
AIOOL 2005 Preliminary Version

A Type and Effect System for Flexible Abstract
Interpretation of Java

(Extended Abstract)

Christian Skalka1

Department of Computer Science
University of Vermont

Scott Smith2

Department of Computer Science
Johns Hopkins University

David Van Horn3

Department of Computer Science
University of Vermont

Abstract

This paper describes a flexible type and effect inference system for Featherweight Java (FJ).
The effect terms generated by static type and effect inference embody the abstract interpre-
tation of program event sequences. Flexibility in the analysis is obtained by post-processing
of inferred effects, allowing a modular adaptation to extensions of the language. Several
example transformations are discussed, including how inferred effects can be transformed
to reflect the impact of exceptions on FJ control flow.

Key words: Type analysis, language security, object oriented languages.

1 Introduction

A number of authors [2,12,15,18] have recently shown how abstract interpretations
of program control flow can be extracted from higher-order programs, via the use
of type effect systems. In these works, the type effects predict atomic events, and
the order in which they occur. In all of these systems except [12], the effects form

1 Email: skalka@cs.uvm.edu
2 Email: scott@cs.jhu.edu
3 Email: dvanhorn@cs.uvm.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Skalka, Smith and Van Horn

simple labeled transition systems (LTSs) on which standard model-checking algo-
rithms can apply to relate abstracted programs with specifications. Such a program
analysis allows for automatic static verification of program properties, including
resource usage analysis [15] and access control [18].

The terminology we use in [18] is to speak ofhistories, denotedη, which are
traces of atomicevents. Events are records of some program action, explicitly in-
serted into program code either manually (by the programmer) or automatically
(by the compiler). Events are intended to be sufficiently abstract to represent a va-
riety of program actions—e.g. opening a file, access control privilege activation,
or entry to or exit from critical regions. Histories maintain the ordered sequences
of events that occur during program execution. We define in [18] a type effect
system that produces types withhistory effectsthat are abstract interpretations of
program histories. More specifically, history effects are a form of LTS; if a program
is statically assigned a history effect, that effect’s interpretation conservatively ap-
proximates the event history that can be dynamically generated by the program. A
simple example of a history effect in our grammar is:

µh.ev[1]|(ev[2]; h; ev[3])

This is the effect of a recursive function with a base case generating atomic event
ev[1], and the recursive case generatingev[2] before the recursive call andev[3]
after.

1.1 The FJsec language model

While the aforecited works were developed for core functional languages, in [16]
we extended the results of [18] to Featherweight Java (FJ) [13], showing how the
same ideas can be generalized to an object-oriented setting, with special care to
handle the case of dynamic dispatch. The language model, called FJsec, is FJ ex-
tended with event histories and a logic of program checks.

The syntax of FJsec includes eventsev[i], indexed by identifiersi. The seman-
tics of FJsec is defined via a reduction relation→ on configurations, which are pairs
of histories and expressions(η, e). The reduction relation specifies that events en-
countered during execution are placed at the rightmost, or “most recent”, end of the
history in the current configuration, i.e. (where() is the FJsecunit value):

η, ev[i] → (η; ev[i]), ()

So for example, if a methodformat is a component of an applet, the beginning
of the method can be labeled with anApplet event, and so record on the program
history that an applet has affected the program control flow when the method is
invoked:

String format(String text){ ev[Applet]; . . . }
A type effect analysis is defined in [16], that statically approximates the histories
generated by FJsecprograms.

2

Skalka, Smith and Van Horn

1.2 Related Work

The idea of using some form of abstract program interpretation as input to model
checking [19] for verification of specified program properties has been explored by
many authors, including [7,3,5]. In these particular works, the specifications are
temporal logics, regular languages, or finite automata, and the abstract control flow
is extracted as an LTS in the form of a finite automaton, grammar, or push-down
automata. However, none of these works defines a rigorous process for extracting
an LTS from higher-order programs.

