@

Modular Internet Programmlng
with Cells

Ran Rinat
Scott Smith
http://WwWw.jcells:erg

Motivations E

Persistent language-level network connections

Tightly coupled Internet protocols keep a' persistent Seeket
connection; no language-layer protocols do this

Java/.NET are first generation Internet Ianguages
Lets work on the second generation
Modules and components have commonalities
Unify them
Code architecture that mirrors deployment architecture

Current practice declares module interface but not network
interface

9/24/15 Cellsi@ ECOOP 2002

Our Proposal: Céells

Deployable containers of objects and code
Implicitly distributed

Connectors for forming persistent links
Can be dynamically linked and unlinked
Can be linked locally or across the network

Unifies notions off module and component
May be dynamically loaded, unloaded, copied
Serve as principals in a security: architecture

9/24/15 Cellsi@ ECOOP 2002

Cells Unify Existing Technologies E

Technology Commonalities

Modules Import and export, linking, NAMESPACES
Components Advertise services, suppenrtdistibution
RMI Invocation of remote cell ' SEVICES
Applets Code shipment via cell shipment
Serialization Cells serialize with their serialized objects

Mobile Objects |Cells move as Code+-object packages

Object prototype | Cells are prototyped, clened

9/24/15 Cellsi@ ECOOP 2002

Basic Cell Elements

code <

state <

4
= Class ’/ / plugout

Connector = _e .

= Object _
Service = @

= = QOperation
Cells|@ ECO)

9/24/15

The CVM (Cell Virtual Machine) E

“JVM/CLR for cells”
Many CVMs concurrently running on the Intermet
Cells are loaded inte'a CVM

Cells in different CVM" s may communiGate
transparently, as if they were local

Invoke services on remote cells

Connect to remote cells

CVM controlled by a distinguished President Cell

9/24/15 Cellsi@ ECOOP 2002

»

Cell Connectors —E@—

Cells upon first loading have no connections
Can connect and disconnect dynamically

Multiple connections on a single connector PessibIe
when it is unambiguous

Cell connectors serve multiple purposes

Code import, a /a packages/modules
Cell-module additionally’ has state asseciated with' it
In this model all module linking is'at run-time

Code plugin for dynamic extensibility;
Persistent (network) data connhections

9/24/15 Cellsi@ ECOOP 2002

@

vy s
Chatter Example

Chatter 2

_
recejve send N rec:eye ch%&ink ’
C)— |

recejve chatlLink Chat%
en

o senOut
S -recelve
S ¢

9/24/15

il b ua A
Chatter with AV_Extension

Chatter !

nsuon

D :ye cha %ink e

D AV egele irfgorieac seéOut

D y € g 5 m
s
9/24/15 Cells/@ Ecoﬁﬂ'ooz#

:>D
= N
:>D

JCells E

New cell-based programming language
90% the same as Java in syntax and semantics

Java concepts replaced: RMI, Classlioadery
CLASSPATH, applet, package, security archs, ..

Implemented by compilation to Java
CVM (Cell Virtual Machine) implemented by JVM
Basic features now implemented
Full implementation in progress

9/24/15 Cellsi@ ECOOP 2002 10

JCells Chatter Code Fragment

cell Chatter

{ .. // Type declarations, etc

connector Chat { plugins { send .. }
plugouts { receive .. } Fi

volid linkToChatter(cell Chatter other) A
. 1link other at Chat
[receive -> send, send <- receivel];

volid unlinkFromChatter ()
. unlink at Chat;

volid sendMessage(string m) { .. send(m);

}

9/24/15 Cellsi@ ECOOP 2002

Cell identifiers (CID’ s) @

CID is a Universal (string) name for a cell

With a CID alene you can address a cell thaticoula be
anywhere

Cells transparently addressable by ClDraiter
moving

Implemented similar to snail mail ferwarding
No two cells anywhere can share a CIbD

9/24/15 Cellsi@ ECOOP 2002 12

Universality of CID's

getUser(ggtPéte)
logor\ @

logoff\ @

getUser ®

9/24/15 Gells @ ECOOPI2002.

