
Dynamic Dependency Monitoring to Secure Information Flow ∗

Paritosh Shroff Scott F. Smith Mark Thober
Department of Computer Science

Johns Hopkins University
{pari,scott,mthober}@cs.jhu.edu

Abstract

Although static systems for information flow security are
well-studied, few works address run-time information flow
monitoring. Run-time information flow control offers dis-
tinct advantages in precision and in the ability to support
dynamically defined policies. To this end, we here develop
a new run-time information flow system based on the run-
time tracking of indirect dependencies between program
points. Our system tracks both direct and indirect infor-
mation flows, and noninterference results are proved.

1 Introduction

Static analysis of information flow security is a well-
studied area [29]; much progress has been made in prov-
ing formal properties of static analyses (e.g. [34, 14]) and
in creating usable systems [25, 28]. Run-time tracking of
information flows, however, has been largely ignored, con-
sidered abstruse and impractical [29, 26, 9]. However, a
run-time information flow system offers several advantages
over a static system. First, a run-time system is potentially
more precise than a static analysis. Static analyses must
reject entire programs as insecure, where a run-time sys-
tem need only reject insecure executions of the program, al-
lowing secure executions to proceed. Since concrete values
are known at run-time, run-time analyses can also achieve
greater precision. Second, for fundamentally dynamic lan-
guages such as Perl and Javascript there will be fundamen-
tally dynamic operations which cannot ever be tracked by
any static system and so the dynamic approach is the only
real alternative. Third, run-time systems make it much eas-
ier to support security policies that are defined dynamically.
We illustrate these advantages with some examples in Sec-
tion 1.1.

∗This technical report is a longer version of the paper published in
the proceedings of CSF 2007: 20th IEEE Computer Security Foundations
Symposium.

In this paper, we develop a provably sound run-time sys-
tem λdeps+ that dynamically tracks both direct and indirect
information flows. The result is a secure, usable analysis
which additionally provides new insights into fundamental
information flow concepts. An overview of our technique
appears in Section 1.2.

1.1 Background and Motivation

Before proceeding, we review standard information flow
terminology that we use in this paper. All data is tagged
with a security level. A policy represents the ordering of
the security levels, describing what other security levels are
accessible to a given security level. In our examples, we use
only high and low security levels for simplicity, notwith-
standing that richer security levels may be expressed in our
theory. We assume h is a variable holding high data, and l
as holding low data.

We distinguish between direct and indirect information
flows as follows. Direct flows are those that arise from di-
rect data flows. In the code h := h1 + 1, high data in
h1 flows directly into h. Indirect flows are data flows in-
directly induced by branching control flows. In the code
x := 0; if (h == 1) then x := 1 else (), the value of x
will be 0 if h is 0, and 1 otherwise, indicating a leakage of
information from x to h.

A secure information flow analysis disallows any direct
or indirect information flows that are inconsistent with the
given policy. Timing, termination and other covert channels
apart from the direct and indirect flows described above are
not considered in our model. In particular, a run-time infor-
mation flow monitoring system soundly tracks both direct
and indirect flows at run-time; any flows that conflict with
the given policy result in run-time errors that do not intro-
duce new covert channels. In order to simplify our presen-
tation, we model IO as follows. We assume labeled inputs
are given to the program prior to execution, and the final re-
sult of the execution is observable to a low user. We discuss
adding interactive IO as future work in Section 4. In our
examples, we use “output(e)” to clarify that e is the final

observable result; output is not part of our official language
syntax.

We now provide examples showing how a run-time in-
formation flow monitoring system offers advantages over a
static approach. Consider the following example:

x := 0;
if l < 10 then x := h else ();
output(deref x);

(1)

Whenever l < 10 is true, x gets assigned high data, making
the result high, which is insecure since the output channel
is low. However, when l < 10 is false, the result is low,
and the program may safely proceed. A static analysis must
reject this program, since there exists a possible execution
path that leaks information. However, a run-time system
can allow executions when l < 10 is false, which are safe,
and stop executions when l < 10 is true, which are unsafe.
Furthermore, halting this execution does not introduce a ter-
mination channel, since the guard of the conditional is low;
returning an error reveals nothing about h. Consider exam-
ple (2), due to Le Guernic and Jensen [19] (again, the output
channel is low).

x := 0; y := 0;
if l < 0 then y := h else ();
if l > 0 then x := y else ();
output(deref x);

(2)

In this example, if l is less than 0, then h is assigned to y,
yet y is assigned to x only if l is greater than 0. Hence,
the data in h will never flow into x, and since the condi-
tional branches are on low values, there is also no indirect
information flow. A run-time system can allow either of
these executions; whereas, a static system, lacking flow-
and path-sensitivity, must infer y and x as having the same
security level as h, in effect making the output high, thereby
rejecting the program.

Statically checking a program for security risks requires
static definition of the security policy. Indeed, the pro-
gram must be declared secure or insecure with respect to
a given policy. For different policies, the program must be
re-analyzed, and usually re-written, since the policy is con-
tained in the code. Hence the individual defining the se-
curity policy must have intimate knowledge of the source
code as well, an unlikely scenario, as system administrators
rarely write the programs they deploy. A run-time analy-
sis need not have such restrictions. Realistically, policies
are defined on the data itself, whether by an access con-
trol mechanism or some other security policy external to
the program. Since the security information is not part of
the code, the program may be used in multiple security con-
texts, and moreover, the individual defining the policy need
not know the source code. Additionally, existing programs
need not be re-written to add security controls.

1.2 Informal Overview

Consider the following example of indirect information
flow, where p1 and p2 are program point identifiers labeling
the if and deref program points, respectively:

x := 0;
ifp1 h then x := 1 else (); (3)
output(derefp2 x)

The output of this program execution, given it is visible to a
low observer, indirectly leaks the value of high data h — if
it is 0 then h is false, else h is true. Our goal is to develop a
run-time system which can detect such indirect information
leaks, in addition to direct ones, as and when they happen.

Sound dynamic detection of indirect information leaks is
a difficult problem because not every branch in a program
might execute in a given run, making correlations among
them nontrivial to detect; whereas static systems can easily
analyze all branches in tandem and hence can directly (but
conservatively) check against all possible correlations for
potential indirect information flows. We start with an overly
simple run-time system to detect indirect flows, one which
simply labels the values in the heap with the security level of
the current guards at their point of assignment; also in this
system only low values are output on low channels, high
values return a security error.

Consider the two possible runs of the above program un-
der this simple system: (a) if h is true then the heap assign-
ment x := 1 labels the value pointed to by x as high, i.e.
1high, since the current guard h is high, and the program then
computes to 1high, which returns a security error; (b) if h is
false then the program computes to 0, a low value, which
is output to the low observer. The second run exposes the
unsoundness of this simple system — a low observer, given
knowledge of the program’s structure, can implicitly infer
the value of high data h to be false, an instance of indirect
information leakage.

Let us re-examine program 3. It computes to 1 if the
then-branch is taken at branching point p1, while it com-
putes to 0 if the else-branch is taken. In other words, the
value flowing out of program point p2 indirectly depends
on the value (and consequently the security level) of the
guard at program point p1; in short “p2 indirectly depends
on p1”, denoted as p2 7→ p1. This explicit tracking of in-
direct dependency between dereference points and branch-
ing points is a major technical contribution of this paper.
Note that these dependencies are symbolic, that is, they are
based on program points found in the program syntax. The
heart of our approach to run-time information flow detec-
tion lies in supplementing the simple run-time system, de-
scribed above, with this symbolic dependency information
between program points. Also, the ‘derefp ’ statement in
our approach tags the dereferenced value with its program

2

point p.

Run 1 Run 2
dependencies {p2 7→ p1} {p2 7→ p1}

value of h true false
security level of p1 high high

final value 1p2 (high) 0p2 (high)
indirect flow detected? yes yes

Figure 1. Runs with Dependencies

Reconsider the second run of the program under this new
run-time system reinforced with its dependency informa-
tion, tabulated as Run 2 in Figure 1: if h is false then it
computes to 0p2 , implying the final value 0 depends on the
program point p2, which we know in turn depends on p1.
Now the guard at p1 is high, or in short “p1 is high”; then
by transitivity p2 is indirectly high, further implying 0p2 is
indirectly high as well. Now suppose h is true (tabulated as
Run 1 in Figure 1) then program 3 computes to 1p2 which is,
analogously, indirectly high as well. Thus the new run-time
system supplemented with the dependency information suc-
ceeds in detecting indirect information flows in all runs of
the program. In fact when supplemented with a complete
set of symbolic dependencies between the branching and
heap dereference points for a given program, we prove this
system will dynamically detect all direct and indirect infor-
mation flows in all runs of that program, that is, it exhibits
complete dynamic noninterference; and this does not intro-
duce any new termination channels.

How are these dependencies captured? They can be
captured either dynamically or statically; we present both
techniques in this paper because each has strengths and
weaknesses. The first system we present, λdeps, is a purely
dynamic system which tracks dependencies between pro-
gram points at run-time and at the same time uses the col-
lected set of dependencies to detect indirect information
flows; while the second one, λdeps+ , employs a statically
generated complete set of dependencies for a given program
to detect indirect information flows at run-time. λdeps is a
run-time monitoring system which might leak indirect in-
formation in the initial run(s); however, once the appropri-
ate dependencies are captured it will stop future informa-
tion leaks, and will also allow post-facto observation of past
leaks, if any occurred. λdeps dynamically tracks dependen-
cies between program points, in effect, between the values
that flow across them.

We now informally describe λdeps. Note that the program
counter in λdeps is defined as the set of branch points under
active execution, as opposed to its traditional notion of the
security level of the current guards. Reconsider program 3;

Run 1 Run 2
value of h true false

initial dependencies {} {p2 7→ p1}†
security level of p1 high high

x points to (in heap) 1p1 (high) 0 (low)
final dependencies {p2 7→ p1} {p2 7→ p1}

final value 1p2 (high) 0p2 (high)
indirect flow detected? yes yes
† Set of dependencies is carried over from previous run.

Figure 2. λdeps: Runs of Example 3

initially its known set of dependencies is empty. Figure 2
tabulates the two possible runs of this program assuming h
is true in the initial run. Now in the first run the assign-
ment x := 1 labels 1 with p1, the program counter at that
point, before putting it in the heap, that is, x then points
to 1p1 ; hence at derefp2 x the dependency p2 7→ p1 is cap-
tured, and the program computes to 1p2 . Note that p1 is
high, and hence, both 1p1 and 1p2 are indirectly high. An
important feature of λdeps is that the captured set of depen-
dencies is accumulated across different runs of the program.
Hence the second run starts with {p2 7→ p1} as the initial
known set of dependencies, and, say with h being false; it
then analogously computes to 0p2 which, given the depen-
dency p2 7→ p1, is again indirectly high. Thus the indirect
flows were successfully detected by λdeps in both runs of the
program, so both runs report a security error.

Run 1 Run 2
value of h false true

initial dependencies {} {}
security level of p1 high high

x points to (in heap) 0 (low) 1p1 (high)
final dependencies {} {p2 7→ p1}

final value 0p2 (low) 1p2 (high)
indirect flow detected? no yes

Figure 3. λdeps: . . . in Reverse Order

Observe that the order of runs of a program is significant
in λdeps because dependencies are accumulated across runs.
Let us now perform the above runs in reverse order; Fig-
ure 3 tabulates the results. So h is false and the initial run
computes to 0p2 ; however the dependency p2 7→ p1 was
not captured since the then-branch was not taken. Subse-
quently, λdeps incorrectly concludes that 0p2 is low, missing
the indirect leakage of h’s value. However, in the second
run the dependency p2 7→ p1 is caught and the result 1p2

is detected to be high, resulting in an error. In addition, at

3

this point the missed indirect flow leading to the indirect
leakage in the previous run is also realized, and appropriate
remedial action can be taken; the discussion what action to
take is beyond the scope of this paper.

Example 3 was a simple first-order program. Now con-
sider the following higher-order program, where ‘ ’ is a
shorthand for any variable not found free in the body of the
corresponding function,

f := (λ . x := 0);
ifp1 h then f := (λ . x := 1) else ();
(derefp2 f) ()p3 ;
output(derefp4 x)

(4)

Program point p3 identifies the corresponding function ap-
plication site — function application is a form of branching,
in that the code to be executed next depends on the function
flowing into the application site. Figure 4 tabulates the two

Run 1 Run 2
value of h true false

initial dependencies {} κ
security level of p1 high high

x points to (in heap) 1p3 (high) 0 (low)
final dependencies κ† κ

final value 1p4 (high) 0p4 (high)
indirect flow detected? yes yes

†κ = {p2 7→ p1, p3 7→ p2, p4 7→ p3}

Figure 4. λdeps: Runs of Example 4

runs of this program starting with h being true. Now the
dependency p2 7→ p1 is captured as before in the first run;
and, the function (λ . x := 1)p2 flowing into the applica-
tion site p3 results in dependency p3 7→ p2 being captured.
Now during execution of the function’s body the program
counter is set to p3, the program point identifier of the ap-
plication site, analogous to how the program counter is set
at an if-branching point during branch execution. Then the
assignment x := 1 results in x pointing to 1p3 , and as a re-
sult the dependency p4 7→ p3 is captured at derefp4 x. The
computed value 1p4 , labeled with p4, is consequently, tran-
sitively dependent on p1, which in turn is high, implying 1p4

is indirectly high itself. Note that κ in Figure 4 represents
a complete set of dependencies for program 4. Correspond-
ingly the second run, with κ as its initial set of dependen-
cies, computes to 0p4 , which is indirectly high as well, so
both executions return security errors.

The semantics of λdeps+ is identical to that of λdeps, the
only difference being the initial set of dependencies they
begin with. λdeps+ is always initialized with a statically
generated complete (but conservative) set of program point
dependencies for a given program, and thereby it never al-

lows either direct or indirect information flow to go unde-
tected, as we will prove. In this paper we present a simple
static type system for computing the complete set of de-
pendencies to demonstrate feasibility of our approach; in
practice more expressive static systems can be employed to
deliver smaller, more precise, sets of dependencies. Our
static system will generate dependency sets {p2 7→ p1} and
{p2 7→ p1, p3 7→ p2, p4 7→ p3} for examples 3 and 4 re-
spectively. It is interesting to note that λdeps, if run on a
program with a sufficient variety of inputs, will uncover the
precise and complete set of dependencies for that program;
as in the above examples. It is, however, undecidable in
general to ascertain that the set of dependencies captured
by λdeps is complete for a given program after any given
sequence of runs. Also, note that examples 1 and 2 of Sec-
tion 1 can only leak information by direct flow, since all
guards in them are low; hence, both λdeps and λdeps+ will
only reject the corresponding executions leaking direct in-
formation, while allowing non-leaky executions to proceed.

λdeps versus λdeps+: λdeps falls short, as compared to
λdeps+ , in achieving complete information flow security at
run-time; it, however, does possess many interesting prop-
erties, which offer both theoretical interest and practical
value.

λdeps presents an expressive model for tracking indirect
dependencies between program points which captures only
the “must” dependencies. On the other hand, dependencies
captured by a static analysis are inherently a conservative
approximation of these “must” dependencies, and so λdeps+

is a “may” analysis. Consider the following variation of
program 3,

ifp1 h then x := 1 else ();
x := 0;
output(derefp2 x)

(5)

Any flow-insensitive static analysis will, conservatively, in-
fer dependency p2 7→ p1; while λdeps will never capture that
dependency as the value pointed to by x at p2 will always be
0 regardless of the branch taken at p1. Hence λdeps will not
reject any executions of this program, whereas λdeps+ , sup-
plemented with dependencies gathered by a flow-insensitive
static analysis, will conservatively reject all of its execu-
tions.

From a theoretical perspective, since λdeps is a purely dy-
namic system it provides a run-time platform against which
static information flow systems can directly be proven
sound using the well-known technique of subject reduction,
as we demonstrate.

More generally, λdeps provides a novel system for track-
ing run-time dependencies between program points, and
consequently the values flowing through them, which will

4

b ::= true | false boolean
⊕ ::= + | − | ∗ | / | < | > | == | != binary operator
P, pc ::= {p} set of ppids, program counter
L security level
v ::= i | b | λx. e | loc unlabeled value
σ ::= 〈v,P,L〉 labeled value
e ::= x | σ | e⊕ e | let x = e in e | ref e expression
| ifp e then e else e | e (e)p | derefp e | e := e

R ::= • | R⊕ e | σ ⊕ R | ref R reduction context
| ifp R then e1 else e2 | R (e)p | σ (R)p
| let x = R in e | derefp R | R := e | σ := R

H ::= {loc 7→ σ} run-time heap (memory)
κ ::= {p 7→ P} cache of dependencies
δ ::= {p 7→ L} cache of direct flows

Figure 5. λdeps, λdeps+ : Syntax Grammar

likely have other potential applications; this topic is taken
up again in the future work section.

Incompleteness The following example shows how some
incompleteness is still lurking in both λdeps and λdeps+ in
spite of their greatly improved precision over static meth-
ods.

x := 0;
ifp1 h then x := 0 else ();
output(derefp2 x)

(6)

No matter which branch is taken at p1 the dereferenced
value at p2 is 0; hence the information about h is never
leaked. However, λdeps will capture the dependency p2 7→
p1 once the then-branch is taken, and flag a nonexistent in-
direct leak. It seems possible to strengthen λdeps so as to
also track correlations between the values flowing through
complementary branches, the exploration of which is be-
yond the scope of this paper.