Perhaps the most closely related work is [15], which proposes a similar type
and effect system and type inference algorithm, but their “resource usage” abstrac-
tion is of a markedly different character, based on grammars rather than LTSs.
Their system also lacks parametric polymorphism, which restricts expressiveness
in practice.

The system of [12] is based on linear types, which are related to, but differ-
ent from, effect types. Their usagesU are similar to our history effectsH, but
the usages have a much more complex grammar, and do not appear amenable to
model-checking. The systems in [8,4,14,5] use LTSs extracted from control-flow
graph abstractions to model-check program security properties expressed in tempo-
ral logic. Their approach is close in several respects, but we are primarily focused
on the programming language as opposed to the model-checking side of the prob-
lem. Their analyses assume the pre-existence of a control-flow graph abstraction,
which is in the format for a first-order program analysis only. Our type-based ap-
proach is defined directly at the language level, and type inference provides an ex-
plicit, scalable mechanism for extracting an abstract program interpretation, which
is applicable to object oriented features. Also, none of this related work considers
the transformations discussed in Sect.3.

1.3 Outline of the paper

In this extended abstract we focus on transformations of FJsechistory effects, show-
ing how they can be useful. First, we define a simple stack transformation called
stackificationto generate an abstract interpretation of the possible stack states at
runtime. This transformation is particularly useful for security analyses such as
Java stack inspection [20]. Then, we show how exceptions can be interpreted by
another transformation calledexnization. A principal benefit of our approach is
that a variety of language features can be treated in a modular fashion, without
redefinition of type effect inference.

2 Automatic Program Abstraction via Type and Effect

Our program analysis is a type and effect inference system, where effects are ap-
proximations of program histories. This approach allows sophisticated type infer-
ence techniques to be applied, e.g. constraint-based polymorphic subtyping. This
expressiveness has benefits in higher-order functional [18] and object-oriented set-

3

Skalka, Smith and Van Horn

tings [16]; the latter has a more complete discussion of the type inference system
presented here, and its benefits for Java in particular.

2.1 History Effects

The effects component of our type system, calledhistory effects, are essentially
label transition systems (LTSs), similar to basic process algebras (BPAs) [6]. Label
transition systems generate possibly infinite strings calledtracesvia a transition
relation, wherein transitions are labeled (possibly by the empty stringε); sequences
of transitions generate traces of labels. A history effectH may be an eventev[i],
or a sequence of history effectsH1; H2, a nondeterministic choice of history effects
H1|H2, or a recursive history effectµh.H, where the variableh is recursively bound
in H. So for example, lettingH , µh.ev[1] | (ev[2]; h):

H
ε−→ ev[1]|(ev[2]; H) ε−→ ev[2]; H

ev[2]−−→ H
ε−→ ev[1]|(ev[2]; H) ε−→ ev[1]

ev[1]−−→ ε

which yields the trace(ev[2] ev[1]). The interpretation of anyH, denotedJHK, is the
set of traces that can be so generated. The effects reconstructed by type inference
serve as an approximation of run-time histories, in the sense that ifH is the effect
statically assigned to a programe, andε, e→? η, e′, thenη ∈ JHK. This property is
formalized in Theorem2.1.

Sound effect approximations in this sense are obtained from programs via type
and effect inference, which has three distinct phases: (1) type and effect constraint
inference, (2) constraintclosure, and (3) effectextraction, where top-level program
effects are obtained as a solution to effect constraints generated by the previous
phases. We discuss each of these phases in turn.

2.1.1 Type constraint inference.
Featherweight Java is equipped with a declarative, nominal type system; the type
language is based on class names, which annotate function return and argument
types, casts, and object creation points. The system is algorithmically checkable,
and enjoys a type safety result [13]. Our system is not intended to redo the type
system of FJ, but to “superimpose” a type and effect analysis on it, thereby sub-
suming type safety for the FJ subset of FJsec. This superimposition is conservative
and transparent to the programmer, both for ease of use, and for backwards com-
patibility with Java.

