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Abstract. We develop a static analysis which distills first-order com-
putational structure from higher-order functional programs. The anal-
ysis condenses higher-order programs into a first-order rule-based sys-
tem, a nugget, that characterizes all value bindings that may arise from
program execution. Theorem provers are limited in their ability to au-
tomatically reason about higher-order programs; nuggets address this
problem, being inductively defined structures that can be simply and di-
rectly encoded in a theorem prover. The theorem prover can then prove
non-trivial program properties, such as the range of values assignable to
particular variables at runtime. Our analysis is flow- and path-sensitive,
and incorporates a novel prune-rerun analysis technique to approximate
higher-order recursive computations.

Keywords program analysis, higher-order, 0CFA, program verification

1 Introduction

Higher-order functional programming is a powerful programming metaphor, but
it is also complex from a program analysis standpoint: the actual low-level op-
erations and the order in which they take place are far removed from the source
code. It is the simpler first-order view that is easiest for automated verifica-
tion methods to be applied to. In this paper we focus on defining a new form
of program abstraction which distills the first-order computational structure
from higher-order functional programs. The analysis is novel in how it condenses
higher-order programs into a first-order inductive system, a nugget, which char-
acterizes all value bindings that can result from program execution. Nuggets can
be extracted automatically from the program source of any untyped functional
language, and without any need for programmer annotation.

A major advantage of the nuggets is that they are inductively defined struc-
tures which can be directly expressed as inductive definitions in a theorem prover.
So in effect, our analysis produces an output, a nugget, which is ideally suited as
input to a theorem prover. We use Isabelle/HOL [1] to reason about nuggets in
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this paper since it has built-in mechanisms to define and reason about inductively
defined first-order entities (although other provers with a similar mechanism, e.g.
ACL2 [2], could be employed as well). The theorem prover can then be used to
automatically prove desirable properties of the corresponding program. Putting
these steps together gives a method for automatically proving complex inductive
properties of higher-order programs. The alternative approach to formally prove
program properties in a theorem prover involves writing an operational or deno-
tational semantics for the programs and proving facts about those definitions,
or using an existing axiomatized programming logic. While these approaches are
effective, there is a high user overhead due to all of the program features such as
higher-order functions that clutter up the semantics or axioms, and a great deal
of time and effort is thus required. Nuggets are not complete in that some pro-
gram information is abstracted out, but enough information remains for a wide
class of program properties to be verified. So, we are trading off the complete-
ness of full verification for the speed and simplicity of partial verification. For
concreteness, we focus here on solving the value range problem for functional
programs—deducing the range of values that integer variables can take on at
runtime. While this is a narrow problem it is a non-trivial one, and it serves as a
testbed for our approach. Our analysis grew out of a type-and-effect constraint
type system [3], and is also related to abstract interpretation [4].

2 Informal Overview

In this section we give an informal description of our analysis. We start by
showing the form of the nuggets, their expressiveness, and the technique to prove
properties they encapsulate. Then we describe the nugget-generation algorithm.
Consider the following simple untyped higher-order program which computes
the factorial of 5, using recursion encoded by “self-passing”,

let f = λfact . λn. if (n != 0) then n ∗ fact fact (n − 1) else 1 (1)
in f f 5 .

We want to statically analyze the range of values assignable to the variable n
during the course of computation of the above program. Obviously this program
will recurse for n from 5 down to 0, each time with the condition (n != 0)
holding, until finally n = 0, thus the range of values assignable to n is [0, . . . , 5].
The particular goal of this paper is to define an analysis to automatically infer
basic properties such as value ranges. For non-recursive programs it is not hard
to completely track such ranges; the challenge is to track ranges in the presence
higher-order recursive functions.

2.1 Nuggets

There is a huge array of potential program abstractions to consider: type sys-
tems, abstract interpretations, compiler analyses, etc. All of these can be viewed
as abstracting away certain properties from program executions. Type systems
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tend to abstract away the control-flow, that is, flow- and path-sensitivity, but
retain much of the data-flow including infinite datatype domains; abstract in-
terpretations, on the other hand, generally make finitary abstractions on infinite
datatype domains, but tend to preserve flow- and path-sensitivity. Our approach
is somewhat unique in that we wish to abstract away only the higher-order na-
ture of functional programs, and preserve as much of the other behavior as pos-
sible, including flow- and path-sensitivity, infinite datatype domains, and other
inductive program structure.

The core of our analysis is the nuggetizer, which automatically extracts
nuggets from source programs. We begin with a description of the nuggets them-
selves and their role in proving program properties; subsequently, we discuss the
nuggetizing process itself.

Nuggets are purely first-order inductive definitions; they may contain higher-
order functions but in a nugget they mean nothing, they are just atomic data. All
higher-order flows that can occur in the original program execution are reduced
to their underlying first-order actions on data by the nuggetizer, the algorithm
for constructing nuggets described in the next subsection. We illustrate the form
and the features of nuggets by considering the nugget produced by the nugge-
tizer for program (1),

Nugget:
{

n 7→ 5, n 7→ (n − 1)n != 0
}

. (2)

(We are leaving out the trivial mappings for f and fact here.) As can be seen,
nuggets are sets of mappings from variables to simple expressions—all higher-
order functions in program (1) have been expanded. The mapping n 7→ 5 rep-
resents the initial value 5 passed in to the function (λn. . . .) in program (1).
The mapping n 7→ (n− 1)n != 0 additionally contains a guard, n != 0, which is a
precondition on the usage of this mapping, analogous to its role in dictating the
course of program (1)’s computation. Note the inductive nature of this mapping:
n maps to n−1 given the guard n != 0 holds. The mapping can then be read as:
during the course of program (1)’s execution, n may be also bound to (ni − 1),
for some value ni, such that n 7→ ni is an already known binding for n, and the
guard ni != 0 holds. It corresponds to the fact that the recursive invocation of
function (λn. . . .) at call-site ‘(fact fact) (n− 1)’ during program (1)’s computa-
tion results in (ni − 1) being the new binding for n, given n is currently bound
to ni and the guard ni != 0 holds.