2 The λdeps Run-time System

The grammar for λdeps appears in Figure 5. λdeps is a
higher-order functional language with mutable state, condi-
tional branching and let-binding, with variables x, integers
i, program point identifiers (in short ppids) p, and heap lo-
cations loc. Program point identifiers are needed only for
conditional branching, function application and heap deref-
erence sites — as pointed out in Section 1.2, the knowledge
of dependencies between branching points (conditional or
function application) and heap dereference points allows
for sound detection of all indirect information flows at run-
time. Note that ppids are not programmer annotated but are
automatically generated; we embed them in the program

syntax for technical convenience. The semantics does not
require ppids to be distinct; however, distinct identifiers at
distinct program points significantly enhances expressive-
ness. Also we use the terms ‘program point’ and ‘program
point identifier’ interchangeably throughout the text of this
paper. The program counter, pc, defined as a set of pro-
gram points, represents all the conditional and application
branching points under active execution. We employ the
lattice security model [8], which defines the lattice (L,v),
where L is a set of security levels, that is, L ::= {L}, and
v is a partial ordering relation between the security levels.
The least element of the security lattice is represented as ⊥,
while t denotes the least upper bound (or join) operator on
security levels of the lattice. A labeled value σ is a 3-tuple
comprised of an unlabeled value v tagged with a set of pro-
gram points P, its symbolic indirect dependencies, and a
security level L (as per direct flows); the indirect depen-
dencies denote the program points that indirectly influence
its value. For ease of technical presentation the grammar
for expressions e is defined using only labeled values; thus
λdeps represents an internal language into which an original
source program is translated. The run-time heap H is a set
of partial, single-valued mappings from heap locations to
labeled values. The cache of dependencies κ, represented
as a set of partial, single-valued mappings from program
points p to sets of program points P, denotes a set of indirect
dependencies between program points in a given program.
The cache of direct flows δ, represented as a set of partial,
single-valued mappings from program points p to security
levels L, records the security levels of values directly flow-
ing into corresponding program points.

We now define basic notation. The complement opera-
tion on a generic set of mappings, M := {d 7→ r}, is de-
fined as, M\d = {d′ 7→ r′ | d′ 7→ r′ ∈ M ∧ d 6= d′};
and then the update operation is defined as, M[d 7→ r] =
M\d ∪ {d 7→ r}. We write “A,B rel-op C” as shorthand
for “(A rel-op C) ∧ (B rel-op C)”, for any A, B, C and
relational operator rel-op (e.g. v, 6v, etc.).

Figure 6 gives an operational semantics for λdeps. The se-
mantics is mixed-step, that is, a combination of both small-
and big-step reductions. The IF and APP rules use big-step
semantics, while all other rules employ small-step reduc-
tions. The big-step semantics is used to clearly demarcate
the scope of the updated program counters in IF and APP
rules; other rules do not affect the program counter and
hence are small-step. The mixed-step semantics is used
to facilitate the proof of dynamic noninterference by a di-
rect bisimulation argument. The mixed-step reduction rela-
tion −→ is defined over configurations, which are 5-tuples,
(κ, δ, pc,H, e); while−→n is the n-step reflexive (if n = 0)
and transitive (otherwise) closure of −→.

To look up the indirect dependencies of program point
p in cache κ we write κ(p) = P where p 7→ P is the

5

i1 ⊕ i2 = v(
κ, δ, pc,H, 〈i1,P1,L1〉 ⊕ 〈i2,P2,L2〉

)
−→

(
κ, δ, pc,H, 〈v,P1 ∪ P2,L1 t L2〉

) BINOP

(
κ, δ, pc,H, let x = σ in e

)
−→

(
κ, δ, pc,H, e[σ/x]

) LET

i ∈ {1, 2} (b1, b2) = (true, false) κ′ = κ] {p 7→ pc ∪ P}
δ′ = δ] {p 7→ L} pc′ = pc ∪ {p}

(
κ′, δ′, pc′,H, ei

)
−→n

(
κ′′, δ′′, pc′,H′′, 〈v′′,P′′,L′′〉

)(
κ, δ, pc,H, ifp 〈bi,P,L〉 then e1 else e2

)
−→

(
κ′′, δ′′, pc,H′′, 〈v′′,P′′ ∪ {p},L′′〉

) IF

κ′ = κ] {p 7→ pc ∪ P}
δ′ = δ] {p 7→ L} pc′ = pc ∪ {p}

(
κ′, δ′, pc′,H, e[σ/x]

)
−→n

(
κ′′, δ′′, pc′,H′′, 〈v′′,P′′,L′′〉

)(
κ, δ, pc,H, 〈λx. e,P,L〉 (σ)p

)
−→

(
κ′′, δ′′, pc,H′′, 〈v′′,P′′ ∪ {p},L′′〉

) APP

loc is a fresh heap location
(κ, δ, pc,H, ref σ) −→

(
κ, δ, pc,H ∪ {loc 7→ σ}, 〈loc, ∅,⊥〉

) REF

H(loc) = 〈v,P′,L′〉 κ′ = κ] {p 7→ P′}(
κ, δ, pc,H, derefp 〈loc,P,L〉

)
−→

(
κ′, δ, pc,H, 〈v,P ∪ {p},L t L′〉

) DEREF

P′ = pc ∪ P1 ∪ P2 L′ = L1 t L2(
κ, δ, pc,H, 〈loc,P1,L1〉 := 〈v,P2,L2〉

)
−→

(
κ, δ, pc,H[loc 7→ 〈v,P′,L′〉], 〈v,P2,L2〉

) SET

(κ, δ, pc,H, e) −→ (κ′, δ′, pc,H′, e′)(
κ, δ, pc,H,R[e]

)
−→

(
κ′, δ′, pc,H′,R[e′]

) CONTEXT

Figure 6. λdeps, λdeps+: Mixed-Step Operational Semantics

mapping for p in κ, and κ(p) = ∅ if p /∈ dom(κ). The
transitive closure of cache lookup is inductively defined as
κ(p)+ = P ∪ κ(P)+, where P = κ(p). We write κ(P) and
κ(P)+ as shorthand for

⋃
1≤i≤k κ(pi) and

⋃
1≤i≤k κ(pi)+

respectively, where P = {pk}. The ordering relation κ ≤ κ′

holds iff ∀p ∈ dom(κ). κ(p) ⊆ κ′(p); the union operator is
then defined as κ]κ′ = κ′′ iff κ′′ is the smallest cache such
that κ, κ′ ≤ κ′′. Lookup and ordering operations on the
cache of direct flows δ are defined analogously. To lookup
the security level of program point p in cache δ we write
δ(p) = L where p 7→ L is the mapping for p in δ, and
δ(p) = ⊥ if p /∈ dom(δ). We write δ(P) as shorthand
for

⊔
1≤i≤k δ(pi), where P = {pk}. The ordering relation

δ ≤ δ′ holds iff ∀p ∈ dom(δ). δ(p) v δ′(p); the union op-
erator is then defined as δ] δ′ = δ′′ iff δ′′ is the smallest
cache such that δ, δ′ ≤ δ′′. Note that reductions are always
of the form (κ, δ, pc,H, e) −→n (κ′, δ′, pc,H′, e′), where
the program counter pc is fixed, and κ ≤ κ′ and δ ≤ δ′ —
the caches are monotonically increasing.

We now highlight the important aspects of the rules. The
IF rule caches the direct and indirect flows reaching the

branching point, and then executes the appropriate branch
under the updated program counter, that is, the current pro-
gram counter appended with the branching program point.
Note, the value flowing into the branching point p indi-
rectly depends on its context, as defined by the program
counter pc, as it (transitively) depends on the dependencies
of the guard itself; hence the dependencies p 7→ pc ∪ P are
recorded in the indirect dependency cache κ′ in the premise
of the rule. The direct security level L of the guard flowing
into the branching point p is also recorded in the cache of
direct flows δ′ as the security level of the branching point
itself. Finally, the reduced value indirectly depends on the
branch taken at the branching point, hence the latter is added
to the former’s set of indirect dependencies, the P′′ ∪{p} in
the conclusion of the rule. The APP rule is similar to the
IF rule in that function application is a form of branching:
the code to be executed next depends on the function flow-
ing into an application site, just as the guard flowing into
a branching point determines the branch to be taken. Ex-
ample 4 of Section 1.2 provides an illustration of function
application as a form of branching. The LET rule directly in-

6

lines the top-level binding; the let construct serves as a con-
venient syntactic tool for top-level bindings, as opposed to
using a λ-encoding for let-bindings, which would introduce
unnecessary program point identifiers. The sequencing con-
struct, ‘e1; e2’ in our examples, is syntactic sugar denoting
‘let x = e1 in e2’, for any x such that x 6∈ free(e2). The SET
rule adds the program counter to the set of indirect depen-
dencies of the value written to the corresponding heap loca-
tion; while the DEREF rule caches the indirect dependencies
flowing into it, encapsulated in the dereferenced value. The
security levels are propagated directly in all rules except the
IF and APP rules, which record them as the security level
of the corresponding branching points in the cache of direct
flows.

2.1 Formal Properties of λdeps

We now formally establish key properties of λdeps. We
start by defining the function seclevelκδ P = δ

(
P∪κ(P)+

)
,

which computes the security level of the indirect flows (i.e.
the indirect dependencies) for the set of program points P
as recorded in caches κ and δ. The main result in this sec-
tion is the establishment of partial dynamic noninterference
between high and low data for λdeps. We prove this result
by showing how executions of two expressions, which dif-
fer only in high values, are bisimilar. Bisimilarity of ex-
ecutions implies isomorphism of values at all intermediate
steps across runs. The bisimulation relation, defined below,
essentially requires low values to be identical, while allow-
ing high values to differ.

Our bisimulation relation has four main aspects: (a) it as-
sumes that the two executions are performed back-to-back
such that the cache of indirect dependencies at the end of
first run is carried over to the next run, as was illustrated in
Figures 2–4 in Section 1.2; (b) the cache of direct flows on
the other hand is not carried over across runs; (c) bisimilar-
ity is always defined with respect to the cache of dependen-
cies belonging to the second run; the cache of dependencies
is monotonically increasing, hence the second run always
possesses more dependencies; and (d) the bisimulation def-
inition is not uniform across all sorts: the expressions at
all intermediate steps must be strongly bisimilar while the
corresponding heaps need only be weakly bisimilar. Strong
bisimilarity refers to values being isomorphic iff they are
either both low or both high, whereas weak bisimilarity al-
lows values to be isomorphic if they are either both low,
or either is high. The heaps need only be weakly bisim-
ilar because, as was illustrated in Figures 2 and 4 in Sec-
tion 1.2, a heap location might be updated in only one run
(Run 1 in the figures), because the corresponding branch is
not taken in the other run (Run 2 in the figures), making
the updated value in the first run indirectly high while the
corresponding value in the heap of the second run remains

unaffected, that is, possibly low; hence the weak bisimilar-
ity between heaps. The heap dereference site serves as a
“confluence” point at which all indirect dependencies of the
weakly bisimilar heap values “flow” into the cache of de-
pendencies at the dereference point; these dependencies are
in turn accumulated across runs, thus establishing a strong
bisimilarity between the values dereferenced, as was shown
in Figures 2 and 4.

We now define the bisimulation relation. Let µ ::=
{loc 7→ loc} be a symmetric set of partial, one-to-one map-
pings from heap locations (of one run) to the heap locations
(of the other run) and vice-versa, establishing the correspon-
dence between supposed bisimilar locations of the respec-
tive heaps.

Definition 2.1 (Bisimulation Relation).
1. (Caches of Direct Flows). δ1

∼=κ
L δ2

iff ∀P. (seclevelκδ1 P = seclevelκδ2 P) ∨
seclevelκδ1 P, seclevelκδ2 P 6v L.

2. (Unlabeled Values). (δ1, v1) ∼=κµ
L (δ2, v2) iff δ1

∼=κ
L δ2

and either,

(a) v1 = v2; or
(b) v1 = loc1 = µ(loc2) and v2 = loc2 = µ(loc1); or
(c) v1 = λx. e′1, v2 = λx. e′2 and (δ1, e

′
1) ∼=

κµ
L (δ2, e

′
2),

for some x.

3. (Expressions). (δ1, e1) ∼=κµ
L (δ2, e2) iff δ1

∼=κ
L δ2 and

either,

(a) e1 = e2 = x, for some x; or
(b) e1 = 〈v1,P1,L1〉, e2 = 〈v2,P2,L2〉 and either,

i. P1 = P2, seclevelκδ1 P1, seclevelκδ2 P2 v L and
either,
A. L1,L2 v L, L1 = L2, and (δ1, v1) ∼=κµ

L

(δ2, v2); or
B. L1,L2 6v L and, v1, v2 are not heap loca-

tions; or
ii. seclevelκδ1 P1, seclevelκδ2 P2 6v L; or

(c) e1 = e′1 ⊕ e′′1 , e2 = e′2 ⊕ e′′2 , and (δ1, e
′
1) ∼=κµ

L

(δ2, e
′
2), (δ1, e

′′
1) ∼=κµ

L (δ2, e
′′
2); or

(d) e1 = (let x = e′1 in e′′1), e2 = (let x = e′2 in e′′2),
and (δ1, e

′
1) ∼=

κµ
L (δ2, e

′
2), (δ1, e

′′
1) ∼=κµ

L (δ2, e
′′
2); or

(e) e1 = ifp e′1 then e′′1 else e′′′1 , e2 =
ifp e′2 then e′′2 else e′′′2 , and (δ1, e

′
1) ∼=

κµ
L (δ2, e

′
2),

(δ1, e
′′
1) ∼=κµ

L (δ2, e
′′
2), (δ1, e

′′′
1) ∼=κµ

L (δ2, e
′′′
2); or

(f) e1 = e′1 (e′′1)p, e2 = e′2 (e′′2)p, and (δ1, e
′
1) ∼=κµ

L

(δ2, e
′
2), (δ1, e

′′
1) ∼=κµ

L (δ2, e
′′
2); or

(g) e1 = ref e′1, e2 = ref e′2, and (δ1, e
′
1) ∼=

κµ
L (δ2, e

′
2);

or
(h) e1 = derefp e′1, e2 = derefp e′2, and (δ1, e

′
1) ∼=

κµ
L

(δ2, e
′
2); or

(i) e1 = (e′1 := e′′1), e2 = (e′2 := e′′2), and
(δ1, e

′
1) ∼=

κµ
L (δ2, e

′
2), (δ1, e

′′
1) ∼=κµ

L (δ2, e
′′
2).

7

4. (a) (Weak Relation for Heap Values).(
δ1, 〈v1,P1,L1〉

)
∼κµ

L

(
δ2, 〈v2,P2,L2〉

)
iff(

δ1, 〈v1,P1∪P2,L1〉
) ∼=κµ

L

(
δ2, 〈v2,P1∪P2,L2〉

)
.

(b) (Heaps). (δ1,H1) ∼κµ
L (δ2,H2) iff δ1

∼=κ
L δ2,

dom(µ) ⊆ dom(H1) ∪ dom(H2), ∀loc. loc ∈(
dom(H1) ∩ dom(µ)

)
=⇒

(
δ1,H1(loc)

)
∼κµ

L(
δ2,H2

(
µ(loc)

))
and symmetrically, ∀loc. loc ∈(

dom(H2) ∩ dom(µ)
)

=⇒
(
δ2,H2(loc)

)
∼κµ

L(
δ1,H1

(
µ(loc)

))
;

5. (δ1,H1, e1) ∼=κµ
L (δ2,H2, e2) iff (δ1,H1) ∼κµ

L (δ2,H2)
and (δ1, e1) ∼=κµ

L (δ2, e2).

The caches of direct flows (Case 1) must be strongly bisim-
ilar, implying each program point is either low in both runs
or high in both runs. Recall that the REF rule generates only
low heap locations — ⊥ represents low in our lattice se-
curity model — and, in addition, heap locations are never
input as secure data in our model, hence Case 3(b)iB disal-
lows heap locations being directly high, only their contents.
The weak bisimulation relation for the values in the heaps
(Case 4a) merges their respective indirect dependencies, as
discussed above; the corresponding security levels are not
merged because the cache of direct flows is local to each
run.

The following bisimulation lemma states that two runs
in λdeps, where the cache of dependencies from the end of
the first run is carried over to the beginning of the second
run, preserves bisimilarity. Proofs of this and subsequent
lemmas are all found in the Appendix.

Lemma 2.2 (Bisimulation: n-step). If(
κ0, δ1, pc,H1, e1

)
−→n

(
κ1, δ

′
1, pc,H′

1, e
′
1

)
,(

κ1, δ2, pc,H2, e2

)
−→n

(
κ2, δ

′
2, pc,H′

2, e
′
2

)
and (δ1,H1, e1) ∼=κ1µ

L (δ2,H2, e2) then ∃µ′ ⊇
µ. (δ′1,H

′
1, e

′
1) ∼=

κ2µ′

L (δ′2,H
′
2, e

′
2).

Note that κ0 ≤ κ1 ≤ κ2, and that κ1 is used to establish the
initial bisimilarity and κ2 the final. Notice also that the step
counts n are aligned in spite of the fact that one computation
may have completely different high steps than the other; this
stems from the mixed-step semantics of Figure 6: the IF and
APP rules capture the complete, possibly incongruent high
subcomputations in their respective premises.

Letting ν := i | b | λx. e, the following lemma formal-
izes the property of partial dynamic noninterference exhib-
ited by λdeps. It states: if the second run of an expression,
possibly differing in high values from the first run, com-
putes to a low value, then the value at the end of the first run
was an identical low value with identical label. This lemma
is a direct corollary of the Bisimulation Lemma 2.2.

Main Lemma 2.3 (Partial Dynamic Noninterference). If
e1 = e[〈νk, ∅,Lhigh〉/xk], e2 = e[〈ν′k, ∅,Lhigh〉/xk],

(
κ0, δ, pc,H, e1

)
−→n1

(
κ1, δ1, pc,H1, 〈i1,P1,L1〉

)
,(

κ1, δ, pc,H, e2

)
−→n2

(
κ2, δ2, pc,H2, 〈i2,P2,L2〉

)
,

Lhigh 6v Llow, for some Llow, and seclevelκ2δ2 P2 t L2 v
Llow then seclevelκ1δ1 P1 t L1 v Llow, 〈i1,P1,L1〉 =
〈i2,P2,L2〉 and n1 = n2.

The above lemma does not preclude the possibility of the
second run computing to a high value, while the first run
computed to a different low value, and thus, having indi-
rectly leaked information in the first run; hence the name
“partial dynamic noninterference”. This incompleteness of
noninterference in λdeps is attributable to its accumulating
semantics for dependencies, which leaves the possibility of
the delayed capture of dependencies in future runs, which in
turn delays the detection of the corresponding information
flows.