Our language of types includes class types[T̄ C], whereT̄ is a vector of field
and method types in the class, andC is the class name. Methods types are of the
form T̄

H−→ T, whereH is an approximation of the event histories that a method can
generate. The latter may be abstract, so that polymorphism extends to effects. For
example, if we assume thatC andD are defined classes, the latter containing a single
nullary methodn, and given the following method definition, where we assume the
trivial addition of a sequencing construct to the language:

C m(D f){ev[1]; f.n(); return this.m(f)}
4

Skalka, Smith and Van Horn

the following polymorphic type can be assigned tom (where the details of the types
T andS are irrelevant to the example):

m : ∀h.[(n : ()
h−→ S) D]

µh′.ev[1];h;h′

−−−−−−−→ [T C]

Polymorphism on method effects is quite useful, since Java allows objects insub-
classesof D to be actual parameters ofm; without polymorphism, this discipline
would require equivalence of effects throughout the inheritance hierarchy, or some
sort of behavioral subtyping with regard to events, which is unrealistic. For ex-
ample, if events represent privilege authorizations, the least privileged member of
a class hierarchy would determine the authorization level of every class in the hi-
erarchy, and any extension of the class hierarchy would require re-computation of
superclass types. This issue is discussed more thoroughly in [16].

Our inference system reconstructs type and effect constraints of the formS<: T;
constraint sets are represented as conjunctions of these atomic constraints. The
relation is defined with respect to the inheritance hierarchy in the same manner as
[13], and with respect to histories as a containment relation; in particular, ifH1 and
H2 are closed, thenH1 <: H2 iff JH1K ⊆ JH2K. Constraints on method and class types
are defined in a familiar manner [9,16], modulo constraints on the latters’ history
effect annotations. Typings are reconstructed via an algorithmic derivation systems
on judgements of the formΓ, C, H `W e : T, whereΓ is a type environment,H is the
effect ofe, T is the type ofe givenΓ, andC imposes constraints on type variables
in the judgement. Thus, wheremtype(m, C) returns the annotated type ofm in the
definition ofC, the ruleT-Invk reconstructs the type of method invocations:

T-Invk

Γ, C, H `W e : [T C]
Γ, D, H′ `W ē : ¯[S B] mtype(m, C) = D̄→ D B̄<: D̄

Γ, C ∧D ∧ T<: (m : ¯[S B]
h−→ [t D]), H; H′; h `W e.m(ē) : [t D]

Note that a left-to-right, call-by-value evaluation order is reflected in the sequencing
of effects of subexpressions in the consequent.

2.1.2 Constraint closure and consistency.
In addition to type inference rules, the type implementation comprises a constraint
closure algorithm, calledclose, and a consistency check. A constraint is consis-
tent if it contains no contradictions, i.e. it possesses a solution in a regular tree
model [16]. Closure normalizes constraints, essentially by “breaking down” given
constraints to discover all implicitly represented constraints of “basic” form. For
example:

given: T̄
H−→ T<: S̄

H′
−→ S closure adds:̄S<: T̄ ∧ T<: S ∧ H<: H′

Note that in particular, closure explicitly accrues all effect constraints. Once con-
straints are broken down in this manner, it is straightforward to check consistency.

5

Skalka, Smith and Van Horn

ε; H→simp H H; ε →simp H
H1 →simp H′

1

H1; H2 →simp H′
1; H2

H2 →simp H′
2

H1; H2 →simp H1; H
′
2

H|H→simp H
H1 →simp H′

1

H1|H2 →simp H′
1|H2

H2 →simp H′
2

H1|H2 →simp H1|H′
2

h 6∈ fv(H)

µh.H→simp H

Fig. 1. Effect simplification rewrite rules

2.1.3 History effect extraction.
Another benefit of closure, noted above, is that it generates a constraint that is
amenable to history effect extraction, since all effect constraints are explicit in
closed constraints. In particular, any expression’s top-level history effect can be
extracted from the constraint system inferred for the expression via thehextract
algorithm. It is demonstrable that inferred history effect constraints define a system
of lower bounds on history effect variables; thehextract algorithm exploits this
property to obtain a least solution of each constrained variable, as the join of its
lower bounds.

