
Modular Internet Programming
with Cells

Ran Rinat
Scott Smith

http://www.jcells.org

9/24/15 Cells @ ECOOP 2002 2

Motivations
!  Persistent language-level network connections

è  Tightly coupled Internet protocols keep a persistent socket
connection; no language-layer protocols do this

!  Java/.NET are first generation Internet languages
è  Lets work on the second generation

!  Modules and components have commonalities
è  Unify them

!  Code architecture that mirrors deployment architecture
è  Current practice declares module interface but not network

interface

9/24/15 Cells @ ECOOP 2002 3

Our Proposal: Cells
! Deployable containers of objects and code
! Implicitly distributed
! Connectors for forming persistent links

è  Can be dynamically linked and unlinked
è  Can be linked locally or across the network

! Unifies notions of module and component
! May be dynamically loaded, unloaded, copied
! Serve as principals in a security architecture

9/24/15 Cells @ ECOOP 2002 4

Cells Unify Existing Technologies
Technology Commonalities

Modules Import and export, linking, namespaces

Components Advertise services, support distribution

RMI Invocation of remote cell services

Applets Code shipment via cell shipment

Serialization Cells serialize with their serialized objects

Mobile Objects Cells move as Code+object packages

Object prototype Cells are prototyped, cloned

9/24/15 Cells @ ECOOP 2002 5

Basic Cell Elements
Cell 1 Cell 2

= Class

= Object

= Operation

Connector =

Service =

plugout

plugin

code

state

or

9/24/15 Cells @ ECOOP 2002 6

The CVM (Cell Virtual Machine)
! “JVM/CLR for cells”
! Many CVMs concurrently running on the Internet
! Cells are loaded into a CVM
! Cells in different CVM’s may communicate

transparently, as if they were local
è  Invoke services on remote cells
è  Connect to remote cells

! CVM controlled by a distinguished President Cell

9/24/15 Cells @ ECOOP 2002 7

Cell Connectors
!  Cells upon first loading have no connections
!  Can connect and disconnect dynamically
!  Multiple connections on a single connector possible

when it is unambiguous

Cell connectors serve multiple purposes
1.  Code import, a la packages/modules

è  Cell-module additionally has state associated with it
è  In this model all module linking is at run-time

2.  Code plugin for dynamic extensibility
3.  Persistent (network) data connections

9/24/15 Cells @ ECOOP 2002 8

CVM B

Chatter Example

Chatter 1

receive chatLink

sendOut

Chat

send

receive Chatter 2

receive chatLink

sendOut

Chat

CVM A

send-receive

receive-send

9/24/15 Cells @ ECOOP 2002 9

Chatter with AV_Extension

Chatter

receive chatLink

sendOut

Chat

CVM

AV

AV_Extension

AV

AV code imported

9/24/15 Cells @ ECOOP 2002 10

JCells
! New cell-based programming language
! 90% the same as Java in syntax and semantics
! Java concepts replaced: RMI, ClassLoader,

CLASSPATH, applet, package, security arch., …
Implemented by compilation to Java
! CVM (Cell Virtual Machine) implemented by JVM
! Basic features now implemented
! Full implementation in progress

9/24/15 Cells @ ECOOP 2002 11

JCells Chatter Code Fragment
cell Chatter
{ … // Type declarations, etc
 connector Chat { plugins { send … }
 plugouts { receive … } };

 void sendMessage(string m) { … send(m); … }
}

 void unlinkFromChatter()
 … unlink at Chat; …

 void linkToChatter(cell Chatter other) {
 … link other at Chat
 [receive -> send, send <- receive]; …

9/24/15 Cells @ ECOOP 2002 12

Cell identifiers (CID’s)
! CID is a Universal (string) name for a cell

è  With a CID alone you can address a cell that could be
anywhere

! Cells transparently addressable by CID after
moving
è  Implemented similar to snail mail forwarding

! No two cells anywhere can share a CID

9/24/15 Cells @ ECOOP 2002 13

Universality of CID’s
Susan

Chat

send

receive Pete

receive chatLink

sendOut

Chat

ChatCentral logon

getUser

logoff

getUser(“Pete”) CIDPete

…
theCC <-
getUser(“Pete”)
…

…
link CIDPete
 at Chat;
…

9/24/15 Cells @ ECOOP 2002 14

CVM’

