserves type. In addition,
the typechecking process is decidable.

6 Related Work

In terms of static linking alone, our calculus is in the spirit of numerous module
systems and calculi mentioned in Sec. 1 and Sec. 2. The calculus presented here
supports first-class modules and static linking as first-class expressions, which
some of the aforementioned projects, such as ML functors, do not support. In this
presentation, we omitted how types can themselves be imported or exported as
features, but type importing/exporting, including bounded parametric types and

cross-module recursive types is covered in the long version [LS04]. Previous works
in this category, with the exception of Units, do not consider dynamic linking or
cross-computation communication. For instance, ML modules do not themselves
constitute a runtime, and even though structures have explicit interfaces for run-
time interaction via S.x, this is for tightly-coupled interaction within a single
runtime, not cross-computation invocation.

Dynamic linking is supported in Java. Although it does not support source-
level dynamic linking expressions, classes are loaded dynamically [LB98,DLE03].
The classloader mechanism provides a very powerful way to customize the dy-
namic linking process, but its maximum expressiveness, particularly classloader
delegation, requires much of the typechecking work to happen at dynamic link
time. In addition, we believe the granularity of modules provides a better layer
for dynamic linking, because explicit dynamic linking interfaces can be specified
without too much labor, and users can have more programmatic control over
the dynamic linking process. Dynamic linking of modules is explored in Argus
[Blo83], in the invoke expressions of Units [FF98], and in the dynamic export
declarations of MJ [CBGM03]. These projects only take advantage of the fact
that dynamic plugins are modules and so the interface is unidirectional only: the
running program has no explicit interface to the plugged-in code.

There have been many effective protocols developed for reactive computa-
tions, including RMI, RPC, and component architectures such as COM+ and
CORBA. These protocols generally define a one-way communication interface
only; the receiver has an interface, but not the sender. The bidirectional con-
nector as a concept has existed in the software engineering community for some
time, e.g. in [AG97], but those closest to our are two programming language ef-
forts: ArchJava [ASCN03], and Cells [RS02]. In ArchJava, connectors are more
low-level than ours. Each connector may have a typecheck method which maxi-
mize flexibility of typechecking, something we do not support. Connectors in our
calculus share the same notion as in Cells language, but connectors in Cells do
not consider rebindability and per-connection states. These projects in general
do not have module system as a priority, and it therefore do not address type
imports and exports.

Research on software components [Szy98] is diverse. A number of industrial
component systems (such as COM+, Javabeans) have been successful in mod-
elling reactive computations, and some support both static linking and cross-
computation communication, such as CORBA CCM. They are only loosely re-
lated to our project, as they do not consider dynamic linking issue and type
issues.

7 Conclusions and Future Work

The major contribution of this paper is a novel module system where static
linking, dynamic linking and cross-computation communication are all defined
in a uniform framework by declaring explicit, bi-directional interfaces. Explicit
interfaces for dynamic linking and cross-computation communication provide

more declarative specifications of the interaction between parties, and also gives
a stronger foundation for adding other critical language features such as security
and version control. We have yet to see a fully bi-directional dynamic linking
interface in the literature. Bi-directional communication interfaces are found for
example in [ASCN03,RS02], but our work builds this feature into module sys-
tems. In the full version of this paper [LS04] we show how the calculus presented
here can be extended to include types as features, and how they are useful for
situations involving dynamic linking and cross-computation communication.

Since every cross-computation communication must be directed through con-
nectors in our calculus, access control on connectors is enough to ensure the
network security of the assemblage. Assemblages provide a good granularity for
encapsulation, and our type system and semantics of the calculus restricts the
types of data that can be transfered across computations, which also coincides
with a proper policy of confinement in security. A future topic is to define a
complete security architecture based on this calculus.

It is our belief that rebindable dynamic linkers can provide a strong initial
basis upon which a rigorous theory of code version control can be built. Since
dynamic plugins can be rebound, each successive binding at runtime is a new
version of the code. Rebindability also allows multiple versions to co-exist. We
are interested in building a version control layer on top of our calculus.

Acknowledgements We would like to acknowledge Ran Rinat for contributions
at earlier stages of this project.