We now formalize the property of delayed detection of
information leaks in λdeps. We start by formally defining the
notion of information leak as a form of interference in λdeps.
We assume the attacker (any low observer) has knowledge
of the program’s structure. As mentioned in Section 1 our
model only considers potential information leaks due to di-
rect and indirect information flows; timing, termination and
other covert channels are disregarded. Also recall our as-
sumption from Section 1 that only resulting values deemed
as low by our run-time system are observable to the attacker,
while high resulting values return a security error. The fol-
lowing definition of information leak then states: a given
run of an expression leaks information iff its resulting value
is inferred to be low by λdeps, and there exists another run of
the same expression, but with possibly different high values,
which computes to a different value. If both runs compute
to the same value then no information about high data is
leaked, as was discussed in Section 1.2 for example 6.

Definition 2.4 (Information Leak). If e1 =
e[〈νk, ∅,Lhigh〉/xk] and Lhigh 6v Llow then the run,(
κ0, δ, pc,H, e1

)
−→n1

(
κ1, δ1, pc,H1, 〈i1,P1,L1〉

)
,

leaked information with respect to security level Llow

iff seclevelκ1δ1 P1 t L1 v Llow and there exists an
expression e2 such that e2 = e[〈ν′k, ∅,Lhigh〉/xk],(
κ1, δ, pc,H, e2

)
−→n2

(
κ2, δ2, pc,H2, 〈i2,P2,L2〉

)
and

i1 6= i2.

The final value of any program computation, which has
secure data flowing directly into it, will be immediately
flagged high in λdeps, in effect, disallowing all direct
information leaks; λdeps can only leak information in-
directly. Note, as per Lemma 2.2 and Definition 2.1,
seclevelκ2δ1 P1, seclevelκ2δ2 P2 6v Llow in the above defi-
nition, and further, due to the accumulating semantics of
λdeps for the cache of dependencies, κ1 ≤ κ2; this im-
plies the second run captured dependencies, embodied in
κ2, which were missed by λdeps during the first run, and

8

the lack of these uncaptured dependencies led λdeps to inad-
vertently leak indirect information at the end of the first run.
λdeps can, however, be used to detect, albeit belatedly, all in-
direct information leaks once the appropriate dependencies
are captured in future runs, as we now show. The following
lemma formalizes the property of delayed detection of in-
direct information leak(s) in λdeps. It is directly entailed by
Definition 2.4.

Lemma 2.5 (Delayed Leak Detection). If e1 =
e[〈ν′k, ∅,L′

k〉/xk] and the run,
(
κ0, δ, pc,H, e1

)
−→n1(

κ1, δ1, pc,H1, 〈i1,P1,L1〉
)
, indirectly leaks information

with respect to security level Llow, then there exists
an expression e2 such that e2 = e[〈ν′′k , ∅,L′′

k〉/xk],(
κ1, δ, pc,H, e2

)
−→n2

(
κ2, δ2, pc,H2, 〈i2,P2,L2〉

)
and

seclevelκ2δ1 P1 6v Llow.

Note, the expressions e1 and e2 in the above definition can
differ in both low and high values. As discussed above, the
delayed detection of leaks is due to the procrastination in the
capture of appropriate dependencies to a later run – the sec-
ond run in the above lemma. Hence, the delayed detection
of leaks in λdeps is contingent upon a future run that cap-
tures the appropriate missing dependencies; consequently,
if one such run is never performed, because appropriate in-
puts are never fed, some missing dependencies may never
be caught, and the detection of corresponding indirect leaks
may then be infinitely delayed. Note that λdeps will eventu-
ally uncover the precise and complete set of dependencies
for that program, if run on a program with a sufficient va-
riety of inputs. This is exemplified in Figures 3 and 4 for
programs 3 and 4, respectively, in Section 1.2. Once λdeps

has captured the complete set of dependencies for a given
program, it can be used for a post-facto audit of all previ-
ous runs for indirect information leaks by recomputing the
security levels of each of the corresponding resulting val-
ues against the, now known, complete set of dependencies;
since the set of dependencies is complete, all past runs that
leaked information will be soundly detected. The sound de-
tection of information leaks in the presence of a complete
set of dependencies is formally proven later, in Section 3.
Also observe that only the set of dependencies of the resul-
tant value (P1 in Lemma 2.5) and the cache of direct flows
(δ1 in Lemma 2.5) corresponding to each past run (and not
their entire trace) need to be cached for the above mentioned
audit. It is, however, undecidable in general to ascertain that
the set of dependencies captured by λdeps is complete for
a given program after any given sequence of runs; conse-
quently, the sound post-facto audit of past runs for missed
information leaks is undecidable in general. Nonetheless,
the closer the set of dependencies used for auditing is to a
complete set of dependencies, the smaller the likelihood is
of past indirect leaks remaining undetected during the audit.

Complexity The run-time overhead of λdeps is O(n3)
time and O(n2) space, where n is the number of program
points. This is from the cost of maintaining the dependency
cache at run-time, and computing seclevelκδ P, which is a
graph transitive closure problem [35] with vertices p, and
edges being the dependencies. The worst-case is when each
program point depends on all other program points, an ex-
tremely unlikely scenario in realistic programs since the
program point dependencies are generally localized. Other
algorithms have also been shown to reduce the run-time
bounds based on the expected graph density [27].

3 The λdeps+ Run-time System

As discussed above, λdeps exhibits only partial dynamic
noninterference due to its accumulation of dependencies at
run-time, in effect delaying the detection of some indirect
flows to later runs. However, if λdeps were initialized with a
complete set of indirect dependencies for a given program,
it would then detect all indirect flows; this was informally
described in Section 1.2. In this section we define λdeps+ ,
a variant of λdeps where the runs are initialized with a com-
plete set of dependencies. The following definition formal-
izes the notion of a complete set of dependencies in terms
of a fixed point.

Definition 3.1 (Fixed Point of Dependencies). κ is a
fixed point of dependencies of an expression e, given
a program counter pc and a heap H, iff free(e) =
{xk} and ∀δ, ik,Lk, n.

(
κ, δ, pc,H, e[〈ik, ∅,Lk〉/xk]

)
−→n

(κ′, δ′, pc,H′, e′) implies κ = κ′.

The following theorem then states the property of complete
dynamic noninterference exhibited by λdeps+ . It is a direct
corollary of Definition 3.1 and Lemma 2.2, and essentially
states that, if the first run of an expression, starting with its
complete set of dependencies, computes to a low value, then
the value at the end of the second run of the same expres-
sion, but possibly differing in high integral values, will also
be low and identical to the one at the end of the first run.
In short, λdeps+ detects all direct and indirect information
flows, as and when they happen.

Theorem 3.2 (Dynamic Noninterference). If κ0

is a fixed point of dependencies of an expres-
sion e given a program counter pc and a heap H,
e1 = e[〈ik, ∅,Lhigh〉/xk], e2 = e[〈i′k, ∅,Lhigh〉/xk],(
κ0, δ, pc,H, e1

)
−→n1

(
κ1, δ1, pc,H1, 〈i1,P1,L1〉

)
,(

κ0, δ, pc,H, e2

)
−→n2

(
κ2, δ2, pc,H2, 〈i2,P2,L2〉

)
,

Lhigh 6v Llow, for some Llow, and seclevelκ1δ1 P1tL1 v Llow

then seclevelκ2δ2 P2 t L2 v Llow, 〈i1,P1,L1〉 =
〈i2,P2,L2〉 and n1 = n2.

Note, κ0 = κ1 = κ2 as per Definition 3.1. Also initial
expressions e1 and e2 differ only in high integral values,

9

since functions will have their own sets of dependencies not
captured in the fixed point of e.

The following corollary to the above property of dy-
namic noninterference then directly states the soundness of
λdeps+ , that is, it detects all direct and indirect information
leaks (ignoring timing, termination and other covert chan-
nels), as and when they are about to happen.

Corollary 3.3 (Soundness of λdeps+). If κ is a fixed
point of dependencies of an expression e given a pro-
gram counter pc and a heap H, e′ = e[〈ik, ∅,Lk〉/xk]
and

(
κ, δ, pc,H, e′

)
−→n

(
κ, δ′, pc,H′, 〈i,P,L〉

)
then the

above run does not leak information with respect to any se-
curity level.

In addition, Dynamic Noninterference Theorem 3.2
shows that λdeps+ does not introduce new termination chan-
nels, that is, aborting an execution resulting in high values
does not implicitly leak information. All executions of an
expression, possibly differing in high values, assuming they
terminate, compute to either identical low values, or high
values that all return errors; thus, aborting later executions
does not introduce a new termination channel, since all ex-
ecutions are then aborted.

Complexity The run-time overhead of λdeps+ as defined is
O(n2) time and O(n2) space, where n is the number of pro-
gram points. The worst-case time overhead can be reduced
to O(n) simply by adding an end of program point. Since
the transitive cache closure can be computed statically, the
overhead is incurred when computing seclevelκδ P at the
end of the program. As written, this can be O(n2), since
every element of κ and δ may need to be visited. How-
ever, if pfinal is added to the end of the program, we need
only compute seclevelκδ pfinal , which will complete in O(n)
time, since we only need to visit each element of κ(pfinal)
and δ(pfinal) (in additive n time), since κ is closed. As dis-
cussed in Section 2.1, we believe the overhead will also be
much smaller in practice.

3.1 Computing a Fixed Point

As discussed, the convergence of dynamic capture of de-
pendencies to a fixed point using λdeps is undecidable for a
general program. Hence, we now present a static type sys-
tem that produces a fixed point dependency cache that can
be used in executions of λdeps+ above. This fixed-point typ-
ing is computed entirely at compile-time, and produces a
fixed-point dependency cache that may be used at run-time.
Our system is distinct from those of traditional information
flow type systems (e.g. [34, 14, 25, 28]): it does not need
to consider security levels, it only needs to infer a depen-
dency cache κ of program point mappings. Once the typ-

t ::= int | bool | τ → τ | ref τ unlabeled types
τ ::= (t, P) labeled types
Γ ::= {x 7→ τ} type environment
H ::= {loc 7→ τ, κ} abstract heap environment

t ≤ t′ P ⊆ P′

(t, P) ≤ (t′,P′)
τ ≤ τ ′ τ ′ ≤ τ

ref τ ≤ ref τ ′

τ2 ≤ τ ′2 τ ′1 ≤ τ1

τ1 → τ2 ≤ τ ′1 → τ ′2 int ≤ int bool ≤ bool

Figure 7. Type Definitions and Subtype Rules

ing has produced such a cache, it is transitively closed stat-
ically, thereby reducing the run-time overhead, as shown
previously.

The fixed-point type inference system we define shows
that fixed-point caches can indeed be computed statically.
More precise type systems can be defined than the system
here, which will infer fewer dependencies in the fixed point,
but our goal here is a proof-of-concept focusing on the prin-
ciples, not a complete solution.

As a tangential result, it turns out that the λdeps sys-
tem and bisimulation relation thereupon are very helpful in
proving properties of static type systems. In Section 3.4,
we show how our fixed-point type system can be extended
to account for direct flows. For this extended system, static
noninterference follows directly by the Dynamic Noninter-
ference Theorem 3.2 and subject reduction. This gives a
new direct method for proving noninterference properties
of static type systems.

3.2 The Fixed Point Type System

The types are defined in Figure 7. Types are pairs con-
sisting of an unlabeled type and a set of program points P. Γ
is a type environment mapping variables to types. Γ[x 7→ τ]
defines the type environment mapping x to τ , and otherwise
mapping according to Γ. H is an abstract heap environment
mapping heap locations to types and caches. Typing judge-
ments are of the form Γ, pc,H ` e : τ, κ, meaning under
type environment Γ, program counter pc, and abstract heap
environment H, expression e has type τ and fixed-point
cache κ. Heap typings are of the form H ` H, meaning un-
der abstract heap environmentH, heap H is well-typed. The
definition of subtyping is given in Figure 7 and is straight-
forward.

Figure 8 defines the type inference rules for computing
the fixed-point dependency cache. These rules are consis-
tent with the respective operational semantics rules apart
from (app). The (app) rule types the entire expression e un-

10

Γ, pc,H ` x : Γ(x), ∅
(var)

Γ, pc,H ` 〈i,P,L〉 : (int,P), ∅
(int)

Γ, pc,H ` 〈b, P,L〉 : (bool,P), ∅
(bool)

Γ[x 7→ τ], pc,H ` e : τ ′, κ′

Γ, pc,H ` 〈λx. e,P,L〉 : (τ → τ ′,P), κ′
(fun)

H(loc) = τ, κ

Γ, pc,H ` 〈loc,P,L〉 : (ref τ,P), κ
(loc)

Γ, pc,H ` e : (bool,P), κ pc′ = pc ∪ {p} Γ, pc′,H ` e′ : τ ′, κ′ Γ, pc′,H ` e′′ : τ ′, κ′′ τ ′ = (t′,P′)
Γ, pc,H ` ifp e then e′ else e′′ :

(
t′,P′ ∪ {p}

)
, κ] κ′] κ′′] {p 7→ pc ∪ P}

(if)

pc′ = pc ∪ {p} Γ, pc′,H ` e : (τ → τ ′,P′), κ Γ, pc,H ` e′ : τ, κ′ τ ′ = (t′,P′)
Γ, pc,H ` e (e′)p :

(
t′,P′ ∪ {p}

)
, κ] κ′] {p 7→ pc ∪ P}

(app)

Γ, pc,H ` e : τ, κ

Γ, pc,H ` ref e : (ref τ, ∅), κ
(ref)

Γ, pc,H ` e :
(
ref (t, P′),P

)
, κ

Γ, pc,H ` derefp e :
(
t, P ∪ {p}

)
, κ] {p 7→ P′}

(deref)

Γ, pc,H ` e :
(
ref (t′,P′),P

)
, κ Γ, pc,H ` e′ : (t′,P′), κ′ pc ∪ P ⊆ P′

Γ, pc,H ` e := e′ : (t′,P′), κ] κ′
(set)

Γ, pc,H ` e : (int,P), κ Γ, pc,H ` e′ : (int,P′), κ′

Γ, pc,H ` e⊕ e′ : (int,P ∪ P′), κ] κ′
(binop)

Γ, pc,H ` e : τ, κ τ ≤ τ ′ κ ≤ κ′

Γ, pc,H ` e : τ ′, κ′
(sub)

Γ, pc,H ` e : τ, κ Γ[x 7→ τ], pc,H ` e′ : τ ′, κ′

Γ, pc,H ` let x = e in e′ : τ ′, κ] κ′
(let)

dom(H) = dom(H)
∀loc ∈ dom(H). ∅, ∅,H ` H(loc) : H(loc)

H ` H
(heap)

Figure 8. Fixed Point Type Rules

der the bigger program counter pc′, in order to account for
the indirect flow. The operational semantics, however, only
increases the program counter when executing the body of
the function. The result is that the typing is more conserva-
tive at this point, as all subexpressions of e are typed under
pc′. This approximation is necessary because we do not
know statically what the actual function will be at run-time.

3.3 Formal Properties of the Type System

We show that the type system produces a fixed-point
dependency cache, and therefore that any λdeps execution
starting using this cache will be dynamically noninterfer-
ing. The Subject Reduction Lemma 3.4 states that a typ-
ing remains valid after taking a single step in the computa-
tion, and furthermore, that the run-time dependency cache
remains unchanged by the computation. This assumes that
the cache created by the fixed-point typing is used as the
dependency cache during the reduction. Note that the pro-
gram counter of the typing, pc′, may be larger than that of
the program counter of the reduction, pc. This is a product
of the mismatch in the typing of function application via

(app), described above.

Lemma 3.4 (Subject Reduction). If Γ, pc′,H ` e :
τ, κ, and H ` H, and pc ⊆ pc′, and for some δ,(
κ, δ, pc,H, e

)
−→

(
κ′, δ′, pc,H′, e′

)
then there exists aH′

such that Γ, pc′,H′ ` e′ : τ, κ′, and H′ ` H′, and κ′ = κ.

Subject reduction yields the following theorem, stating
that the type system produces a fixed-point dependency
cache.

Theorem 3.5 (Typing Produces a Fixed Point Cache). If
Γ, pc,H ` e : τ, κ and H ` H, where free(e) = {xk} and
Γ = {xk 7→ (int, ∅)}, then κ is a fixed point of cache of pro-
gram point dependencies of expression e, given a program
counter pc and a heap H.

This implies the following corollary, establishing the
noninterference of the run-time system, using the fixed
point dependency cache created by the typing.

Corollary 3.6 (Dynamic Noninterference of Typ-
ing). If Γ, pc,H ` e : τ, κ and H ` H, where
free(e) = {xk} and Γ = {xk 7→ (int, ∅)}, and
e1 = e[〈ik, ∅,Lhigh〉/xk], e2 = e[〈i′k, ∅,Lhigh〉/xk],

11

(
κ, δ, pc,H, e1

)
−→n1

(
κ1, δ1, pc,H1, 〈i1,P1,L1〉

)
,(

κ, δ, pc,H, e2

)
−→n2

(
κ2, δ2, pc,H2, 〈i2,P2,L2〉

)
,

Lhigh 6v Llow, for some Llow, and seclevelκ1δ1 P1tL1 v Llow

then 〈i1,P1,L1〉 = 〈i2,P2,L2〉 and n1 = n2.

3.4 Traditional Static Noninterference

In this section we explore a tangent and show how ex-
tending the type system to include direct labels and a cache
of direct flows yields the traditional static noninterference
by direct subject reduction. In this context, types τ are of
the form (t, 〈P,L〉); H maps heap locations to types, in-
direct dependency caches, and caches of direct flows; and
the definitions of t, Γ, are the same as before. Typings are
Γ, pc,H ` e : τ, κ, δ, which produces a type of both in-
direct dependencies and direct labels, along with caches of
indirect dependencies and direct flows. The typing rules are
a straightforward extension of the fixed point typing rules
based on the operational semantics computation of direct
labels and the cache of direct flows, and can be found in
Appendix C. These type rules satisfy the following Subject
Reduction Lemma, whose proof is omitted, as it is analo-
gous to that of the fixed point type system.

