A Formal Framework for Component Deployment

Y. David Liu
Scott F. Smith
Johns Hopkins University

A Menagerie of Deployment Systems

CLI Assemblies

JSR 277 InstallShield

RPM OSGi

Dpkg EJB Manifests

Portage Bazaar

CORBA D&C RubyGems

CTAN CPAN

Foundations?

CLI Assemblies

JSR 277 InstallShield

RPM

Dpkg EJB Manifests

Portage Bazaar

CORBA D&C RubyGems

CTAN CPAN

An Analogy: Programming Languages

	Fortran			
	Smalltalk	Pascal		
	Lisp		Java	
Perl				C++
	Scala		C#	
	Scheme	C		

ML

Haskel

An Analogy: Foundations of Languages

Fortran								
	Smalltall	P	ascal					
Perl	Lisp	λ Calculus Object Calculi etc.		Java	C++			
	Scala			C #				
	Scheme		C					

ML

Haskel

CLI Assemblies

JSR 277 InstallShield

RPM

Dpkg Application Buildbox EJB Manifests

Portage Bazaar

CORBA D&C RubyGems

CTAN CPAN

An abstract, platform-independent, vendor-independent study of component deployment

- Designing components as deployment units
- Formalizing the entire deployment lifecycle
- Proving deployment invariants

An abstract, platform-independent, vendor-independent study of component deployment

- Designing components as deployment units
- Formalizing the entire deployment lifecycle
- Proving deployment invariants

An abstract, platform-independent, vendor-independent study of component deployment

- Designing components as deployment units
- Formalizing the entire deployment lifecycle
- Proving deployment invariants

An abstract, platform-independent, vendor-independent study of component deployment

- Designing components as deployment units
- Formalizing the entire deployment lifecycle
- Proving deployment invariants
 - Deployment "never goes wrong"
 - Version compatibility

An abstract, platform-independent, vendor-independent study of component deployment

- Designing components as deployment units
- Formalizing the entire deployment lifecycle
- Proving deployment invariants

Why Foundations?

- Fosters next-generation deployment systems
 - Elucidates subtle issues
 - More features proposed from academic research community
 - Deployment systems with provably correct properties
- Complements modularity research
 - when and where of linking

Why Foundations?

- Fosters next-generation deployment systems
 - Elucidates subtle issues
 - More features proposed from academic research community
 - Deployment systems with provably correct properties
- Complements modularity research
 - when and where of linking

Basics

Application Buildbox

An imaginary box where an application 'hatches' throughout the deployment lifecycle

Deployment Unit: Assemblage

- Real-world analogues: JAR, C .so library, DLL, CLI Assembly
- Assemblages were first developed in [Liu and Smith, ECOOP'04], but without deployment

Version Identifiers

- Globally Unique
- Real-world analogues: COM+ GUID, CLI Assembly strong names

Side-by-Side Deployment

Two versions of the NetLib are deployed in the same buildbox

Basic Construct: Assemblage Interfaces

Real-world analogues: Manifest files, Deployment Descriptors

Two Kinds of Assemblage Interfaces

Mixers: regular dependency Pluggers: hot deployment dependency

Interfaces are Bi-directional: Imports, Exports

Multiple Interfaces

- Name management is crucial for deployment.
- Avoid global name clashes

Interface: Unit of Versioning Dependencies

What is NOT Possible...

Assemblages in Shipped Form

Component Wiring: Mixing

- Between a pair of mixers
- Matching of functionalities
- Matching of version constraints

Component Wiring: Plugging

- Wiring at hot deployment time
- Between a plugger and a mixer
- Matching of functionalities
- Matching of version constraints

Compatibility Set

- Subversioning: a partial order
- We do not hardcode the strategy on how two versions are semantically compatible

Act 2:

Component Deployment Lifecycle

Deployment Site Transitions

Browser

NetLib

hot update

hot update

Development Site Transitions

Formalism Choice

- Labelled Transition System (LTS) for deployment operations
 - Each transition step is an application buildbox evolution step
 - Labels are "commands" which deployment system users can trigger
- Run-time behaviors captured via a minimalistic programming language

Shipping a Component

ship (*Browser*, 5233, {*Net*})

Shipping a Component

Shipped Assemblage

ship (*Browser*, 5233, {*Net*})

Why Not Always Ship the Entire Closure?

Why Not Always Ship the Entire Closure?

- Components are independently deployable units!
 - Off-the-shelf commercial components, libraries
 - Updates, patches
- Sometimes not realistic, such as native code

Installing a Component

install (shippedbrowser)

Installing a Component

install (shippedbrowser)

Example: System.dll and System.xml.dll in .NET

install (shippedA)

install (shippedA)

install (shippedB)

install (shippedB)

Updating a Component

update (NetLib, 7622, 9985)

Updating a Component

update (NetLib, 7622, 9985)

Updating a Component

an update is not necessarily an upgrade

Hot Deployment

h = plugin flash with Plugins >> Main;

Hot Deployment

Running application

h = plugin flash with Plugins >> Main;

Hot Deployment

Running application

h = plugin flash with Plugins >> Main; h..start();

Multiple Plugins: Hot Update

h1 = plugin flash1 with Plugins >> Main;h2 = plugin flash2 with Plugins >> Main;

Act 3:

Invariants, Invariants!

Theorems: Buildbox Well-formedness

- Theorem: no deployment operations can turn a well-formed buildbox into a non-well-formed one.
- Theorem: no reductions at run time can turn a well-formed buildbox into a non-well-formed one.

Specifying Version Compatibility

How do a *deployment-site run* and *a pre-shipping test-run* correspond?

Suppose we have a component X...

locating method m imported/exported from P

execute (testing)

at run time
P::m is bound to
assemblage Y version v

at run time
P::m is bound to
assemblage Y version v

Theorem on Version Compatibility

- Y = Y'
- v = v' or v' is a subversion of v

Future Work

- Keep the platform-independent spirit, with more expressiveness gains
 - security in deployment
 - distributed deployment (e.g. sensor network applications)
- A closer look at Java deployment
 - an effort to map back to the real world

Related Work

- Many real-world systems
- Formal treatment is rare
 - [Buckley, CD'05]: formalized name-binding of CLI Assemblies
 - platform-specific
 - no modeling of deployment lifecycle
 - no invariant properties proved

Related Work: Real-world Systems

CLI Assemblies

JSR 277 InstallShield

RPM

Dpkg Application Buildbox EJB Manifests

Portage Bazaar

CORBA D&C RubyGems

CTAN CPAN

Related Work

- Many real-world systems
- Formal treatment is rare
 - [Buckley, CD'05]: formalized name-binding of CLI Assemblies
 - platform-specific
 - no modeling of deployment lifecycle
 - no invariant properties proved

A Retrospective

- For deployment systems designers:
 - platform-independent communication
 - foster next-generation deployment systems
- For deployment system users:
 - tools with well-defined user interfaces
 - tools with provably correct properties
- For module system researchers:
 - a foundational study of when and where of linking