References

[AG97] Robert Allen and David Garlan. A formal basis for architectural connection.
ACM Transactions on Software Engineering and Methodology, 6(3):213–
249, 1997.

[ASCN03] Jonathan Aldrich, Vibha Sazawal, Craig Chambers, and David Notkin. Lan-
guage support for connector abstractions. In Proceedings of the Seventeenth
European Conference on Object-Oriented Programming, June 2003.

[AZ02] D. Ancona and E. Zucca. A calculus of module systems. Journal of func-
tional programming, 11:91–132, 2002.

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In Norman Mey-
rowitz, editor, Proceedings of OOPSLA/ECOOP, pages 303–311, Ottawa,
Canada, 1990. ACM Press.

[BHSS03] G. Bierman, M. Hicks, P. Sewell, and G. Stoyle. Formalizing dynamic
software updating, 2003.

[Blo83] Toby Bloom. Dynamic module replacement in a distributed programming
system. Technical Report MIT/LCS/TR-303, 1983.

[Car97] Luca Cardelli. Program fragments, linking, and modularization. In Confer-
ence Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 266–277, 1997.

[CBGM03] John Corwin, David F. Bacon, David Grove, and Chet Murthy. MJ: a
rational module system for java and its applications. In Proceedings of the

18th ACM SIGPLAN conference on Object-oriented programing, systems,
languages, and applications, pages 241–254, 2003.

[DEW99] Sophia Drossopoulou, Susan Eisenbach, and David Wragg. A fragment
calculus towards a model of separate compilation, linking and binary com-
patibility. In Logic in Computer Science, pages 147–156, 1999.

[DLE03] Sophia Drossopoulou, Giovanni Lagorio, and Susan Eisenbach. Flexible
models for dynamic linking. In 12th European Symposium on Programming,
2003.

[DS96] Dominic Duggan and Constantinos Sourelis. Mixin modules. In Proceedings
of the ACM SIGPLAN International Conference on Functional Program-
ming (ICFP ’96), volume 31(6), pages 262–273, 1996.

[FF98] Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT lan-
guages. In Proceedings of the ACM SIGPLAN ’98 Conference on Program-
ming Language Design and Implementation, pages 236–248, 1998.

[HL02] Tom Hirschowitz and Xavier Leroy. Mixin modules in a call-by-value set-
ting. In European Symposium on Programming, pages 6–20, 2002.

[HMN01] Michael W. Hicks, Jonathan T. Moore, and Scott Nettles. Dynamic software
updating. In SIGPLAN Conference on Programming Language Design and
Implementation, pages 13–23, 2001.

[HSW+00] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and
Kristofer S. J. Pister. System architecture directions for networked sen-
sors. In Architectural Support for Programming Languages and Operating
Systems, pages 93–104, 2000.

[LB98] Sheng Liang and Gilad Bracha. Dynamic class loading in the Java vir-
tual machine. In Conference on Object-oriented programming, systems,
languages, and applications (OOPSLA’98), pages 36–44, 1998.

[LS04] Yu David Liu and Scott F. Smith. Modules With Inter-
faces for Dynamic Linking and Communication (long version),
http://www.cs.jhu.edu/~scott/pll/assemblage/asm.pdf. Techni-
cal report, Baltimore, Maryland, March 2004.

[Mac84] D. MacQueen. Modules for Standard ML. In Proceedings of ACM Confer-
ence on Lisp and Functional Programming, pages 409–423, 1984.

[MFH01] S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: New-age components for
old-fashioned Java. In Proc. of OOPSLA, October 2001.

[RS02] Ran Rinat and Scott Smith. Modular internet programming with cells. In
Proceedings of the Sixteenth ECOOP, June 2002.

[SPW03] Nigamanth Sridhar, Scott M. Pike, and Bruce W. Weide. Dynamic module
replacement in distributed protocols. In Proceedings of the 23rd Interna-
tional Conference on Distributed Computing Systems, May 2003.

[Szy98] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. ACM Press and Addison-Wesley, New York, NY, 1998.

[WV00] J. B. Wells and René Vestergaard. Equational reasoning for linking with
first-class primitive modules. In Programming Languages and Systems, 9th
European Symp. Programming, volume 1782, 2000.

