A Formal Framework for

Component Deployment

Y. David Liu
Scott F. Smith
Johns Hopkins University

OOPSLA'06, Portland, Oregon

A Menagerie of Deployment Systems

CLI Assemblies
JSR 277 InstallShield
RPM OSGi
Dpkg EJB Manifests
Portage Bazaar
CORBA D&C RubyGems

CTAN CPAN

Foundations?

CLI Assemblies
JSR 277

RPM

Dpkg ‘)

Portage

CORBA D&C

CTAN CPAN

InstallShield

OSGi

EJB Manifests

Bazaar

RubyGems

An Analogy: Programming Languages

Smalltalk

Lisp

Perl

Scala

Scheme

Fortran

Haskel

Pascal

Java

C++

C#

ML

An Analogy: Foundations of Languages

Fortran
Smalltalk Pascal
Lisp Java
A Calculus
Per] Object Calculi Cos
etc.
Scala
C#
Scheme C

Haskel ML

This Work

CLI Assemblies
JSR 277 InstallShield
RPM OSGi
Dpkg Application Buildbox E£sB Manifests
Portage Bazaar
CORBA D&C RubyGems

CTAN CPAN

This Work

An abstract, platform-independent, vendor-
Independent study of component deployment

This Work

e Designing components as deployment units

This Work

e Formalizing the entire deployment lifecycle

A insall

1690

THIE Pl
Q9 S SR
5429 5429 233 SEORGEREXKA
\ 0:0:¢:9.
0
<o
v

[‘ — R
: Sele% Wi
NetLib Vet Ik fvvser iR -\
W0
\ NN oseretetesss

[
XXX] L\
et cer]

prsc finuanf o H ot deplay
SR RN\ wrioisis “%&N §

bV ship
execute \

(testing)

This Work

 Proving deployment invariants
e Deployment "never goes wrong'
e \Version compatibility

This Work

Design objectives. ssmple (capturing recurring
themes) and expressive

Why Foundations?

o Fosters next-generation deployment systems

— Elucidates subtle 1ssues

— More features proposed from academic
research community

— Deployment systems with provably
correct properties

Why Foundations?

o Complements modularity research
— when and where of linking

Basics

Application Buildbox

NetLib

NetLib

i

Browser

An imaginary box where an application ''hatches'’
throughout the deployment lifecycle

Deployment Unit: Assemblage

Net 5233 Plugins

send

readfile

Browser
—

timeout start

e Real-world analogues: JAR, C .so library, DLL, CLI
Assembly

e Assemblages were first developed in [Liu and Smith,
ECOOP'04], but without deployment

Version Identifiers

Net 5233 ‘\ Plugins

send

readfile

Browser
—

timeout start

e Globally Unique
e Real-world analogues: COM+ GUID, CLI Assembly
strong names

Side-by-Side Deployment

NetLib ’ iﬁ Browser

NetLib | |

Two versions of the NetLib are deployed in the same buildbox

Basic Construct: Assemblage Interfaces

send

L

timeout

Real-world analogues: Manifest files, Deployment

Net

el

Descriptors

Browser

Plugins

X

readfile

start

Two Kinds of Assemblage Interfaces

Net 5233 Plugins

send readfile

Browser
—

timeout

Mixers: regular dependency Pluggers: hot deployment dependency

start

Interfaces are Bi-directional:
Imports, Exports

Net 5233 Plugins

send

Browser
/ :

timeout

readfile

start

Multiple Interfaces

Net 5233 Plugins

send readfile

Browser
L

timeout

start

initGraphics draw

e Name management is crucial for deployment.

e Avoid global name clashes

Interface: Unit of Versioning Dependencies

Browser

GUI

initGraphics

initGraphics

GUILIib

What is NOT Possible...

_I Browser

initGraphics initGraphics

Assemblages in Shipped Form

Net 5233 Plugins

send readfile

Browser
I

timeout start

g Net -> NetLib.1690.Socket

--7

version constraint

Component Wiring: Mixing

Plugins

Ei Browser

timeout

/ Net -> NetLib.1690.Socket

e Between a pair of mixers
e Matching of functionalities
e Matching of version constraints

\\\\\\\\\\\\

CF [

\\\(\‘&\\

Compatibility Set

Plugins

Ei Browser

3370 < : 1690 Net -> NetLib.1690.Socket

e Subversioning: a partial order
e We do not hardcode the strategy on how two versions
are semantically compatible

Act 2:

Component Deployment Lifecycle

Deployment =
Site -
Iransitions 5429

&\\\\‘\\\\%{@‘! e

Lol=F

[
ij{\{@&iﬁi hot deploy ==~ 7~

el |

N N

5429

!_

Aingal

1690

!_

5429

NetLib !_

1 5233

|

] |
Browser

i |

|

e win]

5429

!_

!_

=
remok\

execute *

[

b=

[e L] ot oy ===

A AN

e []

[l fp =
R

f hot update

=[]

Development
Site
Transitions

by ship
execute \

L (testing)

NetLib !_ -------
' —

5 m\\‘m\\

Lol=—F

!_ _I

build

!_
_I

.‘@A\\‘m‘
=]

!_ _I

ship

| 5233 1

1 |
Browser

1 |

]

Formalism Choice

e | abelled Transtion System (LTS) for deployment
operations

- Each transition step is an application buildbox
evolution step

- Labels are "commands' which deployment
System users can trigger

e Run-time behaviors captured viaaminimalistic
programming language

Shipping a Component

1690 Socket Net 5233 Plugins

E i

ship (Browser, 5233, { Net})

Shipping a Component

Shipped Assemblage

Net 5233 Plugins

_I Browser

Net -> NetLib.1690.Socket

Socket Net 5233 Plugins

ship (Browser, 5233, { Net})

Why Not Always
Ship the Entire Closure?