13

il b ua A
Cell File States

N
L Coew

compile .
l Unload

9/24/15

4

f

p

ODbjects
created

14

Cell (Re-)deployment E

Cell source code in .csc files

Cells can be in two states
Cell active in a CVM, with fixed identity @iy
Serialized cell'in".cell files, with (erwithouFelD
.csc files compile to .cell files

These .cell”s are anonymous (no CID)
They own no objects

Loading and CID" s
Anonymous .cell” s get a CID uponiieading

9/24/15 Cellsi@ ECOOP 2002 15

Cells and their objects

Every object in a CVM is owned by.a cell

Default policy
“you own the objects your code creates:

Cells serialize with their ebjects

Modulated object references survive ce
movement

owned objects {
9/24/15 Cells @ ECOOPI2002 ’

N
- N

4

Copying and Moving Cells E

Serializing a cell
Its classes, its objects and CID serialized
“.cell file” produced

This .cell file can then be loaded IRto anether CVIV]
Move is serialize-unload-(transfer .cellfile)-load

9/24/15 Cellsi@ ECOOP 2002

17

Distribution E

Transparency. of distribution

Differs from RMI where parameters implicitiyscepied if
object is remote

Not all services/connectors support disthpUted use

Parameters must all be passed by copy: (Grmodulated
reference - forthcoming)

Classes cannot be plugged in acress the network
Cell movement across the network is supported

9/24/15 Cellsi@ ECOOP 2002 18

Object References and Parameters E

Hard references

Your standard object reference

Local (intra-CVVM) only; but inter-cell allowed
Modulated references

Used for more tightly-coupled interactions betweenicells
Both intra-CVM and inter-CVM (implemented viara proxy.)
Can be dynamically revoked (e.g. revoke at disconnect time)

Parameter passing

Intra-CVM, no restrictions
Inter-CVM, cannot pass hard references
Explicit copy parameter syntax for inter-CVIVicase

9/24/15 Cellsi@ ECOOP 2002 19

ol 4

»

Modulated vs hard references

g =01

E

9/24/15

g

modulated reference validate
Cells@ ECO&?'ZOOZ / /

hard reference
modulated reference E
modulation table

= H

-

20

il &
Inter-CVM modulation

Cell 2

g =01 g =0
modulation table

No inter-CVM hard referenc :
9/24/15 Cellsi@ Ecoﬁﬁooz ”)

21

Cell Types E

Strongly typed
No dynamic checks except cast

Cell references have cell types
cell Chatter myChatter;

Cell types in Java spirit except structural*stubtyping
on cells for more universality,

Connector can have unused plugouts

9/24/15 Cellsi@ ECOOP 2002

22

New Cell Security Architecture E

[FCS, Copenhagen, July 2002]
Each cell is a principal with a public/private key;

Access control decisions can be cell-based.
“I only will connect on my. priv€hat conneGtor Witiioer o Suer

Uses SDSI/SPKI Internet standard, REC2695
Groups, authorization certificates, revocation, delegation

Cells can declare they will'not share ebjects

Additional capability layer
without an initial capability to a cell, can’ t even try, connection

9/24/15 Cellsi@ ECOOP 2002 23

Thorny Issues Galore E

If superclass code makes an object, Who owns it
super or subclass™ cell? (super’ s)

When a cell is serialized, it could havehana
references to objects it doesn” t own' (RUlifthEm)

When a plugged-in class is unplugged, What
happens to live objects of that ¢lass?
(They become zombiés — unusable)

What if cell is unloaded when another cell'is
plugging in one of its classes (disallew:unlead)

9/24/15 Cellsi@ ECOOP 2002 24

Related Work E

Technologies partly incorporated
Java
Modules: Modula-3, Units/Jiazzi, . . .
Components: Corba, COM, . . .
Prototype-based languages: Self; . . .

JavaSeal: passive seal = .cell; seals own ebjects;

J-Kernel
XML/SOAP/UDDI/WSDL Schoeol

9/24/15 Cellsi@ ECOOP 2002

25

&
9/24/15 - Cellsi@ ECOOP 2002

Cells address Internet needs

IRtereINEed

Code-level interaction
Call-level interaction
Components move around
Cross-network interaction

Cross-component class
inheritance (e.qg., applets)
Different political entities

Political situation volatile

9/24/15

Qe Se)ltjele)r,

Link via connectors
Service invocation
Cells'can be copied/moyed
Supported by cells

Supported, between locally.
linked cells

Cell-level security, degree of: cell
isolation controllable

Unlink supported,
affects modulated references

Cellsi@ ECOOP 2002

27

. = Class ,/ / ~ plugout
Connector: |
= Object

: : - plugin
Service: =

=) = QOperation

9/24/15 Cells @ ECOOPI2002 28