Lemma 3.7 (Subject Reduction for Static Typing). If
Γ, pc′,H ` e : τ, κ, δ, and H ` H, and pc ⊆ pc′, and
(κ, δ, pc,H, e) −→ (κ′, δ′, pc,H′, e′), then there exists a
H′, such that Γ, pc′,H′ ` e′ : τ, κ′, δ′, and H′ ` H′, and
κ′ = κ, and δ′ = δ.

We can now formally state the traditional Static Nonin-
terference Theorem 3.8. It states that if an expression e has
a typing τ , such that the holes xk are typed high, and τ is
low (that is, the transitive closure of all of the security labels
due to both direct and indirect flows is a subset of Llow), then
substituting any integers in for the high holes will produce
the same low value, provided the computation terminates.

Theorem 3.8 (Traditional Static Noninterference). If
Γ, ∅, ∅ ` e : (int, 〈Pt,Lt〉), κ, δ, free(e) = {xk}, Γ =
{xk 7→ (int, 〈∅,Lhigh〉)}, Lhigh 6v Llow, seclevelκδ PttLt v
Llow, e1 = e[〈ik, ∅,Lhigh〉/xk], e2 = e[〈i′k, ∅,Lhigh〉/xk],(
κ, ∅, ∅, ∅, e1

)
−→n1

(
κ1, δ1, ∅,H1, 〈i1,P1,L1〉

)
, and(

κ, ∅, ∅, ∅, e2

)
−→n2

(
κ2, δ2, ∅,H2, 〈i2,P2,L2〉

)
, then

〈i1,P1,L1〉 = 〈i2,P2,L2〉.

Proof. Directly by Theorem 3.2 and Lemma 3.7.

4 Future work

Our approach of run-time dependency tracking yields
several potential avenues for future research. Our cur-
rent system is somewhat simplified for purposes of mak-
ing it more elegant, and a more practical version is

needed. Our current system re-uses program points
within function bodies. Consider for example let f =
(λx.ifp x then 3 else 4) in e. Suppose f (h)p′ is called and
it forces p to be high. Then, if f (l)p′′ is called in some
other context, the result must conservatively be high since
p was already fixed to be high. We plan to improve our
run-time system to include context-sensitivity in the style of
let-polymorphism, which will assign a new program point
at run-time based on the context, in this example ph and
pl in place of just p. Such an approach is sound, as it can
be viewed as inlining all uses of f in e with a renaming
of program points. The fixed point type system can also
be extended with context-sensitivity via let-polymorphism
to match such additional context-sensitivity in the run-time
system.

We also intend to add support for interactive IO channels,
including streams where the security policy is dynamically
varying, but this presents new challenges. Our current sys-
tem performs behavior alteration at the end of computation
by raising an error for high flows. With interactive IO, fur-
ther behavior alteration becomes necessary when an output
(or input) to a low channel occurs under a high guard, since
the low observer will detect a misalignment of the streams.
Le Guernic et al. partially address this issue by simply not
performing low outputs under high guards [18]. The dif-
ficulty arises in λdeps since some outputs may (insecurely)
occur in early runs when the dependencies are not yet re-
alized. However λdeps+ , with a full set of dependencies,
should be able to detect all low outputs under high guards
and alter the execution to not perform them. Le Guernic et
al. do not consider interactive inputs, which may also need
altering, thereby changing the execution into a possibly in-
consistent state. We believe this issue can be addressed by
faking the inconsistent execution for low inputs under high
guards, so the low observer will not be able to detect a leak.

We believe our dynamic dependency-monitoring tech-
nique can be extended to solve several orthogonal, yet re-
lated problems. One logical next step is to address dy-
namic policy changes, that is, allowing security levels to
change while a program is running, without introducing se-
curity leaks. A run-time system has great potential in this
regard, since the policies are immediately at-hand. De-
classification is a form of dynamic policy change, where
labels may change in the program via explicit operations
[26]. We believe declassification policies can be extended
to more dynamic forms, specifying whether information can
be declassified based on some run-time condition. For ex-
ample, a policy may state that the average balance of sev-
eral bank accounts may be declassified, provided the num-
ber of accounts is sufficiently large, e.g. if numAccts >
10 then Declassify(avgBal) else () is a dynamic declassi-
fication policy, and executions where numAccts > 10 will
be allowed, and others will not, assuming avgBal reaches

12

the output. We can also augment our run-time dependency
tracking mechanism to show exactly which data is being
declassified at run-time, and log the current information de-
pendencies on the data, which leaves a detailed audit trail
that can later be checked for accuracy.

Finally, we plan to explore how our analysis can be used
in other domains that require dependency tracking, such as
slicing, debugging, and optimization.

5 Related Work

A great deal of work has been done in the area of static
analysis of information flow security [29]; many works
show formal properties of static analyses (e.g. [34, 14]) and
others implement real systems [25, 28], Comparatively lit-
tle work exists on tracking information flows at run-time,
which has been considered impractical if not impossible
[29, 26, 9]. We discuss the relatively few systems that ad-
dress information flow security at run-time, then discuss
other works that do not provide run-time tracking, but ad-
dress other aspects of dynamic information flow security.

Le Guernic et al. describe a run-time monitoring system
for a simple sequential language with while-loops, condi-
tionals, and assignment [19]. They define a big-step oper-
ational semantics that tracks labels at run-time. To account
for indirect flows, they employ a static analysis at run-time
of whichever branch of the conditional is not executed. This
adds labels to any locations on the heap that may have been
changed, had the alternate branch been taken. They refine
this technique with an automaton that tracks indirect flows
[18]. This system includes output commands, and uses ad-
ditional behavior alteration, as discussed in Section 4. They
give a formal noninterference theorem for both systems.
This methodology is significantly different from ours, since
they employ a static analysis at run-time, and provide no
run-time dependency tracking. Further, their language does
not have functions or aliasing, and it is unclear if their tech-
nique would scale to such a general setting. In a related
vein, Li et al. describes an embedded information flow sub-
language of Haskell [21] that performs a static analysis of
the control flow graph at run-time. The language is purely
functional, and no formal properties are shown.

A few hybrid systems have been constructed that use a
run-time system to track only direct and executed indirect
flows, aided by a static analysis preprocessing phase that
inserts statements into the code to capture some of the in-
direct flows due to unexecuted commands [23, 22, 17, 33].
None of the static analyses for these systems are interpro-
cedural, and no security proofs are attempted. These tech-
niques require changes to the source code to account for
indirect flows, and they rely solely on the static analysis to
observe these flows, with no run-time dependency tracking
mechanism.

Several related works address limited dynamic aspects
of information flow, and rely on a static system to prove
they are sound. Myers et al. introduced dynamic security
labels, which are first class values, representing a label that
is unknown statically [26, 25]. These labels may be queried
at run-time via a conditional, allowing different code to be
executed based on a run-time label. They later describe a
static analysis that ensures dynamic labeling will not cause
leaks [39] and Tse et al. describe a closely-related system
[32]. Both systems require new syntax and annotations in
order to statically approximate run-time policies, and labels
are not computed or checked at run-time. Banerjee et al.
describe a related mechanism combining information flow
with dynamic access-control checks [2]. Other work has
focused on proving that dynamic information flow policy
changes can be made which are sound statically [39, 15,
31], and on downgrading of information flow labels with
explicit declassification operations [26, 4, 20, 6, 24].

Some recent work has added flow-sensitivity to static
analyses, resulting in greater precision [1, 16, 13]. Numer-
ous other works address dynamic security and information
flow-like properties. Some capture only direct flows [12, 7];
others work at the level of machine code or abstract mod-
els [10, 11, 30, 3, 5] of use the operating system for en-
forcement [36, 38, 37]. These techniques and results are
significantly different from ours, and generally do not fully
address indirect flows due to unexecuted code.

6 Conclusion

We have presented a system that soundly tracks infor-
mation flows at run-time, observing both direct and indirect
flows. We offer two methodologies of usage: either depen-
dencies may be generated completely dynamically, which
may in some cases detect leaks after and not before they oc-
cur, or the run-time system may be augmented with a stati-
cally computed fixed point of dependencies, ensuring illicit
flows will always be caught before they occur.

This paper makes the following specific contributions.
Our system is less conservative than static analyses, by
rejecting only insecure executions instead of entire pro-
grams, and providing additional accuracy via flow- and
path-sensitivity. We utilize dynamically defined policies,
allowing the data itself to contain the policy, as reflected
in our labeled semantics. Hence, the user or system ad-
ministrator defines the policy instead of the programmer,
and different policies may be specified for the same pro-
gram in different contexts, with no changes. We give a
new form of noninterference theorem that proves the sound-
ness of run-time executions via a direct bisimulation argu-
ment. We use a notion of mixed-step semantics, a hybrid
of big- and small-step semantics, which elegantly encapsu-
lates high subcomputations and simplifies the bisimulation

13

proof. The bisimulation lemma together with a subject re-
duction lemma is shown sufficient to prove noninterference
of a static type system.

Acknowledgments We thank the anonymous referees for
their valuable comments and feedback.

References

[1] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for
information flow in object-oriented programs. In POPL’06:
the 33rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 2006.

[2] A. Banerjee and D. Naumann. Using access control for se-
cure information flow in a Java-like language. In CSFW’03:
IEEE Computer Security Foundations Workshop, 2003.

[3] Y. Beres and C. I. Dalton. Dynamic label binding at run-
time. In NSPW’03: Workshop on New Security Paradigms,
2003.

[4] N. Broberg and D. Sands. Flow locks: Towards a core cal-
culus for dynamic flow policies. In ESOP’06: the 15th Eu-
ropean Symposium on Programming, 2006.

[5] J. Brown and T. Knight, Jr. A minimal trusted comput-
ing base for dynamically ensuring secure information flow.
Technical report, MIT, November 2001.

[6] S. Chong and A. C. Myers. Security policies for downgrad-
ing. In CCS’04: the 11th ACM Conference on Computer
and Communications Security, 2004.

[7] T. Christiansen, J. Orwant, and L. Wall. Programming Perl.
O’Reilly, 3rd edition, July 2000.

[8] D. E. Denning. A lattice model of secure information flow.
Communications of ACM, 19(5):236–243, 1976.

[9] D. E. R. Denning. Cryptography and Data Security.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1982.

[10] J. S. Fenton. Memoryless subsystems. Computer Journal,
17(2):143–147, 1974.

[11] I. Gat and H. J. Saal. Memoryless execution: A pro-
grammer’s viewpoint. Software Practice and Experience,
6(4):463–471, Oct-Dec 1976.

[12] V. Haldar, D. Chandra, and M. Franz. Practical, dynamic
information flow for virtual machines. In PLID’05: the 2nd
International Workshop on Programming Language Inter-
ference and Dependence, 2005.

[13] C. Hammer, J. Krinke, and G. Snelting. Information flow
control for java based on path conditions in dependence
graphs. In IEEE International Symposium on Secure Soft-
ware Engineering, 2006.

[14] N. Heintze and J. G. Riecke. The SLam calculus: Pro-
gramming with secrecy and integrity. In POPL’98: the 25th
ACM Symposium on Principles of Programming Languages,
1998.

[15] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic. Dynamic
updating of information-flow policies. In FCS’05: Founda-
tions of Computer Security Workshop, 2005.

[16] S. Hunt and D. Sands. On flow-sensitive security types. In
POPL’06: the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2006.

[17] L. C. Lam and T. Chiueh. A general dynamic information
flow tracking framework for security applications. In AC-
SAC’06: 22nd Annual Computer Security Applications Con-
ference, 2006.

[18] G. Le Guernic, A. Banerjee, T. Jensen, and D. A. Schmidt.
Automata-based confidentiality monitoring. In ASIAN’06:
the 11th Asian Computing Science Conference on Secure
Software, 2006.

[19] G. Le Guernic and T. Jensen. Monitoring information flow.
In FCS’05: Workshop on Foundations of Computer Security,
2005.

[20] P. Li and S. Zdancewic. Downgrading policies and relaxed
noninterference. In POPL’05: the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, 2005.

[21] P. Li and S. Zdancewic. Encoding information flow in
haskell. In CSFW’06: the 19th IEEE Computer Security
Foundations Workshop, 2006.

[22] W. Masri and A. Podgurski. Using dynamic information
flow analysis to detect attacks against applications. In
SESS’05: Workshop on Software engineering for Secure
Systems-building trustworthy applications, 2005.

[23] W. Masri, A. Podgurski, and D. Leon. Detecting and de-
bugging insecure information flows. In ISSRE’04: the 15th
International Symposium on Software Reliability Engineer-
ing, 2004.

[24] A. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing ro-
bust declassification. In CSFW’04: IEEE Computer Security
Foundations Workshop, 2004.

[25] A. C. Myers. JFlow: Practical mostly-static information
flow control. In POPL’99: ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, 1999.

[26] A. C. Myers and B. Liskov. A decentralized model for infor-
mation flow control. In SOSP’97: Symposium on Operating
Systems Principles, 1997.

[27] E. Nuutila. Efficient transitive closure computation in large
digraphs. Acta Polytechnica Scandinavia: Math. Comput.
Eng., 74:1–124, 1995.

[28] F. Pottier and V. Simonet. Information flow inference for
ML. In POPL’02: the 29th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, 2002.

[29] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE Jounal on Selected Areas in Communi-
cations, 2003.

[30] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure
program execution via dynamic information flow tracking.
In ASPLOS’04: International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, 2004.

[31] N. Swamy, M. Hicks, S. Tse, and S. Zdancewic. Managing
policy updates in security-typed languages. In CSFW’06:
the 19th IEEE Computer Security Foundations Workshop,
2006.

[32] S. Tse and S. Zdancewic. Run-time principals in
information-flow type systems. In IEEE Symposium on Se-
curity and Privacy, 2004.

[33] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ot-
toni, J. A. Blome, G. A. Reis, M. Vachharajani, and D. I.
August. RIFLE: An architectural framework for user-centric

14

information-flow security. In MICRO’04: International
Symposium on Microarchitecture, 2004.

[34] D. Volpano, G. Smith, and C. Irvine. A sound type sys-
tem for secure flow analysis. Journal of Computer Security,
4(3):167–187, Dec. 1996.

[35] S. Warshall. A theorem on boolean matrices. Journal of the
ACM, 9(1):11–12, 1962.

[36] C. Weissman. Security controls in the adept-50 time-sharing
system. In AFIPS Fall Joint Computer Conference, 1969.

[37] J. P. L. Woodward. Exploiting the dual nature of sensitivity
labels. In IEEE Symposium on Security and Privacy, 1987.

[38] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pier-
son, and F. Pollack. Hydra: the kernel of a multiprocessor
operating system. Communications of ACM, 17(6):337–345,
1974.

[39] L. Zheng and A. C. Myers. Dynamic security labels and
noninterference. In FAST’04: Workshop on Formal Aspects
in Security and Trust, 2004.

A Proofs for Formal Properties of λdeps

Lemma A.1 (Monotonicity of the Caches). If
(κ, δ, pc,H, e) −→n (κn, δn, pc,Hn, en), for any n,
then κ ≤ κn and δ ≤ δn.

Proof. By induction on the derivation given the semantics
rules in Figure 6.

Lemma A.2 (Properties of seclevelκδ P).
1. (Monotonicity). If κ ≤ κ′ and δ ≤ δ′ then

seclevelκδ P v seclevelκ
′δ′

P, for any P.

2. If seclevelκδ P 6v L, κ ≤ κ′ and δ ≤ δ′ then
seclevelκ

′δ′
P 6v L.

Proof. Directly by definition of seclevelκδ P.

Definition A.3 (Addendum to Bisimulation Relation).

1. (Sets of Program Points). (δ1,P1) ∼=κ
L (δ2,P2)

iff δ1
∼=κ

L δ2 and either, P1 = P2 or
seclevelκδ1 P1, seclevelκδ2 P2 6v L.

2. (Sets of Security Labels). L1
∼=L L2 iff either L1 = L2

or L1,L2 6v L.

We write ‘seclevelκδ p’ as shorthand for ‘seclevelκδ {p}’.

Lemma A.4 (Properties of Bisimulation Relation).
1. (Reflexivity). All bisimulation relations are reflexive.

2. (Labeled Values).

(a) If
(
δ1, 〈v1,P1,L1〉

) ∼=κµ
L

(
δ2, 〈v2,P2,L2〉

)
then

(δ1,P1) ∼=κ
L (δ2,P2) and L1

∼=L L2.
(b) If

(
δ1, 〈v1,P1,L1〉

) ∼=κµ
L

(
δ2, 〈v2,P2,L2〉

)
then(

δ1, 〈v1,P1,L1〉
)
∼κµ

L

(
δ2, 〈v2,P2,L2〉

)
.

(c) (Weakenings).

i. If
(
δ1, 〈v1,P,L1〉

) ∼=κµ
L

(
δ2, 〈v2,P,L2〉

)
and

P ⊆ κ(P′)+ then
(
δ1, 〈v1,P′,L1〉

) ∼=κµ
L(

δ2, 〈v2,P′,L2〉
)
.

ii. If
(
δ1, 〈v1,P1,L1〉

) ∼=κµ
L

(
δ2, 〈v2,P2,L2〉

)
,

(δ1,P′
1) ∼=κ

L (δ2,P′
2), L′

1,L
′
2 v L and L′

1 =
L′

2 then
(
δ1, 〈v1,P1 ∪ P′

1,L1 ∪ L′
1〉

) ∼=κµ
L(

δ2, 〈v2,P2 ∪ P′
2,L2 ∪ L′

2〉
)
.

(d) (“High” Dependency). If
seclevelκδ1 p, seclevelκδ2 p 6v L and δ1

∼=κ
L δ2

then
(
δ1, 〈v1,P1 ∪ {p},L1〉

) ∼=κµ
L

(
δ2, 〈v2,P2 ∪

{p},L2〉
)
, for any v1, v2, P1, P2, L1 and L2.

3. (Strengthening of Cache of Dependencies).