Denotational semantics of nuggets Nuggets are in fact nothing more than in-
ductive definitions of sets of possible values for the variables—the least set of
values implied by the mappings such that their guards hold. So, the denotational
semantics of a nugget is nothing more than the values given by this inductive
definition. The above nugget has the denotation

{n 7→ 5, n 7→ 4, n 7→ 3, n 7→ 2, n 7→ 1, n 7→ 0} .

This is because n 7→ 0 does not satisfy the guard n != 0, implying it cannot be
inlined in the right side of mapping n 7→ (n − 1)n != 0, to generate the mapping
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n 7→ (−1) for n. Notice that the above nugget precisely denotes the range of
values assignable to n during the course of program (1)’s computation.

The key soundness property is: a nugget N for a program p must denote each
variable x in p to be mapping to at least the values that may occur during the
run of p. Thus the nugget (2) above serves to soundly establish the range of n
to be [0, . . . , 5] in program (1), which is also precise in this case: n will take on
exactly these values at runtime.

Defining and reasoning about nuggets in Isabelle/HOL Properties of a nugget
can be manually computed as we did above, but our goal is to automate proofs
of such properties. Since nuggets are inductive definitions, any nugget can be
automatically translated into an equivalent inductive definition in a theorem
prover. The theorem prover can then be used to directly prove, for example,
that 0 ≤ n ≤ 5 in program (1). The Isabelle/HOL encoding of the above nugget
is presented in Section 5. Theorem proving aligns particularly well with nuggets
for two reasons: 1) since arbitrary Diophantine equations can be expressed as
nuggets there can be no complete decision procedure; and, 2) theorem provers
have built-in mechanisms for writing inductive definitions, and proof strategies
thereupon.

Two more complex examples To show that the nuggets can account for fancier
higher-order recursion, consider a variation of the above program which employs
a fixed-point combinator Z = λf.

(

λx. f (λy. x x y)
) (

λx. f (λy. x x y)
)

to per-
form recursion. Z is a version of the Y combinator, given by η-expansion on a
part of it, to be used in call-by-value evaluations.

let f ′ =
(

λfact .λn. if (n != 0) then n ∗ fact (n − 1) else 1
)

in Z f ′ 5 . (3)

The nugget at n as extracted by the nuggetizer is
{

n 7→ 5, n 7→ y, y 7→ (n −

1)n != 0
}

which, by transitive closure, maps n equivalently as in nugget (2). The
more complex higher-order structure of the above program proves no more de-
manding to the nuggetizer.

Now, consider another variation of program (1), but with higher-order mu-
tual recursion,

let g = λfact ′. λm. fact ′ fact ′ (m − 1) in

let f = λfact . λn. if (n != 0) then n ∗ g fact n else 1 (4)
in f f 5 .

The nugget at n and m as extracted by the nuggetizer is,

Nugget:
{

n 7→ 5, m 7→ nn != 0, n 7→ (m − 1)
}

. (5)

The mutually recursive computational structure between the functions (λn. . . .)
and (λm. . . .) in the above program is reflected as a mutual dependency between
the mappings of n and m in the extracted nugget above. The denotational se-
mantics at n and m for the above nugget are,

{n 7→ 5, n 7→ 4, n 7→ 3, n 7→ 2, n 7→ 1, n 7→ 0} and
{m 7→ 5, m 7→ 4, m 7→ 3, m 7→ 2, m 7→ 1},
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respectively. Note the binding m 7→ 0 is not added because the guard n != 0
on the mapping m 7→ nn != 0 fails—even though the mapping n 7→ 0 is present,
it does not satisfy the guard n != 0 and hence cannot be used to generate the
mapping m 7→ 0.

External inputs The above examples assume a concrete value, such as 5, to be
flowing into functions. In general the value can come from an input channel,
and properties can still be proven. Since we do not have input statements in
our language, we only sketch how inputs can be handled. Imagine a symbolic
placeholder, inp, corresponding to the input value. Now consider the nugget,
{

n 7→ inpinp≥ 0, n 7→ (n−1)n != 0
}

, extracted from a program which invokes the
factorial function, from the above examples, on inp under the guard inp ≥ 0.
The bindings for n in the denotation of this nugget lie in the symbolic range
[0, . . . , inp], which, along with the guard inp ≥ 0, establishes that n is never
assigned a negative number over any program run.

2.2 The Nuggetizer

We now describe the process for creating nuggets, the nuggetizer. It constructs
the nugget via a collecting semantics—the nugget is incrementally accumulated
over an abstract execution of the program.

The challenge Our goal is to abstract away only the higher-orderness of programs
and preserve as much of the other behavior as possible including flow- and path-
sensitivity, and infinite datatype domains. In other words, we aim to define
an abstract operational semantics (AOS) which structurally aligns very closely
with the concrete operational semantics (COS) of programs. This is a non-trivial
problem as concrete executions of programs with recursively invoked functions
may not terminate; however, abstract executions must always terminate in order
to achieve a decidable static analysis. Further, recursive function invocations
need not be immediately apparent in the source code of higher-order programs
due to the use of Y-combinators, etc., making them hard to detect and even
harder to soundly approximate while preserving much of their inductive structure
at the same time.