ChatCentral

Cell File States
ChatCentral.csc

file

compile

ChatCentral.cell

file

CVM

load

serialize
load

ChatCentral

Unload

Objects
created

9/24/15 Cells @ ECOOP 2002 15

!  Cell source code in .csc files
!  Cells can be in two states

1.  Cell active in a CVM, with fixed identity CID
2.  Serialized cell in .cell files, with (or without) CID

!  .csc files compile to .cell files
è  These .cell’s are anonymous (no CID)
è  They own no objects

!  Loading and CID’s
è  Anonymous .cell’s get a CID upon loading

Cell (Re-)deployment

9/24/15 Cells @ ECOOP 2002 16

Cells and their objects
! Every object in a CVM is owned by a cell
! Default policy
“you own the objects your code creates”

! Cells serialize with their objects
! Modulated object references survive cell

movement aCell

owned objects

9/24/15 Cells @ ECOOP 2002 17

Copying and Moving Cells
! Serializing a cell

è  Its classes, its objects and CID serialized
è  “.cell file” produced

! This .cell file can then be loaded into another CVM
! Move is serialize-unload-(transfer .cell file)-load

9/24/15 Cells @ ECOOP 2002 18

Distribution
! Transparency of distribution

è  Differs from RMI where parameters implicitly copied if
object is remote

! Not all services/connectors support distributed use
è  Parameters must all be passed by copy (or modulated

reference - forthcoming)
è  Classes cannot be plugged in across the network

! Cell movement across the network is supported

9/24/15 Cells @ ECOOP 2002 19

Object References and Parameters
!  Hard references

è  Your standard object reference
è  Local (intra-CVM) only; but inter-cell allowed

!  Modulated references
è  Used for more tightly-coupled interactions between cells
è  Both intra-CVM and inter-CVM (implemented via a proxy)
è  Can be dynamically revoked (e.g. revoke at disconnect time)

!  Parameter passing
è  Intra-CVM, no restrictions
è  Inter-CVM, cannot pass hard references
è  Explicit copy parameter syntax for inter-CVM case

9/24/15 Cells @ ECOOP 2002 20

Modulated vs hard references

modulated reference invalidated

Cell 1 Cell 2

hard reference

modulated reference

modulation table

9/24/15 Cells @ ECOOP 2002 21

Inter-CVM modulation

Cell 1 Cell 2

modulated reference

modulation table

No inter-CVM hard references

9/24/15 Cells @ ECOOP 2002 22

Cell Types
! Strongly typed

è  No dynamic checks except cast

! Cell references have cell types
cell Chatter myChatter;

! Cell types in Java spirit except structural subtyping
on cells for more universality
è  Connector can have unused plugouts

9/24/15 Cells @ ECOOP 2002 23

New Cell Security Architecture
[FCS, Copenhagen, July 2002]
!  Each cell is a principal with a public/private key
!  Access control decisions can be cell-based

è  “I only will connect on my privChat connector with Joe or Sue”

!  Uses SDSI/SPKI Internet standard, RFC2693
è  Groups, authorization certificates, revocation, delegation

!  Cells can declare they will not share objects
!  Additional capability layer

è  without an initial capability to a cell, can’t even try connection

9/24/15 Cells @ ECOOP 2002 24

Thorny Issues Galore
! If superclass code makes an object, who owns it,

super or subclass’ cell? (super’s)
! When a cell is serialized, it could have hard

references to objects it doesn’t own (null them)
! When a plugged-in class is unplugged, what

happens to live objects of that class?
è  (They become zombies – unusable)

! What if cell is unloaded when another cell is
plugging in one of its classes (disallow unload)

9/24/15 Cells @ ECOOP 2002 25

Related Work
! Technologies partly incorporated

è  Java
è  Modules: Modula-3, Units/Jiazzi, . . .
è  Components: Corba, COM, . . .
è  Prototype-based languages: Self, . . .

! JavaSeal: passive seal = .cell; seals own objects;
…

! J-Kernel
! XML/SOAP/UDDI/WSDL School

9/24/15 Cells @ ECOOP 2002 26

jcells.org

9/24/15 Cells @ ECOOP 2002 27

Cells address Internet needs
Internet Need Cell Solution
Code-level interaction Link via connectors

Call-level interaction Service invocation

Components move around Cells can be copied/moved

Cross-network interaction Supported by cells

Cross-component class
inheritance (e.g., applets)

Supported, between locally
linked cells

Different political entities Cell-level security, degree of cell
isolation controllable

Political situation volatile Unlink supported,
affects modulated references

9/24/15 Cells @ ECOOP 2002 28

Cell 1

Cell 2

= Class

= Object

= Operation

Connector:

Service:

plugout

plugin