Soundness of the complete automated analysis is then obtained by correctness
of each phase; in the current context, our principal result is as follows:

Theorem 2.1 If ε, e →? η, e′, andΓ, C, H `W e : T is derivable withclose(C)
consistent, thenη ∈ Jhextract(H, close(C))K.

3 Effect Transformations for Flexibility

In this section we observe that a benefit of our type and effect inference approach is
that it yields abstract program interpretations, in the form of history effects, that are
amenable to transformational techniques for flexibility of analysis. These transfor-
mations can be used to post-process inferred effects, without requiring any rework-
ing of the inference component of analysis. This means that certain extensions of
the language can be treated statically in amodularfashion.

One obvious transformation is asimplificationtransformation, based on equiv-
alences induced by the interpretation of effects discussed in Sect.2.1, defined in
Fig. 1 as a set of effect rewrite rules. The benefit of this transformation is re-
duced size and complexity of effects for model checking. More complicated are
thestackificationandexnizationtransformations considered in detail below. Stack-
ification is useful in a stack-based safety context– that is, where events associated
with function activations are “forgotten” when that activation returns, as in e.g. Java
stack inspection. Exnization implements the impact of exceptions on effect repre-
sentations.

6

Skalka, Smith and Van Horn

R-Invk

mbody(m, C) = x̄.e

ς, (new C(v̄)).m(ū) → ς :: ε, ·[ū/x̄, new C(v̄)/this]e·

R-Event

ς :: η, ev[i] → ς :: η; ev[i], ()
R-Pop

ς :: η, E[·v·] → ς, E[v]

Fig. 2. The stack-based semantics of FJstack

3.1 Stack-Based Transformations for Security

Rather than consistently accruing events in a history, a stack-based model can be
defined where events generated by method activations are associated with the acti-
vation call-stack frame; when the activation is popped, so are the associated events.
The Java stack inspection [11] access control mechanism, for example, is based on
sequences of events on the call stack. There are other stack-based properties that
are of interest in program analysis, and so in general an abstraction of the possible
call stacks is a useful property. A stack-based access control model has additionally
been combined with a history-based security mechanism in [1], and a static analy-
sis for enforcing general stack-based properties via temporal logic is presented in
[5]. Direct type inference for a stack-based security model has been studied pre-
viously, e.g. in [17]; however, since security mechanisms such as that proposed in
[1] require both a history- and stack-based perspective, we believe that our uniform
approach is simpler, hence more efficient, than e.g. combining direct stack- and
history-based inference in such a context.

In this section, we observe that a stack-based security model can be statically
enforced, not by redefining the inference system discussed in Sect.2, but by an
effect post-processing technique calledstackification. Stackification takes as input
an effect that predicts the history generated by a program, and returns the stack
contexts generated by a program. The stack contexts generated by a program are
formalized by refiguring the FJsecoperational semantics with regard to stacks, rather
than histories, yielding the language model we call FJstack. Stack contexts maintain
a notion of ordering; hence stacks, which we denoteς, are LIFO sequences of
histories, and are eithernil or constructed with a cons operator(::):

ς ::= nil | ς :: η history stacks

The FJstacksource language is identical to FJsec, except that “framed” expressions·e·
are included, to delimit regions of code associated with a stack frame. Stack frames
are associated with activations in keeping with the standard stack-based model. It
is also notationally convenient to define a syntactic notion ofevaluation contexts:

E ::= [] | E.f | E.m(ē) | v.m(v̄, E, ē) | new C(v̄, E, ē) | (C)E | ·E·

Thus, in the operational semantics defined in Fig.2, the rule governing method

7

Skalka, Smith and Van Horn

stackify(ε) = ε

stackify(ε; H) = stackify(H)

stackify(ev[i]; H) = ev[i]; stackify(H)

stackify(h; H) = h|stackify(H)

stackify((µh.H1); H2) = (µh.stackify(H1)) | stackify(H2)

stackify((H1|H2); H) = stackify(H1; H) | stackify(H2; H)

stackify((H1; H2); H3) = stackify(H1; (H2; H3))

stackify(H) = stackify(H; ε)

Fig. 3. Thestackify algorithm

invocation,R-Invk, will push a new frame on the stack, and delimit the code region
associated with the activation. Frames are popped, as inR-Pop, when activations
return the result of evaluation. Events are accrued in order within an activation
frame, as inR-Event.