(a) If δ1
∼=κ

L δ2 and κ ≤ κ′ then δ1
∼=κ′

L δ2.
(b) If (δ1,P1) ∼=κµ

L (δ2,P2) and κ ≤ κ′ then
(δ1,P1) ∼=κ′µ

L (δ2,P2).
(c) If (δ1, v1) ∼=κµ

L (δ2, v2) and κ ≤ κ′ then
(δ1, v1) ∼=κ′µ

L (δ2, v2).
(d) If (δ1, e1) ∼=κµ

L (δ2, e2) and κ ≤ κ′ then
(δ1, e1) ∼=κ′µ

L (δ2, e2).
(e) If (δ1,H1) ∼κµ

L (δ2,H2) and κ ≤ κ′ then
(δ1,H1) ∼κ′µ

L (δ2,H2).
(f) If (δ1,H1, e1) ∼=κµ

L (δ2,H2, e2) and κ ≤ κ′ then
(δ1,H1, e1) ∼=κ′µ

L (δ2,H2, e2).

4. (Strengthening of Cache of Direct Flows).

(a) (w/ Same Labels). If (δ1,H1, e1) ∼=κµ
L (δ2,H2, e2)

then (δ1] {p 7→ L′},H1, e1) ∼=κµ
L (δ2] {p 7→

L′},H2, e2), for any p and L′.
(b) (w/ “High” Labels). If (δ1,H1, e1) ∼=κµ

L

(δ2,H2, e2) and L1,L2 6v L then (δ1] {p 7→
L1},H1, e1) ∼=κµ

L (δ2] {p 7→ L2},H2, e2), for any
p.

(c) (“High” Program Point). If (δ1,H1, e1) ∼=κµ
L

(δ2,H2, e2) and seclevelκδ1 p, seclevelκδ2 p 6v L
then (δ1] {p 7→ L1},H1, e1) ∼=κµ

L (δ2] {p 7→
L2},H2, e2), for any L1 and L2.

5. (Heap Extension). If (δ1,H1) ∼κµ
L (δ2,H2) and loc 6∈

dom(H2) then (δ1,H1) ∼κµ
L (δ2,H2 ∪ {loc 7→ σ}), for

any σ.

6. (Heap Update w/ “Indirectly High”
Value). If (δ1,H1) ∼κµ

L (δ2,H2) and
seclevelκδ1 P, seclevelκδ2 P 6v L then (δ1,H1) ∼κµ

L

(δ2,H2[loc 7→ 〈v,P,L′〉]), for any loc, v and L′.

7. (CONTEXT). If (δ1,R1[e1]) ∼=κµ
L (δ2,R2[e2]), δ1 ≤ δ′1,

δ2 ≤ δ′2, κ ≤ κ′, µ ⊆ µ′ and (δ′1, e
′
1) ∼=

κ′µ′

L (δ′2, e
′
2)

then
(
δ′1,R1[e′1]

) ∼=κ′µ′

L

(
δ′2,R2[e′2]

)
.

Proof. 1. (Reflexivity). Directly by Definition 2.1.

2. (Labeled Values).

15

(a) Directly by Definition 2.1[3b] and Definition A.3.
(b) Directly by Definition 2.1[3b,4a].
(c) (Weakenings).

i. Directly by Definition 2.1[3b].
ii. Directly by Definition 2.1[3b] and Definition A.3.

(d) (“High” Dependency). Directly by Lemma A.2[2]
and Definition 2.1[3(b)ii].

3. (Strengthening of Cache of Dependencies). Directly by
Definitions 2.1 and A.3.

4. (Strengthening of Cache of Direct Flows). By induction
on the structure of expressions e1 and e2 given Defini-
tion 2.1.

5. (Heap Extension). Directly by Definition 2.1[4b].

6. (Heap Update w/ “Indirectly High” Value). Directly by
Definition 2.1[4b, 4a, 3(b)ii] and Lemma A.2[2].

7. (CONTEXT). Directly by Definition 2.1.

Lemma A.5 (Heap Updates under “High” Program
Counter).
1. (1-step). If (κ2, δ2, pc,H2, e2) −→

(κ′2, δ
′
2, pc,H′

2, e
′
2), κ′2 ≤ κ, (δ1,H1) ∼κµ

L (δ2,H2),
seclevelκδ1 pc, seclevelκδ2 pc 6v L then (δ1,H1) ∼κµ

L

(δ′2,H
′
2).

2. (n-step). If (κ1, δ1, pc,H1, e1) −→n1

(κ′1, δ
′
1, pc,H′

1, e
′
1), (κ2, δ2, pc,H2, e2) −→n2

(κ′2, δ
′
2, pc,H′

2, e
′
2), κ′1 ≤ κ2, (δ1,H1) ∼κ2µ

L (δ2,H2),
seclevelκ2δ1 pc, seclevelκ2δ2 pc 6v L then
(δ′1,H

′
1) ∼

κ′
2µ

L (δ′2,H
′
2).

Proof. 1. (1-step). The proof follows by induc-
tion on the derivation of (κ2, δ2, pc,H2, e2) −→
(κ′2, δ

′
2, pc,H′

2, e
′
2). Following are the possible seman-

tics rules at the root of the above derivation:

(a) BINOP. Direct because (δ′2,H
′
2) = (δ2,H2).

(b) IF. Let e2 = ifp 〈b2,P2,L2〉 then e
T

else e
F

. With-
out loss in generality, let us assume b2 = true. As
per IF (κ2, δ2, pc,H2, e2) −→ (κ′2, δ

′
2, pc,H′

2, e
′
2)

where e′2 = 〈v′2,P′
2 ∪ {p},L′

2〉, κ2T
= κ2]

{p 7→ pc ∪ P2}, δ2T
= δ2] {p 7→ L2},

pc′ = pc ∪ {p} and (κ2T
, δ2T

, pc′,H2, eT
) −→n

T

(κ′2, δ
′
2, pc′,H′

2, 〈v′2,P′
2,L

′
2〉). By hypothesis and

Lemma A.1 κ2T
≤ κ′2 ≤ κ, hence pc ⊆ κ(p);

then by definition seclevelκδ1 p, seclevelκδ2 p 6v L.
By Lemma A.4[4c] (δ1,H1) ∼κµ

L (δ2T
,H2). Now

applying the induction hypothesis n
T

times to the
above computation we get (δ1,H1) ∼κµ

L (δ′2,H
′
2).

(c) APP. This case is similar to the IF case above.
Let e2 = 〈λx2. e2body ,P2,L2〉 (σ2)p. As per APP

(κ2, δ2, pc,H2, e2) −→
(
κ′2, δ

′
2, pc,H′

2, e
′
2

)

where e′2 = 〈v′2,P′
2 ∪ {p},L′

2〉, κ2body =
κ2] {p 7→ pc ∪ P2}, δ2body = δ2] {p 7→ L2},
pc

body
= pc ∪ {p}, e′2body

= e2body [σ2/x2]
and

(
κ2body , δ2body , pc

body
,H2, e

′
2body

)
−→n2(

κ′2, δ
′
2, pc

body
,H′

2, 〈v′2,P′
2,L

′
2〉

)
, for some

n2. By hypothesis and Lemma A.1
κ2body ≤ κ′2 ≤ κ, hence pc ⊆ κ(p); then by
definition seclevelκδ1 p, seclevelκδ2 p 6v L. By
Lemma A.4[4c] (δ1,H1) ∼κµ

L (δ2body ,H2). Now
applying the induction hypothesis n2 times to the
above computation we get (δ1,H1) ∼κµ

L (δ′2,H
′
2).

(d) REF. Let e2 = ref σ2. As per REF let
(κ2, δ2, pc,H2, e2) −→ (κ2, δ2, pc,H′

2, e
′
2) where

H′
2 = H2 ∪ {loc2 7→ σ2}, loc2 is a fresh heap loca-

tion, that is, loc2 6∈ dom(H2), and e′2 = 〈loc2, ∅,⊥〉.
Directly by Lemma A.4[5] (δ1,H1) ∼κµ

L (δ2,H′
2).

(e) DEREF. Direct because (δ′2,H
′
2) = (δ2,H2).

(f) SET. Let e2 = 〈loc2,Ploc2 ,Lloc2〉 :=
〈v2,Pv2 ,Lv2〉. As per SET (κ2, δ2, pc,H2, e2) −→
(κ2, δ2, pc,H′

2, e
′
2) where H′

2 = H2[loc2 7→
〈v2,P′

2,L
′
2〉], P′

2 = pc ∪ Ploc2 ∪ Pv2 , L′
2 =

Lloc2 t Lv2 and e′2 = 〈v2,Pv2 ,Lv2〉. Now
pc ⊆ P′

2, hence by hypothesis and definition
seclevelκδ1 P′

2, seclevelκδ2 P′
2 6v L; then directly by

Lemma A.4[6] (δ1,H1) ∼κµ
L (δ2,H′

2).
(g) LET. Direct because (δ′2,H

′
2) = (δ2,H2).

(h) CONTEXT. Let e2 = R2[e2sub]. As per CONTEXT
let (κ2, δ2, pc,H2, e2sub) −→ (κ′2, δ

′
2, pc,H′

2, e
′
2sub

).
Directly by induction hypothesis (δ1,H1) ∼κµ

L

(δ′2,H
′
2).

2. (n-step). By hypothesis and Lemma A.1 κ1 ≤ κ′1 ≤
κ2 ≤ κ′2, and then by Lemma A.4[3e] (δ1,H1) ∼

κ′
2µ

L

(δ2,H2). Also by hypothesis and Lemma A.2[2]
seclevelκ

′
2δ1 pc, seclevelκ

′
2δ2 pc 6v L. Now applying

Lemma A.5[1] n2 times we get (δ1,H1) ∼
κ′
2µ

L (δ′2,H
′
2),

or by reflexivity (Lemma A.4[1]) (δ′2,H
′
2) ∼κ′

2µ
L

(δ1,H1). Again applying Lemma A.5[1] n1 times
we get (δ′2,H

′
2) ∼κ′

2µ
L (δ′1,H

′
1), or by reflexivity

(Lemma A.4[1]) (δ′1,H
′
1) ∼

κ′
2µ

L (δ′2,H
′
2).

Lemma A.6 (Bisimulation: 1-step). If(
κ1, δ1, pc,H1, e1

)
−→

(
κ′1, δ

′
1, pc,H′

1, e
′
1

)
,(

κ2, δ2, pc,H2, e2

)
−→

(
κ′2, δ

′
2, pc,H′

2, e
′
2

)
,

κ′1 ≤ κ2 and (δ1,H1, e1) ∼=κ2µ
L (δ2,H2, e2) then

∃µ′ ⊇ µ. (δ′1,H
′
1, e

′
1) ∼=

κ′
2µ′

L (δ′2,H
′
2, e

′
2).

Proof. By hypothesis and Lemma A.1 κ1 ≤ κ′1 ≤
κ2 ≤ κ′2. The proof follows by induction on the deriva-
tions of

(
κ1, δ1, pc,H1, e1

)
−→

(
κ′1, δ

′
1, pc,H′

1, e
′
1

)
and

16

(
κ2, δ2, pc,H2, e2

)
−→

(
κ′2, δ

′
2, pc,H′

2, e
′
2

)
. As per Defi-

nition 2.1[5,3] expressions e1 and e2 have the same outer-
most structure; hence the above derivations must have the
same semantics rule at their roots. Following are the possi-
ble cases:
1. BINOP. Let e1 = 〈i1,P1,L1〉 ⊕ 〈i′1,P′

1,L
′
1〉

and e2 = 〈i2,P2,L2〉 ⊕ 〈i′2,P′
2,L

′
2〉. As per

BINOP (κ1, δ1, pc,H1, e1) −→
(
κ1, δ1, pc,H1, e

′
1

)
and

(κ2, δ2, pc,H2, e2) −→
(
κ2, δ2, pc,H2, e

′
2

)
, where

e′1 = 〈v1,P1∪P′
1,L1tL′

1〉, e′2 = 〈v2,P2∪P′
2,L2tL′

2〉,
i1⊕i′1 = v1 and i2⊕i′2 = v2. Directly by hypothesis and
Definition 2.1[3c,3b], noting that v1 and v2 are either in-
tegral or boolean,

(
δ1,H1, e

′
1

) ∼=κ2µ
L

(
δ2,H2, e

′
2

)
.

2. IF. Given Definition 2.1[3e] let e1 =
ifp 〈b1,P1,L1〉 then e1T

else e1F
and e2 =

ifp 〈b2,P2,L2〉 then e2T
else e2F

. As per IF let
(κ1, δ1, pc,H1, e1) −→

(
κ′1, δ

′
1, pc,H′

1, e
′
1

)
and

(κ2, δ2, pc,H2, e2) −→
(
κ′2, δ

′
2, pc,H′

2, e
′
2

)
where

e′1 = 〈v′1,P′
1∪{p},L′

1〉 and e′2 = 〈v′2,P′
2∪{p},L′

2〉. Let
κ1TF = κ1]{p 7→ pc∪P1}, κ2TF = κ2]{p 7→ pc∪P2},
δ1TF = δ1] {p 7→ L1}, δ2TF = δ2] {p 7→ L2} and
pc

TF
= pc ∪ {p}. By hypothesis and Lemma A.1

κ1 ≤ κ1TF ≤ κ′1 ≤ κ2 ≤ κ2TF ≤ κ′2. As per
Definition 2.1[3b] there are two possible cases:

(a) P1 = P2 and seclevelκ2δ1 P1, seclevelκ2δ2 P2 v
L. Again there are two possible cases by Defini-
tion 2.1[3(b)i],
i. L1,L2 v L, L1 = L2 and (δ1, b1) ∼=κ2µ

L (δ2, b2).
By Definition 2.1[2a] b1 = b2. Without loss
in generality, let us assume b1 = b2 = true.
As per IF (κ1TF , δ1TF , pc

TF
,H1, e1T

) −→n1(
κ′1, δ

′
1, pc

TF
,H′

1, 〈v′1,P′
1,L

′
1〉

)
and

(κ2TF , δ2TF , pc
TF

,H2, e2T
) −→n2(

κ′2, δ
′
2, pc

TF
,H′

2, 〈v′2,P′
2,L

′
2〉

)
, for some

n1 and n2. By hypothesis, Defini-
tion 2.1[5,3e] and Lemmas A.4[4a,3f]
(δ1TF ,H1, e1T

) ∼=κ2TF µ

L (δ2TF ,H2, e2T
). Then

applying the induction hypothesis n1 times,
we get n1 = n2 and that there exists a
µ′ ⊇ µ such that

(
δ′1,H

′
1, 〈v′1,P′

1,L
′
1〉

) ∼=κ′
2µ′

L(
δ′2,H

′
2, 〈v′2,P′

2,L
′
2〉

)
. Directly by Defini-

tion A.3[1] (δ′1, {p}) ∼=κ′
2µ′

L (δ′2, {p}); hence
by Lemma A.4[2(c)ii]

(
δ′1,H

′
1, 〈v′1,P′

1 ∪
{p},L′

1〉
) ∼=κ′

2µ′

L

(
δ′2,H

′
2, 〈v′2,P′

2 ∪ {p},L′
2〉

)
,

that is,
(
δ′1,H

′
1, e

′
1

) ∼=κ′
2µ′

L

(
δ′2,H

′
2, e

′
2

)
.

ii. L1,L2 6v L. Without loss in generality let
us assume b1 = true and b2 = false. Hence
as per IF (κ1TF , δ1TF , pc

TF
,H1, e1T

) −→n1(
κ′1, δ

′
1, pc

TF
,H′

1, 〈v′1,P′
1,L

′
1〉

)
and

(κ2TF , δ2TF , pc
TF

,H2, e2F
) −→n2(

κ′2, δ
′
2, pc

TF
,H′

2, 〈v′2,P′
2,L

′
2〉

)
, for some

n1 and n2. By hypothesis and Defini-
tion 2.1[5] (δ1,H1) ∼κ2µ

L (δ2,H2); by
Lemma A.4[4b] (δ1TF ,H1) ∼κ2µ

L (δ2TF ,H2);
by Lemma A.4[3e] (δ1TF ,H1) ∼

κ2TF µ

L (δ2TF ,H2).
Now by hypothesis and Lemma A.2[2]
seclevelκ2TF δ1TF pc

TF
, seclevelκ2TF δ2TF pc

TF
6v L.

Then directly by Lemma A.5[2] (δ′1,H
′
1) ∼κ′

2µ
L

(δ′2,H
′
2); and consequently by Definition 2.1[4b]

δ′1
∼=κ′

2µ
L δ′2. By hypothesis and definition

seclevelκ2TF δ1TF p, seclevelκ2TF δ2TF p 6v L.
Note by Lemma A.1 δ1TF ≤ δ′1 and
δ2TF ≤ δ′2; hence by Lemma A.2[2]
seclevelκ

′
2δ′

1 p, seclevelκ
′
2δ′

2 p 6v L. Then by
Lemma A.4[2d] (δ′1, e

′
1) ∼=

κ′
2µ

L (δ′2, e
′
2); and by

Lemma 2.1[5] (δ′1,H
′
1, e

′
1) ∼=

κ′
2µ

L (δ′2,H
′
2, e

′
2).

(b) seclevelκ2δ1 P1, seclevelκ2δ2 P2 6v L. This subcase
is similar to the subcase 2(a)ii above. Without loss
in generality let us assume b1 = true and b2 = false.
Hence as per IF (κ1TF , δ1TF , pc

TF
,H1, e1T

) −→n1(
κ′1, δ

′
1, pc

TF
,H′

1, 〈v′1,P′
1,L

′
1〉

)
and

(κ2TF , δ2TF , pc
TF

,H2, e2F
) −→n2(

κ′2, δ
′
2, pc

TF
,H′

2, 〈v′2,P′
2,L

′
2〉

)
, for some n1

and n2. By hypothesis and Lemma A.2[2]
seclevelκ2TF δ1 p, seclevelκ2TF δ2 p 6v L. By hypoth-
esis and Definition 2.1[5] (δ1,H1) ∼κ2µ

L (δ2,H2);
by Lemma A.4[3e] (δ1,H1) ∼κ2TF µ

L (δ2,H2);
and by Lemma A.4[4c] (δ1TF ,H1) ∼κ2TF µ

L

(δ2TF ,H2). By hypothesis and Lemma A.2[2]
seclevelκ2TF δ1TF pc

TF
, seclevelκ2TF δ2TF pc

TF
6v L.