The AOS Our AOS is a form of environment-based operational semantics,
wherein the environment collects abstract mappings such as n 7→ (n − 1)n != 0;
the environment is monotonically increasing, in that, mappings are only added,
and never removed from the environment. The AOS closely follows the control-
flow of the COS, that is, the AOS is flow-sensitive. Further, the AOS keeps track
of all guards that are active at all points of the abstract execution, and tags
the abstract mappings with the guards in force at the point of their addition
to the environment; the AOS is path-sensitive. So for example, when analyzing
the then-branch of the above programs, the AOS tags all mappings with the
active guard n != 0, before adding them to the environment, as for mappings
n 7→ (n − 1)n != 0 and m 7→ nn != 0 in nuggets (2) and (5), respectively.
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The prune-rerun technique A novel prune-rerun technique at the heart of the
nuggetizer is pivotal to ensuring its convergence and soundness in presence of
a flow-sensitive AOS. All recursive function invocations are pruned, possibly at
the expense of some soundness, to ensure convergence of the AOS. The AOS
is then repeatedly rerun on the program, a (provably) finite number of times,
while accumulating mapping across subsequent runs, until all soundness lost by
way of pruning, if any, is regained.

Finiteness of the abstract environment The domain and range of all mappings
added to the environment during abstract execution, e.g. n, y, m, 5, (n − 1),
(m−1) and (n != 0) in the above shown nuggets, are fragments that directly ap-
pear in corresponding source programs—no new subexpressions are ever created
in the nuggets, either by substitution or otherwise. For this reason, the maxi-
mum number of distinct mappings in the abstract environment of the AOS is
finite for any given program. Since the nuggetizer accumulates mappings across
subsequent runs of the AOS on a given program, all feasible mappings must
eventually appear in the environment after some finite number of reruns. Thus
the environment must stop growing and the analysis must terminate, producing
the nugget of the program.

An Illustration We now discuss the abstract execution of program (1) placed in
an A-normal form [5], for technical convenience, as follows:

let f = λfact . λn. let r = if (n != 0) then let r′ = fact fact (n − 1)
in n ∗ r′

else 1 (6)
in r

in f f 5 .

The abstract execution of the above program closely follows the control-flow of
its concrete execution. It is summarized in Fig. 1. The column labeled “Stack”
indicates the state of the abstract stack at the corresponding step. The “Collected
Mappings” column indicates the mappings collected by the nuggetizer, if any,
during the indicated step. The collected mappings are added to the environment
of the nuggetizer, and so the environment at any step is the union of all collected
mappings up to the current step. The environment is initially empty. The “Curr.
Guard(s)” column , where “Curr.” is short for “Current”, indicates the guard(s)
in force, if any, at the corresponding step. The “Redex” column holds the redex
of the abstract execution at the end of the corresponding step. We now highlight
the significant steps in Fig. 1.

Setup and forking the branches During step 1, the mapping of f to (λfact . λn . . .)
is collected in the environment, and then the function (λfact . λn . . .) is invoked
during step 2 by placing it in the abstract stack and collecting the mapping
fact 7→ f . Step 3 pops the stack and results in the function application ‘(λn . . .) 5’
being the redex at the end of step 3. Step 4 invokes the function (λn . . .) by
placing it in the abstract stack and collecting the mapping n 7→ 5. At step 5
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# Stack Collected Mappings Curr. Guard(s) Redex Next Action

0 let f = collect let-binding
(λfact .λn . . .)

in f f 5

1 f 7→ (λfact .λn . . .) f f 5 invoke f

2 (λfact . fact 7→ f
`

(λn . . .)
´

5 pop (λfact .λn . . .)
λn . . .)

3 (λn . . .) 5 invoke (λn . . .)

4 (λn . . .) n 7→ 5 let r =
(if (n != 0) . . .) fork execution

in r

T/F T F T F T F T F

5 n != 0 n==0 let r′ = 1
(λn . . .) fact fact (n − 1) invoke fact nop

in n ∗ r′

6 fact 7→ factn != 0 n != 0 n==0 let r′ = 1 prune
(λn . . .) (λn . . .) (n − 1) re-activation nop

in n ∗ r′ of (λn . . .)

7 (λn . . .) n 7→ (n − 1)n != 0 n != 0 n==0 n ∗ r′ 1
r′ 7→ r merge executions

8 (λn . . .) r 7→ (n ∗ r′)n != 0 (r) pop (λn . . .)
r 7→ 1n==0

9 r

Fig. 1. Example: Abstract Execution of Program (6)

the abstract execution is forked into two, such that the then- and else-branches
are analyzed in parallel under their corresponding guards, that is, (n != 0) and
(n == 0), and under the subcolumns labeled ‘T’ and ‘F’, respectively; since the
abstract stack remains unchanged during each of these parallel executions, only
one column labeled ‘T/F’ is used for brevity.

Now, as n is bound to only 5 in the environment, the guard (n != 0) is
resolvable to only true, and we could have chosen to analyze only the then-
branch at step 5; however, that would have required invocation of a decision
procedure at the branch site to decide on the branch(es) needing analysis given
the current environment. Since the environment can have multiple bindings for
the same variable, it is likely that a branching condition will resolve to both true