Given this model, a static analysis in FJstack will approximate the stack con-
texts that can be generated during program execution. As mentioned above, we
accomplish this by astackify transformation, which takes as input history effects
output by FJsec type inference, which is also applicable to FJstack source programs
(framed expressions are only generated at run-time). A phenomenon exploited by
our transformation is that the scope of inferred method effects is always delimited
by a µ-binding. This is because thehextract algorithm will resolve any history
effect variableh as aµ-bound effect, and every method is assigned a variableh as
its effect during inference. In other words, stack “pushes” and “pops” are implicitly
recorded during inference as the beginning and end ofµ-scope.

This means thatstackify , defined in Fig.3, can use the syntax of effects to
recognize corresponding pushes and pops. Note that in the transformation ofµ-
bound effects, any effectsH2 following a µ-bound effectH1 will be considered as
part of a different stack context, sinceH1 is associated with an activation that will be
pushed and popped before any events predicted byH2 can occur. Note also that this
technique requires that simplifications in Fig.1 only be applied post-stackification,
lest they eliminateµ-bindings.

The stackify algorithm generally exploits a normal form representation of ef-
fects as a sequenceH1; H2. The last three clauses use history effect equalities to
massage history effects into this normal form. Observe that the range ofstackify
consists of history effects that are all tail-recursive; stacks are therefore finite-state
transition systems and more efficient model-checking algorithms are possible for
stacks than for general histories [10].

Example 3.1 With a, b, c, d representing arbitrary events (NB: the output ofstackify

8

Skalka, Smith and Van Horn

R-Throw

η, E[throw] → η, throw

RC-Try

η, e1 → η′, e′
1

η, try{e1}catch{e2} → η, try{e′
1}catch{e2}

R-Try

v 6= throw

η, try{v}catch{e2} → η, v

R-Catch

η, try{throw}catch{e2} → η, e2

Fig. 4. Semantics of exceptions

T-Throw

Γ, true, throw `W throw : t

T-TryCatch

Γ, C, H1 `W e1 : [T C] Γ, D, H2 `W e2 : [S C]

Γ, C ∧D ∧ S<: t ∧ T<: t, H1 �H2 `W try{e1}catch{e2} : [t C]

Fig. 5. Type inference rules for exceptions

in this example is simplified and rearranged for readability):

stackify(a; (µ.h.b; c); (µh.c; (ε|(d; h; a)))) = a; ((µh.b; c)|(µh.c; (ε|(d; h)|(d; a))))

3.2 A Transformation for Exceptions

Exceptions exist in Java, so a realistic application of our approach must account
for them. In this section we consider a first approximation of the full exception
feature set, where we assume there exists only one anonymous exception in the lan-
guage. The FJsec language of expressions is extended to include the formthrow for
throwing this anonymous exception, and to include the formtry{e1}catch{e2}
for handling thrown exceptions. The expressionse1 ande2 are expected to agree in
their type annotations. The semantics of FJsecare extended with the rules in Fig.4,
where evaluation contextsE are as defined in Sect.2, less the form·E·.

To treat these new language forms in type inference, we introduce two new
“pre-history” forms to the language of effects:throw to identify control flow points
where an exception is thrown, andH1 �H2 to represent the effect of handlers, where
H1 represents the effect of thetry clause, andH2 represents the effect of thecatch
clause. We call these pre-history forms, because our effect transformation will
eliminate them by replacing them with a direct representation of their control flow.
They are not endowed with an LTS semantics, but merely serve as placeholders
for this transformation. We extend the FJsec type inference system with the rules
specified in Fig.5, to assign these new effect forms to the language extensions for