Then directly by Lemma A.5[2] (δ′1,H
′
1) ∼κ′

2µ
L

(δ′2,H
′
2); and consequently by Definition 2.1[4b]

δ′1
∼=κ′

2µ
L δ′2. Note by Lemma A.1 δ1TF ≤ δ′1

and δ2TF ≤ δ′2; hence by Lemma A.2[2]
seclevelκ

′
2δ′

1 p, seclevelκ
′
2δ′

2 p 6v L. Then by
Lemma A.4[2d] (δ′1, e

′
1) ∼=κ′

2µ
L (δ′2, e

′
2); and by

Lemma 2.1[5] (δ′1,H
′
1, e

′
1) ∼=

κ′
2µ

L (δ′2,H
′
2, e

′
2).

3. APP. This case is similar to the IF case above. Given
Definition 2.1[3f] let e1 = 〈λx1. e1body ,P1,L1〉 (σ1)p
and e2 = 〈λx2. e2body ,P2,L2〉 (σ2)p. As per APP

let (κ1, δ1, pc,H1, e1) −→
(
κ′1, δ

′
1, pc,H′

1, e
′
1

)
and

(κ2, δ2, pc,H2, e2) −→
(
κ′2, δ

′
2, pc,H′

2, e
′
2

)
where

e′1 = 〈v′1,P′
1 ∪ {p},L′

1〉 and e′2 = 〈v′2,P′
2 ∪ {p},L′

2〉.
Let κ1body = κ1] {p 7→ pc ∪ P1}, κ2body =
κ2] {p 7→ pc ∪ P2}, δ1body = δ1] {p 7→ L1},
δ2body = δ2] {p 7→ L2}, pc

body
= pc ∪ {p},

e′1body
= e1body [σ1/x1], e′2body

= e2body [σ2/x2]
and,

(
κ1body , δ1body , pc

body
,H1, e

′
1body

)
−→n1(

κ′1, δ
′
1, pc

body
,H′

1, 〈v′1,P′
1,L

′
1〉

)
and(

κ2body , δ2body , pc
body

,H2, e
′
2body

)
−→n2

17

(
κ′2, δ

′
2, pc

body
,H′

2, 〈v′2,P′
2,L

′
2〉

)
, for some n1

and n2. By hypothesis and Lemma A.1
κ1 ≤ κ1body ≤ κ′1 ≤ κ2 ≤ κ2body ≤ κ′2. As per
Definition 2.1[3b] there are two possible cases:

(a) P1 = P2 and seclevelκ2δ1 P1, seclevelκ2δ2 P2 v
L. Again there are two possible cases by Defini-
tion 2.1[3(b)i],

i. L1,L2 v L, L1 = L2 and
(
δ1, λx1. e1body

) ∼=κ2µ
L(

δ2, λx2. e2body

)
. By Definition 2.1[2c] x1 = x2

and
(
δ1, e1body

) ∼=κ2µ
L

(
δ2, e2body

)
. By hypoth-

esis, Definition 2.1 and Lemmas A.4[4a,3f](
δ1body ,H1, e

′
1body

) ∼=
κ2body µ

L

(
δ2body ,H2, e

′
2body

)
.

Then applying the induction hypothesis n1

times, we get n1 = n2 and that there exists a
µ′ ⊇ µ such that

(
δ′1,H

′
1, 〈v′1,P′

1,L
′
1〉

) ∼=κ′
2µ′

L(
δ′2,H

′
2, 〈v′2,P′

2,L
′
2〉

)
. Directly by Defini-

tion A.3[1] (δ′1, {p}) ∼=κ′
2µ′

L (δ′2, {p}); hence
by Lemma A.4[2(c)ii]

(
δ′1,H

′
1, 〈v′1,P′

1 ∪
{p},L′

1〉
) ∼=κ′

2µ′

L

(
δ′2,H

′
2, 〈v′2,P′

2 ∪ {p},L′
2〉

)
,

that is,
(
δ′1,H

′
1, e

′
1

) ∼=κ′
2µ′

L

(
δ′2,H

′
2, e

′
2

)
.

ii. L1,L2 6v L. By hypothesis and Defini-
tion 2.1[5] (δ1,H1) ∼κ2µ

L (δ2,H2); by
Lemma A.4[4b] (δ1body ,H1) ∼κ2µ

L (δ2body ,H2); by
Lemma A.4[3e] (δ1body ,H1) ∼

κ2body µ

L (δ2body ,H2).
Now by hypothesis and Lemma A.2[2]
seclevelκ2body δ1body pc

body
, seclevelκ2body δ2body pc

body
6v

L. Then directly by Lemma A.5[2] (δ′1,H
′
1) ∼

κ′
2µ

L

(δ′2,H
′
2); and consequently by Definition 2.1[4b]

δ′1
∼=κ′

2µ
L δ′2. By hypothesis and definition

seclevelκ2body δ1body p, seclevelκ2body δ2body p 6v L.
Note by Lemma A.1 δ1body ≤ δ′1 and
δ2body ≤ δ′2; hence by Lemma A.2[2]
seclevelκ

′
2δ′

1 p, seclevelκ
′
2δ′

2 p 6v L. Then by
Lemma A.4[2d] (δ′1, e

′
1) ∼=

κ′
2µ

L (δ′2, e
′
2); and by

Lemma 2.1[5] (δ′1,H
′
1, e

′
1) ∼=

κ′
2µ

L (δ′2,H
′
2, e

′
2).

(b) seclevelκ2δ1 P1, seclevelκ2δ2 P2 6v L. This
subcase is similar to the subcase 3(a)ii
above. By hypothesis and Lemma A.2[2]
seclevelκ2body δ1 p, seclevelκ2body δ2 p 6v L. By hypoth-
esis and Definition 2.1[5] (δ1,H1) ∼κ2µ

L (δ2,H2);
by Lemma A.4[3e] (δ1,H1) ∼

κ2body µ

L (δ2,H2);
and by Lemma A.4[4c] (δ1body ,H1) ∼

κ2body µ

L

(δ2body ,H2). By hypothesis and Lemma A.2[2]
seclevelκ2body δ1body pc

body
, seclevelκ2body δ2body pc

body
6v

L. Then directly by Lemma A.5[2]
(δ′1,H

′
1) ∼κ′

2µ
L (δ′2,H

′
2); and consequently by

Definition 2.1[4b] δ′1
∼=κ′

2µ
L δ′2. Note by Lemma A.1

δ1body ≤ δ′1 and δ2body ≤ δ′2; hence by Lemma A.2[2]

seclevelκ
′
2δ′

1 p, seclevelκ
′
2δ′

2 p 6v L. Then by
Lemma A.4[2d] (δ′1, e

′
1) ∼=κ′

2µ
L (δ′2, e

′
2); and by

Lemma 2.1[5] (δ′1,H
′
1, e

′
1) ∼=

κ′
2µ

L (δ′2,H
′
2, e

′
2).

4. REF. Let e1 = ref σ1 and e2 = ref σ2. As
per REF let (κ1, δ1, pc,H1, e1) −→ (κ1, δ1, pc,H′

1, e
′
1)

and (κ2, δ2, pc,H2, e2) −→ (κ2, δ2, pc,H′
2, e

′
2), where

H′
1 = H1 ∪ {loc1 7→ σ1}, H′

2 = H2 ∪
{loc2 7→ σ2} such that loc1 and loc2 are fresh heap
locations, that is, loc1 6= loc2 and loc1, loc2 6∈
dom(H1) ∪ dom(H2), and, e′1 = 〈loc1, ∅,⊥〉 and e′2 =
〈loc2, ∅,⊥〉. Let µ′ = µ ∪ {loc1 7→ loc2, loc2 7→
loc1}. By hypothesis, Definition 2.1[3g,4b] and
Lemma A.4[2b] (δ1,H′

1) ∼
κ2µ′

L (δ2,H′
2), and by Def-

inition 2.1[3(b)iA,2b] (δ1, e
′
1) ∼=

κ2µ′

L (δ2, e
′
2). Finally

by Definition 2.1[5] (δ1,H′
1, e

′
1) ∼=

κ2µ′

L (δ2,H′
2, e

′
2).

5. DEREF. Given Definition 2.1[3h] let e1 =
derefp 〈loc1,P1,L1〉 and e2 = derefp 〈loc2,P2,L2〉.
As per DEREF let (κ1, δ1, pc,H1, e1) −→
(κ′1, δ1, pc,H1, e

′
1) and (κ2, δ2, pc,H2, e2) −→

(κ′2, δ2, pc,H2, e
′
2) where H1(loc1) = 〈v1,P′

1,L
′
1〉,

H2(loc2) = 〈v2,P′
2,L

′
2〉, κ′1 = κ1] {p 7→ P′

1},
κ′2 = κ2]{p 7→ P′

2}, e′1 = 〈v1,P1∪{p},L1tL′
1〉 and

e′2 = 〈v2,P2 ∪ {p},L2 t L′
2〉. By hypothesis, Defini-

tion 2.1[5] and Lemma A.4[3e] (δ1,H1) ∼
κ′
2µ

L (δ2,H2).
As per Definition 2.1[3b] there are two possible
cases:

(a) P1 = P2 and seclevelκ2δ1 P1, seclevelκ2δ2 P2 v
L. Again there are two possible cases by Defini-
tion 2.1[3(b)i],
i. L1,L2 v L, L1 = L2 and (δ1, loc1) ∼=κµ

L

(δ2, loc2). Hence as per Definition 2.1[2b],
loc1 = µ(loc2) and loc2 = µ(loc1).
By Definition 2.1[5,4b]

(
δ1,H1(loc1)

)
∼κ2µ

L(
δ2,H2(loc2)

)
, that is

(
δ1, 〈v1,P′

1,L
′
1〉

)
∼κ2µ

L(
δ2, 〈v2,P′

2,L
′
2〉

)
; and by Definition 2.1[4a](

δ1, 〈v1,P′
1 ∪ P′

2,L
′
1〉

) ∼=κ2µ
L

(
δ2, 〈v2,P′

1 ∪
P′

2,L
′
2〉

)
. By Lemma A.4[3f]

(
δ1, 〈v1,P′

1 ∪
P′

2,L
′
1〉

) ∼=κ′
2µ

L

(
δ2, 〈v2,P′

1 ∪P′
2,L

′
2〉

)
. We know

κ′1 ≤ κ′2, hence P′
1 ∪ P′

2 ⊆ κ′2({p})+. Then
by Lemma A.4[2(c)i]

(
δ1, 〈v1, {p},L′

1〉
) ∼=κ′

2µ
L(

δ2, 〈v2, {p},L′
2〉

)
. Trivially by Definition A.3

(δ1,P1) ∼=
κ′
2µ

L (δ2,P2) and L1
∼=L L2. Hence

by Lemma A.4[2(c)ii]
(
δ1, 〈v1, {p} ∪ P1,L′

1 t
L1〉

) ∼=κ′
2µ

L

(
δ2, 〈v2, {p} ∪ P2,L′

2 t L2〉
)
, that

is
(
δ1, e

′
1

) ∼=κ′
2µ

L

(
δ2, e

′
2

)
. Finally by Defini-

tion 2.1[5] (δ1,H1, e
′
1) ∼=

κ′
2µ

L (δ2,H2, e
′
2).

ii. L1,L2 6v L. By hypothesis and Defini-
tion 2.1[3h,3(b)iB] this case is not possible, since
loc1 and loc2 are heap locations.

18

(b) seclevelκ2δ1 P1, seclevelκ2δ2 P2 6v L. By hy-
pothesis, Definition 2.1[5, 3] and Lemma A.4[3a]
δ1

∼=κ′
2µ

L δ2. By hypothesis and Lemma A.2[2]
seclevelκ

′
2δ1 P1, seclevelκ

′
2δ2 P2 6v L. Then by Def-

inition 2.1[3(b)ii] (δ1, e
′
1) ∼=

κ′
2µ

L (δ2, e
′
2). Finally by

Definition 2.1[5] (δ1,H1, e
′
1) ∼=

κ′
2µ

L (δ2,H2, e
′
2).

6. SET. Let e1 = 〈loc1,P1,L1〉 := 〈v1,P′
1,L

′
1〉

and e2 = 〈loc2,P2,L2〉 := 〈v2,P′
2,L

′
2〉. As per

SET let (κ1, δ1, pc,H1, e1) −→
(
κ1, δ1, pc,H′

1, e
′
1

)
and (κ2, δ2, pc,H2, e2) −→

(
κ2, δ2, pc,H′

2, e
′
2

)
where,

H′
1 = H1[loc1 7→ 〈v1,P′′

1 ,L′′
1〉], H′

2 = H2[loc2 7→
〈v2,P′′

2 ,L′′
2〉], P′′

1 = pc ∪ P1 ∪ P′
1, P′′

2 = pc ∪ P2 ∪ P′
2,

L′′
1 = L1 t L′

1, L′′
2 = L2 t L′

2, e′1 = 〈v1,P′
1,L

′
1〉 and

e′2 = 〈v2,P′
2,L

′
2〉. Directly by hypothesis and Defi-

nition 2.1[5,3i] (δ1, e
′
1) ∼=

κ2µ
L (δ2, e

′
2). As per Defini-

tion 2.1[3b] there are two possible cases:

(a) P1 = P2 and seclevelκ2δ1 P1, seclevelκ2δ2 P2 v
L. Again there are two possible cases by Defini-
tion 2.1[3(b)i],
i. L1,L2 v L, L1 = L2 and (δ1, loc1) ∼=κµ

L

(δ2, loc2). Hence as per Definition 2.1[2b],
loc1 = µ(loc2) and loc2 = µ(loc1). By hypothe-
sis and Definition 2.1[3i] (δ1, 〈v1,P′

1,L
′
1〉) ∼=

κ2µ
L

(δ1, 〈v2,P′
2,L

′
2〉). Trivially by Definition A.3

(δ1, pc ∪ P1) ∼=κ2µ
L (δ2, pc ∪ P2) and

L1
∼=L L2. Then by Lemma A.4[2(c)ii]

(δ1, 〈v1,P′
1 ∪ pc ∪ P1,L′

1 t L1〉) ∼=κ2µ
L

(δ2, 〈v2,P′
2 ∪ pc ∪ P2,L′

2 t L2〉), that is
(δ1, 〈v1,P′′

1 ,L′′
1〉) ∼=κ2µ

L (δ2, 〈v2,P′′
2 ,L′′

2〉), that
is

(
δ1,H′

1(loc1)
) ∼=κ2µ

L

(
δ2,H′

2(loc2)
)
, which

by Lemma A.4[2b] yields
(
δ1,H′

1(loc1)
)
∼κ2µ

L(
δ2,H′

2(loc2)
)
. Then by hypothesis and Defini-

tion 2.1[4b] (δ1,H′
1) ∼

κ2µ
L (δ2,H′

2). Finally by
Definition 2.1[5] (δ1,H′

1, e
′
1) ∼=

κ2µ
L (δ2,H′

2, e
′
2).

ii. L1,L2 6v L. By hypothesis and Defini-
tion 2.1[3i,3(b)iB] this case is not possible, since
loc1 and loc2 are heap locations.

(b) seclevelκ2δ1 P1, seclevelκ2δ2 P2 6v L. By hypoth-
esis and Definition 2.1[5] (δ1,H1) ∼κ2µ

L (δ2,H2),
then by Definition 2.1[4b] δ1

∼=κ2
L δ2. Hence by

Definition 2.1[1] seclevelκ2δ1 P1, seclevelκ2δ2 P1 6v
L and seclevelκ2δ1 P2, seclevelκ2δ2 P2 6v L. Then
by definition seclevelκ2δ1 P′′

1 , seclevelκ2δ2 P′′
1 6v L

and seclevelκ2δ1 P′′
2 , seclevelκ2δ2 P′′

2 6v L.
By Lemma A.4[6] (δ1,H1) ∼κ2µ

L (δ2,H′
2),

that is, by reflexivity (Lemma A.4[1])
(δ2,H′

2) ∼
κ2µ
L (δ1,H1). Again by Lemma A.4[6]

(δ2,H′
2) ∼κ2µ

L (δ1,H′
1) and by reflexivity

(Lemma A.4[1]) (δ1,H′
1) ∼κ2µ

L (δ2,H′
2). Finally

by Definition 2.1[5] (δ1,H′
1, e

′
1) ∼=

κ2µ
L (δ2,H′

2, e
′
2).

7. LET. Given Definition 2.1[3d] let e1 = (let x =

σ1 in e1next) and e2 = (let x = σ2 in e2next). As
per LET (κ1, δ1, pc,H1, e1) −→ (κ1, δ1, pc,H1, e

′
1) and

(κ2, δ2, pc,H2, e2) −→ (κ2, δ2, pc,H2, e
′
2) where e′1 =

e1next [σ1/x] and e′2 = e2next [σ2/x]. Directly by hypothe-
sis, Definition 2.1[3d] and, induction on the structures
of e′1 and e′2 given Definition 2.1 (δ1,H1, e

′
1) ∼=κ2µ

L

(δ2,H2, e
′
2).

8. CONTEXT. Let e1 = R1[e1sub] and e2 = R2[e2sub]. By
hypothesis and Definition 2.1 (δ1,H1, e1sub) ∼=κµ

L

(δ2,H2, e2sub). Let (κ1, δ1, pc,H1, e1sub) −→
(κ′1, δ

′
1, pc,H′

1, e
′
1sub

) and (κ2, δ2, pc,H2, e2sub) −→
(κ′2, δ

′
2, pc,H′

2, e
′
2sub

). By induction hypothesis

∃µ′ ⊇ µ. (δ′1,H
′
1, e

′
1sub

) ∼=κ′
2µ′

L (δ′2,H
′
2, e

′
2sub

). By
CONTEXT e′1 = R1[e′1sub

] and e′2 = R2[e′2sub
]. Finally

by Lemma A.1, Lemma A.4[7] and Definition 2.1[5]
(δ′1,H

′
1, e

′
1) ∼=

κ′
2µ′

L (δ′2,H
′
2, e

′
2).

Lemma 2.2 (Bisimulation: n-step). If(
κ0, δ1, pc,H1, e1

)
−→n

(
κ1, δ

′
1, pc,H′

1, e
′
1

)
,(

κ1, δ2, pc,H2, e2

)
−→n

(
κ2, δ

′
2, pc,H′

2, e
′
2

)
and (δ1,H1, e1) ∼=κ1µ

L (δ2,H2, e2) then ∃µ′ ⊇
µ. (δ′1,H

′
1, e

′
1) ∼=

κ2µ′

L (δ′2,H
′
2, e

′
2).