and false in which case both branches would have to be analyzed in any case. So,
for efficiency we forgo the decision procedure and always analyze both branches
in parallel. Note that this does not lead to a loss in precision as all mappings
collected during the abstract execution of each of the branches are predicated
on their respective guards, thus preserving the conditional information in the
nugget. Step 6 under subcolumn labeled ‘T’, is similar to step 2, except the
collected mapping, fact 7→ factn != 0, is now tagged with the current guard,
n != 0.
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Pruning recursion The redex (λn . . .) (n − 1) at the end of step 6 entails a re-
cursive invocation of the function (λn . . .), which is already on the stack. The
abstract execution has two options at this point: i) follow the recursive invo-
cation, as the concrete execution would, opening the possibility of divergence
if later recursive invocations are followed likewise, or ii) prune, that is, ignore,
the recursive invocation in order to achieve convergence, while (possibly) losing
soundness. The first option is obviously infeasible to obtain a convergent anal-
ysis, hence we choose the second option. We show later that soundness can be
achieved by simply rerunning the abstract execution. The pruning of the function
invocation, (λn . . .) (n−1), involves (a) collecting the mapping, n 7→ (n−1)n != 0,
which captures the flow of the symbolic argument (n−1), under the guard n != 0,
to the parameter variable n, and (b) skipping over the abstract execution of the
body of (λn . . .) by collecting the mapping r′ 7→ r, simulating the immediate
return from the recursive invocation. Now, since the function was not in fact
recursively invoked, the abstract execution is yet to collect any binding for r,
hence, at this point in the abstract execution, r only serves as a placeholder for
the return value of the recursive call, to be filled in by later analysis. We say
return variables r and transitively, r′, are inchoate as of the end of step 7 since
they have no mappings in the environment. Consequently, later invocations of r
and r′, if any, would be skipped over as well until they are choate (this example,
however, has no such invocations). (Note, the mapping r′ 7→ r is not tagged
with any guard so as to allow any binding for r, that may appear later, to be
transitively bound to r′ as well.)

This pruning technique was in fact inspired by the type closure rule for
function application in type constraint systems (which is itself isomorphic [6]
to 0CFA’s [7] handling of function application): τ1 → τ2 <: τ ′

1 → τ ′
2 implies

τ ′
1 <: τ1 and τ2 <: τ ′

2. The recursive invocation at step 7 can be thought of as
generating a type constraint n → r <: (n − 1) → r′ (punning by using program
point expressions as type variables) which by the above function type closure rule
would give (n−1) <: n and r <: r′, which are in turn isomorphic in structure to
the mappings collected in step 7, minus the guard. So, this work can be viewed
as a method of extending type constraints or 0CFA to incorporate flow- and
path-sensitivity while preserving infinite datatype domains. The close alignment
of the AOS with the COS imparts flow-sensitivity to our analysis, while the
guards on the mappings furnish path-sensitivity.

Merging branches and completing Step 8 merges the completed executions of the
two branches by collecting the resulting values tagged with their corresponding
guards, that is, adding mappings r 7→ (n ∗ r′)n != 0 and r 7→ 1n==0, respectively,
depicting the flow of each of the tagged resulting values into the outer let-binding
(

let r = (if . . .) in r
)

. Now r and, by transitivity, r′ are no longer inchoate.
The redex at the end of step 8 is (r). Step 9 pops the stack, and the abstract
execution terminates.

Environment has a fixed-point The environment at the end of this abstract
execution is,
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{

f 7→ (λfact . λn . . .), fact 7→ f, fact 7→ factn != 0, (7)
n 7→ 5, n 7→ (n − 1)n != 0, r′ 7→ r, r 7→ (n ∗ r′)n != 0, r 7→ 1n==0

}

,

which is, in fact, the nugget for program (6). It is identical to (2) but with the
mappings elided there now shown. In general, the nugget is the least fixed-point
of the symbolic mappings collectable by the AOS for a given program. A rerun
of the AOS on the program (6), but this time using the above environment as
its initial environment, will yield the same environment at its end i.e., it is a
fixed-point. In general, however, the initial run need not result in a fixed-point
of the environment.

The need for rerunning The above example does not need to be rerun other than
to observe that a fixed-point has been reached. To show the need for rerunning,
consider the following variation of program (6) where the return value of the
function (λn . . .) is changed to be a function,

let f = λfact . λn. let r = if (n != 0) then let r′ = fact fact (n − 1) in

let r′′ = r′() in

λy. (n ∗ r′′) (8)
else λx. 1

in r
in f f 5 () .

During the initial run of the AOS on the above program, the return variable r′ is
inchoate in the analysis of the then-branch, as in the previous example. Hence,
when the redex is ‘r′()’, the environment of the abstract execution has no known
function mapping to r′. So the abstract execution simply skips over the call site
‘r′()’ and proceeds without adding any mapping for r′′, either. At the merging
of the branches the abstract execution adds the mappings r 7→ (λy. n ∗ r′′)n != 0

and r 7→ (λx. 1)n==0 to the environment, finally giving mappings to r and r′.
Since the AOS is flow-sensitive it must not now jump back, out of context, to
the skipped-over call-site ‘r′()’ and reanalyze it with the now-known bindings
for r′—if it were to do so it would lose flow-sensitive information. Although
the pruning step was inspired by flow-insensitive type constraint systems, as
discussed above, the closure process in a constraint system is flow-in-sensitive
and can ignore the order of steps; we cannot follow that lead here and must
instead align the closure step order with the computation itself. The way we
achieve this alignment is by continuing with and finishing the current run, and
then rerunning the AOS on the same program, but with an initial environment
of the one at the end of the just concluded run. This rerun will collect the new
bindings for the call r′() in proper execution order, and the environment at the
end of the rerun will be

{

f 7→ (λfact . λn . . .), fact 7→ f, fact 7→ factn != 0, n 7→ 5, n 7→ (n − 1)n != 0,
x 7→ ()n != 0, y 7→ ()n != 0, r′ 7→ r, r 7→ (λy. n ∗ r′′)n != 0, r 7→ (λx. 1)n==0,
r′′ 7→ 1n==0, r′′ 7→ (n ∗ r′′)n != 0

}

,

This is in fact the least fixed-point of the mappings collected for program (8),
that is, the nugget ; the AOS is run one last time to verify a fixed-point has indeed
been reached. As pointed out earlier, the maximum size of the environment is
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strongly bound by the number of program subexpressions, and the environment
itself is monotonically increasing in size during the course of nuggetizing, thus it
must always converge at a fixed-point nugget. The number of reruns required by
the nuggetizer depends on the level of nesting of higher-order recursive functions
which themselves return functions; we believe it will be small in practice.