9

Skalka, Smith and Van Horn

exnize(ε) = {ε} , ∅, ∅
exnize(ev[i]) = {ev[i]} , ∅, ∅

exnize(throw) = ∅, {ε} , ∅
exnize(h) = {h} , ∅, {h}

exnize(H1|H2) = let s1, t1, r1 = exnize(H1) in
let s2, t2, r2 = exnize(H2) in
s1 ∪ s2, t1 ∪ t2, r1 ∪ r2

exnize(H1; H2) = let s1, t1, r1 = exnize(H1) in
let s2, t2, r2 = exnize(H2) in
s1; s2, t1 ∪ (s1; t2), r1 ∪ (s1; r2)

exnize(H1 �H2) = let s1, t1, r1 = exnize(H1) in
let s2, t2, r2 = exnize(H2) in
s1 ∪ (t1; s2), t1; t2, r1 ∪ (t1; r2)

exnize(µh.H) = let s, t, r = exnize(H) in
let Hs = µh.join(s) in
let r′ = map (λ(H, h′) . H[Hs/h]; h

′) r in
let rh = filter (λ(H; h′) . h′ = h) r′ in
let t′ = map (λH . µh.join({H[Hs/h]} ∪ rh)) t in
{Hs} , t′, r′ − rh

Fig. 6. The exception transformation functionexnize

exceptions. All other components of type inference remain unchanged.
In the post-processing of inferred effects, calledexnization, the impact of ex-

ceptions on control flow needs to be discovered. To accomplish this, the excep-
tion transformation classifies effect paths into three categories;safe paths, throw
paths, andprecursors. Safe paths do not encounter a throw, whereas throw paths
are terminated by a throw. Precursors are safe paths that end in a variable (tail
recursive paths); they may be “pruned back” from other paths (safe, throw, or re-
cursive), since if a recursive call causes a throw, everything after the call with be
short-circuited until the first enclosing handler. The idea is that precursors should
be joined with throw paths within aµ-binding, since any number of recursive calls
can be made before a throw is encountered; this yieldsµ-bound throw paths. For
example, given:

H , µh.ev[1]|(ev[2]; h; ev[3])|(ev[4]; throw; ev[5])

we yield the following safe and throw paths obtained fromH:

safe: µh.ev[1]|(ev[2]; h; ev[3]) throw: µh.ev[4]|(ev[2]; h)
10

Skalka, Smith and Van Horn

An added complication is that recursive callsh may precede other tail recursions
or throws in recursive or throw paths; the analysis replaces these “inner” recursions
with the safe recursive call paths ofh, to obtain safe preceding ground paths.

In more detail, the algorithmexnize, defined in Fig.6, returns a triples, t, r,
wheres are the safe paths,t are the throw paths, andr are the precursors, each
represented as history effect sets. The exception transformation is defined via some
auxiliary functions, includingmap and filter defined as usual (where the latter
accepts only values that match the given predicate), as well as a cartesian product
operation for sequencing pairs of sets, and a join operation defined on non-empty
sets:

s1; s2 = {H1; H2 | H1 ∈ s1 andH2 ∈ s2}
join({H}) = H

join({H} ∪ s) = H|join(s)

The idea is that at the top-level, the exception transformation is the join of the
deduced safe and throw paths; note also that at the top-level, the set of precursors
should be empty. Thus, the exception transformation of an effectH is implemented
as:

let s, t, ∅ = exnize(H) in join(s ∪ t)

For brevity, we have excluded a special subcase ofexnize(µt.H), where the recur-
sive callexnize(H) returnss, t, r such thats = ∅. However, this is the case where
every program control path through a function throws an exception, which we be-
lieve will be rare, and can be easily dealt with by modifying the case wheres is not
empty.

References

[1] Abadi, M. and C. Fournet,Access control based on execution history, in: Proceedings
of the 10th Annual Network and Distributed System Security Symposium (NDSS’03),
2003.

[2] Amtoft, T., F. Nielson and H. R. Nielson, “Type and Effect Systems,” Imperial College
Press, 1999.