Proof. By hypothesis and Lemma A.1 κ0 ≤ κ1 ≤ κ2. The
result then follows by applying Lemma A.6 n times.

Main Lemma 2.3 (Partial Dynamic Noninterference). If
e1 = e[〈νk, ∅,Lhigh〉/xk], e2 = e[〈ν′k, ∅,Lhigh〉/xk],(
κ0, δ, pc,H, e1

)
−→n1

(
κ1, δ1, pc,H1, 〈i1,P1,L1〉

)
,(

κ1, δ, pc,H, e2

)
−→n2

(
κ2, δ2, pc,H2, 〈i2,P2,L2〉

)
,

Lhigh 6v Llow, for some Llow, and seclevelκ2δ2 P2 t L2 v
Llow then seclevelκ1δ1 P1 t L1 v Llow, 〈i1,P1,L1〉 =
〈i2,P2,L2〉 and n1 = n2.

Proof. Directly by Definition 2.1, in particular Case 3(b)iB,
(δ,H, e1) ∼=κ1µ

Llow
(δ,H, e2) where µ = {loc 7→ loc |

loc ∈ dom(H)}. We know by Lemma A.1 that κ0 ≤
κ1 ≤ κ2; then by Lemma 2.2 n1 = n2 and there
exists a µ′ ⊇ µ such that

(
δ1,H1, 〈i1,P1,L1〉

) ∼=κ2µ′

Llow(
δ2,H2, 〈i2,P2,L2〉

)
, which by Definition 2.1[5] implies(

δ1, 〈i1,P1,L1〉
) ∼=κ2µ′

Llow

(
δ2, 〈i2,P2,L2〉

)
. Now since

seclevelκ2δ2 P2 t L2 v Llow, by Definition 2.1[3(b)iA,2a]
and Lemma A.2[1] seclevelκ1δ1 P1 t L1 v Llow and
〈i1,P1,L1〉 = 〈i2,P2,L2〉.

Lemma 2.5 (Delayed Leak Detection). If e1 =
e[〈ν′k, ∅,L′

k〉/xk] and the run,
(
κ0, δ, pc,H, e1

)
−→n1(

κ1, δ1, pc,H1, 〈i1,P1,L1〉
)
, indirectly leaks information

with respect to security level Llow, then there exists
an expression e2 such that e2 = e[〈ν′′k , ∅,L′′

k〉/xk],(
κ1, δ, pc,H, e2

)
−→n2

(
κ2, δ2, pc,H2, 〈i2,P2,L2〉

)
and

seclevelκ2δ1 P1 6v Llow.

19

Proof. Following directly from Definition 2.4

B Proofs for Formal Properties of λdeps+

Theorem 3.2 (Dynamic Noninterference). If κ0 is a fixed
point of dependencies of an expression e given a pro-
gram counter pc and a heap H, e1 = e[〈ik, ∅,Lhigh〉/xk],
e2 = e[〈i′k, ∅,Lhigh〉/xk],

(
κ0, δ, pc,H, e1

)
−→n1(

κ1, δ1, pc1,H1, 〈i1,P1,L1〉
)
,

(
κ0, δ, pc,H, e2

)
−→n2(

κ2, δ2, pc2,H2, 〈i2,P2,L2〉
)
, Lhigh 6v Llow, for some Llow,

and seclevelκ1δ1 P1tL1 v Llow then seclevelκ2δ2 P2tL2 v
Llow, 〈i1,P1,L1〉 = 〈i2,P2,L2〉 and n1 = n2.

Proof. By Definition 3.1 κ0 = κ1 = κ2. Di-
rectly by Definition 2.1, in particular Case 3(b)iB,(
δ,H, e[〈ik, ∅,Lhigh〉/xk]

) ∼=κ0µ
Llow

(
δ,H, e[〈i′k, ∅,Lhigh〉/xk]

)
where µ = {loc 7→ loc | loc ∈ dom(H)}. Then by
Lemma 2.2 n1 = n2 and there exists a µ′ ⊇ µ such
that

(
δ1,H1, 〈i1,P1,L1〉

) ∼=κ2µ′

Llow

(
δ2,H2, 〈i2,P2,L2〉

)
,

which by Definition 2.1[5] implies
(
δ1, 〈i1,P1,L1〉

) ∼=κ2µ′

Llow(
δ2, 〈i2,P2,L2〉

)
. Now since seclevelκ1δ1 P1 t L1 v Llow,

that is, seclevelκ2δ1 P1 t L1 v Llow because κ1 = κ2, by
Definition 2.1[3(b)iA,2a] seclevelκ2δ2 P2 t L2 v Llow and
〈i1,P1,L1〉 = 〈i2,P2,L2〉.

Corollary 3.3 (Soundness of λdeps+). If κ is a fixed
point of dependencies of an expression e given a pro-
gram counter pc and a heap H, e′ = e[〈ik, ∅,Lk〉/xk]
and

(
κ, δ, pc,H, e′

)
−→n

(
κ, δ′, pc,H′, 〈i,P,L〉

)
then the

above run does not leak information with respect to any se-
curity level.

Proof. Follows directly from Theorem 3.2 and Defini-
tion 2.4.

Lemma B.1 (PC Weakening). If Γ, pc′,H ` e : τ, κ and
pc ⊆ pc′ then Γ, pc,H ` e : τ, κ.

Proof. By induction on the derivation of e and using the
(sub) rule.

Lemma B.2 (Substitution). If Γ, pc,H ` σ : τ, κ and
Γ[x 7→ τ], pc,H ` e : τ ′, κ′ then Γ, pc,H ` e[σ/x] :
τ ′, κ] κ′.

Proof. By induction on the derivation of e, with case anal-
ysis:
1. (var). We have two possible cases.

(a) e = x. Then we have τ ′ = τ , and using (sub) on
Γ, pc,H ` σ : τ, κ, we get Γ, pc,H ` σ : τ, κ] κ′,
completing the case.

(b) e = x′, and x′ 6= x. Then, e[σ/x] = x′, and the
case follows since Γ[x 7→ τ](x′) = Γ(x′).

2. (fun). Let e = 〈λy. e1,P,L〉. Assume w.l.o.g. that
x and y are distinct, as typing remains valid after α-
conversion. The case follows by induction and (fun).

3. (if). Let e = ifp e1 then eT else eF , and Γ, pc,H ` e1 :
(bool,P), κ1, and pc′ = pc ∪ {p}, and Γ, pc′,H ` eT :
τT , κT , and Γ, pc′,H ` eF : τT , κF , and τT = (t, PT).

By induction, Γ, pc,H ` e1[σ/x] : (bool,P), κ] κ1,
and Γ, pc′,H ` eT [σ/x] : τT , κ] κT , and Γ, pc′,H `
eF [σ/x] : τT , κ] κF . The case follows by (if).

4. (set). Let e = e1 := e2 and Γ, pc,H ` e1 :
(ref (t, P′),P), κ1, and Γ, pc,H ` e2 : (t, P′), κ2, and
pc ∪ P ⊆ P′. By induction, Γ, pc,H ` e1[σ/x] :
(ref (t, P′),P), κ] κ1 and Γ, pc,H ` e2[σ/x] :
(t, P′), κ] κ2. The case follows by (set).

5. (int), (bool), (loc). Directly by Hypothesis.

6. (app), (ref), (deref), (binop), (let), (sub). Directly by
induction, and use of the respective type rule.

Lemma 3.4 (Subject Reduction). If Γ, pc′,H ` e :
τ, κ, and H ` H, and pc ⊆ pc′, and for some δ,(
κ, δ, pc,H, e

)
−→

(
κ′, δ′, pc,H′, e′

)
then there exists aH′

such that Γ, pc′,H′ ` e′ : τ, κ′, and H′ ` H′, and κ′ = κ.

Proof. By induction on the height of the reduction tree of(
κ, δ, pc,H, e) −→ (κ′, δ′, pc,H′, e′). The type derivation

of Γ, pc′,H ` e : τ, κ ends in an instance of a syntax-
directed rule, followed by some number of uses of (sub).
Hence, there exists a τi and κi, such that τi ≤ τ , κi ≤ κ,
and Γ, pc′,H ` e : τi, κi, whose derivation does not end
in (sub). The proof proceeds by case analysis on the re-
duction step taken, after which (sub) may be used to reveal
Γ, pc′,H ` e : τ, κ. Thus to simplify the argument, it is safe
to assume, without loss of generality, that the type deriva-
tion of Γ, pc′,H ` e : τ, κ does not end in a use of (sub).
1. IF. Let e =

(
ifp 〈b, P,L〉 then eT else eF

)
, and let

Γ, pc′,H ` e : (t, Pt ∪ {p}), κ. Without loss of gen-
erality, assume b = true.

Thus, (κ, δ, pc,H, e) −→
(
κ′, δ′, pc,H′, 〈v′,P′ ∪

{p},L′〉
)
. According to the premise to IF, we

have κa = κ] {p 7→ pc ∪ P}, and δa =
δ] {p 7→ L}, and pca = pc ∪ {p}, and(
κa, δa, pca,H, eT

)
−→n

(
κ′, δ′, pca,H′, 〈v′,P′,L′〉

)
.

By premise to (if), Γ, pc′,H ` 〈b, P,L〉 : (bool,Pb), κb,
whose derivation consists of a use of (bool), followed
by a number of uses of (sub), which according to the
definition of subtyping, yields P ⊆ Pb. By (if) {p 7→
pc′ ∪ Pb} ≤ κ, which along with hypothesis pc ⊆ pc′

and P ⊆ Pb as shown above entails {p 7→ pc∪P} ≤ κ,
so κa = κ.

By premise to (if), pc′′ = pc′ ∪ {p}, and Γ, pc′′,H `
eT : τT , κT , and κT ≤ κ, and τT = (t, Pt). By

20

(sub), Γ, pc′′,H ` eT : τT , κ. Now, since pc′′ =
pc′ ∪ {p} and pca = pc ∪ {p} and by hypothesis
pc ⊆ pc′, we have pca ⊆ pc′′. As above, we have(
κa, δa, pca,H, eT

)
−→n

(
κ′, δ′, pca,H′, 〈v′,P′,L′〉

)
and κa = κ, and by hypothesis H ` H. Therefore,
by induction, Γ, pc′′,H′ ` 〈v′,P′,L′〉 : τT , κ, and
H′ ` H′, and κ′ = κ. So, by Lemma B.1 Γ, pc′,H′ `
〈v′,P′,L′〉 : τT , κ. Proceeding by case analysis on v′.

If v′ is an integer, then τT = (int,Pt), and the derivation
of Γ, pc′,H′ ` 〈v′,P′,L′〉 : (int,Pt), κ must then begin
with (int) followed by some number of uses of (sub).
Hence, by (int), Γ, pc′,H′ ` 〈v′,P′,L′〉 : (int,P′), ∅.
Thus, by (sub), P′ ⊆ Pt. By (int), we have Γ, pc′,H′ `
〈v′,P′ ∪ {p},L′〉 : (int,P′ ∪ {p}), ∅. Conclude with
(sub), Γ, pc′,H′ ` 〈v′,P′∪{p},L′〉 : (int,Pt∪{p}), κ.
The case where v′ is a boolean is identical, only using
(bool) instead of (int), and bool types in place of int
types.

If v′ is a location, then τT = (ref τr,Pt) and the
derivation of Γ, pc′,H′ ` 〈v′,P′,L′〉 : (ref τr,Pt), κ
must then begin with (loc) followed by some num-
ber of uses of (sub). Now, let H′(v′) = τr, κl and
by (loc), Γ, pc′,H′ ` 〈v′,P′,L′〉 : (ref τr,P′), κl.
Thus, by (sub), P′ ⊆ Pt and κl ≤ κ. Now, by
(loc), Γ, pc′,H′ ` 〈v′,P′ ∪ {p},L′〉 : (t, P′ ∪ {p}), κl.
Conclude with (sub), Γ, pc′,H′ ` 〈v′,P′ ∪ {p},L′〉 :
(ref τr,Pt ∪ {p}), κ.

If v′ is a function, then τT = (τ1 → τ2,Pt) and the
derivation of Γ, pc′,H′ ` 〈v′,P′,L′〉 : (τ1 → τ2,Pt), κ
must then begin with (fun) followed by some number
of uses of (sub). By (fun) there exists a τ ′1, τ ′2, and κf ,
such that Γ, pc′,H′ ` 〈v′,P′,L′〉 : (τ ′1 → τ ′2,P

′), κf ,
and by (sub), τ1 ≤ τ ′1, τ ′2 ≤ τ2, P′ ⊆ Pt, and κf ≤ κ.
Now, by (fun), Γ, pc′,H′ ` 〈v′,P′ ∪ {p},L′〉 : (τ ′1 →
τ ′2,P

′ ∪ {p}), κf . Conclude with (sub), Γ, pc′,H′ `
〈v′,P′ ∪ {p},L′〉 : (τ1 → τ2,Pt ∪ {p}), κ.

2. APP. Let e = 〈λx. e1,P,L〉 (σ)p, and e′ = 〈v′,P′ ∪
{p},L′〉, and Γ, pc′,H ` e : (t, Pt ∪ {p}), κ.

According to the premise to APP, let κa = κ]
{p 7→ pc ∪ P}, and δa = δ] {p 7→ L}, and
pca = pc ∪ {p}, and

(
κa, δa, pca,H, e1[σ/x]

)
−→n(

κ′, δ′, pca,H′, 〈v′,P′,L′〉
)
. By premise to (app),

pc′′ = pc′ ∪ {p} and Γ, pc′′,H ` 〈λx. e1,P,L〉 : (τ ′ →
τ,P1), κ1, whose derivation consists of a use of (fun),
followed by a number of uses of (sub), which accord-
ing to the definition of subtyping, yields, P ⊆ P1. By
(app) {p 7→ pc′ ∪ P1} ≤ κ, which along with hy-
pothesis pc ⊆ pc′ and P ⊆ P1 as shown above entails
{p 7→ pc ∪ P} ≤ κ, so κa = κ.

By premise to (app), Γ, pc′,H ` σ : τ ′, κv , and
Γ, pc′′,H ` 〈λx. e1,P,L〉 : (τ ′ → τ,P1), κ1, whose

derivation ends with a use of (fun), followed by a num-
ber of uses of (sub). Thus, there exists a τ ′′ and κ′1,
such that τ ′ ≤ τ ′′, and κ′1 ≤ κ1. Thus, we have
Γ[x 7→ τ ′′], pc′′,H ` e1 : τ, κ′1, which by Lemma B.1
yields Γ[x 7→ τ ′′], pc′,H ` e1 : τ, κ′1. Now, by
(sub), Γ, pc′,H ` σ : τ ′′, κv . Using Substitution
Lemma B.2, Γ, pc′,H ` e1[σ/x] : τ, κ′1] κv , and
since by (app) κ = κ1] κv] {p 7→ pc′ ∪ P1}
and κ′1 ≤ κ1 as shown above, by (sub), Γ, pc′,H `
e1[σ/x] : τ, κ. Now, since pc′′ = pc′ ∪ {p} and pca =
pc ∪ {p} and by hypothesis pc ⊆ pc′, we have pca ⊆
pc′′. As above, we have

(
κa, δa, pca,H, e1[σ/x]

)
−→n(

κ′, δ′, pca,H′, 〈v′,P′,L′〉
)

and κa = κ, and by hy-
pothesis H ` H. Therefore, by induction, Γ, pc′,H′ `
〈v′,P′,L′〉 : τ, κ, and H′ ` H′, and κ = κ′. Proceeding
by case analysis on v′.

If v′ is an integer, then τ = (int,Pt), and the derivation
of Γ, pc′,H′ ` 〈v′,P′,L′〉 : (int,Pt), κ must then begin
with (int) followed by some number of uses of (sub).
Hence, by (int), Γ, pc′,H′ ` 〈v′,P′,L′〉 : (int,P′), ∅.
Thus, by (sub), P′ ⊆ Pt. By (int), we have Γ, pc′,H′ `
〈v′,P′ ∪ {p},L′〉 : (int,P′ ∪ {p}), ∅. Conclude with
(sub), Γ, pc′,H′ ` 〈v′,P′∪{p},L′〉 : (int,Pt∪{p}), κ.
The case where v′ is a boolean is identical, only using
(bool) instead of (int), and bool types in place of int
types.

If v′ is a location, then τ = (ref τr,Pt) and the
derivation of Γ, pc′,H′ ` 〈v′,P′,L′〉 : (ref τr,Pt), κ
must then begin with (loc) followed by some number
of uses of (sub). Now, H′(v′) = τr, κl and by (loc),
Γ, pc′,H′ ` 〈v′,P′,L′〉 : (ref τr,P′), κl. Thus, by
(sub), P′ ⊆ Pt and κl ≤ κ. Now, by (loc), Γ, pc′,H′ `
〈v′,P′ ∪ {p},L′〉 : (t, P′ ∪ {p}), κl. Conclude with
(sub), Γ, pc′,H′ ` 〈v′,P′ ∪ {p},L′〉 : (ref τr,Pt ∪
{p}), κ.

If v′ is a function, then τ = (τ1 → τ2,Pt) and the
derivation of Γ, pc′,H′ ` 〈v′,P′,L′〉 : (τ1 → τ2,Pt), κ
must then begin with (fun) followed by some number of
uses of (sub). By (fun), Γ, pc′,H′ ` 〈v′,P′,L′〉 : (τ ′1 →
τ ′2,P

′), κf , and by (sub), τ1 ≤ τ ′1, τ ′2 ≤ τ2, P′ ⊆ Pt,
and κf ≤ κ. Now, by (fun), Γ, pc′,H′ ` 〈v′,P′ ∪
{p},L′〉 : (τ ′1 → τ ′2,P

′∪{p}), κf . Conclude with (sub),
Γ, pc′,H′ ` 〈v′,P′ ∪ {p},L′〉 : (τ1 → τ2,Pt ∪ {p}), κ.