Value range of return values The core analysis tracks function argument values
well, but loses information on values returned from recursive functions. The part
of the nugget (7) at the return variable r of the function (λn . . .) is,

{n 7→ 5, n 7→ (n − 1)n != 0, r 7→ 1n==0, r 7→ (n ∗ r)n != 0} . (9)

Note the mapping r′ 7→ r is inlined into mapping r 7→ (n ∗ r)n != 0 for simplicity.
Observe that r in the range of the mapping r 7→ (n ∗ r)n != 0 is not guarded—in
effect allowing any known value of r to be multiplied with any known non-zero
value of n in order to generate a new value for r. The denotational semantics at
n and r of the above nugget is,

{n 7→ 0, n 7→ 1, n 7→ 2, n 7→ 3, n 7→ 4, n 7→ 5} and

{r 7→ 1, r 7→ 2, r 7→ 6, r 7→ 24, r 7→ 120, r 7→ 5, r 7→ 8, r 7→ 18, r 7→ 48, . . .}

which is sound but not precise at r: r maps to 5 because n 7→ 5 and r 7→ 1 are
present, but 5 is not in the range of runtime values assignable to r. The corre-
lation between the argument and return values of recursive function invocations
is not captured by the nuggetizer while pruning re-activations of a function, as
shown in step 7 of Fig. 1 for (λn . . .); hence, precision for the analyzed return
value is lost. The nuggetizer can, however, be extended to capture the above
mentioned correlation and thus perform a precise analysis on the range of return
values as well; this extension is presented in [8].

Incompleteness To better show the scope of the analysis, we give an example of
an incomplete nugget, the handling of which is beyond the scope of this paper.
The following program is inspired by a bidirectional bubble sort.

let f = λsort . λx. λlimit . if (x < limit) then sort sort (x + 1) (limit − 1)
else 1 (10)

in f f 0 9 .

The nugget at x and limit as extracted by the nuggetizer is,
{

x 7→ 0, x 7→ (x + 1)x < limit , limit 7→ 9, limit 7→ (limit − 1)x < limit
}

and their corresponding denotational semantics are,

{x 7→ 0, x 7→ 1, . . . , x 7→ 9}, and {limit 7→ 9, limit 7→ 8, . . . , limit 7→ 0},

respectively; while the exact ranges of values assigned to x and limit during
the computation of the above program are [0, 5] and [4, 9] respectively. The
nuggetizer does not record the correlation between the order of assignments to
x and limit in the computation of the above program, that is, the fact that the
assignment of (x+1) to x is immediately followed by the assignment of (limit−1)
to limit , and vice-versa. Note, however, that the analysis still manages to bound
x to a narrow range—if x had been used as an index into an array of length 10,
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then the above nugget could have been used to prove that all accesses to such
an array would be in-bounds.

3 Language Model and Concrete Operational Semantics

Our programming language model is an untyped pure higher-order functional
language with variables x, integers i, booleans b ∈ {true, false}, and

⊕ ::= + | − | ∗ | / | == | != | < | > binary operator
F ::= λx. p function
η ::= x | i | b | F | x ⊕ x lazy value
κ ::= η | if x then p else p | x x atomic computation
p ::= x | let x = κ in p A-normal program

〈η, E〉 concrete closure

E ::= {x 7→ 〈η, E〉} concrete environment

The grammar assumes expressions are already in an A-normal form [5], so that
each program point has an associated program variable. 〈η, E〉 represents a clo-
sure, for a lazy (discussed below) value η, and an environment E. The overbar
notation indicates zero or more comma separated repetitions and {·} denotes
a set, so for example ‘{x 7→ 〈η, E〉}’ is shorthand for the set ‘{x 7→ 〈η, E〉, x 7→
〈η, E〉, . . .}’; while the subscripted overbar notation denotes a fixed number of
repetitions, such that, for example, ‘{xk 7→ 〈ηk, Ek〉}’ where k ≥ 0, is shorthand
for the set ‘{x1 7→ 〈η1, E1〉, x2 7→ 〈η2, E2〉, . . . , xk 7→ 〈ηk, Ek〉}’. Fig. 2 gives the
COS for our language. The semantics is mixed-step, that is, a combination of
both small- and big-step reductions; it allows for an elegant alignment with the
AOS. The COS is otherwise standard. The mixed-step reduction relation −→
is defined over configurations, which are tuples, (E, p); while −→n is the n-step
reflexive (if n = 0) and transitive (otherwise) closure of −→. The environment
lookup function on variables is the partial function defined as, E(x) = 〈η′, E′〉
iff x 7→ 〈η′, E′〉 is the only binding for x in E. The transitively closed environ-
ment λ-lookup function on variables and function values is inductively defined
as, E(x)+λ = E′(η′)+λ iff E(x) = 〈η′, E′〉, and E(F )+λ = 〈F , E〉, respectively.
The binary operations (x ⊕ x) are evaluated in a maximally lazy fashion; hence
the term lazy values. So for example, the reduction of the abstract value x + y,
given its environment {x 7→ 〈1, ∅〉, y 7→ 〈2, ∅〉}, to integer 3, is postponed until
it is absolutely essential to do so for the computation to proceed, that is, the
branching condition of the if rule needs to be resolved. Again, lazy values allow
for a closer alignment between the COS and the AOS. The following function
reduces a closure to its smallest equivalent form, or as we say “grounds” it.