[3] Ball, T. and S. K. Rajamani,Bebop: A symbolic model checker for boolean programs,
in: SPIN, 2000, pp. 113–130.

[4] Besson, F., T. de Grenier de Latour and T. Jensen,Secure calling contexts for stack
inspection, in: Proceedings of the Fourth ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming (PPDP’02)(2002), pp. 76–87.

[5] Besson, F., T. Jensen, D. L. Métayer and T. Thorn,Model checking security properties
of control flow graphs, J. Computer Security9 (2001), pp. 217–250.

[6] Burkart, O., D. Caucal, F. Moller, and B. Steffen,Verification on infinite structures,
in: J. Bergstra, A. Pons and S. Smolka, editors,Handbook on Process Algebra, North-
Holland, 2001 .

11

Skalka, Smith and Van Horn

[7] Chen, H. and D. Wagner,MOPS: an infrastructure for examining security properties
of software, in: Proceedings of the 9th ACM Conference on Computer and
Communications Security, Washington, DC, 2002, pp. 235–244.

[8] Colcombet, T. and P. Fradet,Enforcing trace properties by program transformation, in:
27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
2000, pp. 54–66, citeseer.ist.psu.edu/article/colcombet00enforcing.html.

[9] Eifrig, J., S. Smith and V. Trifonov,Type inference for recursively constrained types
and its application to OOP, Electronic Notes in Theoretical Computer Science1,
1995.

[10] Esparza, J., A. Kucera and S. Schwoon,Model-checking LTL with regular valuations
for pushdown systems, in: TACS: 4th International Conference on Theoretical Aspects
of Computer Software, 2001.

[11] Gong, L., M. Mueller, H. Prafullchandra and R. Schemers,Going beyond the sandbox:
An overview of the new security architecture in the Java Development Kit 1.2, in:
USENIX Symposium on Internet Technologies and Systems, Monterey, CA, 1997, pp.
103–112.

[12] Igarashi, A. and N. Kobayashi,Resource usage analysis, in: Conference Record
of POPL’02: The 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Portland, Oregon, 2002, pp. 331–342.

[13] Igarashi, A., B. C. Pierce and P. Wadler,Featherweight Java: a minimal core calculus
for Java and GJ, ACM Trans. Program. Lang. Syst.23 (2001), pp. 396–450.

[14] Jensen, T., D. L. Métayer and T. Thorn,Verification of control flow based security
properties, in: Proceedings of the 1999 IEEE Symposium on Security and Privacy,
1999.

[15] K. Marriott, P. J. S. and M. Sulzmann,Resource usage verification, in: Proc. of First
Asian Programming Languages Symposium, APLAS 2003, 2003.

[16] Skalka, C.,Trace effects and object orientation(2005), submitted.http://www.
cs.uvm.edu/~skalka/skalka-pubs/skalka-fjsec.ps .

[17] Skalka, C. and S. Smith,Static enforcement of security with types, in: Proceedings of
the the Fifth ACM SIGPLAN International Conference on Functional Programming
(ICFP’00), Montréal, Canada, 2000, pp. 34–45.

[18] Skalka, C. and S. Smith,History effects and verification, in: Asian Programming
Languages Symposium, number 3302 in Lecture Notes in Computer Science (2004).

[19] Steffen, B. and O. Burkart,Model checking for context-free processes, in:
CONCUR’92, Stony Brook (NY), Lecture Notes in Computer Science (LNCS)630
(1992), pp. 123–137.

[20] Wallach, D. S. and E. Felten,Understanding Java stack inspection, in: Proceedings of
the 1998 IEEE Symposium on Security and Privacy, 1998.

12

http://www.cs.uvm.edu/~skalka/skalka-pubs/skalka-fjsec.ps
http://www.cs.uvm.edu/~skalka/skalka-pubs/skalka-fjsec.ps

	Introduction
	The FJsec language model
	Related Work
	Outline of the paper

	Automatic Program Abstraction via Type and Effect
	History Effects

	Effect Transformations for Flexibility
	Stack-Based Transformations for Security
	A Transformation for Exceptions

	References