3. BINOP. Let e1 = 〈i,P,L〉 ⊕ 〈i′,P′,L′〉
Directly by (binop), (int) or (bool), and (sub).

4. REF. Let e = ref σ, and let Γ, pc′,H ` e : (ref τ, ∅), κ.
Now, e′ = 〈loc, ∅, ∅〉 and H′ = H ∪ {loc 7→ σ}.

Define H′ = H[loc 7→ τ, κ]. Because loc 6∈ dom(H)
and by (heap), dom(H) = dom(H). Since H ` H and
and ∅, ∅,H′ ` σ : τ, κ we have H′ ` H′. Hence, by
(loc) Γ, pc′,H′ ` e′ : (ref τ, ∅), κ.

21

5. DEREF. Let e = derefp 〈loc,Pl,Ll〉 and let Γ, pc′,H `
e : (t, P ∪ {p}), κ, and H(loc) = 〈v,Pv,Lv〉.
According to the premise to DEREF, let κ′ = κ]
{p 7→ Pv}. By premise to (deref), Γ, pc′,H `
〈loc,Pl,Ll〉 : (ref (t, P′),P), κ, and its derivation con-
sists of (loc) followed by some number of (sub). Let
H(loc) = (t, P′), κl. Then Γ, pc′,H ` 〈loc,Pl,Ll〉 :
(ref (t, P′),Pl), κl. Hence, Pl ⊆ P and κl ≤ κ.

By premise to DEREF, H(loc) = 〈v,Pv,Lv〉, so by
(heap), ∅, ∅,H ` 〈v,Pv,Lv〉 : (t, P′), κl. Proceeding
by case analysis on v. If v is an integer, then by (int),
∅, ∅,H ` 〈v,Pv,Lv〉 : (t, Pv), ∅, so by (sub), Pv ⊆ P′;
if v is a boolean, then Pv ⊆ P′ in a similar manner;
if v is a location, then for some τ ′r and κ′r by (loc),
∅, ∅,H ` 〈v,Pv,Lv〉 : (ref τ ′r,Pv), κ′r, so by (sub),
Pv ⊆ P′; if v is a function, then for some τ1, τ2, and κf

by (fun), ∅, ∅,H ` 〈v,Pv,Lv〉 : (τ1 → τ2), κf , so by
(sub), Pv ⊆ P′. In all cases, we conclude Pv ⊆ P′.
According to type rule (deref), {p 7→ P′} ≤ κ, so
{p 7→ Pv} ≤ κ, and κ′ = κ.

We have
(
κ, δ, pc,H, derefp 〈loc,Pl,Ll〉

)
−→(

κ′, δ, pc,H, 〈v,Pl ∪ {p},Ll t Lv〉
)
. Proceeding

by case analysis on v.

If v is an integer, then t = int. By (int), we have
Γ, pc′,H ` 〈v,Pl ∪ {p},Ll t Lv〉 : (int,Pl ∪ {p}), ∅.
Since Pl ⊆ P as shown above, conclude with (sub)
Γ, pc′,H′ ` 〈v′,Pl ∪ {p},Ll t Lv〉 : (int,P ∪ {p}), κ.
The case where v is a boolean is identical, only using
(bool) instead of (int), and bool types in place of int
types.

If v is a location, then t = ref τr. Now, H(loc) =
(ref τr,P′), κl, as above. Let H(v) = τ ′r, κ

′
r. Let

H(v) = 〈v′,P′
v,L′

v〉, hence by H ` H, we have
∅, ∅,H ` 〈v′,P′

v,L′
v〉 : τ ′r, κ

′
r. As previously estab-

lished, H(loc) = 〈v,Pv,Lv〉, and sinceH ` H, we have
∅, ∅,H ` 〈v,Pv,Lv〉 : (ref τr,P′), κl. Yet, by (loc), we
have ∅, ∅,H ` 〈v,Pv,Lv〉 : (ref τ ′r,Pv), κ′r. By (sub),
κ′r ≤ κl and since subtyping of ref is invariant, τr = τ ′r.
Now, by (loc), Γ, pc′,H ` 〈v,Pl ∪ {p},Ll t Lv〉 :
(ref τr,Pl ∪ {p}), κ′r. Since Pl ⊆ P, κ′r ≤ κl, and
κl ≤ κ as shown above, conclude with (sub) Γ, pc′,H `
〈v,Pl ∪ {p},Ll t Lv〉 : (ref τr,P ∪ {p}), κ.

If v is an function, then t = (τ1 → τ2). Now, H(loc) =
(τ1 → τ2,P′), κl, as above. As previously established,
H(loc) = 〈v,Pv,Lv〉, and since H ` H, we have
∅, ∅,H ` 〈v,Pv,Lv〉 : (τ1 → τ2,P′), κl. Yet, by (fun),
we have ∅, ∅,H ` 〈v,Pv,Lv〉 : (τ ′1 → τ ′2,Pv), κf .
So, by (sub), τ1 ≤ τ ′1, τ ′2 ≤ τ2, and κf ≤ κl. By
(fun), we have Γ, pc′,H ` 〈v,Pl ∪ {p},Ll t Lv〉 :
(τ ′1 → τ ′2,Pl ∪ {p}), κf . Since Pl ⊆ P, τ1 ≤ τ ′1,
τ ′2 ≤ τ2, κf ≤ κl, and κl ≤ κ as shown above, con-

clude with (sub) Γ, pc′,H ` 〈v,Pl ∪ {p},Ll t Lv〉 :
(τ1 → τ2,P ∪ {p}), κ.

6. SET. Let e = 〈loc,P,L〉 := 〈v,Pv,Lv〉 and let
Γ, pc′,H ` e : (t, P′), κ. By premise to (set), we
have Γ, pc′,H ` 〈v,Pv,Lv〉 : (t, P′), κ1. So, by (sub)
Γ, pc′,H ` 〈v,Pv,Lv〉 : (t, P′), κ. It remains to be
shown that H ` H′.

By premise to (set), we have Γ, pc′,H ` 〈loc,P,L〉 :
(ref (t, P′),Pr), κ′l, which has a derivation consisting of
(loc) followed by a number of instances of (sub). This,
along with the definition of subtyping, yields P ⊆ Pr.
Also, by premise to (set), pc′ ∪ Pr ⊆ P′. Again, by
premise to (set), we have Γ, pc′,H ` 〈v,Pv,Lv〉 :
(t, P′), κ1. Proceeding by case analysis on v. If v
is an integer, then by (int), Γ, pc′,H ` 〈v,Pv,Lv〉 :
(t, Pv), ∅, so by (sub), Pv ⊆ P′; if v is a boolean,
then Pv ⊆ P′ in a similar manner; if v is a loca-
tion, then for some τ ′r and κ′r by (loc), Γ, pc′,H `
〈v,Pv,Lv〉 : (ref τ ′r,Pv), κ′r, so by (sub), Pv ⊆ P′;
if v is a function, then for some τ1, τ2, and κf by (fun),
Γ, pc′,H ` 〈v,Pv,Lv〉 : (τ1 → τ2), κf , so by (sub),
Pv ⊆ P′. In all cases, we conclude Pv ⊆ P′. Now, ac-
cording to premise to SET, H′ = H[loc 7→ 〈v,P′

v,L′
v〉],

and P′
v = P∪Pv∪pc. By hypothesis, we have pc ⊆ pc′,

and the above subset relations P ⊆ Pr and pc′∪Pr ⊆ P′

yield pc ∪ P ⊆ P′. This, along with the above relation
Pv ⊆ P′ yields P′

v ⊆ P′. By (loc), and the invariance
of subtyping of ref, let H(loc) = (t, P′), κl. Proceeding
by case analysis on v.

If v is an integer, then t = int. By (int), we have
∅, ∅,H ` 〈v,P′

v,L′
v〉 : (int,P′

v), ∅. Since P′
v ⊆

P′ as shown above, conclude with (sub) ∅, ∅,H `
〈v,P′

v,L′
v〉 : (int,P′), κl, which implies H ` H′. The

case where v is a boolean is identical, only using (bool)
instead of (int), and bool types in place of int types.

If v is a location, then t = ref τr, so H(loc) =
(ref τr,P′), κl. Let H(va) = τ ′r, κ

′
r, let H(loc) =

〈va,Pa,La〉, and let H(va) = 〈v′a,P′
a,L′

a〉. Since H `
H, we have ∅, ∅,H ` 〈v′a,P′

a,L′
a〉 : τ ′r, κ

′
r and ∅, ∅,H `

〈va,Pa,La〉 : (ref τr,P′), κl. Yet, by (loc), we have
∅, ∅,H ` 〈va,Pa,La〉 : (ref τ ′r,Pa), κ′r. By (sub),
κ′r ≤ κl and since subtyping of ref is invariant, τr = τ ′r.
Now, by (loc), Γ, pc′,H ` 〈v,P′

v,L′
v〉 : (ref τr,P′

v), κ′r.
Since P′

v ⊆ P′, and κ′r ≤ κl as shown above, conclude
with (sub) Γ, pc′,H ` 〈v,P′

v,L′
v〉 : (ref τr,P′), κl,

which implies H ` H′.

If v is an function, then t = (τ1 → τ2), so H(loc) =
(τ1 → τ2,P′), κl. As previously established, H(loc) =
〈va,Pa,La〉, and since H ` H, we have ∅, ∅,H `
〈va,Pa,La〉 : (τ1 → τ2,P′), κl. Yet, by (fun), we have
∅, ∅,H ` 〈va,Pa,La〉 : (τ ′1 → τ ′2,Pa), κf . So, by
(sub), τ1 ≤ τ ′1, τ ′2 ≤ τ2, and κf ≤ κl. By (fun), we

22

have ∅, ∅,H ` 〈v,P′
v,L′

v〉 : (τ ′1 → τ ′2,P
′
v), κf . Since

P′
v ⊆ P′, τ1 ≤ τ ′1, τ ′2 ≤ τ2, and κf ≤ κl as shown

above, conclude with (sub) ∅, ∅,H ` 〈v,P′
v,L′

v〉 :
(τ1 → τ2,P′), κl, which implies H ` H′.

7. LET. Let e = let x = σ in e1 and let Γ, pc′,H ` e :
τ1, κ.

By premise to (let), we have Γ, pc′,H ` σ : τ, κv , and
Γ[x 7→ τ], pc′,H ` e1 : τ1, κ1, and κ = κv] κ1. Then,
by Substitution Lemma B.2, Γ, pc′,H ` e1[σ/x] :
τ1, κ.

8. CONTEXT. Let e = R[e1] and let Γ, pc,H ` e : τ, κ.

We have two cases.

(a) R = R′ ⊕ e2 | σ ⊕ R′ | σ (R′)p |
ifp R′ then eT else eF | let x = R′ in e2 | ref R′ |
R′ := e2 | σ := R′ | derefp R′. Then, by
(binop), (if), (let), (ref), (set), (deref), or (app), we
have Γ, pc′,H ` e1 : τ1, κ1, which by (sub) yields
Γ, pc′,H ` e1 : τ1, κ

By CONTEXT, (κ, δ, pc,H, e1) −→
(κ′, δ′, pc,H′, e′1). By induction, Γ, pc′,H `
e′1 : τ1, κ and there exists a H′, such that H′ ` H′,
and κ = κ′. The case follows by (binop), (if), (let),
(ref), (set), (deref), or (app).

(b) R = R′ (e2)p. Then, by (app), we have pc′′ = pc′ ∪
{p}, which along with hypothesis pc ⊆ pc′, yields
pc ⊆ pc′′. Again, by (app), we have Γ, pc′′,H `
e1 : τ1, κ1. which by (sub) yields Γ, pc′′,H `
e1 : τ1, κ By CONTEXT, (κ, δ, pc,H, e1) −→
(κ′, δ′, pc,H′, e′1). By induction, Γ, pc′′,H ` e′1 :
τ1, κ and there exists a H′, such that H′ ` H′, and
κ = κ′. The case follows by (app).

Lemma 3.5 (Typing Produces a Fixed Point Dependency
Cache). If Γ, pc,H ` e : τ, κ and H ` H, where free(e) =
{xk} and Γ = {xk 7→ (int, ∅)}, then κ is a fixed point of
cache of program point dependencies of expression e, given
program counter pc and heap H.

Proof. Choose any δ, ik, Lk and n, such that(
κ, δ, pc,H, e[〈ik, ∅,Lk〉/xk]

)
−→n (κ′, δ′, pc,H′, e′).

By type rule (int), we have ∅, pc,H ` 〈ik, ∅,Lk〉 :
(int, ∅), ∅. By hypothesis, Γ, pc,H ` e : τ, κ
and Γ = {xk 7→ (int, ∅)}, and applying Sub-
stitution Lemma B.2 for each 〈ik, ∅,Lk〉, we
have ∅, pc,H ` e[〈ik, ∅,Lk〉/xk] : τ, κ. Since(
κ, δ, pc,H, e[〈ik, ∅,Lk〉/xk]

)
−→n (κ′, δ′, pc,H′, e′) as

noted above, and applying Subject Reduction Lemma 3.4 n
times, noting that pc ⊆ pc, we have ∅, pc,H′ ` e′ : τ, κ′,
and κ′ = κ.

t ::= int | bool | τ → τ | ref τ unlabeled types
τ ::= (t, 〈P,L〉) types
Γ ::= [x 7→ τ] type environment
H ::= [loc 7→ τ, κ, δ] memory environment

Figure 9. Static Type Definitions

t ≤ t′ P ⊆ P′ L v L′

(t, 〈P,L〉) ≤ (t′, 〈P′,L′〉)
τ ≤ τ ′ τ ′ ≤ τ

ref τ ≤ ref τ ′

τ2 ≤ τ ′2 τ ′1 ≤ τ1

τ1 → τ2 ≤ τ ′1 → τ ′2 int ≤ int bool ≤ bool

Figure 10. Static Subtype Relations

Corollary 3.6 (Dynamic Noninterference of Typ-
ing). If Γ, pc,H ` e : τ, κ and H ` H, where
free(e) = {xk} and Γ = {xk 7→ (int, ∅)}, and
e1 = e[〈ik, ∅,Lhigh〉/xk], e2 = e[〈i′k, ∅,Lhigh〉/xk],(
κ, δ, pc,H, e1

)
−→n1

(
κ1, δ1, pc,H1, 〈i1,P1,L1〉

)
,(

κ, δ, pc,H, e2

)
−→n2

(
κ2, δ2, pc,H2, 〈i2,P2,L2〉

)
,

Lhigh 6v Llow, for some Llow, and seclevelκ1δ1 P1tL1 v Llow

then 〈i1,P1,L1〉 = 〈i2,P2,L2〉 and n1 = n2.

Proof. Directly by Theorem 3.5 and Theorem 3.2.

C Static Type System

This section defines a static type system which produces
a type of both indirect dependencies and direct labels, along
with caches of indirect dependencies and direct flows. The
type definitions are in Figure 9, the subtyping rules are in
Figure 10, and the typing rules are in Figure 11.

23

Γ, pc,H ` x : Γ(x), ∅, ∅
(var)

Γ, pc,H ` 〈i,P,L〉 : (int, 〈P,L〉), ∅, ∅
(int)

Γ, pc,H ` 〈b, P,L〉 : (bool, 〈P,L〉), ∅, ∅
(bool)

Γ[x 7→ τ ′], pc,H ` e : τ, κ, δ

Γ, pc,H ` 〈λx. e,P,L〉 : (τ ′ → τ, 〈P,L〉), κ, δ
(fun)

H(loc) = τ, κ, δ

Γ, pc,H ` 〈loc,P,L〉 : (ref τ, 〈P,L〉), κ, δ
(loc)

Γ, pc,H ` e : (bool, 〈P,L〉), κ, δ
pc′ = pc ∪ {p} Γ, pc′,H ` e′ : τ ′, κ′, δ′ Γ, pc′,H ` e′′ : τ ′, κ′′, δ′′ τ ′ = (t, 〈P′,L′〉)

Γ, pc,H ` ifp e then e′ else e′′ : (t, 〈P′ ∪ {p},L′〉), κ] κ′] κ′′] {p 7→ pc ∪ P}, δ] δ′] δ′′] {p 7→ L}
(if)

pc′ = pc ∪ {p} Γ, pc′,H ` e : (τ ′ → τ, 〈P,L〉), κ, δ Γ, pc,H ` e′ : τ ′, κ′, δ′′ τ = (t, 〈P′,L′〉)
Γ, pc,H ` e (e′)p : (t, 〈P′ ∪ {p},L′〉), κ] κ′] {p 7→ pc ∪ P}, δ] δ′] {p 7→ L}

(app)

Γ, pc,H ` e : τ, κ, δ

Γ, pc,H ` ref e : (ref τ, ∅, ∅), κ, δ
(ref)

Γ, pc,H ` e :
(
ref (t, 〈P′,L′〉), 〈P,L〉

)
, κ, δ

Γ, pc,H ` derefp e : (t, 〈P ∪ {p},L〉), κ] {p 7→ P′}, δ
(deref)

Γ, pc,H ` e :
(
ref (t, 〈P′,L′〉), 〈P,L〉

)
, κ, δ Γ, pc,H ` e′ : (t, 〈P′,L′〉), κ′, δ′ pc ∪ P ⊆ P′ L v L′

Γ, pc,H ` e := e′ : (t, 〈P′,L′〉), κ] κ′, δ] δ′
(set)

Γ, pc,H ` e : (int, 〈P,L〉), κ, δ Γ, pc,H ` e′ : (int, 〈P′,L′〉), κ′, δ′

Γ, pc,H ` e⊕ e′ : (int, 〈P ∪ P′,L t L′〉), κ] κ′, δ] δ′
(binop)

Γ, pc,H ` e : τ, κ, δ
τ ≤ τ ′ κ ≤ κ′ δ ≤ δ′

Γ, pc,H ` e : τ ′, κ′, δ′
(sub)

Γ, pc,H ` e : τ, κ, δ Γ[x 7→ τ], pc,H ` e′ : τ ′, κ′, δ′

Γ, pc,H ` let x = e in e′ : τ ′, κ] κ′, δ] δ′
(let)

dom(H) = dom(H)
∀loc ∈ dom(H). ∅, ∅,H ` H(loc) : H(loc)

H ` H
(heap)

Figure 11. Static Type Rules

24