Definition 1 (Ground of a Concrete Closure). The function T·U : {〈η, E〉} →
{〈η, E〉} is inductively defined as,

1. T〈x, E〉U = TE(x)U; T〈i, E〉U = 〈i, ∅〉; T〈b, E〉U = 〈b, ∅〉; T〈F , E〉U = 〈F , E′〉,
where free(F ) ∩ dom(E) = {xk} and E′ =

{

xk 7→ T〈xk, E〉U
}

; and,
2. T〈x1⊕x2, E〉U = 〈η, ∅〉, if T〈x1, E〉U = 〈i1, ∅〉, T〈x2, E〉U = 〈i2, ∅〉, and i1⊕i2 =

η; else, T〈x1 ⊕ x2, E〉U = 〈x1 ⊕ x2, E
′〉, where E′ =

{

x1 7→ T〈x1, E〉U, x2 7→

T〈x2, E〉U
}

.



12 Paritosh Shroff, Christian Skalka, and Scott F. Smith

(E, let x = η in p) −→
`

E ∪ {x 7→ 〈η, E〉}, p
´let

T〈x,E〉U = 〈bi, ∅〉 (b1, b2) = (true, false) (E, pi) −→
n (E′

, y
′)

`

E, let y = (if x then p1 else p2) in p
´

−→
`

E′ ∪ {y 7→ 〈y′
, E′〉}, p

´ if

E(f)+λ = 〈λx. p,Ef 〉
`

Ef ∪ {x 7→ 〈x′
, E〉}, p

´

−→n (E′
, r

′)

(E, let r = f x
′
in pnext) −→

`

E ∪ {r 7→ 〈r′, E′〉}, pnext

´ app

Fig. 2. Concrete Operational Semantics (COS) Rules

A program p is said to be canonical iff all its local variables are distinct.
The canonicality of programs allows new mappings to be simply appended to
the environment in the semantics rules, as opposed to overwriting any previous
bindings—by keeping local variables distinct we reduce the amount of renaming
needed in the COS to zero. The function ⌊·⌋ : {p} → {x} returns the variable
x serving as a placeholder for the result value of a program p; it is inductively
defined as ⌊let x = κ in p⌋ = ⌊p⌋, and ⌊x⌋ = x.

4 Abstract Operational Semantics and Nuggetizer

The additional syntax needed for the AOS is as follows:

P ::= b | η = η | P ∧ P | P ∨ P predicate
〈η,P〉 abstract closure

E ::= {x 7→ 〈η,P〉} abstract environment

S ::= {〈F ,P〉} abstract “stack”

The abstract environment E is a set of mappings from variables to abstract
closures; it may have multiple mappings for the same variable. Unlike concrete
closures, abstract closures 〈η,P〉 do not come with full environments but with
their abstracted forms, the predicates P , which are simple propositional for-
mulae. The predicate P was informally called a “guard” in Section 2, and no-
tated slightly differently: for example, n 7→ (n − 1)n != 0 in Section 2 is formally
n 7→ 〈(n − 1), n != 0〉. The abstract “stack” S is a set of abstract function
closures; this stack is not used as a normal reduction stack, it is only used to
detect recursive calls for pruning. Fig. 3 presents the AOS rules; observe how
the AOS rules structurally align with the COS rules of Fig. 2. The AOS re-
duction −→ is defined over configurations which are 4-tuples, (S, E ,P , p). The
predicate P in abstract configurations indicates the constraints in force right
now in the the current function activation. The transitively closed abstract en-
vironment λ-lookup function on variables, E(x)+λ , is inductively defined to be
the smallest set {〈Fk,Pk〉}, such that ∀x 7→ 〈y,P〉 ∈ E . E(y)+λ ⊆ {〈Fk,Pk〉},
and ∀x 7→ 〈F ,P〉 ∈ E . 〈F ,P〉 ∈ {〈Fk,Pk〉}.

The let rule collects the let-binding as an abstract closure x 7→ 〈η,P〉, anal-
ogous to the let rule collecting it as a concrete closure. The current predicate
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`

S ,E ,P , let x = η in p
´

−→
“

S ,E ∪
˘

x 7→ 〈η,P〉
¯

,P ∧ (x = η), p
” let

P1 = P ∧ (x = true) P2 = P ∧ (x = false)
`

S ,E ,P1, p1

´

−→n1
`

S , E1,P
′
1, y

′
1

´ `

S , E ,P2, p2

´

−→n2
`

S ,E2,P
′
2, y

′
2

´

E ′ = E1 ∪
˘

y 7→ 〈y′
1,P

′
1〉

¯

∪ E2 ∪
˘

y 7→ 〈y′
2,P

′
2〉

¯

P ′ =
`

P ′
1 ∧ (y = y

′
1)

´

∨
`

P ′
2 ∧ (y = y

′
2)

´

“

S ,E ,P , let y = (if x then p1 else p2) in p
”

−→
`

S ,E ′
,P ′

, p
´

if

E(f)+λ = {〈Fk,Pk〉} Fk = λxk. pk

∀1 ≤ i ≤ k CALL

`

S , 〈Fi,Pi〉
´

= p
′
i Si = S ∪ {〈Fi,Pi〉}

“

Si, E ∪
˘

xi 7→ 〈x′
,P〉

¯

,Pi, p
′
i

”

−→ni
`

Si, Ei,P
′
i, r

′
i

´

`

S , E ,P , let r = f x
′
in pnext

´

−→

„

S ,E ∪
[

1≤i≤k

Ei ∪
˘

r 7→ 〈r′i,P
′
i〉

¯

,P , pnext

«app

Fig. 3. Abstract Operational Semantics (AOS) Rules

is then updated to reflect the just-executed let-assignment by conjoining the
equality condition (x = η), which is the new constraint in force, hereafter, in the
current function activation. The equality predicates were ignored in Section 2
for simplicity of presentation.