1690 Socket Net 5233 Plugins

Why Not Always
Ship the Entire Closure?

1690 Socket Net 5233 Plugins

o Components are independently deployable units!

o Off-the-shelf commercial components, libraries
o Updates, patches
e Sometimes not realistic, such as native code

Installing a Component

shippedbrowser

Net 5233 Plugins

_I Browser

Net -> NetLib.1690.Socket

NetLib

3370 <: 1690

install (shippedbrowser)

Installing a Component

Socket Net 5233 Plugins

Net -> NetLib.1690.Socket

3370 <: 1690

install (shippedbrowser)

Cyclic Dependencies

shippedA shippedB

Example: System.dll and System.xml.dll in NET

Cyclic Dependencies

shippedA shippedB

-
0]

install (shippedA)

Cyclic Dependencies

shippedB

P -> B.0088.Q

in]

install (shippedA)

Cyclic Dependencies

shippedB

P -> B.0088.Q

in]

install (shippedB)

Cyclic Dependencies

7421 P Q 0088

=L

P -> B.0088.Q Q -> A.7421.P

install (shippedB)

Updating a Component

Socket Net 5233 Plugins

Net -> NetLib.1690.Socket
9985 Socket

NetLib !_

99835 <: 1690, 7622 <: 1690

update (NetLib, 7622, 9985)

Updating a Component

Socket Net 5233 Plugins

!_ _I

Net -> NetLib.1690.Socket

NetLib

99835 <: 1690, 7622 <: 1690

update (NetLib, 7622, 9985)

Updating a Component

Socket Net 5233 Plugins

!_ _I

Net -> NetLib.1690.Socket

NetLib

99835 <: 1690, 7622 <: 1690

an update is not necessarily an upgrade

Hot Deployment

nnnnnnnnnnnnnnnnn

3rowse
|
€0

[e

h = plugin flasn with Plugins >> Main;

Hot Deployment

\w\\\\\\“\.ﬁ%

h = plugin flasn with Plugins >> Main;

Hot Deployment

\\\\\\\“\.ﬁ%

h = plugin flash with Plugins >> Main;
h..start();

\\\\\//@m"’ |
N_|
ugins

Main:

Act 3:

Invariants, Invariants!

Theorems: Buildbox Well-formedness

e Theorem: no deployment operations can turn
awell-formed buildbox into a non-well-
formed one.

e Theorem: no reductions a run time can turn
awsell-formed buildbox 1nto a non-well-
formed one.

-]

N
N

B

F‘E“\\‘%‘& DR TN E — E
@!‘_\i\@&i WD‘ hotdeploy === -~

— |

[l=f-

Specifying Version Compatibility

How do adeployment-site run and a pre-
shipping test-run correspond?

Suppose we have a component X...

2700
P
X
m
— method n
" int z=P::m(3);

locating method m imported/exported from P

On The Development Site

On The Development Site

execute
(testing)

\
.p‘,‘?\‘f'}

On The Development Site

execute
(testing)

e

at run time . <
P::m is bound to f“‘(\
assemblage Y versionv [~

L]

On The Development Site

execute s B :
(testing) ' i

L em
at run time HV/}}\M_IA%H

P::m is bougd to f\‘:‘ \
bl I
assemblage Y version v L?‘_&

On Any Deployment Site

On Any Deployment Site

On Any Deployment Site

On Any Deployment Site

%“\‘_

@\z‘&

On Any Deployment Site

at run time
P::m is bound to
assemblage Y' version v'

\\T“\“

\

Theorem on Version Compatibility

oY =VY'
e V=V OrVvisasubverson of v

Future Work

o Keep the platform-independent spirit, with
more expressiveness gains

— security In deployment

— distributed deployment (e.g. sensor network
applications)

e A closer look at Java deployment
— an effort to map back to the real world

Related Work

e Many real-world systems

Related Work: Real-world Systems

CLI Assemblies
JSR 277 InstallShield
RPM OSGi
Dpkg Application Buildbox E£sB Manifests
Portage Bazaar
CORBA D&C RubyGems

CTAN CPAN

Related Work

e Formal treatment israre

— [Buckley, CD'05]: formalized name-binding
of CLI Assemblies

e platform-specific
» N0 modeling of deployment lifecycle
e NO INvariant properties proved

A Retrospective

e For deployment systems designers:

— platform-independent communication

— foster next-generation deployment systems
e For deployment system user's;

— tools with well-defined user interfaces

— tools with provably correct properties
e For module system researchers.

—afoundational study of when and where of
linking