The if rule performs abstract execution of the then- and else-branches in
parallel under the current predicate appended with their respective guards, as
discussed in Section 2.2, and then merges their resulting environments and pred-
icates.

The app rule performs abstract execution of all possible function invocations
at the corresponding call-site in parallel under their respective predicates (recall
that E may map a variable multiply), and then merges their resulting environ-
ments and values. Observe various analogies between the app and app rules—for
example, the app rule pulls the concrete environment Ef from the concrete clo-
sure of the corresponding function being invoked, while the app rule pulls its
abstracted form, that is, the predicate Pi, from the corresponding abstract clo-
sure. The function CALL : {S} × {〈F ,P〉} → {p} returns the redex p to be
executed when an abstract function closure 〈F ,P〉 is invoked given an abstract
stack S—if it is not a recursive call, the body of F is returned, while if it is a
recursive call, it should be pruned, and only the return variable of F is returned,
as discussed in Section 2.2. Formally, for F = λx. p, CALL

(

S, 〈F ,P〉
)

= p if

〈F ,P〉 6∈ S, and CALL

(

S, 〈F ,P〉
)

= ⌊p⌋ if 〈F ,P〉 ∈ S. If E(f)+λ = ∅, that is, f
is inchoate in E , the app rule simply skips over the call-site and steps the AOS
over to pnext ; as discussed in Section 2.2 this skipping over call-sites is sound
from the point of view of the nuggetizer as later steps will fill in the appropriate
values which will then be used for analysis in later rerun(s).
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We now formally define the nugget and state that it is computable. The
formal proofs can be found in [8].

Definition 2 (Nugget). The nugget of a 3-tuple (E ,P , p) is the the smallest
set E ′ such that (∅, E ,P , p) −→n (∅, En,Pn, r), for some n, Pn and r, and either
E = En = E ′, or inductively, E ′ is the nugget of 3-tuple (En,P , p).

The nuggetizer is then defined as the function that builds a nugget starting
from an empty environment.

Definition 3 (Nuggetizer). nuggetizer(p) = E, where E is the nugget of 3-
tuple (∅, true, p).

As discussed in Section 2.2, the combination of guaranteed termination of
the AOS, monotonic growth of the abstract environment during nuggetizing,
and existence of a finite upper bound on the abstract environment, implies the
abstract environment of the nuggetizer is guaranteed to reach a fixed-point after
a finite number of reruns.

Lemma 4 (Computability of the Nugget). The function nuggetizer : {p} →
{E} is computable.

In theory, the worst-case runtime complexity of the nuggetizer is O(n! · n3),
where n is the size of a program; we expect it to be significantly less in practice.

4.1 Towards Automated Theorem Proving

In this subsection we provide “glue” which connects the notation of the formal
framework above with the syntax of the Isabelle/HOL theorem prover, and then
we prove the soundness of the nuggetizer. We relax the grammar for lazy values,
atomic computations and programs to be used in this subsection as follows:
η ::= x | i | b | F | η⊕η, κ ::= η | if η then p else p | η η, and p ::= η | let x = κ in p,
respectively. We write p[η/x] to denote the capture-avoiding substitution of all
free occurrences of x in p with η. The following function then reduces a lazy
value to its smallest equivalent form, or as we say grounds it.

Definition 5 (Ground a Lazy Value). The function T·U : {η} → {η} is
inductively defined as, TxU = x; TiU = i; TbU = b; TFU = F; and, Tη1⊕η2U = η,
if Tη1U = i1, Tη2U = i2, and i1 ⊕ i2 = η; else, Tη1 ⊕ η2U = Tη1U ⊕ Tη2U.

We now define a new concrete environment, denoting the environment in the
theorem prover, as E ::= {x 7→ η}. Further we write p[E], for E = {xk 7→ ηk}, as
shorthand for p[ηk/xk].

Definition 6 (Predicate Satisfaction Relation: E ⊢ P). E ⊢ true; E ⊢ η1 =
η2, iff Tη1[E]U = Tη2[E]U; E ⊢ P ∧P ′, iff E ⊢ P and E ⊢ P ′; and E ⊢ P ∨P ′, iff
either, E ⊢ P or E ⊢ P ′.

Definition 7 (Denotational Semantics of E: JEK). JEK is smallest set E such
that,
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1. x 7→ η′ ∈ E, if x 7→ 〈η,P〉 ∈ E, ∅ ⊢ P, TηU = η′, and η′ is closed; and,
2. x 7→ η′ ∈ E, if x 7→ 〈η,P〉 ∈ E, E

′ ⊆ E, E
′ ⊢ P, Tη[E′]U = η′ and η′ is closed.

Given the relaxed grammar, we redefine the ground of a concrete closure as,

Definition 8 (Ground of a Concrete Closure). The function T·U : {〈η, E〉} →
{η} is inductively defined as, T〈x, E〉U = TE(x)U; T〈i, E〉U = i; T〈b, E〉U = b;
T〈F , E〉U = F [E], where free(F ) ∩ dom(E) = {xk} and E =

{

xk 7→ T〈xk, E〉U
}

;
and, T〈η1 ⊕ η2, E〉U = η, if T〈η1, E〉U = i1, T〈η2, E〉U = i2, and i1 ⊕ i2 = η; else,
T〈η1 ⊕ η2, E〉U = T〈η1, E〉U ⊕ T〈η2, E〉U.

The following theorem then shows that all values arising in variables at run-
time will be found in the denotation of the nugget, meaning the latter is a sound
reflection of the runtime program behavior.

Theorem 9 (Soundness of the Nuggetizer). For a closed canonical program
p, if nuggetizer(p) = E, (E′, p′) is a node in the derivation tree of (∅, p) −→n

(En, pn), and x 7→ 〈η, E〉 ∈ E′ then T〈η, E〉U = η′, for some η′, such that x 7→
η′ ∈ JEK.

5 Automated Theorem Proving

In this section we discuss how we use the Isabelle/HOL proof assistant [1] to
formalize and prove properties of the nugget. Isabelle/HOL has a rich vocabulary
that is well-suited to the encoding of nuggets, and has a number of powerful built-
in proof strategies. We translate each nugget into an inductively defined set in
the prover. For any such definition, Isabelle/HOL automatically generates an
inductive proof strategy which can be leveraged to prove properties of programs.

For brevity we elide formal details of the encoding here, but they can be
found in [8]. In summary, the encoding of a given nugget E , denoted JEKHOL, is
defined inductively as a set of (var, nat) pairs called “abstractenv”, where the
elements of var are of the form X(n) with n ∈ nat, representing variables xn

from a given nugget domain. Each mapping xi 7→ 〈η,P〉 in E defines a separate
clause in the inductive definition, where P defines a set of preconditions. The
encoding is straightforward, the main trick being that any variable xj referenced
in η and P needs to be changed to an Isabelle/HOL variable vj , and associated
with xj via the precondition (X(j), vj) ∈ abstractenv. If η is variable-free, then
it is a basic clause, otherwise the clause is inductive.

Our main result for the encoding is that the Isabelle/HOL least fixpoint
interpretation of JEKHOL is provably equivalent to the interpretation of E , i.e. JEK.
Thus, by Theorem 9, any property of JEKHOL verified in Isabelle/HOL for all
values of variables is a property of the runtime variables of the corresponding
program p whose nugget is E . For example, consider the nugget {x0 7→ 5, x0 7→
(x0 − 1)x0 != 0} for program (1) from Section 2, assuming x0 in place of n. The
encoding of this nugget will generate the following Isabelle/HOL definition:

inductive abstractenv intros
“(X (0 ), 5) ∈ abstractenv”
“((X (0 ), v0) ∈ abstractenv ∧ v0 6= 0) =⇒ (X (0 ), v0 − 1) ∈ abstractenv”
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To prove that x0 falls in the range [0, 5], we state the following theorem in
Isabelle/HOL: “(X (0 ), v0) ∈ abstractenv =⇒ (v0 ≤ 5 ∧ v0 ≥ 0)”. Following
this, a single application of the elimination rule abstractenv.induct will unroll the
theorem according to the inductive definition of abstractenv, and the resulting
subgoals can be solved by two applications of the arith strategy. While we have
proved this and other more complicated examples in an interactive manner, the
strategy in each case is the same: apply the inductive elimination rule, followed
by one or more applications of the arith strategy. This suggests a fully automated
technique for proof. We note that the nugget encoding itself is fully automated. In
a deployed system we could imagine writing statements such as assert(x0 ≥ 0)
in the source code of the function, and such asserts would then be compiled
to theorems and automatically proved over the automatically generated nugget.
This yields a general, powerful, end-to-end programming logic.

6 Related Work

We know of no direct precedent for an automated algorithm that abstracts arbi-
trary higher-order programs as inductive definitions; however, our work is both
related to other verification efforts and to previous techniques in program anal-
ysis. We address these two topics in turn.

There is a wide class of research also aimed at partial, more automated
verification of program properties than that obtained by full formal verification
with a theorem prover. Examples that we would consider more close to our
work include systems with dependent and refinement types [9–12]. Our approach
has a good combination of expressiveness and automation in comparison to the
aforementioned works in that it gives precise, automatic answers to verification
questions. Several projects also similarly aim to combine a program analysis with
a theorem prover in a single tool, e.g. [9, 12, 13]; we believe this general approach
has much promise in the future.

This work is an abstract interpretation [4] in the sense that an abstraction
of an operational semantics is defined. It differs from abstract interpretation in
that we are not interested in abstracting away any of the (infinite) structure of
the underlying data domains, and that we wish to derive an inductive structure.
The most related abstract interpretation is LFA [13], which addresses a similar
problem but by a different technical means. LFA is more a proposal in that it
has no formal proofs. Further, it does not generate inductive definitions (like our
nuggets) to be fed into a theorem prover at the end of the analysis; rather it relies
on invoking a theorem prover on-the-fly to verify first-order logical propositions
about the program. We are concerned about the feasibility of implementing LFA
in practice, as it fundamentally relies on an initial CPS transformation step which
removes the join points of conditional branching statements; hence LFA must
explore nearly all paths of the conditional tree in parallel. Our work evolved
from attempts to incorporate flow- and path-sensitivity into a type constraint
system [3]. Since simple type constraint systems are closely related to 0CFA [7],
our work is also a logical descendant of that work.
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7 Conclusion

We have defined a static analysis which distills the first-order computational
structure from untyped higher-order functional programs, producing a nugget.
We believe this work has several novel aspects. Most importantly, the analysis
produces nuggets which are simple inductive definitions. Inductive definitions
provide the best abstraction level for modern theorem-provers—modern provers
do their best when reasoning directly over inductively defined structures since
that gives a natural induction principle. There are several other features of our
approach which make it appealing. The nuggets include guards indicating de-
pendencies. The analysis is fully supportive of higher-order programs—nuggets
reflect the higher-order flow of the original program, but expressed as a first-
order entity. The nuggetizer algorithm which collects a nugget is completely
automated and always terminates. The prune-rerun technique, a synthesis of
existing ideas in type constraint systems and abstract interpretation, provides
a new method for soundly interpreting higher-order functions in presence of
flow- and path-sensitivity. We show how the meaning of nuggets can be easily
formalized in the HOL theorem-prover.

While in this paper we focus on value range analysis for a pure functional lan-
guage, our general goal is much broader. We have done initial work on extensions
to incorporate flow-sensitive mutable state and context-sensitivity.
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